A STUDY OF THE REPRESENTATIONS SUPPORTED BY THE ORBIT CLOSURE OF THE DETERMINANT

SHRAWAN KUMAR

1. Abstract

Let v be a complex vector space of dimension m and let $E := v \otimes v^* = \text{End} v$. Consider $\det \in Q := S^m(E^*)$, where \det is the function taking determinant of any $X \in \text{End} v$. The group $G = \text{GL}(E)$ canonically acts on Q. Let \mathcal{X} be the G-orbit closure of \det inside Q. Then, \mathcal{X} is a closed (affine) subvariety of Q which is stable under the standard homothetic action of \mathbb{C}^* on Q. Thus, its affine coordinate ring $\mathbb{C}[\mathcal{X}]$ is nonnegatively graded G-algebra over the complex numbers \mathbb{C}.

The aim of this talk is to study $\mathbb{C}[\mathcal{X}]$ as a G-module. The work is motivated by the geometric approach initiated by Mulmuley-Sohoni to solve the Valiant’s conjecture in Geometric Complexity Theory. We relate its study with the Latin Square Conjecture due to Alon-Tarsi and an equivalent formulation due to Huang-Rota called the column Latin square conjecture.