Synthetic Wavefront Generation for Aero-Optics Correction

¹Jeffrey Utley, ¹Gregery Buzzard, ²Charles Bouman, and ³Matthew Kemnetz

¹Department of Mathematics, Purdue University ²Departments of Electrical and Computer Engineering, and Biomedical Engineering, Purdue University ³Air Force Research Laboratory, Directed Energy Directorate

The Aero-Optics Problem

Turbulent flow over an aircraft causes wavefront aberrations in propagated laser beams.

The Aero-Optics Problem, Figure 1 from [1]

[1] M. Wang, A. Mani, and S. Gordeyev, "Physics and Computation of Aero-Optics," *Annual Review of Fluid Mechanics*, Vol. 44, No. 1, 2012, pp. 299–321.

Adaptive Optics for Aero-Optical Effects

- The Kolmogorov-Taylor model is **not sufficient** to describe aero-optics ([2]).
 - Development of Adaptive Optics (AO) systems for atmospheric turbulence *relies on* this model ([2]).

- We *need wavefront data* to accurately design AO systems for addressing aero-optic effects.
 - Wind tunnel experiments are *costly*; data acquisition is *time-limited*.

• We implement an algorithm for generating synthetic wavefronts on long time-scales.

Metrics for Synthetic Wavefront

Our synthetic wavefront needs to match the following:

1. (Temporal) Power Spectral Density (PSD) of **deflection angle** $\theta_x: S_{\theta_x}(f).$

2. (Temporal) PSD of **optical path difference** (**OPD**): $S_{OPD}(f)$.

3. Spatial Structure Function for *Kolmogorov turbulence* ([2]), evaluated on **optical path difference** (**OPD**).

$$D_{OPD}(r) = \langle [OPD(\mathbf{x} + \Delta \mathbf{x}) - OPD(\mathbf{x})]^2 \rangle \quad (r = |\Delta \mathbf{x}|)$$

[2] C. Vogel, G. Tyler, and D. Wittich, "Spatial-temporal-covariance-based modeling, analysis, and simulation of aero-optics wavefront aberrations," *J. Opt. Soc. Am. A*, Vol. 31, No. 7, 2014, pp. 1666-1679.

Notre Dame Wind Tunnel Experiment, Figure 1(b) from [3]

We have three experimental data sets:

- F04: **1.02 sec** of data
- F06: **1.51 sec** of data
- F12: **1.93 sec** of data

Notre Dame Wind Tunnel Experiment, Figure 1(b) from [3]

Experimental Data: Visualization

Quantize each sub-aperture as a pixel value.

Statistical Model for OPD

• We model **OPD** as a zero-mean timestationary Gaussian random process X_n .

• We employ *Principal Component Analysis (PCA)* to *decorrelate OPD* values at each time:

Data Analysis: PCA

Distribution A; Approved for public release. 10

Converting Experimental Data

At each time step *n*, we convert the 2-D spatial *OPD* to a column vector in *raster order*.

Converting Experimental Data

Distribution A; Approved for public release.

12

[4] H. Lütkepohl, New Introduction to Multiple Time Series Analysis, 2005, Springer-Verlag Berlin, pg. 13-14, 69-71.

VAR Modeling: Linear Prediction

Data Analysis: Linear Prediction

ξ_n is white in *time*, correlated in *space*.

Data Analysis

Synthesis

Drive model with white noise W_n

Inverse PCA gives correlated noise ξ_n

Synthesis: Linear Prediction

Synthesis: Inverse PCA

40 -

-20

Distribution A; Approved for public release. 19

-0.06

Synthesis

Drive model with white noise W_n

Post-Processing Synthetic Data

After generating synthetic data, remove a (*weighted*) moving average:

Algorithm Overview

ase 22

Results: Data Set F04 ($N_L = 5$)

Results: Data Set F06 ($N_L = 3$)

Results: Data Set F12 ($N_L = 3$)

Algorithm Run-Time

- 6.5 mins to analyze 0.8 sec of experimental data
- 2.4 mins to generate 1 sec of synthetic data

3.5 mins to *analyze* 1.2 sec of *experimental* data
53 sec to *generate* 1 sec of *synthetic* data

- 3.3 mins to analyze 1.6 sec of experimental data
- **38 sec** to *generate* **1 sec** of *synthetic* data

Conclusion

• Development of AO systems to address aero-optic effects requires aberrated wavefront data on long time-scales.

• Our VAR Model algorithm is computationally efficient and generates high quality synthetic wavefronts.

References

- [1] M. Wang, A. Mani, and S. Gordeyev, "Physics and Computation of Aero-Optics," *Annual Review of Fluid Mechanics*, Vol. 44, No. 1, 2012, pp. 299–321.
- [2] C. Vogel, G. Tyler, and D. Wittich, "Spatial-temporal-covariance-based modeling, analysis, and simulation of aero-optics wavefront aberrations," *J. Opt. Soc. Am. A*, Vol. 31, No. 7, 2014, pp. 1666-1679.
- [3] M. R. Kemnetz and S. Gordeyev, "Optical investigation of large-scale boundary-layer structures", 54th AIAA Aerospace Sciences Meeting, 4 -8 Jan 2016, San Diego, California, AIAA Paper 2016-1460.
- [4] H. Lütkepohl, *New Introduction to Multiple Time Series Analysis*, 2005, Springer-Verlag Berlin, pg. 13-14, 69-71.