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Review of the LE

Loewner Equation

2
Orgt(z) = M7 g(z) = z.

Hulls given by

Ki ={z e HU{A(0)} : Is < t so that gs(z) = A(s)}.

Kt

A(0)

Time t solution is a conformal map g; : H\ K; — H.
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Review of the LE

Extend to the entire complex plane
Lt,)\ = Kt ) 71.‘7

time t solution g : C\ Ly ) — C.

Define
Rt,/\ =C \ (gt((c \ Lt,)\))'

L¢ » is the left hull, Ry is the right hull.
Duality Property

Lt,)\ = iRt,—iA(t—~)a Rt,)\ = iLt,—i)\(t—-)'
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Theorem (Marshall, Rohde, Lind)
For A(t) real-valued and with Lip(%) norm below 4, L; is a simple

curve.

Time-1 hulls driven by real-valued A(t) = c/1 — t exhibit phase
transitions at |c| = 4.
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Simple hull Ly for ¢ =3 Non-simple hull L; for c = 4.5
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LE with complex drivers

Complex-driven hulls exist naturally in C, not just H.

These hulls are not reflected about the real axis, but can be viewed
as growing in two directions.

0 01 02 03 04 05 06 07 08 09 0 0.2 0.4 0.6 0.8 1 12

L1, \(t) =3Vt L1, M(t) =2e'7/t

We call the blue curve the upper hull and the red curve the lower
hull.



LE with complex drivers: A\(t) = (3 +2i)+ (1 — i)t
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Theorem (Tran)

There exists o > 0 so that when A : [0, T| — C has Lip(1/2) norm
less than o, then Ly = vy[—t, t] for a simple curve vy : [—t, t] — C.
Moreover,

= yi"& g '(Mt) +iy) and ~(—t) = yirz)]* g L (A1) + iy).

Question
Is 4 our optimal value for o in the complex case?

No, we have ¢ < 3.723 due to phase transitions for C-valued

cv1—t.



Complex-valued c+/1 — t: phase transition image
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Complex-valued cy/1 — t: simple and non-simple hulls

Examples of simple and non-simple hulls at time 1:
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Simple curve ¢ = 3.31 + 1.15/ Non-simple curve ¢ =5 4 2/
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Dual driving function
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The concatenation property
If \(t) is real-valued, then fix times t, t + s and consider

ge tH\ Key — H.

gt(Kirsa \ Kea) C His defined.

In fact,
8t(Keysa \ Ken) = Ksxer) \ {MD)},

Kersn = KeaUgr (Ko \ {A(0)})
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The concatenation property for C-valued hulls

For complex-valued driving functions, the property is not so nice:

gt(LtJrs,)\ \ Lt,)\) = Ls,A(H—-) \ Rt A,
Leysr = LeaUgr (Lo ey \ Ren).

If we had L y(t4.) N Rex = {A(t)}, then the property would be the
same as in the real case.
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Simple curves before time 1

Theorem (Tran)

There exists o > 0 so that when \ : [0, T] — C has Lip(1/2) norm
less than o, then Ly = ~v[—t, t] for a simple curve vy : [—t,t] — C.
Moreover,

y(t) = yiﬁg+ g Y(\(t) +iy) and ~y(—t) = yl—i>r3— g (D) + iy).

On an interval [s, t] C [0,1), A(t) = cv/I —t has Lip(3) norm
|c|v/t — s, so the theorem applies on small enough intervals.
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Simple curves before time 1: the parameter Re(«)

Define

Proposition (Lind, U)
The concatenation property becomes

Liysy=LipU g;I(Ls,A(t+-) \ {A(B)})

when Re(a) # 0.

We can build up the simple curve L; (for any t < 1) by attaching
simple curves using the concatenation property.



Simple curves before time 1: the parameter Re(«)

Re(a) > 0
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Phase Transitions

Define
c++vVc2—-16 5 c—+Vc2—-16

A=
2 2

When ¢ € R,
Re(a) >0 = 7(1) = Ar(-1) = B,

Re(a) <0 = ~(1) =~(-1) =B.



Phase Transitions

Define
A_c+\/c2—16 g_ ¢~ c2—16
B 2 T 2 ‘
When ¢ € R,
Re(a) >0 = ~(1) = A(~1) = B,
Re(a) <0 = ~(1) =~(-1) =B.
1? A 1
0.5 B
g _1
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Phase Transitions: continuity in ¢

Let vc : [—t, t] — C be the hull driven by A(t) = cv/1 — t.

Proposition (Lind, U)
The maps ¢ — limi_,17c(t) and ¢ — lim_1 yc(—t) are
continuous for ¢ € C so that Re(a) # 0.

This allows us to extend the results

Re(a) >0 = ~(1) = A,y(-1) =B,
Re(a) <0 = ~(1)=~(-1)=B

to C, proving our criteria for simple and non-simple hulls.
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Phase Transitions: 2-segment hulls

The two points added to a hull at time t are given by the formulas

y(t) = yiﬁg+ g Y(\(t) +iy) and y(—t) = yirg— g (D) + iy).

Driving function \(t) = (1.15 + 3.31i)v/t




Phase Transitions: 1-segment hulls
The limit
lim gt (A(t) + i)
y—0—

does not exist when the right hull is non-simple since it includes its
interior.



Phase Transitions: 1-segment hulls

The limit
lim g; '(A(t) + iy)
y—0—

does not exist when the right hull is non-simple since it includes its

interior.
Driving function \(t) = (2 + 5i)V/t
6 % ’
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Phase Transitions: transitional hulls

When Re(a) = 0, L; is not always a simple curve before time 1.

At time tc =1 — e #™M(®) ~(t.) = ¢ (if ¢ # 4).
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Ly for X(t) = cv/1 —t, c = 3.687 + 0.511/
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» Can we find a least upper bound to o in Theorem 1.27

This research has found that o < 3.723, but how much
smaller can we get it?

P Are there always at most 2 distinct limits
lim g '(A(t) +iy), lim g '(A(t) + iy)
y—07+ y—0—

giving tip points for any driving function?

Transitional hulls appear to give 3 possible limits.

» Do all hulls grow continuously?

Driving functions such as A(t) = e't, t € [0, 1] which intersect
themselves may lead to “jumps” in growth.



Further Questions: driving function A(t) = e't
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Thank you



