
ON WARING’S PROBLEM: SOME CONSEQUENCES
OF GOLUBEVA’S METHOD

TREVOR D. WOOLEY

Abstract. We investigate sums of mixed powers involving two squares,
two cubes, and various higher powers, concentrating on situations inacces-
sible to the Hardy-Littlewood method.

1. Introduction

Problems of Waring-type involving mixed sums of powers provide convenient
specimens on which to test analytic methods that one hopes subsequently to
apply more generally. Let t > 2 and 2 6 k1 6 . . . 6 kt be fixed integers, and
let n be a natural number sufficiently large in terms of t and k. We refer to the
problem of establishing the existence of solutions x ∈ Nt of the Diophantine
equation

n = xk11 + xk22 + . . .+ xktt (1.1)

as the Waring problem corresponding to the exponent t-tuple k. Associated
with this problem is the parameter β(k) = k−11 + . . .+k−1t that determines the
difficulty of obtaining solutions. Aficionados of the Hardy-Littlewood method
will recognise that when kt > 3, the intrinsic convexity barrier prevents the cir-
cle method from establishing the existence of solutions to (1.1) when β(k) 6 2.
The goal of this paper is to resolve a wide class of such problems of Waring-
type, if necessary by assuming the truth of the Generalised Riemann Hypoth-
esis. Henceforth we abbreviate the latter hypothesis to GRH, by which we
mean the Riemann Hypothesis for all L-functions associated with Dirichlet
characters. Our first result illustrates what we have in mind, and concerns the
exponent tuple k = (2, 2, 3, 3, 6, 6), for which β(k) = 2.

Theorem 1.1. Assume the truth of GRH. Then all sufficiently large natural
numbers n are represented in the form

x21 + x22 + x33 + x34 + x65 + x66 = n, (1.2)

with xi ∈ N (1 6 i 6 6).

As a consequence of recent work of the author [23] concerning the antici-
pated asymptotic formula associated with this representation problem, it fol-
lows without condition that the number of integers n with 1 6 n 6 X, which
fail to be represented in the shape (1.2), is at most O((logX)3+ε). The clos-
est analogue to Theorem 1.1 thus far achieved in the literature is the implicit
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resolution by Vaughan [21] of the Waring problem associated to the tuple
k = (2, 2, 3, 3, 5, 5), although it would not be difficult to extract from this re-
sult a conclusion for the tuple k = (2, 2, 3, 3, 5, 6). There are very few instances
in which the Waring problem corresponding to exponent k has been resolved
when β(k) 6 2. Subject to natural conditions of congruential type, Gauss [6]
tackled the case k = (2, 2, 2) with β(k) = 3

2
, and more recently Linnik [16] and

Hooley [11] successfully considered k = (2, 2, 3, 3, 3) with β(k) = 2. Also, work
of Golubeva [7, 8] addresses the mixed exponent k = (2, 2, 3, 3, 4, 16, 4k + 1)
with β(k) = 2− 1

48
+ 1

4k+1
. Most recently of all, subject to the validity of the

Elliott-Halberstam conjecture together with GRH, work of Friedlander and the
author [4] resolves the Waring problem corresponding to the exponent tuple
k = (2, 2, 4, 4, 4, k), with β(k) = 2 − 1

4
+ 1

k
. Here, the final kth power may

be deleted if one is prepared to accommodate certain congruence conditions
modulo 48.

Rather than apply the circle method to establish Theorem 1.1, which as we
have noted is limited to situations with β(k) > 2 by the convexity barrier, we
instead apply a method of Golubeva involving the theory of ternary quadratic
forms [7, 8]. In applying this method, we avoid in this paper certain difficulties
arising from auxiliary congruences by assuming where necessary the truth of
GRH. Following some preliminary discussion in §2, we establish in §3 the more
widely applicable conclusion contained in the following theorem. Here and in
§3, we write

γ(k) =
t∏

j=1

(
1− 1

ki

)
and γ̃(k) =

(
1− 1

kt

) t−2∏
j=1

(
1− 1

ki

)
. (1.3)

We emphasise that throughout this paper, except where otherwise indicated,
we assume that 2 6 k1 6 . . . 6 kt.

Theorem 1.2. Assume the truth of GRH. Then provided that γ(k) < 12
17

, all
sufficiently large natural numbers n are represented in the form

x21 + x22 + x33 + x34 +
t∑

j=1

y
kj
j = n, (1.4)

with x ∈ N4 and y ∈ Nt. The same conclusion holds without the assumption
of GRH if either (i) one has t > 2 and γ̃(k) < 74

105
, or (ii) one has γ(k) < 74

105
and the exponents k1, . . . , kt are not all even.

The conclusion of Theorem 1.1 follows at once on noting that γ(6, 6) = 25
36
<

12
17

. Further corollaries follow likewise with a modicum of computation.

Corollary 1.3. All sufficiently large natural numbers n are represented as a
sum of positive integral powers in the form

x21 + x22 + x33 + x34 + x55 + x86 = n,

and also in the form

x21 + x22 + x33 + x34 + x95 + x96 + x97 = n.
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Corollary 1.4. Assume the truth of GRH. Then all sufficiently large natural
numbers n are represented as a sum of positive integral powers in the form

x21 + x22 + x33 + x34 + x65 + x126 + x127 = n.

If one is prepared to assume the Ramanujan Conjecture concerning the
Fourier coefficients of cusp forms of weight 3

2
, then further progress is possible,

as we demonstrate in §4.

Theorem 1.5. Assume the truth of GRH and the Ramanujan Conjecture.
Then provided that γ(k) < 5

6
, all sufficiently large natural numbers n are rep-

resented in the form (1.4) with x ∈ N4 and y ∈ Nt. The same conclusion holds
without the assumption of GRH if either (i) one has t > 2 and γ̃(k) < 5

6
, or

(ii) one has γ(k) < 5
6

and the exponents k1, . . . , kt are not all even.

We record two immediate consequences of Theorem 1.5 which require no
further explanation.

Corollary 1.6. Assume the truth of the Ramanujan Conjecture. Then all
sufficiently large natural numbers n are represented as a sum of positive integral
powers in the form

x21 + x22 + x33 + x34 + x55 = n,

and also in the form

x21 + x22 + x33 + x34 + x65 + x2k+1
6 = n.

Corollary 1.7. Assume the truth of GRH and the Ramanujan Conjecture.
Then all sufficiently large natural numbers n are represented as a sum of pos-
itive integral powers in the form

x21 + x22 + x33 + x34 + x45 = n.

We finish by remarking that several authors have considered Waring’s prob-
lem in the general setting (1.1) with mixed powers k1, . . . , kt. The reader will
locate a representative slice of this literature in the sources Brüdern [3], Hooley
[10] and Vaughan [20].

It is a pleasure to record here my gratitude to Elena Golubeva and Valentin
Blomer for correspondence and conversations several years ago concerning Gol-
ubeva’s theorem on ternary quadratic forms and its proof, here reported as
Theorem 2.1 below. In particular, Professor Blomer supplied the reference to
[19, Korollar 2] that plays an important role in analysing the representation
of squares by the ternary quadratic form x2 + y2 + 6pz2.

2. Golubeva’s method: preliminaries

Our goal in this section and the next is the proof of Theorem 1.2, together
with the conclusion of Theorem 1.1 which essentially amounts to a corollary
of the former theorem. Here we make use of a method originating in work of
Linnik [15], and much enhanced by the level-lowering procedure of Golubeva
[7, 8]. We seek to establish the solubility of the equation (1.4) when n is large
by putting x3 = A + x0 and x4 = A − x0, with A ∈ N of size nearly n1/3
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and |x0| < A. Notice here that when A and x0 are both integers, then x3 and
x4 are necessarily of the same parity. In this way, the representation problem
(1.4) is transformed into the related one

x21 + x22 + 6Ax20 = n− 2A3 −
t∑

j=1

y
kj
j , (2.1)

in which we seek a solution with A ∈ N, |x0| < A and y ∈ Nt. Were A to be
very small compared to the integer on the right hand side of (2.1), for fixed y,
and x0 unconstrained, then such a problem would be well within the scope of
the theory of ternary quadratic forms. The large size of A obstructs such an
approach. In order to bypass this difficulty, we instead seek to choose y1, . . . , yt
in such a way that

n−
t∑

j=1

y
kj
j

is divisible by q6h, for some natural numbers q and h. If q2h is reasonably close
in size to n1/3, then one may substitute

A = q6hB, x0 = z0, xi = q3hzi (i = 1, 2),

N = q−6h
(
n−

t∑
j=1

y
kj
j

)
− 2q12hB3.

This transforms the representation problem (2.1) into the shape

z21 + z22 + 6Bz20 = N,

with N now relatively large compared to B. In this way, the level of the
modular forms involved in the analysis of the ternary quadratic form z21 + z22 +
6Bz20 is lowered to the point that a successful analysis again becomes feasible.
This level lowering approach of Golubeva is further enhanced by choosing B
in such a manner that N contains a sizeable square factor, this innovation also
having been devised by Golubeva.

The key ingredient from the theory of ternary quadratic forms of which we
make use is the following result of Golubeva.

Theorem 2.1. For each δ > 0, there exists a positive number C(δ) with the
property that, whenever n ∈ N and p is a prime number satisfying the following
conditions:

(i) one has (n, 6p) = 1;

(ii) the congruence n ≡ x2 + y2 + 6pz2 (mod 16) is soluble;

(iii) the integer n may be written in the form n = tm2 with (t,m) = 1, and
one has nm12 > C(δ)p21+δ;

then the equation

n = x2 + y2 + 6pz2 (2.2)

has a solution in natural numbers x, y and z.
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Proof. This is in all essentials [8, Theorem 2]. We have modified the conclusion
to assert that the integers x, y and z are natural numbers. Such follows from
the argument of the proof of [8, Theorem 2], on noting that the number of
representations of n in the shape (2.2) with xyz = 0 is plainly Oε(n

ε). Mean-
while, for each ε > 0, the total number of solutions delivered by Golubeva’s
argument is at least Cεn

1/2−εp−1/2, for a positive constant Cε depending at
most on ε.

It may be helpful to the reader examining the proof of [8, Theorem 2] to think
of m2 as the largest square divisor of n, so that t is squarefree. The bounds
for the n-th Fourier coefficients of eigenforms, for arbitrary n, reported by
Golubeva are then discussed in detail in [2, Lemma 1.1]. See the sketch proof
of Theorem 4.1 below for more on this matter. We note also that if n is square,
then Golubeva’s argument remains valid. In the notation of the proof of [8,
Theorem 2], one has ϕ̂(n) = 0 even in circumstances wherein n is a square, as
a consequence of case 3(ii) of [19, Korollar 2] for example, owing to the special
shape of the ternary quadratic form x2 + y2 + 6pz2. The author is grateful to
Valentin Blomer for supplying the latter reference. �

We next set up the machinery to construct the integer q that plays a key role
in the above sketch. This rests on the existence of small primes pj having the
property that a given integer m is a kj-th power residue modulo pj. Current
technology fails to deliver such a conclusion in general without appeal to a
suitable Riemann Hypothesis.

Lemma 2.2. Let k,D ∈ N, and suppose that m is a large natural number with
m� DA, for some fixed A > 0. Then there exists a prime $ with (mD,$) = 1
having the property that the congruence yk ≡ m (mod $h) is soluble for every
natural number h. When k is odd, one may choose $ with $ �k logm.
When k is even, meanwhile, provided that the Riemann Hypothesis holds for
the Dedekind zeta function ζL(s), where L = Q(e2πi/k, k

√
m), one may choose

$ with $ �k,ε (logm)2+ε.

Proof. Consider first the situation in which k is odd. We take $ to be any
prime number with $ ≡ 2 (mod k) and $ - mD. Since the number of prime
divisors of mD is O(logm/ log logm), it follows from the Prime Number The-
orem in arithmetic progressions that such a prime exists with $ �k logm.
Since ($− 1, k) = 1, it follows from Fermat’s Little Theorem that the congru-
ence yk ≡ m (mod $) is soluble, and then an application of Hensel’s Lemma
reveals that for every integer h, the congruence yk ≡ m (mod $h) is soluble.
This completes the proof of the lemma when k is odd.

When k is even, we must resort to higher reciprocity laws (see Milne [17,
Chapter V, especially p.162] and Pollack [18] for suitable background material).
Let ζk = e2πi/k, and write K = Q(ζk) and L = Q(ζk, k

√
m). Write dL for the

discriminant of L over Q. Then it follows from the Dedekind-Kummer splitting
criterion that for any prime ideal p of K relatively prime to k and m, so that

p is unramified in L, the kth power residue symbol

(
m

p

)
k

is equal to 1 if and
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only if p splits in L. The latter in turn happens if and only if the Artin symbol(
L/K

p

)
is the identity in Gal(L/K). Assuming the Riemann Hypothesis for

the Dedekind zeta function ζL(s), it follows from work of Lagarias and Odlyzko

[14] that there exists a prime ideal p of K, unramified in L, with

(
L/K

p

)
equal

to the identity and satisfying

NK/Q(p)� (log dL)2(log log dL)4 �ε (logm)2+ε.

This work shows, moreover, that NK/Q(p) may be chosen to be a rational
prime, say $, with ($, kmD) = 1. Thus we deduce that the congruence
yk ≡ m (mod $) is soluble for some rational prime $ satisfying

$ �ε (logm)2+ε and (kmD,$) = 1.

An application of Hensel’s Lemma again now shows that the congruence yk ≡
m (mod $h) is soluble for every natural number h. This completes the proof
of the lemma. �

We note that the Riemann Hypothesis for the Dedekind zeta function ζL(s)
occurring in the statement of Lemma 2.2 follows from GRH.

We next make some preparations which facilitate the application of Lemma
2.2 in the level-lowering procedure of Golubeva. The first observation that we
must keep in mind is that in order to apply Theorem 2.1, one must ensure that
the conditions (i) and (ii) are met. It transpires that some slightly delicate
footwork is required as we proceed through the argument so as to ensure that
such remains possible. In order to motivate some of this manoeuvring, we note
that a modicum of computation confirms that when p is an odd prime, then
for any integer λ the expression

x2 + y2 + 6pz2 + 2λ2p3

represents all of the odd residue classes modulo 16, with one at least of x and
y odd. It follows as a consequence of this observation that we may concentrate
on condition (i) of Theorem 2.1 in what follows.

We now briefly describe the setting for the next lemma. We suppose through-
out that n is a sufficiently large natural number. It is convenient to adopt
the notation of writing K for the product k1 . . . kt−1. We consider fixed dis-
tinct prime numbers $1, . . . , $t−1 satisfying the conditions (30K,$i) = 1
(1 6 i 6 t − 1) and $t−1 - n. Since the number of distinct prime divisors
of n is O(log n/ log log n), we may suppose in addition that

K10 < $t−1 �K log n and K10 < $i �K 1 (1 6 i 6 t− 2). (2.3)

Finally, we write Ωu = $1 . . . $u, with the familiar convention that Ω0 = 1.

Lemma 2.3. Assume the truth of GRH. Then there exist y, h ∈ N, and a
prime number $ with $ 6 (log n)3, having the following properties:

(a) (30nΩt−1, $) = 1 and ykt ≡ n (mod $6Kh);

(b) n1/kt(log n)−20tK 6 $6Kh 6 y 6 n1/kt(log n)−t;
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(c) (n− ykt , 10Ωt−1) = 1 and n− ykt 6≡ 2 (mod 3);

(d) when t > 2, then the integer $−6Kh(n − ykt) is a kt−1-th power residue
modulo $t−1.

When kt is odd, this conclusion is independent of GRH.

Proof. When kt is even, assume the truth of GRH. Then it follows from Lemma
2.2 that when n is sufficiently large, then there exists a prime number $ with
$ 6 (log n)3 and (30nΩt−1, $) = 1 such that, for any l ∈ N, there exists a
solution of the congruence

zkt ≡ n (mod $l). (2.4)

We choose l to be the largest multiple of 6K, say l = 6Kh, having the property
that

$l 6 n1/kt(log n)−t−2.

Let z denote any solution of (2.4) with 1 6 z 6 $l. Also, define the integer
g3(n) by putting

g3(n) =

{
0, when n 6≡ 2 (mod 3),

1, when n ≡ 2 (mod 3).

When t > 2 it follows from Weil [22] that, since (n$,$t−1) = 1, the congruence

$−ln ≡ wkt−1 +$−lvkt (mod $t−1)

possesses a solution w, v with $t−1 - wv. When t > 2, fix any one such solution
w, v. In addition, when q ∈ {2, 5, $1, . . . , $t−2}, put

gq(n) =

{
0, when (n, q) = 1,

1, when q|n.

Then since (30Ωt−1, $) = 1, it follows from the Chinese Remainder Theorem
that there exists an integer g with 1 6 g 6 30Ωt−1 having the property that

z + g$l ≡ gq(n) (mod q) (q = 2, 3, 5, $1, . . . , $t−2),

and such that when t > 2 one has

z + g$l ≡ v (mod $t−1).

We consequently have

(n− (z + g$l)kt , 10Ωt−1) = 1 and n− (z + g$l)kt 6≡ 2 (mod 3).

In addition, when t > 2 the congruence

$−l(n− (z + g$l)kt) ≡ wkt−1 (mod $t−1)

is soluble with $t−1 - w.

We now take y = z + g$l, and note that from (2.3) we have the bounds

y 6 31Ωt−1$
l 6 (log n)2(n1/kt(log n)−t−2) 6 n1/kt(log n)−t

and
y > $l > n1/kt(log n)−t−2−18K > n1/kt(log n)−20tK .
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The conclusion of the lemma is now immediate. �

An application of Lemma 2.3 sows the seeds for the iteration of a result with
a similar flavour.

Lemma 2.4. Let u be a natural number with 1 6 u 6 t − 1, and let m ∈ N
satisfy logm � log n. Suppose that m is a ku-th power residue modulo $u,
and in particular that $u - m. In addition, when u > 2 suppose that $u−1 - m.
Then there exist natural numbers y and h having the following properties:

(a) yku ≡ m (mod $6Kh
u );

(b) m1/ku(logm)−20uk 6 $6Kh
u 6 y 6 m1/ku(logm)−u;

(c) (m− yku , 10Ωu−1) = 1 and m− yku 6≡ 2 (mod 3);

(d) when u > 2, then the integer $−6Khu (m − yku) is a ku−1-th power residue
modulo $u−1.

Proof. Since m is a ku-th power residue modulo $u and ($u, ku) = 1, it follows
from an application of Hensel’s Lemma that, for any l ∈ N, there exists a
solution of the congruence

zku ≡ m (mod $l
u). (2.5)

We choose l to be the largest multiple of 6K, say l = 6Kh, having the property
that

$l
u 6 m1/ku(logm)−u−1.

Let z denote any solution of (2.5) with 1 6 z 6 $l
u. We define the

integers gq(m) just as in the argument of the proof of Lemma 2.3 when
q = 2, 3, 5, $1, . . . , $u−2, mutatis mutandis. When u > 2 it follows from
Weil [22] that, since (m$u, $u−1) = 1, the congruence

$−lu m ≡ wku−1 +$−lu v
ku (mod $u−1)

possesses a solution w, v with $u−1 - wv. When u > 2, we fix any one such
solution w, v. Since (30Ωu−1, $u) = 1, it follows from the Chinese Remainder
Theorem that there exists an integer g with 1 6 g 6 30Ωu−1 having the
property that

z + g$l
u ≡ gq(m) (mod q) (q = 2, 3, 5, $1, . . . , $u−2)

and such that when u > 2 one has

z + g$l
u ≡ v (mod $u−1).

We consequently have

(m− (z + g$l
u)
ku , 10Ωu−1) = 1 and m− (z + g$l

u)
ku 6≡ 2 (mod 3).

In addition, when u > 2, the congruence

$−lu (m− (z + g$l
u)
ku) ≡ wku−1 (mod $u−1)

is soluble with $u−1 - w.

We now take y = z + g$l
u, and note that from (2.3) we have the bounds

y 6 31Ωu−1$
l
u 6 (logm)(m1/ku(logm)−u−1) 6 m1/ku(logm)−u
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and
y > $l

u > m1/ku(logm)−u−1−7K > m1/ku(logm)−20uK .

The conclusion of the lemma now follows. �

Finally, in order to avoid the assumption of GRH when the exponents
k1, . . . , kt are all even, we require an additional device. We recall our implicit
assumption that kt−1 6 kt.

Lemma 2.5. Suppose that t > 2, and let n be a sufficiently large natural
number with $t−1 - n. Then there exist natural numbers y1, y2 and h having
the following properties:

(a) y
kt−1

1 + ykt2 ≡ n (mod $6Kh
t−1 );

(b) n1/kt(log n)−20tK 6 $6Kh
t−1 6 min{y1, y2} 6 max{y1, y2} 6 n1/kt(log n)−t;

(c) (n− ykt−1

1 − ykt2 , 10Ωt−2) = 1 and n− ykt−1

1 − ykt2 6≡ 2 (mod 3);

(d) when t > 3, then the integer $−6Kht−1 (n − y
kt−1

1 − ykt2 ) is a kt−2-th power
residue modulo $t−2.

Proof. Since $t−1 - n, it follows from Weil [22] that the congruence

n ≡ ukt−1 + vkt (mod $t−1)

possesses a solution u, v with $t−1 - uv. Since (kt−1, $t−1) = 1, an application
of Hensel’s Lemma with v fixed shows that, for any l ∈ N, there exists a
solution of the congruence

n ≡ zkt−1 + wkt (mod $l
t−1), (2.6)

with
z ≡ u (mod $t−1) and w ≡ v (mod $t−1).

We choose l to be the largest multiple of 6K, say l = 6Kh, having the property
that

$l
t−1 6 n1/kt(log n)−t−2.

Let z, w denote any solution of (2.6) with $l
t−1 < z,w 6 2$l

t−1. When t > 3,
we may proceed as in the argument of the proof of Lemma 2.3 to show that
the congruence

$−lt−1(n− wkt) ≡ xkt−2 +$−lt−1y
kt−1 (mod $t−2)

possesses a solution x, y with $t−2 - xy. Note here that

(n− wkt , $t−1) = (zkt−1 , $t−1) = (ukt−1 , $t−1) = 1.

When t > 3, fix any one such solution x, y. In addition, when 1 6 i < t− 2,
define

g$i
(n) =

{
0, when (n− wkt , $i) = 1,

1, when $i|(n− wkt),
and define gq(n) likewise when q = 2, 5. When q = 3 we define g3(n) by putting

g3(n) =

{
0, when n− wkt 6≡ 2 (mod 3),

1, when n− wkt ≡ 2 (mod 3).
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Then since (30Ωt−2, $t−1) = 1, it follows from the Chinese Remainder Theorem
that there exists an integer g with 1 6 g 6 30Ωt−2 having the property that

z + g$l
t−1 ≡ gq(n) (mod q) (q = 2, 3, 5, $1, . . . , $t−3),

and such that when t > 3 one has

z + g$l
t−1 ≡ y (mod $t−2).

We consequently have

(n− wkt − (z + g$l
t−1)

kt−1 , 10Ωt−2) = 1

and
n− wkt − (z + g$l

t−1)
kt−1 6≡ 2 (mod 3).

In addition, when t > 3, the congruence

$−lt−1(n− wkt − (z + g$l
t−1)

kt−1) ≡ ukt−2 (mod $t−2)

is soluble with $t−2 - u.

We now take y1 = z + g$l
t−1 and y2 = w, and note that

max{y1, y2} 6 31Ωt−2$
l
t−1 6 (log n)2(n1/kt(log n)−t−2) = n1/kt(log n)−t

and

min{y1, y2} > $l
t−1 > n1/kt(log n)−t−2−7K > n1/kt(log n)−20tK .

The conclusion of the lemma is now immediate. �

3. Golubeva’s method: an iterative process

We now proceed in an iterative fashion. We focus in our main discussion
on the most interesting situations in which γ(k) > 2

3
, though later we sketch

how to modify this central argument so as to handle the easier cases in which
γ(k) 6 2

3
. In addition, our initial focus is on the situation where either (i) not

all of the exponents k1, . . . , kt are even, or (ii) one assumes the truth of GRH.
In the first situation, we relabel exponents so that kt is odd, so that in our
application of Lemma 2.3 we are able to avoid the assumption of GRH.

Consider the representation problem

mt = v2t + w2
t + (At + z)3 + (At − z)3 +

t∑
j=1

y
kj
jt , (3.1)

which we seek to solve in natural numbers vt, wt, At, z, y subject to the
condition At > (n/6)1/3, whenever mt = n is sufficiently large. Given such a
solution of (3.1), one has

mt = v2t + w2
t + 6Atz

2 + 2A3
t +

t∑
j=1

y
kj
jt ,

and hence
z < (1

6
n/At)

1/2 < (n/6)1/3 < At,

so that (3.1) exhibits a solution of the Waring problem (1.4) in natural numbers
x,y.
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Recall that K = k1 . . . kt−1, and consider fixed distinct prime numbers
$1, . . . , $t−1 with (30K,$i) = 1 (1 6 i 6 t − 1) and $t−1 - n, and satis-
fying (2.3). From Lemma 2.3, we find that there exist natural numbers y = ytt
and h = ht, and a prime number $t with $t 6 (log n)3, having the properties
(a) to (d) of the conclusion of that lemma. Here, we assume GRH only in
circumstances in which kt (and indeed every exponent ki) is even.

We introduce some notation in order to assist with the iteration to come.
When 0 6 r 6 t, define γr and Υr = Υr(h) by

γr =
∏
r<l6t

(
1− 1

kl

)
and Υr =

∏
r<l6t

$6Khl
l .

Then with the integers ytt and ht, and the prime number $t, fixed as above, we
find that the representation problem (3.1) may be solved whenever the derived
representation problem

mt − ykttt = ($3Kht
t vt−1)

2+($3Kht
t wt−1)

2 + 6($6Kht
t At−1)z

2

+ 2($6Kht
t At−1)

3 +
t−1∑
j=1

($
6htK/kj
t yj,t−1)

kj (3.2)

is soluble in natural numbers vt−1, wt−1, At−1, z and yj,t−1 (1 6 j 6 t − 1), in
which we impose the condition

$6Kht
t At−1 > (n/6)1/3.

Write

mt−1 = $−6Khtt (mt − ykttt ).

Then in view of property (a) of Lemma 2.3, the representation problem (3.2)
is equivalent to

mr = v2r + w2
r + 6Arz

2 + 2Υ2
rA

3
r +

r∑
j=1

y
kj
jr , (3.3)

subject to

ΥrAr > (n/6)1/3, (3.4)

in the special case r = t− 1. Notice here, again in the special case r = t− 1,
that property (b) of Lemma 2.3 ensures that

n1−γr(log n)−20(t−r)tK 6 Υr 6 n1−γr(log n)20(t−r)tK (3.5)

and

n(1− 2(t− r)(log n)−1) 6 Υrmr 6 n. (3.6)

Thus, in particular, one has

1
2
nγr(log n)−20(t−r)tK 6 mr 6 nγr(log n)20(t−r)tK . (3.7)

On noting that $
6Khr+1

r+1 ≡ 1 (mod 3), properties (a) and (c) furnish the rela-
tions

(mr, 10Ωr) = 1 and mr 6≡ 2 (mod 3). (3.8)
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In addition, property (d) shows that when t > 2, the congruence

mr ≡ ykr (mod $r) (3.9)

is soluble for some integer y with (y,$r) = 1.

We have shown that the Waring problem (1.4) is soluble whenever, for r =
t−1, the representation problem (3.3) is soluble subject to the conditions (3.4)
to (3.9). We now show by induction that the same is true for 0 6 r < t−1. Let
u be an integer with 1 6 u 6 t− 1, and suppose that the inductive hypothesis
holds for r = u. The condition (3.7) ensures that logmu � log n, and (3.8)
ensures that (mu, $u−1$u) = 1. In addition, it follows from (3.9) that mu is a
ku-th power residue modulo $u. Then we deduce from Lemma 2.4 that there
exist natural numbers y = yuu and h = hu, having the properties (a) to (d) of
the conclusion of that lemma. As in the discussion corresponding to the case
r = t, it follows that with the integers yuu and hu fixed, the representation
problem (3.3) may be solved when r = u provided that the problem

mu − ykuuu = ($3Khu
u vu−1)

2 + ($3Khu
u wu−1)

2 + 6($6Khu
u Au−1)z

2

+ 2Υ2
u($

6Khu
u Au−1)

3 +
u−1∑
j=1

($6huK/kj
u yj,u−1)

kj (3.10)

is soluble in natural numbers vu−1, wu−1, Au−1, z and yj,u−1 (1 6 j 6 u− 1), in
which we impose the condition

Υu−1Au−1 > (n/6)1/3.

Write

mu−1 = $−6Khuu (mu − ykuuu). (3.11)

Then by property (a) of Lemma 2.4, the representation problem (3.10) is equiv-
alent to (3.3) subject to (3.4) in the special case r = u − 1. Continuing our
restriction to the special case r = u− 1, property (b) of Lemma 2.4 combines
with the bounds (3.6) and (3.7) to deliver the estimates

Υu−1 = $6Khu
u Υu 6 m1/ku

u (logmu)
−uΥu 6 m1/ku−1

u (logmu)
−u(muΥu)

6 n
(
1
2
nγu(log n)−20(t−u)tK

)1/ku−1
6 2n1−γu−1(log n)20(t−u)tK

6 n1−γu−1(log n)20(t−u+1)tK

and

Υu−1 = $6Khu
u Υu > m1/ku−1

u (logmu)
−20uK(muΥu)

> 1
2
n
(
nγu(log n)20(t−u)tK

)1/ku−1
(log n)−20uK

> n1−γu−1(log n)−20(t−u+1)tK ,

so that (3.5) holds with r = u − 1. Likewise, one finds that property (b) in
combination with (3.6) and (3.11) shows that

Υu−1mu−1 6 Υumu 6 n
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and

Υu−1mu−1 > Υumu(1− (logmu)
−u) > n(1− 2(t− u+ 1)(log n)−1),

so that (3.6) holds with r = u − 1. Finally, property (c) ensures that (3.8)
holds with r = u − 1, and property (d) shows that when u > 2, then (3.9)
holds with r = u − 1. We have therefore confirmed the inductive hypothesis
with r = u− 1, and this completes the inductive step.

At this stage we have shown that the Waring problem (1.4) is soluble pro-
vided that the representation problem (3.3) is soluble when r = 0 subject to
the conditions (3.4) to (3.8). Simplifying notation in the obvious manner, it
therefore suffices to consider the representation problem

m = v2 + w2 + 6Bz2 + 2λ2B3, (3.12)

where m is a sufficiently large positive integer with (m, 10) = 1 and m 6≡
2 (mod 3). We may suppose further that (λ, 30m) = 1, that λ is an odd
square, and that

λ−1n(1− 2t(log n)−1) 6 m 6 λ−1n, (3.13)

and

n1−γ0(log n)−20t
2K 6 λ 6 n1−γ0(log n)20t

2K . (3.14)

Finally, our goal is to find a solution satisfying the condition λB > (n/6)1/3.

Consider the congruence

2λ2B3 ≡ m (mod 5).

Since 5 - m, and 5 is distinct from 2, $1, . . . , $t, and is congruent to 2 modulo
3, the congruence

B3 ≡ (2λ2)−1m (mod 5)

is soluble with (B,m) = 1. An application of Hensel’s Lemma consequently
shows that the congruence

2λ2B3 ≡ m (mod 52h) (3.15)

is soluble for every natural number h. Let ε be a sufficiently small positive
number, and take c = 2 + 2ε when GRH holds, and otherwise put c = 12

5
+ 2ε.

We take h to be the largest integer for which one has

λ(52h+1)c < (n/6)1/3,

so that

5−2c(n/6)1/3 6 λ(52h+1)c < (n/6)1/3. (3.16)

Thus from (3.14) we have

n(γ0−2/3)/(2c)(log n)−10t
2K < 5h < n(γ0−2/3)/(2c)(log n)10t

2K .

Let B be any fixed solution of (3.15) with 1 6 B 6 52h. Then with ν either
equal to 0 or to 1, one has

2λ2(B + 52hν)3 −m 6≡ 0 (mod 52h+1).
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The methods of Iwaniec [13], Huxley [12] and Gallagher [5] may be employed
to show that, whenever Q > (52h+1)12/5+ε, then there is a prime number p with
Q < p 6 21/3Q, and satisfying

p - m, p ≡ B + 52hν (mod 52h+1) and p ≡ 1 (mod 3).

We direct the reader to the discussion in the preamble to [1, Theorem 2.1],
as it relates to [1, equation (0.3)], for an account of a suitable lower bound
for this purpose. In addition, by virtue of the opening discussion of Heath-
Brown [9], on GRH such a prime exists whenever Q > (52h+1)2+ε. We take
Q = λ−1(n/6)1/3, and observe from (3.16) and the definition of c that there
is an ε to spare in the exponent of 52h+1 to guarantee that Q satisfies the
respective lower bounds just cited. In this way we see that a suitable prime
number p exists with

(n/6)1/3 < λp < (n/3)1/3, (3.17)

and with

p ≡ 1 (mod 3), 2λ2p3 ≡ m (mod 52h) and 2λ2p3 6≡ m (mod 52h+1),

in which

n(γ0−2/3)/c(log n)−20t
2K < 52h < n(γ0−2/3)/c(log n)20t

2K . (3.18)

Write N = TM2, where

T = 5−2h(m− 2λ2p3) and M = 5h.

Then we have (T,M) = 1, and in view of (3.12) we have yet only to solve the
representation problem

N = x2 + y2 + 6pz2,

subject to the condition λp > (n/6)1/3. Here, we may suppose that

N = m− 2λ2p3 ≡ m (mod 2), N = m− 2λ2p3 ≡ m− 2 (mod 3)

and
(N, p) = (m− 2λ2p3, p) = (m, p) = 1.

Since m is odd, it follows that the congruence

N ≡ x2 + y2 + 6pz2 (mod 16)

is soluble. Moreover, we have 3 - (m − 2) and 2 - m, so that (N, 6p) = 1.
Then it follows from Theorem 2.1 that this representation problem is soluble
provided only that

NM12 > C(ε)p21+ε and λp > (n/6)1/3.

The second of these conditions is satisfied by virtue of (3.17), whilst from
(3.13), (3.17) and (3.18) in combination with the latter constraint, we have

NM12 > (m− 2λ2p3)(5h)12

> λ−1n(1− 2t(log n)−1 − 2
3
)(n(γ0−2/3)/c−ε/8)6.

On recalling (3.14), we discern that

NM12 > nγ0+6(γ0−2/3)/c−ε. (3.19)
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Meanwhile, from (3.17) in combination with (3.14) we find that

p21+ε < (n1/3λ−1)21+ε < n21γ0−14+ε. (3.20)

Provided that

γ0(6/c+ 1)− 4/c− ε > 21γ0 − 14 + ε, (3.21)

then a comparison of (3.19) and (3.20) reveals that NM12 > C(ε)p21+ε, and
so it follows from the discussion of the last paragraph that we have a repre-
sentation of m in the shape (3.12). This in turn implies that mt is represented
in the form (3.1), and hence that the Waring problem (1.4) is indeed soluble.
The inequality (3.21) yields the condition

γ0 <
14− 4/c− 2ε

21− 6/c− 1
=

7c− 2− cε
10c− 3

.

Provided that γ0 <
12
17

and ε is chosen sufficiently small, therefore, this con-
dition is satisfied with c = 2 + 2ε, which is the above choice of c that follows
from the assumption of GRH. Alternatively, as long as γ0 <

74
105

and ε is taken

to be sufficiently small, this condition is satisfied with c = 12
5

+ 2ε, which is
our earlier choice for c relevant when GRH is not assumed to hold. Thus, on
recalling (1.3) we find that when GRH holds and γ(k) < 12

17
, then we are able

to solve the equation N = x2 + y2 + 6pz2, whence all sufficiently large natu-
ral numbers n have a representation in the form (1.4). The same conclusion
holds independent of GRH when the ki are not all even and γ(k) < 74

105
. This

completes our discussion of the central argument required to prove Theorem
1.2 when either the validity of GRH is assumed, or else when the exponents
k1, . . . , kt are not all even.

We now briefly sketch the modifications required to deliver the conclusion
of Theorem 1.2 when t > 2 and γ̃(k) < 74

105
. In this instance, we modify the

argument above following (3.3) by applying Lemma 2.5 in place of Lemma 2.3.
We consider fixed distinct primes $1, . . . , $t−1 as before. It follows from the
former lemma that there exist natural numbers y1 = yt−1,t−1, y2 = yt,t−1 and
h = ht−1 having the properties (a) to (d) of its conclusion. With the integers
yt−1,t−1, yt,t−1 and ht−1 fixed, we find that the representation problem (3.1)
may be solved whenever the representation problem

mt − ykt−1

t−1,t−1 − yktt,t−1 = ($
3Kht−1

t−1 vt−2)
2 + ($

3Kht−1

t−1 wt−2)
2 + 6($

6Kht−1

t−1 At−2)z
2

+ 2($
6Kht−1

t−1 At−2)
3 +

t−2∑
j=1

($
6ht−1K/kj
t−1 yj,t−2)

kj

is soluble in natural numbers vt−2, wt−2, At−2, z and yj,t−2 (1 6 j 6 t − 2), in
which we impose the condition

$
6Kht−1

t−1 At−2 > (n/6)1/3.

Write

mt−2 = $
−6Kht−1

t−1 (mt − ykt−1

t−1,t−1 − yktt,t−1).
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Then in view of property (a) of Lemma 2.5, this representation problem is
equivalent to (3.3) subject to (3.4) in the special case r = t− 2, where we now
write

Υr =
∏

r<l6t−1

$6Khl
l .

Properties (a) to (d) of Lemma 2.5 deliver the relations (3.5) to (3.9), though
one must now replace the exponents γr with the modified exponent

γ̃r =

(
1− 1

kt

) ∏
r<l6t−2

(
1− 1

kl

)
.

The problem now assumes the form treated above, save that the exponents
γr must be decorated by tildes throughout. The reader should experience no
difficulty in completing the argument as before, concluding that Theorem 1.2
holds when t > 2 and γ̃(k) < 74

105
.

It now remains only to note that when γ(k) < 2
3

(or indeed γ̃(k) < 2
3
), the

above argument can of course be modified so that the exponents hi are made
smaller. In this way, in the conclusion of Lemma 2.3, one may ensure that
property (b) is replaced by a condition of the type

nω/kt(log n)−20tK 6 $6Kh 6 y 6 nω/kt(log n)−t,

with similar modifications in Lemmata 2.4 and 2.5. We choose ω = ω(ν) to
be the positive number with 0 < ω < 1 for which the modified exponent

γ(k;ω) =
t∏

j=1

(
1− ω

kj

)
satisfies γ(k;ω) = 2

3
+ ν, for a suitably small positive number ν. By modifying

in this way the central argument applied above, one derives the same conclusion
save with γ(k) replaced by γ(k;ω). Since 2

3
< γ(k;ω) = 2

3
+ ν, the desired

conclusion follows. Similar comments apply also in the situation discussed in
the previous paragraph.

Theorem 1.1 follows immediately from Theorem 1.2 on noting that (5
6
)2 < 12

17
.

Likewise, Corollaries 1.3 and 1.4 follow on noting that

γ(5, 8) =

(
4

5

)(
7

8

)
<

74

105
, γ(9, 9, 9) =

(
8

9

)3

<
74

105
,

γ(6, 12, 12) =

(
5

6

)(
11

12

)2

<
12

17
.

4. Consequences of the Ramanujan Conjecture

In this section we refine the conclusion of Theorem 2.1, assuming the truth
of the Ramanujan Conjecture concerning Fourier coefficients of cusp forms of
weight 3

2
.
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Theorem 4.1. Assume the truth of the Ramanujan Conjecture. For each
δ > 0, there exists a positive number C(δ) with the property that whenever
n ∈ N and p is a prime number satisfying the following conditions:

(i) one has (n, 6p) = 1;

(ii) the congruence n ≡ x2 + y2 + 6pz2 (mod 16) is soluble;

(iii) one has n > C(δ)p5+δ;

then the equation (2.2) has a solution in natural numbers x, y and z.

Proof. We follow the argument of [8, §2], mutatis mutandis. Write r(n) for the
number of representations of the integer n in the shape (2.2) with x, y, z ∈ N.

Denote by S
(1)
3/2(24p, χ) the space of cusp forms of weight 3

2
and level 24p which,

under the Shimura lift, are taken into cusp forms of weight 2. Let K denote

the dimension of S
(1)
3/2(24p, χ), so that K � p1+ε, and let (ϕk(z))Kk=1 be an

orthonormal basis for this space.

Let f̂(n) be the n-th Fourier coefficient of a cusp form f(z), so that

f(z) =
∞∑
n=0

f̂(n)e(nz).

We write n in the shape n = tm2 with t squarefree. Note that the condition
(n, 6p) = 1 ensures that both t and m are coprime to the level. Then by
combining Deligne’s estimates for the eigenvalues of Hecke operators of weight
2, together with Shimura’s lift, one finds that

ϕ̂k(n)� |ϕ̂k(t)|m1/2+ε.

This estimate is employed in the argument of the proof of [8, Theorem 2]. We
direct the reader to [2, Lemma 1.1] for a discussion of this conclusion. The

Ramanujan Conjecture asserts that when f ∈ S(1)
3/2(24p, χ), then for squarefree

integers r one should have

|f̂(r)| � r1/4+ε.

We apply this estimate trivially to obtain

K∑
k=1

|ϕ̂k(t)|2 � Kt1/2+2ε � p1+εt1/2+2ε.

Recall that n = tm2. Then on substituting this bound for Golubeva’s use of
the Duke-Iwaniec estimate

K∑
k=1

|ϕ̂k(t)|2 � t13/14+ε,

the reader will have no difficulty in following the argument of [8, §2] so as to
establish that

r(n)�ε n
1/2−εp−1/2 +O

(
p1/4+εm1/2+ε(p1+εt1/2+2ε)1/2

)
.

Consequently, one has r(n)�ε n
1/2−2εp−1/2 provided only that

n1/2−2εp−1/2 � p3/4+2ε(tm2)1/4+ε,
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or equivalently,
n1/4−3ε � p5/4+2ε.

Then, whenever δ > 0, and ε > 0 is taken sufficiently small in terms of δ, one
finds that r(n) �ε n

1/2−2εp−1/2 provided only that n � p5+δ. This completes
the proof of the theorem. �

The conclusion of Theorem 4.1 may be substituted into the argument of §3
without any great difficulty. The lower bound (3.19) is replaced by N > nγ0−ε,
whilst (3.20) becomes

p5+ε < (n1/3λ−1)5+ε < n5γ0−10/3+ε.

Hence, provided that
γ0 − ε > 5γ0 − 10

3
+ ε, (4.1)

a comparison reveals that N > p5+ε, and so it follows as before that the
Waring problem (1.4) is soluble, but now subject to the truth of the Ramanujan
Conjecture. The inequality (4.1) yields the condition

γ0 <
1
4
(10
3
− 2ε) = 5

6
− 1

2
ε.

Provided that γ0 <
5
6

and ε is chosen sufficiently small, therefore, this condition
is satisfied. All that remains is to note that in the suppressed argument leading
to this point in our discussion we find it necessary to assume GRH only when
all the exponents k1, . . . , kt are even. The variants sketched at the end of §3
follow with obvious modifications that need not detain us here. This completes
the proof of Theorem 1.5.

We finish by noting that a more optimistic enhancement of Theorem 4.1
might be expected to hold with the condition (iii) replaced by the constraint
that n > C(δ)p3+δ. If true, such would replace the condition (4.1) by

γ0 − ε > 3(γ0 − 2
3
) + ε.

This condition is satisfied provided that γ0 < 1 and ε is chosen sufficiently
small. Such a conclusion would imply that when n is sufficiently large, the War-
ing problem (1.4) is soluble whenever either t > 2, or the exponents k1, . . . , kt
are not all even. When t = 1 and k1 is even, the Waring problem (1.4) would
remain soluble provided that GRH holds.
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