The Tri-Pants Graph

Katherine Betts, Troy Larsen, Jeffrey Utley, Avalon Vanis

UVA Topology REU

November 5, 2021

- This work was developed during the Topology REU at the University of Virginia in the summer of 2021.
- We consider the Tri-pants graph as introduced by Maloni and Palesi.
- The tri-pants graph \mathcal{TP} is a combinatorial graph defined in terms of tri-pants on the twice punctured torus.
- \mathcal{TP} is higher complexity analogue to the dual of the Farey complex, \mathcal{F}^* .
- Making use of the connections between \mathcal{TP} and \mathcal{F}^* , we prove that the Tri-pants graph is connected and has infinite diameter.

Preliminaries

Definition

The **twice-punctured torus** is obtained by removing two points (also called punctures) from a compact surface with genus 1. We denote it as $T^2 \setminus \{\circ, \bullet\}$.

Preliminaries

Definition

The **twice-punctured torus** is obtained by removing two points (also called punctures) from a compact surface with genus 1. We denote it as $T^2 \setminus \{\circ, \bullet\}$.

Definition

A closed curve α is **separating** in a surface, S if $S \setminus \alpha$ is disconnected.

A simple closed curve is said to be **essential** if it is non-trivial, not homotopic to a puncture or boundary.

A **pair of pants** is a surface with genus 0 and 3 boundary components/punctures.

A **pair of pants** is a surface with genus 0 and 3 boundary components/punctures.

A **pair of pants** is a surface with genus 0 and 3 boundary components/punctures.

Definition (Pants Decomposition)

A pants decomposition of $T^2 \setminus \{\circ, \bullet\}$ is a pair $\{\alpha, \alpha'\}$ of disjoint, non-homotopic, non-separating essential simple closed curves in $T^2 \setminus \{\circ, \bullet\}$.

A **pair of pants** is a surface with genus 0 and 3 boundary components/punctures.

Definition (Pants Decomposition)

A pants decomposition of $T^2 \setminus \{\circ, \bullet\}$ is a pair $\{\alpha, \alpha'\}$ of disjoint, non-homotopic, non-separating essential simple closed curves in $T^2 \setminus \{\circ, \bullet\}$.

Under these assumptions, $(T^2 \setminus \{\circ, \bullet\}) \setminus (\alpha \cup \alpha')$ is the union of two punctured annuli.

Definition (Tri-Pant)

A tri-pant $T = \{\alpha, \alpha', \beta, \beta', \gamma, \gamma'\}$ of $T^2 \setminus \{\circ, \bullet\}$ is a collection of 6 simple closed curves (up to homotopy) so that

- Each curve is essential and non-separating.
- $\{\alpha, \alpha'\}$, $\{\beta, \beta'\}$, and $\{\gamma, \gamma'\}$ all describe pants decompositions.
- Every pair of curves in T intersect exactly once, unless they determine a pants decomposition.

Definition (Tri-Pant)

A tri-pant $T = \{\alpha, \alpha', \beta, \beta', \gamma, \gamma'\}$ of $T^2 \setminus \{\circ, \bullet\}$ is a collection of 6 simple closed curves (up to homotopy) so that

- Each curve is essential and non-separating.
- {α, α'}, {β, β'}, and {γ, γ'} all describe pants decompositions.
- Every pair of curves in T intersect exactly once, unless they determine a pants decomposition.

An Alternate Definition: A *tri-pant* of $T^2 \setminus \{\circ, \bullet\}$ is a maximal collection of essential non-separating simple closed curves in $T^2 \setminus \{\circ, \bullet\}$ that intersect pairwise at most once.

Example of a Tri-Pant

Example of a Tri-Pant

Example of a Tri-Pant

Tri-Arcs

Definition

A **tri-arc** is a collection of three distinct simple, essential, and unoriented arcs a, b, c belonging to the set

 $\mathcal{A}_{\bullet} := \{ \text{isotopy classes of arcs with both endpoints at } \bullet \}$

that pairwise intersect only at • and do not bound a cylinder.

Tri-Arcs

Definition

A **tri-arc** is a collection of three distinct simple, essential, and unoriented arcs a, b, c belonging to the set

 $\mathcal{A}_{\bullet} := \{ \text{isotopy classes of arcs with both endpoints at } \bullet \}$

that pairwise intersect only at • and do not bound a cylinder.

9 / 29

Lemma

There is a bijection between tri-pants and tri-arcs.

How to visualize: let $[a] \in A$. Construct a tubular neighborhood N_a about [a] and denote the boundaries of N_a to be α and α' . Then $\{\alpha, \alpha'\}$ forms a pants decomposition on $T^2 \setminus \{\circ, \bullet\}$.

**We can obtain [a] from $\{\alpha, \alpha'\}$ in a similar way.

Elementary Moves

We say two tri-pants T, T' differ by an elementary move if the corresponding tri-arcs T_*, T'_* differ in one of the two following ways:

Elementary Moves

We say two tri-pants T, T' differ by an elementary move if the corresponding tri-arcs T_* , T'_* differ in one of the two following ways:

In this case, we say that [c] and [c'] differ by a **big flip**.

Elementary Moves

We say two tri-pants T, T' differ by an elementary move if the corresponding tri-arcs T_* , T'_* differ in one of the two following ways:

In this case, we say that [c] and [c'] differ by a **big flip**.

In this case, we say that [c] and [c'] differ by a small flip:

Definition (Tri-Pants Graph)

The **tri-pants graph** is a graph TP with vertices corresponding to distinct tri-pants on $T^2 \setminus \{\circ, \bullet\}$. Two vertices are connected by an edge if the associated tri-pants differ by an elementary move.

The Tri-Pants Graph – Degree of Vertices in \mathcal{TP}

Proposition

Let
$$T_* = \{[a], [b], [c]\} \in TP$$
. Then deg $(T_*) = 9$.

By cutting and gluing, there are three ways to represent T_* (with a, b, and c as the diagonal, respectively). For each representation, there are two possible small flips and one big flip. One can check that the resulting tri-arcs are distinct.

The Inclusion Map and the Farey Graph

Lemma

The Farey graph is the curve complex of the once-punctured torus.

The Inclusion Map and the Farey Graph

Lemma

The Farey graph is the curve complex of the once-punctured torus.

Corollary

The inclusion map $i_* : \pi_1(T^2 \setminus \{\circ\}, \bullet) \longrightarrow \pi_1(T^2, \bullet)$ sends tri-arcs T to triangles i(T) in the Farey graph.

Definition

The dual graph \mathcal{F}^* associated with the Farey Graph \mathcal{F} is the graph whose vertices correspond to the triangles $T \in \mathcal{F}$, and whose edges connect two vertices $v = T^*$, $v' = (T')^* \in \mathcal{F}^*$ if and only if T and T' are adjacent in \mathcal{F} .

Definition

The dual graph \mathcal{F}^* associated with the Farey Graph \mathcal{F} is the graph whose vertices correspond to the triangles $T \in \mathcal{F}$, and whose edges connect two vertices $v = T^*$, $v' = (T')^* \in \mathcal{F}^*$ if and only if T and T' are adjacent in \mathcal{F} .

- \mathcal{F}^* is connected and has infinite diameter.
- We examine a connection between \mathcal{TP} and \mathcal{F}^* .

イロト 不得 トイヨト イヨト

The Tri-Pants Graph – The Map π

Definition

Define $\pi : \mathcal{TP} \to \mathcal{F}^*$ to be a map such that:

Every T ∈ TP maps to a vertex v ∈ F* corresponding to the triangle i(T) ∈ F

The Tri-Pants Graph – The Map π

Definition

Define $\pi : \mathcal{TP} \to \mathcal{F}^*$ to be a map such that:

• Every $T \in T\mathcal{P}$ maps to a vertex $v \in \mathcal{F}^*$ corresponding to the triangle $i(T) \in \mathcal{F}$ **if T and T' differ by a big flip, then $\pi(T) = \pi(T')$ **if T and T' differ by a small flip, then $\pi(T)$ and $\pi(T')$ are adjacent.

The Tri-Pants Graph – The Map π

Definition

Define $\pi : \mathcal{TP} \to \mathcal{F}^*$ to be a map such that:

Every T ∈ TP maps to a vertex v ∈ F* corresponding to the triangle i(T) ∈ F
**if T and T' differ by a big flip, then π(T) = π(T')
**if T and T' differ by a small flip, then π(T) and π(T') are adjacent.

• Define a fiber of π to be $\pi^{-1}(v) \in \mathcal{TP}$ for $v \in \mathcal{F}^*$.

16 / 29

The Tri-Pants Graph - Connectedness of the Fibers

Proposition

For each vertex $v \in \mathcal{F}^*$, the fiber $\pi^{-1}(v)$ is connected.

For each vertex $v \in \mathcal{F}^*$, the fiber $\pi^{-1}(v)$ is connected.

Before proving the theorem, we need to present some definitions.

We define the set

$$\begin{split} \mathsf{Homeo}^+(T^2 \setminus \{\circ, \bullet\}) &= \{f: T^2 \to T^2 \text{ orientation-preserving homeo.} \\ &\qquad \mathsf{so that} \ f|_{\{\circ, \bullet\}} = \mathit{id} \, \} \end{split}$$

and the pure mapping class group

$$\mathsf{PMod}(\mathcal{T}^2 \setminus \{\circ, \bullet\}) := \operatorname{\mathsf{Homeo}^+}(\mathcal{T}^2 \setminus \{\circ, \bullet\})_{isotopy}$$

We define the set

$$\begin{split} \mathsf{Homeo}^+(\mathcal{T}^2 \backslash \{\circ, \bullet\}) &= \{f: \mathcal{T}^2 \to \mathcal{T}^2 \text{ orientation-preserving homeo.} \\ &\qquad \mathsf{so that} \ f|_{\{\circ, \bullet\}} = \mathit{id} \, \} \end{split}$$

and the pure mapping class group

$$\mathsf{PMod}(\mathcal{T}^2 \setminus \{\circ, \bullet\}) := \mathsf{Homeo}^+(\mathcal{T}^2 \setminus \{\circ, \bullet\})_{\text{isotopy}}$$

For homotopy classes $\theta \in \pi_1(T^2 \setminus \{\bullet\}, \circ)$, we can define an element $\operatorname{Push}(\theta) \in \operatorname{PMod}(T^2 \setminus \{\circ, \bullet\})$ which "pushes" \circ along θ , taking all intersecting curves along this path as well

We define the set

$$\begin{split} \mathsf{Homeo}^+(\mathcal{T}^2 \backslash \{\circ, \bullet\}) &= \{f: \, \mathcal{T}^2 \to \mathcal{T}^2 \text{ orientation-preserving homeo.} \\ &\qquad \mathsf{so that} \ f|_{\{\circ, \bullet\}} = \mathit{id} \} \end{split}$$

and the pure mapping class group

$$\mathsf{PMod}(\mathcal{T}^2 \setminus \{\circ, \bullet\}) := \mathsf{Homeo}^+(\mathcal{T}^2 \setminus \{\circ, \bullet\})_{\text{isotopy}}$$

For homotopy classes $\theta \in \pi_1(T^2 \setminus \{\bullet\}, \circ)$, we can define an element $\text{Push}(\theta) \in \text{PMod}(T^2 \setminus \{\circ, \bullet\})$ which "pushes" \circ along θ , taking all intersecting curves along this path as well

Remark

If θ is parallel to a curve in a tri-arc, then applying the push map corresponds to two big flips

Remark

If θ is parallel to a curve in a tri-arc, then applying the push map corresponds to two big flips

We may define also the Forget map

Forget :
$$\mathsf{PMod}(T^2 \setminus \{\circ, \bullet\}) \to \mathsf{PMod}(T^2 \setminus \{\bullet\}),$$

which essentially "forgets" the puncture.

Birman's Exact Sequence

$$1 \to \pi_1(\mathcal{T}^2 \setminus \{\bullet\}, \circ) \xrightarrow{Push} \mathsf{PMod}(\mathcal{T}^2 \setminus \{\circ, \bullet\}) \xrightarrow{Forget} \mathsf{PMod}(\mathcal{T}^2 \setminus \{\bullet\}) \to 1$$

Birman's Exact Sequence

$$1 \to \pi_1(\mathcal{T}^2 \setminus \{\bullet\}, \circ) \xrightarrow{\mathsf{Push}} \mathsf{PMod}(\mathcal{T}^2 \setminus \{\circ, \bullet\}) \xrightarrow{\mathsf{Forget}} \mathsf{PMod}(\mathcal{T}^2 \setminus \{\bullet\}) \to 1$$

This exact sequence tells us that if $\phi \in \mathsf{PMod}(T^2 \setminus \{\circ, \bullet\})$ is such that $\mathsf{Forget}[\phi] = id$, then ϕ is a push map, so $T, \phi(T)$ differ by an even number of big flips.

The Tri-Pants Graph – Connectedness of the Fibers

Proposition

For each vertex $v \in \mathcal{F}^*$, the fiber $\pi^{-1}(v)$ is connected.

For each vertex $v \in \mathcal{F}^*$, the fiber $\pi^{-1}(v)$ is connected.

Proof (Outline of Proof.)

Two tri-pants T, T' ∈ π⁻¹(v) ⇐→ their associated tri-arcs T_{*} = {[a], [b], [c]}, T'_{*} = {[a'], [b'], [c']} contain the same homotopy classes of unoriented arcs in T², based at ●.

For each vertex $v \in \mathcal{F}^*$, the fiber $\pi^{-1}(v)$ is connected.

Proof (Outline of Proof.)

- Two tri-pants T, T' ∈ π⁻¹(v) ⇐→ their associated tri-arcs T_{*} = {[a], [b], [c]}, T'_{*} = {[a'], [b'], [c']} contain the same homotopy classes of unoriented arcs in T², based at ●.
- We can find a homeomorphism ϕ of T^2 which fixes $\{\circ, \bullet\}$ and so that $\phi(a) = a', \phi(b) = b'$

For each vertex $v \in \mathcal{F}^*$, the fiber $\pi^{-1}(v)$ is connected.

Proof (Outline of Proof.)

- Two tri-pants T, T' ∈ π⁻¹(v) ⇐⇒ their associated tri-arcs T_{*} = {[a], [b], [c]}, T'_{*} = {[a'], [b'], [c']} contain the same homotopy classes of unoriented arcs in T², based at ●.
- We can find a homeomorphism ϕ of T^2 which fixes $\{\circ, \bullet\}$ and so that $\phi(a) = a', \ \phi(b) = b'$
 - It turns out that the induced group morphism
 - $\phi_*: \pi_1(T^2, \bullet) \to \pi_1(T^2, \bullet)$ is the identity map.
 - In fact, $\phi_* = id \implies \phi$ is isotopic to the identity in $T^2 \setminus \{\bullet\}$.

For each vertex $v \in \mathcal{F}^*$, the fiber $\pi^{-1}(v)$ is connected.

Outline of Proof.

• Appealing to the Birman Exact Sequence, this statement implies that T_* and $\phi(T_*)$ differ by an even number of big flips.

For each vertex $v \in \mathcal{F}^*$, the fiber $\pi^{-1}(v)$ is connected.

Outline of Proof.

- Appealing to the Birman Exact Sequence, this statement implies that T_{*} and φ(T_{*}) differ by an even number of big flips.
- Since ϕ_* is the identity on $\pi_1(T^2, \bullet)$, we can conclude that either $\phi(c) = c'$ or $\phi(c)$ is a big flip of c'.

For each vertex $v \in \mathcal{F}^*$, the fiber $\pi^{-1}(v)$ is connected.

Outline of Proof.

- Appealing to the Birman Exact Sequence, this statement implies that T_* and $\phi(T_*)$ differ by an even number of big flips.
- Since ϕ_* is the identity on $\pi_1(T^2, \bullet)$, we can conclude that either $\phi(c) = c'$ or $\phi(c)$ is a big flip of c'.
- In either case, T_{*} and T'_{*} are separated by a finite sequence of big flips, so there is a path in π⁻¹(ν) connecting T to T'.

The Tri-pants Graph – Connectivity of \mathcal{TP}

Theorem

The tri-pants graph TP is connected.

Let $T, T' \in T\mathcal{P}$. We seek a path in $T\mathcal{P}$ connecting T to T'.

The Tri-pants Graph – Connectivity of \mathcal{TP}

Theorem

The tri-pants graph TP is connected.

Let $T, T' \in \mathcal{TP}$. We seek a path in \mathcal{TP} connecting T to T'.

Recall that \mathcal{F}^* is connected. Let $\pi(T) = v_1$ and $\pi(T') = v_{k+1}$. The edges e_1, \ldots, e_k create a path along v_1, \ldots, v_{k+1} in \mathcal{F}^* .

The Tri-pants Graph – Connectivity of TP

Theorem

The tri-pants graph TP is connected.

We know that $\pi^{-1}(v_i) \neq \pi^{-1}(v_{i+1})$ for all *i*.

24 / 29

The Tri-pants Graph – Connectivity of \mathcal{TP}

Theorem

The tri-pants graph TP is connected.

Choose small flips that project to e_1, \ldots, e_k under the map π to connect adjacent fibers, similar to taking $\pi^{-1}(e_1, \ldots, e_k)$.

The Tri-pants Graph – Connectivity of \mathcal{TP}

Theorem

The tri-pants graph TP is connected.

Since each fiber in TP is connected, we can find a path connecting T and T'. Thus TP is connected.

The Tri-pants Graph – Infinite Diameter

Theorem

The tri-pants graph has infinite diameter.

The Tri-pants Graph – Infinite Diameter

Theorem

The tri-pants graph has infinite diameter.

Proof.

- By construction of π , for any path $\gamma \in TP$ connecting T to T', $L(\pi(\gamma)) \leq L(\gamma)$.
- We know that *F*^{*} has infinite diameter, so for any *n* ∈ Z_{≥0} there exist *v*₁, *v*₂ ∈ *F*^{*} such that *d_F**(*v*₁, *v*₂) ≥ *n*.
- Let $T\in\pi^{-1}(v_1)$ and $T'\in\pi^{-1}(v_2)$
- We see that $n \leq d_{\mathcal{F}^*}(v_1, v_2) \leq d_{\mathcal{TP}}(\mathcal{T}, \mathcal{T}')$
- Thus, d_{TP}(T, T') ≥ n, and it follows that TP has an infinite diameter.

- Every fiber of the tri-pants graph is isomorphic to a copy of the dual of the Farey graph.
 - \checkmark Vertices in \mathcal{TP} have valency three when restricted to their respective fibers
 - \checkmark For every $v\in \mathcal{F}^*$, $\pi^{-1}(v)$ is a tree
 - \checkmark For every $v \in \mathcal{F}^*$, $\pi^{-1}(v)$ is infinite

- Every fiber of the tri-pants graph is isomorphic to a copy of the dual of the Farey graph.
 - \checkmark Vertices in \mathcal{TP} have valency three when restricted to their respective fibers
 - \checkmark For every $v\in \mathcal{F}^*$, $\pi^{-1}(v)$ is a tree
 - For every $v \in \mathcal{F}^*$, $\pi^{-1}(v)$ is infinite

 $\bullet\,$ Gaining a better understanding of the structure of \mathcal{TP}

Thank you!