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Introduction

This work was developed during the Topology REU at the
University of Virginia in the summer of 2021.
We consider the Tri-pants graph as introduced by Maloni and
Palesi.
The tri-pants graph T P is a combinatorial graph defined in
terms of tri-pants on the twice punctured torus.
T P is higher complexity analogue to the dual of the Farey
complex, F∗.
Making use of the connections between T P and F∗, we prove
that the Tri-pants graph is connected and has infinite
diameter.
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Preliminaries

Definition
The twice-punctured torus is obtained by removing two points
(also called punctures) from a compact surface with genus 1. We
denote it as T 2 \ {◦, •}.

Definition
A closed curve α is separating in a surface, S if S \ α is
disconnected.
A simple closed curve is said to be essential if it is non-trivial, not
homotopic to a puncture or boundary.
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Pants Decompositions
A pair of pants is a surface with genus 0 and 3 boundary
components/punctures.

Definition (Pants Decomposition)
A pants decomposition of T 2 \ {◦, •} is a pair {α, α′} of
disjoint, non-homotopic, non-separating essential simple closed
curves in T 2 \ {◦, •}.

Under these assumptions, (T 2 \ {◦, •}) \ (α ∪ α′) is the union of
two punctured annuli.
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Tri-Pant

Definition (Tri-Pant)
A tri-pant T = {α, α′, β, β′, γ, γ′} of T 2 \ {◦, •} is a collection of
6 simple closed curves (up to homotopy) so that

Each curve is essential and non-separating.
{α, α′}, {β, β′}, and {γ, γ′} all describe pants
decompositions.
Every pair of curves in T intersect exactly once, unless they
determine a pants decomposition.

An Alternate Definition: A tri-pant of T 2 \ {◦, •} is a maximal
collection of essential non-separating simple closed curves in
T 2 \ {◦, •} that intersect pairwise at most once.
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Example of a Tri-Pant

α, α′
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Example of a Tri-Pant

α, α′, β, β′
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Example of a Tri-Pant

α, α′, β, β′, γ, γ′
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Tri-Arcs

Definition
A tri-arc is a collection of three distinct simple, essential, and
unoriented arcs a, b, c belonging to the set

A• := {isotopy classes of arcs with both endpoints at •}

that pairwise intersect only at • and do not bound a cylinder.
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Tri-Arcs (cont.)

Lemma
There is a bijection between tri-pants and tri-arcs.

How to visualize: let [a] ∈ A. Construct a tubular neighborhood
Na about [a] and denote the boundaries of Na to be α and α′.
Then {α, α′} forms a pants decomposition on T 2 \ {◦, •}.

α

[a]
α′

**We can obtain [a] from {α, α′} in a similar way.
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Elementary Moves
We say two tri-pants T ,T ′ differ by an elementary move if the
corresponding tri-arcs T∗,T ′

∗ differ in one of the two following
ways:

In this case, we say that [c] and [c ′] differ by a big flip.

In this case, we say that [c] and [c ′] differ by a small flip.

11 / 29



Elementary Moves
We say two tri-pants T ,T ′ differ by an elementary move if the
corresponding tri-arcs T∗,T ′

∗ differ in one of the two following
ways:

In this case, we say that [c] and [c ′] differ by a big flip.

In this case, we say that [c] and [c ′] differ by a small flip.

11 / 29



Elementary Moves
We say two tri-pants T ,T ′ differ by an elementary move if the
corresponding tri-arcs T∗,T ′

∗ differ in one of the two following
ways:

In this case, we say that [c] and [c ′] differ by a big flip.

In this case, we say that [c] and [c ′] differ by a small flip.
11 / 29



The Tri-pants Graph T P

Definition (Tri-Pants Graph)
The tri-pants graph is a graph T P with vertices corresponding to
distinct tri-pants on T 2 \ {◦, •}. Two vertices are connected by an
edge if the associated tri-pants differ by an elementary move.

We will show:
Connectedness
Infinite diameter
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The Tri-Pants Graph – Degree of Vertices in T P

Proposition
Let T∗ = {[a], [b], [c]} ∈ T P. Then deg(T∗) = 9.

By cutting and gluing, there are three ways to represent T∗ (with
a, b, and c as the diagonal, respectively). For each representation,
there are two possible small flips and one big flip. One can check
that the resulting tri-arcs are distinct.
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The Inclusion Map and the Farey Graph

Lemma
The Farey graph is the curve complex of the once-punctured torus.

Corollary
The inclusion map i∗ : π1(T 2 \ {◦}, •) −→ π1(T 2, •) sends tri-arcs
T to triangles i(T ) in the Farey graph.
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The Dual of the Farey Graph (F∗)

Definition
The dual graph F∗ associated with the Farey Graph F is the graph
whose vertices correspond to the triangles T ∈ F , and whose
edges connect two vertices v = T ∗, v ′ = (T ′)∗ ∈ F∗ if and only if
T and T ′ are adjacent in F .

F∗ is connected and has infinite diameter.
We examine a connection between T P and F∗.
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The Tri-Pants Graph – The Map π

Definition
Define π : T P → F∗ to be a map such that:

Every T ∈ T P maps to a vertex v ∈ F∗ corresponding to the
triangle i(T ) ∈ F

**if T and T ′ differ by a big flip, then π(T ) = π(T ′)
**if T and T ′ differ by a small flip, then π(T ) and π(T ′) are
adjacent.

Define a fiber of π to be π−1(v) ∈ T P for v ∈ F∗.
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The Tri-Pants Graph - Connectedness of the Fibers

Proposition
For each vertex v ∈ F∗, the fiber π−1(v) is connected.

Before proving the theorem, we need to present some definitions.
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Mapping Class Group
We define the set

Homeo+(T 2\{◦, •}) = {f : T 2 → T 2 orientation-preserving homeo.

so that f |{◦,•} = id}
and the pure mapping class group

PMod(T 2 \ {◦, •}) := Homeo+(T 2 \ {◦, •})�isotopy

For homotopy classes θ ∈ π1(T 2 \ {•}, ◦), we can define an
element Push(θ) ∈ PMod(T 2 \ {◦, •}) which ”pushes” ◦ along θ,
taking all intersecting curves along this path as well
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Mapping Class Group

Remark
If θ is parallel to a curve in a tri-arc, then applying the push map
corresponds to two big flips

We may define also the Forget map

Forget : PMod(T 2 \ {◦, •}) → PMod(T 2 \ {•}),

which essentially ”forgets” the puncture.
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Mapping Class Group

Birman’s Exact Sequence

1 → π1(T 2\{•}, ◦) Push−→ PMod(T 2\{◦, •}) Forget−→ PMod(T 2\{•}) → 1

This exact sequence tells us that if φ ∈ PMod(T 2 \ {◦, •}) is such
that Forget[φ] = id , then φ is a push map, so T , φ(T ) differ by an
even number of big flips.
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The Tri-Pants Graph – Connectedness of the Fibers

Proposition
For each vertex v ∈ F∗, the fiber π−1(v) is connected.

Proof (Outline of Proof.)
Two tri-pants T ,T ′ ∈ π−1(v) ⇐⇒ their associated tri-arcs
T∗ = {[a], [b], [c]},T ′

∗ = {[a′], [b′], [c ′]} contain the same
homotopy classes of unoriented arcs in T 2, based at •.
We can find a homeomorphism φ of T 2 which fixes {◦, •} and
so that φ(a) = a′, φ(b) = b′

It turns out that the induced group morphism
φ∗ : π1(T 2, •) → π1(T 2, •) is the identity map.
In fact, φ∗ = id =⇒ φ is isotopic to the identity in T 2 \ {•}.
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Connectedness of the Fibers

Proposition
For each vertex v ∈ F∗, the fiber π−1(v) is connected.

Outline of Proof.
Appealing to the Birman Exact Sequence, this statement
implies that T∗ and φ(T∗) differ by an even number of big
flips.

Since φ∗ is the identity on π1(T 2, •), we can conclude that
either φ(c) = c ′ or φ(c) is a big flip of c ′.
In either case, T∗ and T ′

∗ are separated by a finite sequence of
big flips, so there is a path in π−1(v) connecting T to T ′.
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The Tri-pants Graph – Connectivity of T P

Theorem
The tri-pants graph T P is connected.

Let T ,T ′ ∈ T P. We seek a path in T P connecting T to T ′.

Recall that F∗ is connected. Let π(T ) = v1 and π(T ′) = vk+1.
The edges e1, . . . , ek create a path along v1, . . . , vk+1 in F∗.
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The Tri-pants Graph – Connectivity of T P

Theorem
The tri-pants graph T P is connected.

We know that π−1(vi) 6= π−1(vi+1) for all i .
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The Tri-pants Graph – Connectivity of T P

Theorem
The tri-pants graph T P is connected.

Choose small flips that project to e1, . . . , ek under the map π to
connect adjacent fibers, similar to takng π−1(e1, . . . , ek).
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The Tri-pants Graph – Connectivity of T P

Theorem
The tri-pants graph T P is connected.

Since each fiber in T P is connected, we can find a path
connecting T and T ′. Thus T P is connected.

26 / 29



The Tri-pants Graph – Infinite Diameter

Theorem

The tri-pants graph has infinite diameter.

Proof.
By construction of π, for any path γ ∈ T P connecting T to
T ′, L(π(γ)) ≤ L(γ).
We know that F∗ has infinite diameter, so for any n ∈ Z≥0
there exist v1, v2 ∈ F∗ such that dF∗(v1, v2) ≥ n.
Let T ∈ π−1(v1) and T ′ ∈ π−1(v2)

We see that n ≤ dF∗(v1, v2) ≤ dT P(T ,T ′)

Thus, dT P(T ,T ′) ≥ n, and it follows that T P has an infinite
diameter.
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Further Questions

Every fiber of the tri-pants graph is isomorphic to a copy of
the dual of the Farey graph.
X Vertices in T P have valency three when restricted to their

respective fibers
X For every v ∈ F∗, π−1(v) is a tree
X For every v ∈ F∗, π−1(v) is infinite

Gaining a better understanding of the structure of T P
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Questions?

Thank you!

29 / 29


