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Review of the LE

Loewner Equation

∂tgt(z) =
2

gt(z)− λ(t)
, g0(z) = z .

Hulls given by

Kt = {z ∈ H ∪ {λ(0)} : ∃s ≤ t so that gs(z) = λ(s)}.

λ(0)

Kt

Time t solution is a conformal map gt : H \ Kt → H.
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Review of the LE

Extend to the entire complex plane

Lt,λ = Kt ∪ Kt ,

time t solution gt : C \ Lt,λ → C.

Define
Rt,λ = C \ (gt(C \ Lt,λ)).

Lt,λ is the left hull, Rt,λ is the right hull.

Duality Property

Lt,λ = iRt,−iλ(t−·), Rt,λ = iLt,−iλ(t−·).
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LE with real drivers

Theorem (Marshall, Rohde, Lind)

For λ(t) real-valued and with Lip(12) norm below 4, Lt is a simple
curve.

Time-1 hulls driven by real-valued λ(t) = c
√

1− t exhibit phase
transitions at |c | = 4.

Simple hull L1 for c = 3 Non-simple hull L1 for c = 4.5
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LE with complex drivers

Complex-driven hulls exist naturally in C, not just H.

These hulls are not reflected about the real axis, but can be viewed
as growing in two directions.

L1, λ(t) = 3
√
t L1, λ(t) = 2e i

π
4
√
t

We call the blue curve the upper hull and the red curve the lower
hull.
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LE with complex drivers: λ(t) = (3 + 2i) + (1− i)t

t = 0.25

t = 0.75

t = 0.5

t = 1



LE with complex drivers

Theorem (Tran)

There exists σ > 0 so that when λ : [0,T ]→ C has Lip(1/2) norm
less than σ, then Lt = γ[−t, t] for a simple curve γ : [−t, t]→ C.
Moreover,

γ(t) = lim
y→0+

g−1t (λ(t) + iy) and γ(−t) = lim
y→0−

g−1t (λ(t) + iy).

Question
Is 4 our optimal value for σ in the complex case?

No, we have σ < 3.723 due to phase transitions for C-valued
c
√

1− t.
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Complex-valued c
√
1− t: phase transition image

Non-simple
↑

Simple
↓

Non-simple
↑

Non-simple
←

Non-simple
→



Complex-valued c
√
1− t: simple and non-simple hulls

Examples of simple and non-simple hulls at time 1:

Simple curve c = 3.31 + 1.15i Non-simple curve c = 5 + 2i



Dual driving function c
√
t

By the Duality Property, the right hull driven by c
√

1− t is a
rotation of the left hull driven by −ic

√
t.

R1 for c = 3.31 + 1.15i R1 for c = 5 + 2i
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Dual driving function c
√
t

→
g1

→
g1



The concatenation property

If λ(t) is real-valued, then fix times t, t + s and consider

gt : H \ Kt,λ → H.

gt(Kt+s,λ \ Kt,λ) ⊂ H is defined.

In fact,
gt(Kt+s,λ \ Kt,λ) = Ks,λ(t+·) \ {λ(t)},

Kt+s,λ = Kt,λ ∪ g−1t (Ks,λ(t+·) \ {λ(t)}).
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The concatenation property for C-valued hulls
For complex-valued driving functions, the property is not so nice:

gt(Lt+s,λ \ Lt,λ) = Ls,λ(t+·) \ Rt,λ,

Lt+s,λ = Lt,λ ∪ g−1t (Ls,λ(t+·) \ Rt,λ).

If we had Ls,λ(t+·) ∩ Rt,λ = {λ(t)}, then the property would be the
same as in the real case.

Rt,λ

Ls,λ(t+·)

g−1t

Lt,λ
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Simple curves before time 1

Theorem (Tran)

There exists σ > 0 so that when λ : [0,T ]→ C has Lip(1/2) norm
less than σ, then Lt = γ[−t, t] for a simple curve γ : [−t, t]→ C.
Moreover,

γ(t) = lim
y→0+

g−1t (λ(t) + iy) and γ(−t) = lim
y→0−

g−1t (λ(t) + iy).

On an interval [s, t] ⊂ [0, 1), λ(t) = c
√

1− t has Lip(12) norm
|c |
√
t − s, so the theorem applies on small enough intervals.



Simple curves before time 1: the parameter Re(α)

Define

α =
1

2
(1− c√

c2 − 16
).

Proposition (Lind, U)

The concatenation property becomes

Lt+s,λ = Lt,λ ∪ g−1t (Ls,λ(t+·) \ {λ(t)})

when Re(α) 6= 0.

We can build up the simple curve Lt (for any t < 1) by attaching
simple curves using the concatenation property.
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Simple curves before time 1: the parameter Re(α)

Re(α) = 0
↑

Re(α) > 0
↓

Re(α) = 0
↑

Re(α) < 0
←

Re(α) < 0
→



Phase Transitions
Define

A =
c +
√
c2 − 16

2
, B =

c −
√
c2 − 16

2
.

When c ∈ R,

Re(α) > 0 =⇒ γ(1) = A, γ(−1) = B,

Re(α) < 0 =⇒ γ(1) = γ(−1) = B.

c = 3 c = 4.5
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Phase Transitions: continuity in c

Let γc : [−t, t]→ C be the hull driven by λ(t) = c
√

1− t.

Proposition (Lind, U)

The maps c 7→ limt→1 γc(t) and c 7→ limt→1 γc(−t) are
continuous for c ∈ C so that Re(α) 6= 0.

This allows us to extend the results

Re(α) > 0 =⇒ γ(1) = A, γ(−1) = B,

Re(α) < 0 =⇒ γ(1) = γ(−1) = B

to C, proving our criteria for simple and non-simple hulls.
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Phase Transitions: 2-segment hulls

The two points added to a hull at time t are given by the formulas

γ(t) = lim
y→0+

g−1t (λ(t) + iy) and γ(−t) = lim
y→0−

g−1t (λ(t) + iy).

Driving function λ(t) = (1.15 + 3.31i)
√
t

←

←

L1

↓
↑

R1
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Phase Transitions: 1-segment hulls

The limit
lim

y→0−
g−1t (λ(t) + iy)

does not exist when the right hull is non-simple since it includes its
interior.

Driving function λ(t) = (2 + 5i)
√
t

←

L1

↓

R1
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Phase Transitions: transitional hulls

When Re(α) = 0, Lt is not always a simple curve before time 1.

At time tc = 1− e−4πIm(α), γ(tc) = c (if c 6= 4).

L1,λ for λ(t) = c
√

1− t, c ≈ 3.687 + 0.511i
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Further Questions

I Can we find a least upper bound to σ in Theorem 1.2?

This research has found that σ < 3.723, but how much
smaller can we get it?

I Are there always at most 2 distinct limits

lim
y→0+

g−1t (λ(t) + iy), lim
y→0−

g−1t (λ(t) + iy)

giving tip points for any driving function?

Transitional hulls appear to give 3 possible limits.

I Do all hulls grow continuously?

Driving functions such as λ(t) = e it , t ∈ [0, 1] which intersect
themselves may lead to “jumps” in growth.
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Further Questions: driving function λ(t) = e it

t = 0.25

t = 0.75

t = 0.5

t = 1



Thank you


