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FIELD DEGREES AND MULTIPLICITIES FOR
NON-INTEGRAL EXTENSIONS

BERND ULRICH AND CLARENCE W. WILKERSON

Dedicated to Phil Griffith, for his numerous contributions to algebra

Abstract. Let R be a graded subalgebra of a polynomial ring S over a
field so that S is algebraic over R. The goal of this paper is to relate the
generator degrees of R to the degree [S : R] of the underlying quotient
field extension, and to provide a numerical criterion for S to be integral
over R that is based on this relationship. As an application we obtain
a condition guaranteeing that a ring of invariants of a finite group is a
polynomial ring.

1. Introduction

Let k be a field and S = k[t1, . . . , td] a polynomial ring with variables ti of
degree one. Consider a k-subalgebra R generated by m homogeneous elements
{x1, . . . , xm}. In general, if x is a homogeneous element in a graded object,
we denote its degree by |x|.

Problem. If S is algebraic over R, calculate [S : R] from the {|xi|}.

First, one has a form of Bezout’s Theorem:

Theorem 1.1. If S is integral over R, the following hold:
(a) [S : R] divides

∏
|xi|.

(b) If m = d, then [S : R] =
∏
|xi|.

In this paper we obtain a converse to part (b) above:

Theorem 1.2. If S is algebraic over R, the following hold:
(a) [S : R] ≤

∏
|xi|.
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(b) If [S : R] ≥
∏
|xi|, then S is integral over R (equivalently, S is finitely

generated as an R-module) and R = k[y1, . . . , yd] is a polynomial ring
with variables {y1, . . . , yd} ⊂ {x1, . . . , xm}.

We also note that if S is not integral over R, then [S : R] need not divide∏
|xi| even for m = d.
Our proofs rely on reduction to the case of standard graded k-algebras. By

a standard graded k-algebra we mean a positively graded k-algebra that is
Noetherian and generated by its homogeneous elements of degree one (equiv-
alently, is generated by finitely many homogeneous elements of degree one).
For such an algebra A the Hilbert function HA(n) = dimk An is eventually
polynomial,

HA(n) = e(A) nd−1/(d− 1)! + lower order terms .

Here d is the Krull dimension, dim A, of A, whereas the positive integer e(A) is
defined to be the multiplicity of A. More generally, if M is a finitely generated
graded A-module, one has

HM (n) = e(M) nd−1/(d− 1)! + lower order terms

for n � 0, where d = dim M is the Krull dimension of M as an A-module
and e(M) denotes its multiplicity; see, e.g., [4, 4.1.3].

We will deduce Theorem 1.2 from the next result that provides a criterion
for integrality in terms of multiplicities:

Theorem 1.3. Let A ⊂ B be an inclusion of standard graded k-algebras
which are domains and for which B is algebraic over A. One has:

(a) e(B) ≥ [B : A] e(A).
(b) e(B) = [B : A] e(A) if and only if A ⊂ B is integral.

An interesting application of Theorem 1.2(b) is in the study of rings of
invariants of finite groups acting on a polynomial ring:

Theorem 1.4. Let V be a d-dimensional vector space over the field k, V ∗

its k-dual, and S = k[V ∗] = k[t1, . . . , td] the algebra of polynomial functions
on V . Let W ⊂ GL(V ) be a finite group and consider the induced action on
S. Then R = SW is a polynomial algebra over k if and only if there exist
homogeneous elements {x1, . . . , xd} of R such that

(a) S is algebraic over k[x1, . . . , xd], and
(b) |W | ≥

∏
|xi|.

Notice that we do not assume {x1, . . . , xd} to form a system of parameters
of S, as was done in [14, 5.5.5].

In the last section, we give examples of rings of invariants for which Theo-
rem 1.4 is useful in providing a proof of polynomial structure.
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We note that Theorem 1.3 is a special case of results by Simis-Ulrich-
Vasconcelos [13, 6.1]. However, the stronger hypotheses here make a stream-
lined proof possible. We have also included more details of the graded algebra
computations in order to make the paper accessible to the wider audiences of
invariant theorists and algebraic topologists.

2. Proof of Theorem 1.1

We borrow the proof from Adams-Wilkerson [2].

Proof of Theorem 1.1. First notice that dim R = d, since S is integral over
R and S is a polynomial ring in d variables. Pick a homogeneous generating
set {si| 1 ≤ i ≤ M} for the finitely generated graded R-module S. Choose a
basis for the quotient field L of S over the quotient field K of R consisting of
homogeneous elements {uj | 1 ≤ j ≤ N} from S. Here N = [S : R]. Let U be
the graded R-submodule of S generated by the {uj}. Then U is a free graded
R-module. Note that for each i, there exist homogeneous elements {aij} and
{bij} in R so that bij 6= 0 and si =

∑
(aij/bij)uj . Then, taking ∆ =

∏
i,j bij

one obtains ∆S ⊂ U ⊂ S.
We now record some Hilbert-Poincaré series:

(a) PS(T ) = (1− T )−d.
(b) P∆S(T ) = T |∆|PS(T ).
(c) PU (T ) = g(T )PR(T ), where g is a polynomial with non-negative inte-

ger coefficients and g(1) = N = [S : R].
(d) PR(T ) = h(T )(1 − T )m−d

∏
(1− T |xk|)−1, for h a polynomial with

integer coefficients; indeed, the pole order of this rational function is
at most d = dim R as can be seen from a graded Noether normalization
of R.

From the inclusions

∆S ⊂ U ⊂ S

one sees that

P∆S(T ) ≤ PU (T ) ≤ PS(T ).

These inequalities should first be interpreted as holding for the non-negative
integer coefficients of the powers of T in the respective formal power series.
But each of the series also represents a real analytic function for T real and
|T | < 1. In terms of these functions, we can restate the inequalities as

P∆S(T ) ≤ PU (T ) ≤ PS(T ) for 0 ≤ T < 1 .

After multiplying by (1− T )d > 0, one obtains

T |∆| ≤ g(T )h(T )
∏

((1− T )/(1− T |xi|)) ≤ 1 for 0 ≤ T < 1 .
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These inequalities have meaning for the functions, although not necessarily
for the series. Thus in the limit as T → 1, one has

g(1)h(1)
∏

|xi|−1 = 1, or g(1)h(1) = |x1| · . . . · |xm| .

Since g(1) = N = [S : R], it follows that [S : R] indeed divides |x1| · . . . · |xm|.
In the special case that m = d, R is a polynomial algebra and h(T ) = 1. Thus
(a) and (b) are both established. �

3. Reduction of the proof of Theorem 1.2 to Theorem 1.3

Step One: We first reduce to the case m = d. In fact, we may assume
that the first d homogeneous generators {x1, . . . , xd} of R are algebraically
independent over k. Set R′ = k[x1, . . . , xd]. Notice that [S : R′] ≥ [S : R]
and |x1| · . . . · |xd| ≤ |x1| · . . . · |xm|. Thus if (a) holds for R′ ⊂ S, it also
holds for R ⊂ S. Therefore we may replace R by R′ in (a). Furthermore, the
assumption of (b) for R ⊂ S implies

[S : R′] ≥ [S : R] ≥ |x1| · . . . · |xm| ≥ |x1| · . . . · |xd| ≥ [S : R′] .

Thus the assumption of (b) is satisfied for R′ ⊂ S, and [S : R′] = [S : R]. In
particular R′ and R have the same quotient field. Once we have shown that
S is integral over R′, then S is integral over R and R is an integral extension
of the polynomial ring R′. As R′ is integrally closed and R is contained in the
quotient field of R′, it follows that R = R′. Thus indeed S is integral over R,
and R = R′ is a polynomial ring in the variables {x1, . . . , xd} ⊂ {x1, . . . , xm}.
Therefore in part (b) too, we may replace R by R′.

Step Two: In R = k[x1, . . . , xd] consider the subalgebra R′ = k[xk1
1 , . . . , xkd

d ],
where the positive integers {ki} are chosen so that for every i, |xki

i | = N , the
least common multiple of the |xi|. Furthermore let S(N) denote the Veronese
subring of S generated by all homogeneous elements of S whose degree is an
integer multiple of N . Notice that both extensions R′ ⊂ R and S(N) ⊂ S are
integral.

Step Three: We have an inclusion R′ ⊂ S(N) in which all elements of each
algebra have degree a multiple of N . Regrade the algebras by declaring the
new grading to be the old grading divided by N . Then R′ ⊂ S(N) can be
regarded as an inclusion of standard graded domains, so Theorem 1.3 applies:

e(S(N)) ≥ [S(N) : R′] e(R′)

and
e(S(N)) = [S(N) : R′] e(R′)

if and only if R′ ⊂ S(N) is integral.

We now need some small calculations.

Lemma 3.1. e(R′) = 1.
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Proof. This follows since R′ is a polynomial algebra on degree one genera-
tors. �

Lemma 3.2. e(S(N)) = Nd−1 .

Proof. Since S(N) is a Veronese subring, we have HS(N)(n) = HS(Nn).
Therefore

e(S(N)) nd−1/(d− 1)! + · · · = e(S) (Nn)d−1/(d− 1)! + · · ·

and we obtain e(S(N)) = Nd−1e(S) = Nd−1. �

Lemma 3.3. [S : S(N)] = N .

Proof. Notice that {ti1| 0 ≤ i ≤ N − 1} is a vector space basis for the
quotient field of S over that of S(N). �

Lemma 3.4. If m = d, then [R : R′] =
∏

ki.

Proof. This can be easily seen by considering a basis of R as an R′-module.
�

Lemma 3.5. If m = d, then [S : R]
∏

ki = [S : R′] = [S(N) : R′] N .

Proof. One has the chains of inclusions R′ ⊂ R ⊂ S and R′ ⊂ S(N) ⊂ S,
and likewise on the quotient field level. Now use Lemmas 3.3 and 3.4. �

Lemma 3.6. Assume that m = d. Then

[S : R]∏
|xi|

=
[S(N) : R′] e(R′)

e(S(N))
.

Proof. Notice that |xi| = N/ki. Now divide both sides of the equality in
Lemma 3.5 by Nd, and use Lemmas 3.1 and 3.2. �

Lemma 3.7. S is integral over R if and only if S(N) is integral over R′.

Proof. If S is integral over R, then S is integral over R′, and hence S(N)

is integral over R′. On the other hand, if S(N) is integral over R′, then S is
integral over R′, and hence over R. �

To prove Theorem 1.2(a) we apply Theorem 1.3(a) to the inclusion R′ ⊂
S(N) and use Lemma 3.6, which shows that the inequalities of Theorems
1.2(a) and 1.3(a) are equivalent. Similarly, Theorem 1.2(b) is a consequence
of Theorem 1.3(b) and Lemmas 3.6 and 3.7.
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4. Proof of Theorem 1.3

To prove Theorem 1.3 it will be convenient to consider the more general
class of quasi-standard graded algebras over a field k. By this we mean posi-
tively graded k-algebras A so that A is Noetherian, A0 = k, and A is integral
over the k-subalgebra generated by the homogeneous elements of degree one.
As such algebras are finitely generated graded modules over standard graded
k-algebras, one can define the concepts of Hilbert functions and multiplicities
as in the standard graded case.

In this section, A ⊂ B is an inclusion of quasi-standard graded k-domains
for which B is algebraic over A. The aim is to prove that under suitable
restrictions on the multiplicities of A and B, the ring B must be a finitely
generated A-module. More specifically, we have the following generalization
of Theorem 1.3:

Theorem 4.1. Let A ⊂ B be an inclusion of quasi-standard graded k-
algebras which are domains and for which B is algebraic over A. One has:

(a) e(B) ≥ [B : A] e(A).
(b) e(B) = [B : A] e(A) if and only if A ⊂ B is integral.

Notice that B contains a rank [B : A] graded free module over A. Now
part (a) of Theorem 4.1 follows by comparing the two Hilbert functions. One
direction of the implication in (b) is standard:

Proposition 4.2. Let A ⊂ B be an inclusion of quasi-standard graded k-
algebras which are domains. If B is integral over A, then e(B) = [B : A] e(A).

This can be deduced from a more general fact:

Proposition 4.3. Let A be a quasi-standard graded k-algebra which is a
domain, with quotient field K. If M is a finitely generated graded A-module
with dim M = dim A, then e(M) = dimK(M ⊗A K) e(A).

The proof of Proposition 4.3 is an easy adaptation of [10, 14.8].
The rest of this section is devoted to proving the other implication in The-

orem 4.1(b). We first show that we can reduce to the case where e(A) = e(B)
and A and B are standard graded.

Given A ⊂ B algebraic, choose homogeneous elements {ci| 1 ≤ i ≤ N} in
B that form a basis for the quotient field L of B over the quotient field K of
A. For each such ci, there exists a nonzero homogeneous ai ∈ A such that
bi = aici is integral over A. Define A′ to be the A-subalgebra of B generated
by the {bi}. Then A′ is integral over A and [A′ : A] = [B : A]. Notice that A′

is still quasi-standard graded, but that it may fail to be standard graded even
if A and B are—hence the need to consider the wider class of quasi-standard
graded algebras.
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Thus by Proposition 4.2, since A ⊂ A′ is an integral extension of quasi-
standard graded k-algebras,

e(A′) = [A′ : A] e(A) .

Hence if e(B) = [B : A] e(A), one has e(A′) = e(B). Therefore the proof of
Theorem 4.1(b) can be reduced to showing the following proposition:

Proposition 4.4. Let A ⊂ B be an inclusion of quasi-standard graded
k-algebras which are domains and for which B is algebraic over A. If e(B) =
e(A), then B is a finitely generated A-module.

Finally, the reduction to the standard graded case follows from some easy
facts:

Lemma 4.5. Let A be a quasi-standard graded k-algebra. There exists a
positive integer N so that for each positive integer r, the Veronese subring
A(rN) is generated by the elements of ArN as a k-algebra. That is, after
regrading, A(rN) is a standard graded k-algebra.

Proof. One can take N to be the maximal degree occurring in a homoge-
neous minimal generating set of A, considered as a finitely generated module
over a standard graded k-subalgebra. �

Lemma 4.6. Let A ⊂ B be an inclusion of quasi-standard graded k-
domains such that B is algebraic over A. Let N be a positive integer. If
e(B) = e(A), then e(B(N)) = e(A(N)).

Proof. All algebras involved have the same Krull dimension according to
[8, Theorem A, p. 286], for instance. Now the lemma follows by comparing
Hilbert functions. �

Lemma 4.7. Let A ⊂ B be an inclusion of quasi-standard graded k-
domains. Let N be a positive integer. Then B is integral over A if and
only if B(N) is integral over A(N).

In light of Lemmas 4.5, 4.6 and 4.7 it will suffice to prove Proposition 4.4
in the standard graded case.

As in [13] the idea of the proof then is to consider the graded A-module C
defined by the short exact sequence

0 → A → B → C → 0 .

The module C has no obvious finiteness properties as an A-module, but it
does have a Hilbert function, namely

HC(n) = HB(n)−HA(n) .
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Since B is algebraic over A, the two algebras have the same Krull dimension,
say d; see, for instance, [8, Theorem A, p. 286]. As furthermore e(A) = e(B),
it follows that the leading term of HC(n) occurs in degree d− 2 or less.

We need to associate more structure to C in order to utilize this information
about HC(n). Let I = A1B be the homogeneous B-ideal generated by A1,
the homogeneous elements of A having degree 1. Let G be the graded algebra
associated to the filtration of B by powers of I. That is,

G =
∞⊕

i=0

Ii/Ii+1 .

Then G is a positively graded Noetherian ring, although in general it is not a
domain and G0 is not a field. It has Krull dimension d = dim B. In fact, one
has:

Proposition 4.8. The associated graded ring G is equidimensional of
dimension d. That is, for each minimal prime ideal p ⊂ G , dim G/p =
dim G = d.

Proof. The ring G can also be thought of as the quotient of the domain
R = B[It, t−1] (the extended Rees algebra) with respect to the principal ideal
generated by t−1. The Krull dimension of R is d + 1; see [8, Theorem A, p.
286] or [10, 15.7]. The minimal prime ideals of G correspond to the minimal
prime ideals of the principal ideal inR generated by t−1. Let q be such a prime
ideal in R. By the Krull Principal Ideal Theorem (see, e.g., [10, 13.5]), the
height of q is 1. Since R is an affine domain, we have dimR/q = dimR−ht q;
see, e.g., [8, 13.4]. Therefore

dimR/q = dimR− ht q = (d + 1)− 1 = d .

Hence if p ⊂ G is the corresponding minimal prime ideal in G, then dim G/p =
dimR/q = d. That is, G is equidimensional of dimension d. �

Proposition 4.9. In addition to the assumptions of Proposition 4.4 sup-
pose that A and B are standard graded. Then the homogeneous ideal B1G ⊂ G
is nilpotent.

Proof of Proposition 4.4 using Proposition 4.9. In light of Lemmas 4.5, 4.6
and 4.7 we may assume that A and B are standard graded. Since B1G
is nilpotent according to Proposition 4.9, its filtration degree 0 component,
B1B/A1B, is also nilpotent in G. Hence, back in B, B1B ⊂

√
A1B. So

there exists a positive integer N such that BN
1 ⊂ A1BN−1. As B is standard

graded we deduce that BN
1 = A1B

N−1
1 and then Bn = An−N+1BN−1 for

every n ≥ N . Thus a generating set for B as an A-module can be obtained
from a k-basis of

⊕N−1
i=0 Bi. That is, B is a finitely generated A-module. �
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Proof of Proposition 4.9. The algebra G inherits an internal degree from
B and a filtration degree from the I-adic filtration. We write G(m,i), where
m is the internal degree and i is the filtration degree. For the total degree,
we use the sum of the two degrees and set Gn =

⊕
m+i=n G(m,i). Note that

since A and B are standard graded, An
1 = An and B1Bn−1 = Bn for every

positive n. Thus

Gn = Bn/A1Bn−1 ⊕A1Bn−1/A2Bn−2 ⊕ · · · ⊕An−1B1/An ⊕An ,

and

(B1G)n = Bn/A1Bn−1 ⊕A1Bn−1/A2Bn−2 ⊕ · · · ⊕An−1B1/An .

This last expression gives us the “raison d’être” for G and B1G in our strategy.
When we take lengths, consecutive terms cancel. That is, dimk(B1G)n =
dimk Bn/An = dimk Cn. Thus HB1G(n) = HC(n). Notice that with respect
to the total degree, G is a standard graded (finitely generated) k-algebra and
B1G is a homogeneous G-ideal. Hence the Hilbert function and polynomial
for B1G detect the Krull dimension of B1G as a module over G:

Lemma 4.10. dim B1G ≤ d− 1.

Proof. For n � 0, HB1G(n) = HC(n) = HB(n) − HA(n) is a polynomial
function of degree ≤ d− 2, from the hypothesis that e(A) = e(B). Since B1G
is a finitely generated graded module over the standard graded k-algebra G,
its Krull dimension equals the degree of the Hilbert polynomial plus one; see,
e.g., [4, 4.1.3]. �

On the other hand, one has dim B1G = dim G/ann(B1G), for ann(B1G)
the annihilator ideal of B1G in G.

Lemma 4.11. Let p ⊂ G be a minimal prime ideal of G. Then B1G ⊂ p.

Proof. Proposition 4.8 shows that dim G/p = dim G = d for every such p.
On the other hand, dim G/ann(B1G) = dim B1G ≤ d−1 according to Lemma
4.10. Hence dim G/ann(B1G) < dim G/p, which implies that ann(B1G) 6⊂ p.
Since ann(B1G) ·B1G = 0 ⊂ p and p is prime, it follows that B1G ⊂ p. �

Now Lemma 4.11 immediately gives Proposition 4.9, because the nilradical
of G is the intersection of its minimal prime ideals. �

5. Proof of Theorem 1.4 and a counterexample

We begin by recording a proof of Theorem 1.4.

Proof of Theorem 1.4. The forward implication is a consequence of Theo-
rem 1.1(b). To show the converse, write R′ = k[x1, . . . , xd] and notice that

[S : R′] ≥ [S : R] = |W | ≥ |x1| · . . . · |xd| .
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Applying Theorem 1.2 to the extension R′ ⊂ S we conclude that S is integral
over R′ (by part (b)) and that [S : R′] = [S : R] (by part (a)). Thus R is
integral over R′ and the two rings have the same quotient field. But R′ is a
polynomial ring and hence integrally closed. It follows that R′ = R. �

We finish this section with an example related to Theorem 1.2(a). It shows
that the degree of the field extension need not divide the product of the degrees
of the algebra generators.

Example 5.1. Let S = k[x, y], where |x| = |y| = 1. Let R be the k-
subalgebra of S generated by the monomials x3 and xy2. Let K be the
quotient field of R and K ′ the extension given by adjoining the element x.
Then [K ′ : K] = 3 and K ′ contains y2. Hence the quotient field L of S is
obtained from K ′ by adjoining y. Thus [L : K ′] = 2, and [L : K] = 6, which
does not divide 32 = 9. There are of course no examples involving only one
variable.

6. Applications to rings of invariants

A problem of interest in topology and invariant theory for the last thirty-
five years has been the determination of which representations of finite groups
have polynomial algebras as rings of invariants. Work of Shephard-Todd [11],
Chevalley [5], Serre [12], Clark-Ewing [6], and others largely solved this prob-
lem in the case that the order of the group is a unit in the ground field. The
work of Adams-Wilkerson [1] emphasized the connection of the problem to
topology, even in the case where this condition fails.

Wilkerson, in [15, Section III], observed that often polynomial rings of
invariants can be verified using this general strategy:

(a) pick d homogeneous elements {x1, . . . , xd} of SW ,
(b) verify that S is integral over R′, the subalgebra generated by the {xi},

and
(c) check that [S : R′] = |W |.

According to Theorem 1.1(b), for instance, in the presence of (b) item (c) is
equivalent to

(c’) check that
∏
|xi| = |W |.

He lists several types of finite linear groups in characteristic p for which
this strategy works, for example, general linear groups (Dickson invariants),
special linear groups and variations on the upper triangular groups. In these
cases the integrality condition above is evident from the description of the
invariants. Theorem 1.4 tells us that the integrality condition can be replaced
by the weaker statement that the {xi} are algebraically independent.

Thus, computationally, given a choice of elements {xi} satisfying the above
conditions (a) and (c’), one has two options:

(a) show that dimk(S/I) < ∞, for I the S-ideal generated by the {xi}, or
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(b) show that the Jacobian |∂xi/∂tj |, 1 ≤ i, j ≤ d, is nonzero.

Computer algebra programs typically implement option (a) using Gröbner
basis algorithms, and the time and memory requirements increase dramati-
cally with the dimension d and the complexity of W . On the other hand, the
Jacobian can be computed at points in V ⊗k k̄ by a combination of symbolic
and numerical techniques that may be less demanding computationally.

In 1994, C. Xu [16], [17] studied three examples from the [11], [6] list of
complex and p-adic reflection groups. These groups are labeled as W29, W31

and W34 in characteristic 5, 5 and 7, and dimensions 4, 4, and 6 respectively.
In each case he obtained a collection of invariant polynomial forms that allow
Theorem 1.4 to be applied:

Theorem 6.1.

(a) For the group W29 over F5, there are forty linear forms {Li} in
F5[t1, . . . , t4] for which W29 permutes the powers {L4

i }. The first, sec-
ond, third, and fifth elementary symmetric polynomials{x4, x8, x12, x20}
in the {L4

i } are algebraically independent over F5 and the product of
the degrees is 4 · 8 · 12 · 20 = 7680 = |W29|.

(b) For the group W31 over F5, there is a degree 4 polynomial Y4 in
F5[t1, . . . , t4] for which the W31-orbit contains only six distinct polyno-
mials, {Y4,i}. The second, third, fifth, and sixth elementary symmetric
polynomials {y8, y12, y20, y24} in the {Y4,i} are algebraically indepen-
dent. The product of the degrees is 8 · 12 · 20 · 24 = 46080 = |W31|.

(c) For the group W34 over F7, there are 126 linear forms {Li} in
F7[t1, . . . , t6] for which the sixth powers {L6

i } are permuted by the ac-
tion. The first, second, third, fourth, fifth, and seventh elementary
symmetric polynomials {z6, z12, z18, z24, z30, z42} in the {L6

i } are alge-
braically independent and the product of the degrees is 6 · 12 · 18 · 24 ·
30 · 42 = 39191040 = |W34|.

The example W34 appears in his thesis [17] only, so we review the strategy
briefly here. We begin with a method for finding some invariants. This works
well for both W29 and W34.

Let W be a subgroup of GL(V ), where V is a finite dimensional vector
space over k = Fp. Let S be the set of all reflections in W of order prime to p.
These reflections are diagonalizable over k. Denote a typical such reflection
by s. Let Hs denote the fixed hyperplane of s and fs a linear form on V
defining Hs.

Lemma 6.2. For each w ∈ W , wHs is fixed by wsw−1. That is wHs =
Hwsw−1 .

Proof. Let v ∈ Hs and w ∈ W . Then wsw−1(wv) = ws(v) = wv. �
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Lemma 6.3. W acts on the set of all Hs, for s ∈ S.

Now if f is a linear form on V to k, i.e., f ∈ V ∗, define the action of W on
V ∗ by (wf)(v) = f(w−1v), for v ∈ V .

Lemma 6.4. Let s ∈ S and w ∈ W . Then wfs = θs,wfwsw−1 , where
θs,w 6= 0 is an element of k. That is, up to units, the action of W permutes
the linear forms defining the Hs.

Proof. By Lemma 6.2, wfs is zero on the hyperplane wHs = Hwsw−1 . �

Proposition 6.5. For V and W as above, the polynomials fs
p−1 are

permuted by the action of W .

Proof. The multiplicative order of each θs,w is a divisor of p− 1. �

The group W34 has only one conjugacy class of reflections. This class has
126 elements and each has order 2. Thus the preceding theory can be applied
to the sixth powers of the linear forms representing the hyperplanes for these
reflections.

Xu was able to use the Gröbner basis routines of Macaulay to verify the
specified generators for W29 and W31 (and, unstated, that S is integral over
R′). In 1994, however, this failed for W34. He therefore resorted to the
Jacobian method. The Jacobian is not expanded as a degree 126 polynomial.
Rather, each entry is evaluated at a point of the vector space and the resulting
6 × 6 determinant computed. In fact, it vanishes at each point of (F7)6.
However, Xu finds a point in (F49)6 where it is not zero. Thus the proposed
generators are algebraically independent and by Theorem 1.4 the rings of
invariants are as claimed by Xu:

Corollary 6.6.
(a) F5[t1, . . . , t4]W29 = F5[x4, x8, x12, x20].
(b) F5[t1, . . . , t4]W31 = F5[y8, y12, y20, y24].
(c) F7[t1, . . . , t6]W34 = F7[z6, z12, z18, z24, z30, z42].

Here the degree of xk, yk, or zk is k.

These examples can also be found in Aguadé [3], without proof of the
polynomial nature of the rings of invariants. They are also included in [9].
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