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Abstract

A number of problems in control can be reduced to �nding suitable real solutions of al-

gebraic equations. In particular, such a problem arises in the context of switching surfaces

in optimal control. Recently, a powerful new methodology for doing symbolic manipulations

with polynomial data has been developed and tested, namely the use of Gr�obner bases. In this

note, we apply the Gr�obner basis technique to �nd e�ective solutions to the classical problem

of time-optimal control.

1 Introduction

Optimal control is one of the most widely used and studied methodologies in modern systems

theory. As is well-known, time-optimal problems lead to switching surfaces which typically are

de�ned or may be approximated by polynomial equations [1, 9, 11]. The problem of determining

on which side a given trajectory is in relation to the switching surface is of course key in developing

the control strategy. Since the complexity of the switching surfaces can grow to be quite large,

this may become quickly a formidable task. Here is where new techniques from computational

algebraic geometry may become vital in e�ciently solving this problem. Thus while there have

been a number of interesting more ad hoc approaches to the computation of switching surfaces (see

[1, 9, 11] and the references therein), we feel that the techniques presented here can systematize

the calculations.

More precisely, in this paper we would like to introduce Gr�obner bases in the context of optimal

control which will reduce the switching surface problem to a combinatorial one. Gr�obner bases

have already been employed in a number of applications in robotics and motion planning [5, 13].

Here we would like to propose them as a potentially powerful tool in optimal control. In addition

to the computations of switching surfaces, this paper is intended to be of a tutorial nature. Our

main purpose is to introduce a fundamental technique in computational geometry in order to solve

an important problem in systems.

The contents of this paper are as follows. In Section 2, we give the relevant control background.

Section 3 introduces the basic notions of algebraic geometry, elimination theory, and Gr�obner bases.

1

Supported by the A.P. Sloan Foundation.

2

Supported in part by grants from the National Science Foundation ECS-99700588, ECS-9505995, NSF-LIS, Air

Force O�ce of Scienti�c Research AF/F49620-98-1-0168, by the Army Research O�ce DAAG55-98-1-0169, and

MURI Grant.

1



In Section 4, these notions are applied to indicate an explicit solution to the time optimal control

problem. In Section 5, we make some conclusions and indicate the future course of this work.

2 Switching Surfaces in Optimal Control

We focus on the classical problem of time-optimal control for a system consisting of a chain of

integrators. It is standard that for such a system, minimum-time optimal control with a bounded

input, leads to \bang-bang" control with at most n switchings { n being the order of the system.

The control algorithm usually requires explicit determination of the switching surfaces where the

sign of the control input changes. Explicit expressions for switching strategy are in all but the

simplest cases prohibitively complicated (e.g., see [9], [11]).

Consider the linear system with saturated control input

_x

1

(t) = x

2

(t)

_x

2

(t) = x

3

(t)

_x

3

(t) = u(t); where ju(t)j � 1;

and as objective to drive the system from an initial condition x(0) to a target x(t

f

), in minimum

time t

f

. In this case the Hamiltonian is

H = 1 + �

1

x

2

+ �

2

x

3

+ �

3

u:

The co-state equations become

_

�

1

(t) = 0

_

�

2

(t) = ��

1

(t)

_

�

3

(t) = ��

2

(t); (1)

while the optimal u(t) is given by u(t) = �sign (�

3

(t)).

A closed form expression for the optimal u(t) as a function of x(t) can be worked out (e.g., [9],

see also [11]). Such an expression in fact tests the location of the state vector with regard to a

switching surface. Bang-bang switching in practice is not desirable because of the incapacitating

e�ect of noise and chattering. This issue has been addressed by a number of authors (see [11]

and the references therein) and will not be discussed herein. While various remedies have been

proposed and applied, the basic issue of knowing the switching surfaces is still instrumental in most

methodologies.

The approach we take herein is algebraic in nature. The idea is to test directly whether a

particular switching strategy is feasible. There are only two possible strategies where the input

alternates between +1 and �1, taking the values +1;�1;+1; : : : , or �1;+1;�1; : : : , respectively.

In each case, taking into account the maximal number of switchings, one can easily derive an

expression for the �nal value of the state as a function of the switching times. This expression is

then analyzed against the requirement of a given x(t

f

).

For this standard time-optimal control problem, it is well-known and easy to see by analyzing

(1) that, in general, there are no singular intervals, and that the control input switches at most 3

times. Designate by t

1

; t

2

and t

3

, the length of the successive intervals where u(t) stays constant.

Any set of initial and �nal conditions can be translated to having x(0) = 0 and a given value for
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x(t

f

) and this is the setting from here on. The particular choice (among the only two possible

ones),

u(t) =

8

<

:

+1 for 0 � t < t

1

;

�1 for t

1

� t < t

1

+ t

2

;

+1 for t

1

+ t

2

� t < t

1

+ t

2

+ t

3

=: t

f

drives the chain of integrators for the origin to the �nal point x(t

f

) given by

x

3

(t

f

) = t

1

� t

2

+ t

3

x

2

(t

f

) =

t

2

1

2

+ t

1

t

2

�

t

2

2

2

� t

2

t

3

+

t

2

3

2

+ t

3

t

1

x

1

(t

f

) =

t

3

1

6

�

t

3

2

6

+

t

3

3

6

(2)

+

t

2

1

2

t

2

+

t

2

1

2

t

3

+

t

2

2

2

t

1

�

t

2

2

2

t

3

+

t

2

3

2

t

1

�

t

2

3

2

t

2

+ t

1

t

2

t

3

:

It turns out that the selection between alternating values +1;�1;+1; : : : or, �1;+1;�1; : : : for

the optimal input u(t) depends on whether the equations (2) have a solution for a speci�ed �nal

condition x(t

f

) = (x

1

; x

2

; x

3

)

0

.

3 Computational Algebraic Geometry and Gr�obner Bases

Algebraic geometry is concerned with the properties of geometric objects de�ned as the common

zeros of systems of polynomials which are called varieties. As such it is intimately related to the

study of rings of polynomials and the associated ideal theory [7, 6].

More precisely, let k denote a �eld (e.g., the �elds of complex numbers C , real numbers R,

or rational numbers Q). Over an algebraically closed �eld such as C , one may show that a�ne

geometry (the study of subvarieties of a�ne space k

n

) is equivalent to the ideal theory of the

polynomial ring k[x

1

; : : : ; x

n

] (see [7], especially the discussion of the Hilbert Nullenstellensatz).

Clearly, the ability to manipulate polynomials and to understand the geometry of the underlying

varieties can be very important in a number of applied �elds (e.g., the kinematic map in robotics

is typically polynomial; see also [12, 13] and the references therein for a variety of applications of

geometry to systems theory). We show now how the problem in optimal control discussed above

may be reduced to a problem in a�ne geometry.

Until recently applications of algebraic geometry to practical �elds of mathematics was limited

because despite its vast number of deep results, very little could actually be e�ectively computed.

Because of this, it has not lived up to its potential to have a major impact on more applied �elds.

The advent of Gr�obner bases with powerful fast computers has largely remedied this situation.

Gr�obner bases were used �rst by F. Macaulay in his theory of modular systems; he computed with

them what is known today as Hilbert functions of Artinian modules. In the 1960's, B. Buchberger

de�ned and named them in honor of his doctoral advisor W. Gr�obner. Buchberger also established

basic existence theorems and provided an algorithm for computing them, later named after him.

They were also essentially discovered by H. Hironaka at around the same time in connection with

his work on resolution of singularities. We follow the treatments in [3, 5, 2].

The method of Gr�obner bases helpss one to treat a number of key problems for reasonably sized

systems of polynomial equations. Among these are the following:
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1. Find all common solutions in k

n

of a system of polynomial equations

f

1

(x

1

; : : : ; x

n

) = � � � = f

m

(x

1

; : : : ; x

n

) = 0:

2. Determine the (�nite set of) generators of a given polyomial ideal.

3. For a given polynomial f and an ideal I, determine whether f 2 I.

4. Let g

i

(t

1

; : : : ; t

m

), i = 1; : : : ; n be a �nite set of rational functions. Suppose V � k

n

is de�ned

parametrically as x

i

= g

i

(t

1

; : : : ; t

m

), i = 1; : : : ; n. Find the system of polynomial equations

which de�ne the variety V .

3.1 Gr�obner Bases

Gr�obner bases generalize the usual Gauss reduction from linear algebra, the Euclidean algorithm

in C [x], and the simplex algorithm from linear programming.

Motivated by the long division in the polynomial ring of one variable, one introduces an order on

the monomials in polynomial rings of several variables k[x

1

; : : : ; x

n

] in order to execute a division

type algorithm.

Let Z

+

n

denote the set of n-tuples of non-negative integers. Let �; � 2 Z

+

n

. For � =

(�

1

; : : : ; �

n

), and set x

�

= x

�

1

1

� � � x

�

n

n

: Let > denote a total (linear) ordering on Z

+

n

(this means

that exactly one of the following statements is true: � > �; � < �; or � = �). Moreover we say

that x

�

> x

�

if � > �. Then a monomial ordering on Z

+

n

is a total ordering such that

1. if � > � and 
 2 Z

+

n

, then �+ 
 > � + 
; and

2. > is a well-ordering, i.e., every nonempty subset of Z

+

n

has a smallest element.

One of the most commonly used monomial orderings is the one de�ned by the ordinary lexico-

graphical order >

lex

on Z

+

n

. Recall that this means � >

lex

� if the leftmost non-zero element of

�� � is positive. This ordering is also called elimination order with x

1

> : : : > x

n

.

We now �x a monomial order on Z

+

n

.Then the multidegree of an element f =

P

�

a

�

x

�

2

k[x

1

; : : : ; x

n

] (denoted by multideg(f)) is de�ned to be the maximum � such that a

�

6= 0. The

leading term of f (denoted by LT(f)) is the monomial

a

multideg(f)

� x

multideg(f)

:

We now statethe following central

De�nition 1. A �nite set of polynomials f

1

; : : : ; f

m

of an ideal I � k[x

1

; : : : ; x

n

] is called a

Gr�obner basis if the ideal generated by LT(f

i

) for i = 1; : : : ;m is equal to the ideal generated by

the leading terms of all the elements of I,

k[x

1

; : : : ; x

n

] � fLT (f)jf 2 Ig = k[x

1

; : : : ; x

n

] � (LT(f

1

); : : : ;LT(f

m

)):

We emphasize the �niteness of a Gr�obner basis.

The crucial result is the following

Theorem 1. Every non-trivial ideal has a Gr�obner basis. Moreover, any Gr�obner basis of I is a

generating set of I.
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The Buchberger algorithm is a �nite algorithm that takes in a �nite set of generators for the

ideal I in k[x

1

; : : : ; x

n

] and returns a Gr�obner basis for I. At its heart lies the idea of cancelling

leading terms to obtain polynomials with smaller leading terms, similar to the Euclidean algorithm

in k[x].

Notice that the use of Gr�obner bases reduces the study of generators of polynomial ideals (and

so a�ne algebraic geometry) to that of the combinatorial properties of monomial ideals. Therein

lies the power of this method assuming that one can easily compute a Gr�obner basis (see [3, 5]).

In what follows, we will indicate how Gr�obner basis techniques may be used to solve polynomial

equations.

3.2 Elimination Theory

Elimination theory is a classical method in algebraic geometry for eliminating variables from systems

of polynomial equations and as such is a key method in �nding their solutions. Gr�obner bases give

a powerful method for carrying out this procedure systematically. We work over an algebraically

closed �eld k in this section.

More precisely, let I � k[x

1

; : : : ; x

n

] be an ideal. The j-th elimination ideal of I is de�ned to

be

I

j

= I \ k[x

j+1

; : : : ; x

n

]:

Suppose that I is generated by f

1

; : : : ; f

m

. Then I

j

is the set of all consequences of f

1

= : : : =

f

m

= 0 which do not involve the variables x

1

; : : : ; x

j

. Thus, elimination of x

1

; : : : ; x

j

amounts to

�nding generators of I

j

. This is where the Gr�obner basis methodology plays the key role:

Theorem 2 (Elimination Theorem). Let I � k[x

1

; : : : ; x

n

] be an ideal, and G a Gr�obner basis

for I with respect to the lexicographical order with x

1

> : : : > x

n

. For every j = 0; : : : ; n, set

G

j

:= G \ k[x

j+1

; : : : ; x

n

]

(i.e., select the elements of G not involving x

1

; : : : ; x

j

). Then G

j

is a Gr�obner basis of I

j

. (Here

we take I

0

= I.)

Note that, for l 2 Z

+

, G

j

is also a Gr�obner basis for I

j�l

\ k[x

j+1

; : : : ; x

n

] = I

j

. Thus, using

Theorem 2, we may eliminate the variables one at a time (or all but x

n

at once) until we are left

with a polynomial in x

n

, which we may solve. We must of course then extend the solution to the

original system. For an ideal I � k[x

1

; : : : ; x

n

] we set

V (I) := f(z

1

; : : : ; z

n

) 2 k

n

: f(z

1

; : : : ; z

n

) = 0 8f 2 Ig:

Again this can be done in a systematic matter via the following result.

Theorem 3 (Extension Theorem). Let I � k[x

1

; : : : ; x

n

] be generated by f

1

; : : : ; f

m

. Let I

1

be

the �rst elimination ideal of I as de�ned above. For each i = 1; : : : ;m write f

i

as

f

i

= g

i

(x

2

; : : : ; x

n

)x

n

i

1

+ lower order terms in x

1

:

Suppose that (z

2

; : : : ; z

n

) 2 V (I

1

) � k

n�1

. If there exists some i such that g

i

(z

2

; : : : ; z

n

) 6= 0, then

we may extend (z

2

; : : : ; z

n

) to a solution of (z

1

; : : : ; z

n

) 2 V (I):

The theorem gives a systematic way of checking whether partial solutions of I

j

may be extended

to solutions of I.

This ends our brief discussion of Gr�obner bases and elimination theory. We should note that

there are symbolic implementations of this methodology on such standard packages as Mathematica,

Maple, or Macaulay [10].
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4 Computation of Switching Surfaces

In this section, we indicate the solution to the time optimal control problem formulated in Section

2. Even though we work out the case of 3rd order system, the method we propose is completely

general, and should extend in a straightforward manner to any number of switchings.

In what follows below, we set

x := t

1

; y := t

2

; z := t

3

;

and

a := x

3

(t

f

); b := x

2

(t

f

); c := x

3

(t

f

):

4.1 Complex Solutions

In this subsection, we solve the complex version of the switching problem, namely:

Problem 2. Given is the system of equations

x� y + z = a;

x

2

2

+ xy +

z

2

2

+ zx�

y

2

2

� yz = b; (3)

x

3

6

+

z

3

6

+

x

2

y

2

+

x

2

z

2

+

y

2

x

2

+

z

2

x

2

+ xyz �

y

3

6

�

y

2

z

2

�

z

2

y

2

= c:

We are interested in solving the following question:

� If a; b; c 2 C , does the system have complex solutions x; y; z?

The answer will be yes.

To illustrate the use of the Macaulay symbolic program in computational algebraic geometry,

we will put in some of the relevant scripts. Let us call I the ideal in Q [x; y; z; a; b; c] generated

by the three forms above. As a �rst step, let us compute a Gr�obner basis for I. We introduce

the elimination order with x > y > z > c > b > a. Here is a Macaulay command sequence to

accomplish this:

1% ring R

! characteristic (if not 31991) ?

! number of variables ? 6

! 6 variables, please ? xyzcba

! variable weights (if not all 1) ?

! monomial order (if not rev. lex.) ? 1 1 1 1 1 1

largest degree of a monomial : 512 512 512 512 512 512

1% <ideal I x-y+z-a x2/2+xy+z2/2+zx-y2/2-yz-b\

x3/6+z3/6+x2y/2+x2z/2+y2x/2+z2x/2+xyz-y3/6-y2z/2-z2y/2-c

1% <inhomog_std I II

The result is the following 7 forms, made visible by

putstd II
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z

4

b� 1=2z

4

a

2

� 2z

3

c� 2z

3

ba+ 4=3z

3

a

3

+ 6z

2

ca+ z

2

b

2

� z

2

ba

2

� 3=4z

2

a

4

� 4zcb � 4zca

2

+ 2zb

2

a+ 2=3zba

3

+ 1=6za

5

+ c

2

+ 2cba+ 2=3ca

3

� b

3

� 1=2b

2

a

2

� 1=12ba

4

� 1=72a

6

; (4)

yc

2

� 2ycba+ 2=3yca

3

+ yb

3

� 1=2yb

2

a

2

+ 1=12yba

4

� 1=72ya

6

+ z

3

b

2

� z

3

ba

2

+ 1=4z

3

a

4

� z

2

cb+ 1=2z

2

ca

2

� 2z

2

b

2

a+ 13=6z

2

ba

3

� 7=12z

2

a

5

� 2zc

2

+ 6zcba� 7=3zca

3

� zb

2

a

2

+ 7=36za

6

+ 2c

2

a� 2cb

2

� 3cba

2

+ 4=3ca

4

+ 2b

3

a� 2=3b

2

a

3

� 1=36a

7

; (5)

yzb� 1=2yza

2

� yc+ 1=6ya

3

� z

2

b+ 1=2z

2

a

2

+ 2zc� 1=3za

3

� 2ca+ b

2

+ 1=12a

4

; (6)

yzc� 1=6yza

3

� 2yca+ yb

2

+ 1=12ya

4

+ z

3

b� 1=2z

3

a

2

� 2z

2

c� 2z

2

ba+ 4=3z

2

a

3

+ 6zca � zba

2

� 1=2za

4

� cb� 7=2ca

2

+ 2b

2

a+ 1=6ba

3

+ 1=12a

5

; (7)

yz

2

� 2yza+ yb+ 1=2ya

2

+ zb� 1=2za

2

� c+ 1=6a

3

; (8)

y

2

� 2yz + 2ya� b+ 1=2a

2

; (9)

x� y + z � a: (10)

We read these equations as polynomials in x; y; z with parametric coe�cients that depend on a; b; c.

At this point we remark that the Gr�obner basis would look just the same if we had considered

the extension of the ideal to the ring of polynomials over R or C . This is true in general.

Now if the three forms from Problem 1 have a solution, then certainly the quartic given by (4)

above, also must have a solution, whatever the base �eld. Over C this will have a solution for sure

if the leading form is nonzero, which is the case if and only if a

2

� 2b 6= 0.

Moreover, if the quartic (4) does indeed have a solution over C (i.e. 9z 2 C that makes the

equation true for chosen a; b; c 2 C ), then the Extension Theorem tells us in view of the two

equations (9, 10) that we can �nd y and then x in C solving the entire system over C .

Let us continue to investigate the question whether we can �nd z 2 C such that the quartic

holds true in the case where a

2

= 2b. In that case, we need to add a

2

� 2b to the generators of our

ideal, and recompute the Gr�obner basis. Here is the script:

1% <ideal J a^2-2b

1% concat J I

1% <inhomog_std J JJ

In this case the output is

b� 1=2a

2

;

z

3

c� 1=6z

3

a

3

� 3z

2

ca+ 1=2z

2

a

4

+ 3zca

2

� 1=2za

5

� 1=2c

2

� 5=6ca

3

+ 11=72a

6

;

yc� 1=6ya

3

� 2zc+ 1=3za

3

+ 2ca� 1=3a

4

;

yz

2

� 2yza+ ya

2

� c+ 1=6a

3

;

y

2

� 2yz + 2ya;

x� y + z � a:

Not surprisingly, the quartic became a cubic when we set the leading coe�cient to zero. As before,

the cubic will have a complex root as long as the leading coe�cient a

3

� 6c is nonzero. And also as

before, the two last equations ensure that each solution for z may be extended to (x; y; z) solving

the system.

What happens if a

3

= 6c? Let us add this relation and recompute a Gr�obner basis:
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1% <ideal K a^3-6c

1% concat K J

1% <inhomog_std K KK

which leads to

b� 1=2a

2

;

c� 1=6a

3

;

yz

2

� 2yza+ ya

2

;

y

2

� 2yz + 2ya;

x� y + z � a:

A somewhat surprising thing happened: when we killed the leading coe�cient of the cubic, the

entire polynomial died. Let us factor as much as we can in the output:

b� 1=2a

2

;

c� 1=6a

3

;

y(z � a)

2

;

y(y � 2(z � a));

x� y + (z � a):

One can see that this system has for example the solution (x; y; z) = (0; 0; a).

We conclude:

� The system does always have a complex solution.

� If a

2

= 2b; a

3

= 6c and a; b; c 2 R, the system has real solutions.

� If a

2

= 2b; a

3

= 6c and 0 � a; b; c 2 R, the system has real nonnegative solutions.

4.2 Real Positive Solutions

Now that we have established the existence of complex solutions x; y; z for any parameter set (a; b; c)

let us search for the existence of real nonnegative solutions for real parameters. This will solve our

switching control problem. Thus as a second step we will answer the following:

Problem 3. Given are a; b; c 2 R. Does there exist a nonnegative solution vector (x; y; z) for the

system (3) in the sense that x � 0; y � 0; z � 0?

Thus, if there is a positive solution x; y; z; then the value of the optimal control u assumes

the values +1;�1;+1 successively, and in particular, the present value for the optimal control is

u(0) = +1. If no positive solution exists then the present value of the optimal control is u(0) = �1.

The techniques we will use are computations of suitable Gr�obner bases together with an al-

gorithm from real algebraic geometry called Sturm sequences. Sturm sequences are associated to

polynomials as follows. Suppose f(x) is a single variable polynomial with real coe�cients. We

de�ne p

0

(x) = f(x), p

1

(x) = f

0

(x), and then recursively p

i

by p

i

= q

i�1

p

i�1

� p

i�2

for i > 1. Here

we demand that deg(p

i

) < deg(p

i�1

). So, p

i

is up to sign the remainder of Euclidean division of

p

i�2

by p

i�1

.
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Theorem 4. ( [4], Theorem 1.2.) Let � < � be real numbers which are not roots of f(x). De�ne

a function v(
) for 
 2 R by counting the number of sign changes in the sequence fp

i

(
)g

i�0

,

dropping all zeros. Then v(�) � v(�) is the number of distinct zeros of f between � and �.

The signi�cance of the theorem for us lies in the fact that although it does not specify the

location of the zeros it gives a qualitative answer, which as pointed out above is all we need to

know about for the purpose of dynamical steering.

As a �rst step we compute a Gr�obner basis for the three polynomials in (3) under an elimination

order with x > z > y > c > b > a. Note the switch of the variables y and z in the ordering. One

gets

y

4

+ 4y

2

b� 2y

2

a

2

� 4yc+ 4yba� 4=3ya

3

� b

2

+ ba

2

� 1=4a

4

; (11)

zb� 1=2za

2

+ 1=2y

3

+ 3=2yb� 3=4ya

2

� 2c+ ba� 1=6a

3

; (12)

zy � 1=2y

2

� ya+ 1=2b � 1=4a

2

; (13)

x+ z � y � a: (14)

This suggests that one ought to solve equation (12) or (13) for z:

z =

�1=2y

3

� 3=2yb+ 3=4ya

2

+ 2c� ba+ 1=6a

3

b� 1=2a

2

; (15)

z =

y

2

=2 + ya� 1=2b + 1=4a

2

y

; (16)

respectively. This of course is assuming that y and b� a

2

=2 are not zero.

It is easy to check that these solutions for z are not contradicting each other. In fact, they di�er

by a multiple of the quartic in y, given in (11).

One sees that y = 0 implies 2b� a

2

= 6c� a

3

= 0. These relations simplify the system to

b� 1=2a

2

;

c� 1=6a

3

;

y

3

; (17)

zy + 1=� 2y

2

� ya;

x+ z � y � a:

This has the solutions y = 0, z = arbitrary, x = a � z. Since y = 0 is actually equivalent to

a

3

� 6c = a

2

� 2b = 0, testing the latter conditions is su�cient to �nd out whether y = 0. In that

case nonnegative solutions will exist precisely when a is nonnegative. This covers the case y = 0.

If x = 0, our system takes the form

c

2

� 2cba+ 2=3ca

3

+ b

3

� 1=2b

2

a

2

+ 1=12ba

4

� 1=72a

6

;

yb� 1=2ya

2

� c+ ba� 1=3a

3

;

yc� 1=6ya

3

� ca+ b

2

� 1=12a

4

; (18)

y

2

+ b� 1=2a

2

;

z � y � a;

x:

9



Since a; b; c are known it is easy to check the consistency of this system, by solving each of the three

middle equations for y and testing the vanishing of the �rst. If consistency fails, we are not in the

case x = 0.

If the sytem is consistent, one needs to check whether the obtained solutions for y; z are non-

negative. If that is so set u = 1 and otherwise u = �1, �nishing the case x = 0.

In a similar fashion one does the case z = 0. If z = 0 one gets

c

2

+ 2cba+ 2=3ca

3

� b

3

� 1=2b

2

a

2

� 1=12ba

4

� 1=72a

6

;

yb+ 1=2ya

2

� c+ 1=6a

3

;

yc� 1=6ya

3

+ 2ca � b

2

� 1=12a

4

; (19)

y

2

+ 2ya� b+ 1=2a

2

;

z;

x� y � a;

which is quite similar to the case x = 0. One �rst checks whether the �rst relation between the

parameters holds. Then one solves the next three equations for y and then solves the last relation

for x. If the system is consistent we have z = 0. If x; y turn out to be nonnegative set u = 1 and

otherwise u = �1.

This rules out all cases of vanishing variables. In order to predict when strictly positive solutions

exist we are reduced to the cases (a

2

=2 = b, a

3

=6 6= c) and (a

2

=2 6= b).

Let us consider �rst the case (a

2

=2 = b, a

3

=6 6= c). Then we have a Gr�obner basis

b� 1=2a

2

;

y

3

� 4c+ 2=3a

3

;

z � y=2 + a;

x+ z � y � a:

It becomes obvious that in order to have a nonnegative solution, we need

y

3

= 4(c � a

3

=6) � 0;

z = (4(c� a

3

=6))

1=3

=2 + a � 0;

x = (4(c� a

3

=6))

1=3

=2 � 0;

which simpli�es to the two conditions c�a

3

=6 � 0; (4(c � a

3

=6))

1=3

=2+a � 0. These are conditions

that can easily be checked for given a; b; c and determine existence of a nonnegative solution (x; y; z)

of the system (3).

Now let us move to the most general situation b�a

2

=2 6= 0. In particular, y 6= 0 then. Theorem

4 asserts that the Sturm sequence fp

i

(y)g corresponding to

f(y) = y

4

+ 4y

2

(b� a

2

=2) + 4y(ba� c� 1=3a

3

)� b

2

+ ba

2

� a

4

=4

counts the zeros of this quartic. In particular, there will be positive solutions for just y if and only

if v(0)� v(1) > 0 since 0 is not a root of the quartic (note that �b

2

+ ba

2

� a

4

=4 = �(b� a

2

=2)

2

).

Now from (9),

z =

y

2

=2 + ya� 1=2b + 1=4a

2

y

:

10



This means that for positive y, z is positive as long as y

2

=2+ ya� 1=2b+1=4a

2

> 0. This parabola

has roots in r

1;2

= a�

p

b+ a

2

=2 where r

1

� r

2

. Since the parabola has positive leading coe�cient,

y; z > 0 for y 62 [r

1

; r

2

] if b+ a

2

=2 > 0, and y; z > 0 for all y > 0 if b+ a

2

=2 < 0.

Similarly,

x = y + a� z =

y

2

=2 + 1=2b � 1=4a

2

y

:

Let r

0

1;2

= �

p

1=2a

2

� b with r

0

1

� r

0

2

. Hence x; y > 0 if and only if 0 < y 62 [r

0

1

; r

0

2

] if a

2

=2 > b, and

x; y > 0 for all y > 0 if a

2

=2 < b.

We conclude that in order to have x; y; z all positive at the same time we need to satify the

following conditions all at the same time.

y

4

+ 4y

2

(b� a

2

=2) + y(�4c+ 4ba� 4=3a

3

)� b

2

+ ba

2

� a

4

=4 = 0;

y 62 [r

1

; r

2

] or r

i

62 R;

y 62 [r

0

1

; r

0

2

] or r

0

i

62 R;

y > 0;

which can be checked with Sturm sequences.

4.3 The Switching Algorithm

These results pave the way for the following algorithm. The algorithm has as input the current

state (a; b; c) of the system and as output the recommended value for u for time optimal control,

either 1 or �1. The origin is then approached by iterated repetition of the algorithm.

Algorithm 5 (Dynamical steering of the system to the origin.). Suppose our system is in

the state (a; b; c).

Case 1. (Check whether x = 0.)

Test the consistency of the system (18). If consistent solve it; if y; z � 0 set u = 1, otherwise

set u = �1. If the system (18) is not consistent, go to the next case.

Case 2. (Check whether z = 0.)

Test the consistency of the system (19). If consistent solve it; if x; y � 0 set u = 1, otherwise

set u = �1. If the system (19) is not consistent, go to the next case.

Case 3, 2b = a

2

; 6c = a

3

. (Check whether y = 0.)

If a � 0, set u = 1 for a seconds, at which point the system will have reached the origin. If

a < 0, let u = �1 for a seconds.

Case 4, 2b = a

2

; 6c 6= a

3

; x; y; z all 6= 0.

If 6c� a

3

> 0 and 6c > �11a

3

, let u = 1. Else, let u = �1.

Case 5, 2b 6= a

2

, x; y; z all 6= 0.

Set r

1

= a �

p

b+ a

2

=2; r

2

= a +

p

b+ a

2

=2, r

0

2

=

p

a

2

=2� b. Let f(y) = y

4

+ 4y

2

(b �

a

2

=2)+y(�4c+4ba�4=3a

3

)� b

2

+ ba

2

�a

4

=4 and compute the corresponding Sturm sequence

fp

i

(y)g

i�0

. Let I = (0; r

1

) [ (r

2

;1) if r

i

2 R and (0;1) else. Let I

0

= (r

0

2

;1) if r

0

2

2 R and

(0;1) else. Let S = I \ I

0

.

Using the Sturm sequence compute the number of solutions of f(y) in S. If this number is

positive, set u = 1 and otherwise set u = �1.
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5 Conclusions

This paper has provided a general approach to the switching control strategy in time-optimal

control. The key idea is to use the Gr�obner basis technique which allows one to algorithmically

work with systems of polynomials in several variables. These results are quite general, and we

expect that this approach will lead to a complete solution of the problem of identifying switching

surfaces, in the sense that we will be able to provide a symbolic computer program which will allow

one to solve the problem for a reasonable number of variables (with \reasonable" a function of the

computing power of the machine doing the computation!).

Very importantly, the employment of Gr�obner bases is the basis of computational algebraic

geometry which certainly has a variety of practical applications for problems where polynomial

manipulations play an essential role. They will clearly play an ever increasing role in the systems

and control area.
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