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For any integer d× (n+ 1) matrix A and parameter β ∈ Cd let MA(β) be the associated A-hypergeometric (or GKZ)

system in the variables x0, . . . , xn. We describe bounds for the (roots of the) b-functions of both MA(β) and its Fourier

transform along the hyperplanes (xj = 0). We also give an estimate for the b-function for restricting MA(β) to a generic

point.
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Let D be the ring of algebraic C-linear differential operators on Cn+1 with coordinates x0, . . . , xn.

Definition 0.1 (Compare Kashiwara [1976/77], Maisonobe and Mebkhout [2004]). Let M be a left D-module
and pick an element m ∈M with annihilator I ⊆ D. If (V iD) is the vector space spanned by the monomials
xα∂β with α0 − β0 ≥ i then the b-function of m ∈M along the coordinate hyperplane x0 = 0 is the minimal
monic polynomial b(s) that satisfies: b(x0∂0) ·m ∈ (V 1D) ·m in M , which is to say b(x0∂0) ∈ I + (V 1D) in D.

If M is cyclic, i.e., M = D/I, then we call b-function of M the b-function in the above sense of the element
1 + I ∈M .

The b-function exists in greater generality along any hypersurface (f = 0), as long as the module M
is holonomic, cf. Kashiwara [1976/77]. The V -filtration of Kashiwara and Malgrange then takes the form
(V iD) = {P ∈ D | f i+k divides P • fk for k � 0}. Both the V -filtration and the b-function are intimately
connected to the restriction of the given D-module to the hypersurface. The purpose of this note is to give, for
any A-hypergeometric system as well as its Fourier transform, an explicit arithmetic description of a bound for
the root set of the b-function along any coordinate hyperplane that involves the parameter β in a very elementary
way.

We have several applications in mind: first, it is a longstanding question to understand the monodromy
of A-hypergeometric systems, and for this purpose the roots of the b-function as considered above can be of
some use. On the other hand, the Fourier transform of an A-hypergeometric system often (see Schulze and
Walther [2009b]) appears as a direct image module under a natural torus embedding given by the columns of
the matrix A. This point of view turns out to be extremely useful for Hodge theoretic considerations of A-
hypergeometric systems (see Reichelt [2014]). It is one of the fundamental insights of Morihiko Saito (see Saito
[1988, Section 3.2]) that the boundary behavior of variations of Hodge structures (or, more generally, of mixed
Hodge modules) is controlled by the Kashiwara–Malgrange filtration along such a boundary divisor. In the case
of a cyclic D-module, such as A-hypergeometric systems or their Fourier transforms, one can often deduce a
large part of this filtration from the values of the b-function. We refer to Reichelt and Sevenheck [2015] for an
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immediate application of our results. In a third direction, one can also see our calculation of the b-function of
the Fourier transform as a refinement of Schulze and Walther [2009b], Fernández-Fernández and Walther [2011]
geared towards restriction of A-hypergeometric systems.

In the last part we compute an upper bound for the b-function of restriction of the A-hypergeometric system
to a generic point, again in elementary terms of A and β. Since the restriction of a D-module to a point is a
dual object to the 0-th level solution functor, our estimate can be viewed as a step towards a sheafification in β
of the solution space, a problem that remains unsolved.
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1 Basic notions and results

Notation. Throughout, the base field is C and we consider a C-vector space V of dimension n+ 1.

In this introductory section we review basic facts on A-hypergeometric systems as well as the Euler–Koszul
functor. Readers are advised to refer to Matusevich et al. [2005] for more detailed explanations.

Notation 1.1. For any integer matrix A, let RA (resp. OA) be the polynomial ring over C generated by the
variables ∂j (resp. xj) corresponding to the columns aj of A. We identify OA with the symmetric algebra on
HomC(V,C) ∼=

⊕
C · xj . Further, let DA be the ring of C-linear differential operators on OA, where we identify

∂
∂xj

with ∂j and multiplication by xj with xj so that both RA and OA become subrings of DA.

1.1 A-hypergeometric systems

Let A = (a0, . . . ,an) be an integer d× (n+ 1) matrix, d ≤ n+ 1. For convenience we assume that ZA = Zd. For
(v1, . . . , vr) = v ∈ Zr we denote by v+,v− the vectors given by

(v+)j = max(0, vj) and (v−)j = max(0,−vj).

For the complex parameter vector β ∈ Cd consider the system of d homogeneity equations

Ei • φ = βi · φ, (1.1)

where Ei =
∑n

j=0 ai,jxj∂j is the i-th Euler operator, together with the toric (partial differential) equations

{(∂v+ − ∂v−︸ ︷︷ ︸
:=∆v

) • φ = 0 | A · v = 0}. (1.2)

In RA, the toric operators {∆v|A · v = 0} generate the toric ideal IA. The quotient

SA := RA/IA

is naturally isomorphic to the semigroup ring C[NA]. In DA, the left ideal generated by all equations (1.1) and
(1.2) is the hypergeometric ideal HA(β). We put

MA(β) := DA/HA(β);

this is the A-hypergeometric system introduced and first investigated by Gelfand, Graev, Kapranov, and
Zelevinsky, in Gel′fand [1986] and a string of other papers. �
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1.2 A-degrees

If the rowspan of A contains 1A we call A homogeneous. Homogeneity is equivalent to IA defining a projective
variety, and also to the system HA(β) having only regular singularities Hotta [1998], Schulze and Walther [2008].
A more general A-degree function on RA and DA is induced by:

− degA(xj) := aj =: degA(∂j).

We denote degA,i(−) the A-degree function associated to the weight given by the i-th row of A, so degA =
(degA,1, . . . ,degA,d).

An RA- (resp. DA-)module M is A-graded if it has a decomposition M =
⊕

α∈ZdMα such that the module
structure respects the grading degA(−) on RA (resp. DA) and M . If N is an A-graded RA-module, then we
denote degA(N) ⊆ Zd the set of all degrees of all non-zero homogeneous elements of N . The quasi-degrees
qdegA(N) of N are the points in the Zariski closure in Cd of degA(N).

As is common, if M is A-graded then M(b) denotes for each b ∈ ZA its shift with graded structure
(M(b))b′ = Mb+b′ .

1.3 Euler–Koszul complex

Since

xuEi − Eixu = −(A · u)ix
u,

∂uEi − Ei∂u = (A · u)i∂
u,

we have

EiP = P (Ei − degA,i(P )) (1.3)

for any A-homogeneous P ∈ DA and all i.
On the A-graded DA-module M one can thus define commuting DA-linear endomorphisms Ei via

Ei ◦m := (Ei + degA,i(m)) ·m

for A-homogeneous elements m ∈M . In particular, if N is an A-graded RA-module one obtains commuting sets
of DA-endomorphisms on the left DA-module DA ⊗RA N by

Ei ◦ (P ⊗Q) := (Ei + degA,i(P ) + degA,i(Q))P ⊗Q.

The Euler–Koszul complex K•(N ;β) of the A-graded RA-module N is the homological Koszul complex
induced by E − β := {(Ei − βi)◦}d1 on DA ⊗RA N . In particular, the terminal module DA ⊗RA N sits in
homological degree zero. We denote the homology groups of K•(N ;β) by H•(N ;β). Implicit in the notation is
“A”: different presentations of semigroup rings that act on N yield different Euler–Koszul complexes.

If N(b) denotes the usual shift-of-degree functor on the category of graded RA-modules, then K•(N ;β)(b)
and K•(N(b);β − b) are identical.

1.4 The toric category

There is a bijection between faces τ of the cone R≥0A and A-graded prime ideals IτA = IA +RA{∂j | j 6∈ τ}
of RA containing IA. If the origin is a face of R≥0A, it corresponds to the ideal I∅A = (∂0, . . . , ∂n). In general,
RA/I

τ
A
∼= C[Nτ ].

An RA-module N is toric if it is A-graded and has a (finite) A-graded composition chain

0 = N0 ( N1 ( N2 · · · ( Nk = N

such that each composition factor Ni/Ni−1 is isomorphic as A-graded RA-module to an A-graded shift
(RA/I

τ
A)(b) for some b ∈ ZA and some face τ . The category of toric modules is closed under the formation

of subquotients and extensions.
For toric input N , the modules H•(N ;β) are holonomic. As DA is RA-free, any short exact sequence 0 −→

N ′ −→ N −→ N ′′ −→ 0 of A-graded RA-modules produces a long exact sequence of Euler–Koszul homology.
If β is not a quasi-degree of N then the complex K•(N ;β) is exact, and if N is a maximal Cohen–Macaulay
module then K•(N ;β) is a a resolution of H0(N ;β).
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1.5 The Euler space

Notation 1.2. The C-linear span of the Euler operators {Ei}d1 is called the Euler space. Let E be in the Euler
space. Then E is in a unique fashion (as rk(A) = d) a linear combination E =

∑
ciEi. With βE :=

∑
ciβi we

have E − βE ∈ HA(β). We further write degE(−) for the degree function
∑
ci degA,i(−).

Denote θj = xj∂j and θ = (θ0, . . . , θn). A linear combination
∑

j vjθj is in the Euler space if and only if

the coefficient vector v = (v0, . . . , vn), interpreted as a linear functional on Cn+1 via v((q0, . . . , qn)) :=
∑
viqi,

is the pull-back via A of a linear functional on Cd. In other words,

[v · θT =
∑
j

vjθj is in the Euler space]⇔ [v = c ·A for some c ∈ Cd].

If L : Cd −→ C is a linear functional then the Euler operator in HA(β) corresponding to its image under

HomC(Cd,C)
·A−→ HomC(Cn+1,C) is denoted EL − βL.

Lemma 1.3. For any set F of columns of A contained in a hyperplane that passes through the origin of Cd but
does not contain ak, there is an Euler operator EF − βF in HA(β) such that the coefficient of θj in EF is zero
for all j ∈ F , and equal to 1 for j = k. If R≥0F is a facet of R≥0A then EF − βF is unique.

Proof . Choose for any such set F a linear functional L : Qd −→ Q that vanishes on F while L(ak) = 1. The
corresponding Euler operator EL − βL has the desired properties, and if we define numbers aL,j by

EL =:
∑
j

aL,jxj∂j

then aL,j = L(aj). The uniqueness in the facet case is obvious.

2 Restricting the Fourier transform

The Fourier transform F (−) is a functor from the category of D-modules on V to the category of D-modules
on the dual space V ∗ = HomC(V,C). In this section we bound the b-function along a coordinate hyperplane of

the Fourier transform F (MA(β)) of the hypergeometric system. Note that this module is called M̌β
A in Reichelt

and Sevenheck [2015].
The square of the Fourier transform is the involution induced by x 7→ −x, which has no effect on the analytic

properties of the modules we study. In particular, b-functions along coordinate hyperplanes are unaffected by
this involution and we therefore consider F−1(MA(β)) without harm.

We start with introducing some notation.

Notation 2.1. Let {yj} be the coordinates on V ∗ such that F−1(∂j) = yj on the level of differential operators.

We let D̃A be the ring of C-linear differential operators on ÕA := C[y0, . . . , yn], generated by {yj , δj}n0 where

δj denotes ∂
∂yj

. Then F−1(xj) = −δj . The subring C[δ1, . . . , δn] of D̃A is denoted R̃A. The isomorphism

(−̃) : DA −→ D̃A induced by ∂̃j := yj and x̃j = δj sends OA to R̃A and RA to ÕA.

Thus, ĨA := F−1(IA) is an ideal of ÕA; the advantage of considering F−1 rather than F is that ĨA retains
the shape of the generators of IA as differences of monomials. For each j set θ̃j := F−1(θj) = −δjyj . The i-th

level V -filtration on D̃A along yt is spanned by δαyβ with βt − αt ≥ i.

Before we get into the technical part, let us show by example an outline of what is to happen.

Example 2.2. Let A =

(
−1 0 1
1 1 1

)
, a matrix whose associated semigroup ring is a normal complete intersection.

We will estimate the b-function for restriction to the hyperplane y1 = 0 (corresponding to the middle column)
of F−1(MA(β)).

The ideal H̃A(β) := F−1(HA(β)) is generated by

−θ̃0 + θ̃2 − β1, θ̃0 + θ̃1 + θ̃2 − β2, y0y2 − y2
1 . (2.1)

Since y1 ∈ (V 1D̃A), y0y2 and hence also θ̃0θ̃2 are in (V 1D̃A) + H̃A(β). The strategy of the example, and of the
theorem in this section, is to multiply the element 1 ∈ D̃A by suitable Euler operators so that the result is a
sum of a polynomial p(θ̃1) with an element of C[θ̃0, θ̃1, θ̃2] · θ̃0θ̃2; this certifies p(θ̃1) to be in H̃A(β) + (V 1D̃A).
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Fig. 1: Restriction of the Fourier transform to y1 = 0.

In the case at hand, the relevant Euler operators are 2θ̃0 + θ̃1 + β1 − β2 and θ̃1 + 2θ̃2 − β1 − β2. Modulo
H̃A(β) we can rewrite (V 1D̃A) 3 4δ0δ2y

2
1 ≡ 4θ̃0θ̃2 ≡ (−θ̃1 − β1 + β2)(−θ̃1 + β1 + β2). It follows that (s̃+ β1 −

β2)(s̃− β1 − β2) is a multiple of the b-function, where s̃ = θ̃1 = −y1δ1 − 1. This Fourier twist in the argument
of the b-function occurs naturally throughout and we will make our computations in this section in terms of
b(s̃).

The expressions θ̃1 + 2θ̃2 and 2θ̃0 + θ̃1 that appear in the Euler operators we used can be found
systematically as follows. Let d1, d2 denote the coordinates on the degree group Z2 corresponding to E1 and
E2; compare the discussion following Notation 1.2. An element of SA has degree on the facet R≥0a0 if and
only if the functional L1(d1, d2) = d1 + d2 vanishes, and the Euler field that corresponds to this functional in
the spirit of Lemma 1.3 is exactly θ1 + 2θ2 − β1 − β2. The elements of SA with degree on the facet R≥0a2

are determined by the vanishing of L2(d1, d2) = d2 − d1 and the Euler field corresponding to this functional is
exactly 2θ0 + θ1 + β1 − β2. It is no coincidence that the union of the kernels of these two functionals is exactly
the set of quasi-degrees of SA/∂1 · SA. The point is that modulo H̃A(β) all monomials in S̃A with degree in R+A
are already in (V 1D̃A). The task is then to deal with those with degree on the boundary through multiplication
with suitable expressions.

The picture shows in blue the elements of A, in black the other elements of NA, and in red the quasi-
degrees of SA/∂1 · SA. Note finally that (β2 − β1)a1 and (β1 + β2)a1 are the intersections of R · a1 with
qdegA(SA) + β.

We now generalize the computation of the example to the general case.

Convention 2.3. For the remainder of this section we consider restriction to the hyperplane y0 in order to save
overhead (in terms of a further index variable).

Consider the toric module N = SA/∂0SA, and take a toric filtration

(N) 0 = N0 ( N1 ( . . . ( Nk = N

with composition factors

Nα := Nα/Nα−1,

each isomorphic to some shifted face ring SF ′α(bα), F ′α = τα ∩A, attached to a face τα of R≥0A. (We will call
such F ′α also a face.) Lifting the Nα to SA yields an increasing sequence of A-graded ideals Jα 3 ∂0 of SA with
Nα = Jα/∂0 · SA.

Choose for each composition factor a facet Fα containing F ′α. Note that none of the faces F ′α will contain
a0 (as ∂0 is zero on N but not nilpotent on any face ring of a face containing a0) and hence we can arrange that
the corresponding facets do not contain a0 either.

Lemma 1.3 produces for each Nα a facet Fα and corresponding functional LFα (which we abbreviate to
Lα) that vanishes on the facet and evaluates to 1 on a0. The associated Euler operator in HA(β) is EFα − βFα .
Since Lα is zero on all A-columns in Fα and since Nα is a shifted quotient of SFα , there is a unique value for
Lα on the A-degrees of all nonzero A-homogeneous elements of Nα. We denote this value by Lα(Nα). Note,
however, that Lα(Nα) does very much depend on the choice of the facet Fα even though the notation does not
remember this.

Now let Tα be the image in F−1(MA(β)) of F−1(Jα) under the map induced by ÕA −→ D̃A −→
F−1(MA(β)). Note that the image of T0 = y0ÕA in F−1(MA(β)) is in (V 1D̃A) · 1, the bar denoting cosets
in F−1(MA(β)).
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Lemma 2.4. In the context above, let κα be the constant Lα(Nα). Then in F−1(MA(β)), modulo the image of
(V 1D̃A),

(θ̃0 + κα − βα) · (V 0D̃A) · Tα = (V 0D̃A) · (θ̃0 + κα − βα) · Tα ⊆ (V 0D̃A) · Tα−1.

Proof . Since the commutators [θ̃0, (V
0D̃A)] are in (V 1D̃A), it suffices to show that (θ̃0 + κα − βα) · Tα ⊆

(V 0D̃A) · Tα−1 modulo F−1(HA(β)).
By definition, Ẽα − βα := F−1(Eα − βα) is zero in F−1(MA(β)). Take a monomial m̃ ∈ ÕA whose coset

lies in Tα \ Tα−1. By Equation (1.3), Ẽα · m̃ = m̃(Ẽα − κα) since F−1(−) is a homomorphism. Now write
Eα =

∑
aα,jθj ; as before we have aα,j = Lα(aj).

Since the coefficient of θ0 in Eα is 1, it follows that in F−1(MA(β)):

θ̃0m̃ = (−Ẽα + θ̃0)m̃+ Ẽαm̃

=
∑
j 6=0

Lα(aj)6=0

aα,jδjyjm̃+ m̃(Ẽα − κα)

=
∑
j 6=0

aj 6∈Fα

aα,jδjyjm̃+ m̃(βα − κα).

Recall that Fα contains F ′α and that Nα is a ZA-shift of SF ′α = RA/I
τ
A, whence each yj with aj 6∈ F ′ annihilates

F−1(Nα). Therefore, each term aα,jδj(yjm) in the last sum of the display is in (V 0DA)Tα−1. It follows that in

F−1(MA(β)) we have (θ̃0 + κα − βα)Tα ⊆ (V 0D̃A)Tα−1 as claimed.

Theorem 2.5. For t = 0, . . . , n, the number ε ∈ C is a root of the b-function b(s̃) (with s̃ = θ̃t = −δtyt) of
F−1(MA(β)) along yt = 0, only if ε · at is a point of intersection of the line C · at with the set β − qdegA(N),
the quasi-degrees of the toric module N = SA/∂tSA multiplied by −1 and shifted by β.

Proof . Without loss of generality we shall suppose that t = 0 by way of re-indexing.
We will show that a divisor of

∏
α(θ̃0 + κα − βα) is inside HA(β) + (V 1D̃A), in notation from the previous

lemma.
Indeed, it follows from Lemma 2.4 that

∏
α(θ̃0 + κα − βα) multiplies 1 ∈ F−1(MA(β)) into (V 0D̃A) · y0 ·

1 ⊆ (V 1D̃A) · 1. Hence the root set of the b-function b(θ̃0) in question is a subset of {βα − κα}, α running through
the indices of the chosen composition series of N . This set is determined by the composition series (N) and the
choices of the facets Fα for each Nα. Varying over all choices of facets {Fα} for a given chain (N), the root set
of b(θ̃0) is in the intersection ρN of all possible sets {βα − κα}α∈(N).

Since Lα(a0) = 1, the point (βα − κα) · a0 is the intersection of the hyperplane Lα = βα − κα with the line
C · a0. Thus, ρN is inside the intersection of C · a0 with all arrangements Var

∏
α(Lα − βα + κα). The intersection

of the arrangements Var
∏
α(Lα − βα + κα) is the union of the quasi-degrees of all Nα of the composition chain

(N), multiplied by −1 and shifted by −βα. As N is finitely generated, qdegA(N) =
⋃
α qdegA(Nα). Hence the

root set of b(θ̃0) is contained in the intersection − qdegA(SA/∂0SA) + β with C · a0.

Remark 2.6. The quantity θ̃t is the more natural argument for the b-function here. Note that the roots of b(ytδt)
are those of b(θ̃t) shifted up by 1 and then multiplied by −1.

Example 2.7. Let A = (a0,a1,a2) =

(
−1 0 3
1 1 1

)
and β =

(
β1

β2

)
. The ring SA is a complete intersection but not

normal.
Consider restriction to y1 = 0 (the middle column). Then N = SA/∂1 · SA has a toric filtration involving 4

steps, given by the ideals 0 ( ∂3
0 ·N ( ∂2

0 ·N ( ∂0 ·N ( N . The correspondingA-graded composition factors are
SA(−3 · a0)/(∂1, ∂2)SA and {SA(−α · a0)/(∂0, ∂1)SA}2α=0. The b-function b(θ̃1) for the inverse Fourier transform

is (θ̃1 − β1 − β2)
∏2
α=0(θ̃1 − 3β2−β1−4α

3 ).

Explicitly, y4
1 − y3

0y2 ∈ H̃A(β) gives (V 1D̃A) 3 δ3
0δ2y

3
0y2 = θ̃2θ̃0(θ̃0 − 1)(θ̃0 − 2) which modulo H̃A(β) equals

(−1)4(θ̃1 − β1 − β2)
∏2
α=0(θ̃1 − 3β2−β1−4α

3 ). The relevant Euler operators are θ1 + 4θ2 − β1 − β2 and 3θ1 +
4θ0 − 3β2 + β1.

The picture shows in blue the columns of A, in black the other elements of NA, in red the quasi-degrees of
N = SA/∂1 · SA. The roots of b(δ1y1) (which are opposite to the roots of b(θ̃1)) are the intersections of the line
C ·
(

0
1

)
with the shift of the red lines by −β.
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Fig. 2: Restriction of the Fourier transform to y1 = 0.

In this example, each composition factor corresponds to facet and to a component of the quasi-degrees of
N . One checks that each composition chain must have these four lines as quasi-degrees. Note, however, that
composition chains are far from unique and in general such correspondence will not exist.

Remark 2.8. The b-function for F−1(MA(β)) along a coordinate hyperplane is generally not reduced, and its
degree may be lower than the length of the shortest toric filtration for N = SA/∂t · SA would suggest. (Not
every component of β − qdegA(N) needs to meet the line C · at).

Corollary 2.9. The roots of the b-function b(δtyt) of F−1(MA(β)) along yt = 0 are in the field Q(β).
Consider F−1(MA(0)); then:
1. the roots of the b-function b(θ̃t) are non-negative rationals;
2. if SA is normal, all roots are in the interval [0, 1);
3. if the interior ideal of SA is contained in ∂t · SA then zero is the only root.

Proof . The first claim is a consequence of the intersection property in Theorem 2.5: the defining equations for
the quasi-degrees are rational.

Let N = SA/∂tSA. For items 1.-3., we need to study the intersection of qdegA(N) with C · at, since β = 0
and δtyt = −θ̃t. The quasi-degrees of N are covered by hyperplanes of the sort Lα = ε where Lα is a rational
supporting functional of the facet Fα. In particular, we can arrange Lα to be zero on Fα, positive on the rest of
A, and Lα(at) = 1. As degA(N) ⊆ degA(SA), ε ≥ 0. Hence Var(Lα − ε) meets C · at in the non-negative rational
multiple εat of at. If SA is normal, degA(SA/∂ASA) is covered by hyperplanes Var(Lα − ε) that do not meet
the cone at + R≥0A. These are precisely the ones for which ε < 1.

If ∂t · SA contains the interior ideal then degA(N), and hence qdegA(N), is inside the supporting hyperplanes
of the cone, which meet C · at at the origin.

Remark 2.10. One special case in which case 3 of Corollary 2.9 applies is when SA is Gorenstein and where

further ∂t generates the canonical module. The matrix A = (a0, . . . ,a3) =

1 1 1 1
0 1 3 0
0 0 0 1

, with the interior

ideal being generated by ∂1∂3, provides an example that case (3) can occur in a Gorenstein situation without
the boundary of NA being saturated. See Schulze and Walther [2009a] for a discussion on Cohen–Maculayness
of face rings of Cohen–Macaulay semigroup rings.

3 b-functions for the hypergeometric system

3.1 Restriction along a hyperplane

We are here interested in the b-function for the hypergeometric module MA(β) along the hyperplane xt = 0. As
in the previous section, apart from examples, we actually carry out all computations for t = 0, in order to have
as few variables around as possible. On the other hand, the natural argument for expressing the b-function will
be s = x0∂0.

Notation 3.1. With A = (a0, . . . ,an) and distinguished index 0, we denote A′ := (a1, . . . ,an). Via NA′ ⊆ NA
we consider SA′ as a subring of SA.

For k ∈ N let JA,0;k ⊆ SA′ be the vector space spanned by the monomials ∂u with u0 = 0 (so that
∂u ∈ SA′) that satisfy ∂k0 · ∂u ∈ SA′ . We denote JA,0;k ⊆ RA′ the preimage of JA,0;k under the natural surjection
RA′ � SA′ . Put JA,0 =

∑
k≥1 JA,0;k and JA,0 = JA,0/IA′ ⊆ SA′ .
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Each JA,0;k is a monomial ideal of SA′ since ∂k0 (∂v∂u) = ∂v(∂k0∂
u). Note, however, that JA,0;k need not be

contained in JA,0;k+1. If a0 ∈ R≥0A
′ then some power of ∂0 is in SA′ and so JA,0 = SA′ .

Definition 3.2. For a0 ∈ Rd outside R≥0A
′, a point a ∈ R≥0A

′ is a0-visible if a + λ · a0, 0 < λ� 1 is outside
R≥0A

′. (The idea behind the choice of language is that the observer stands at the point of projective space given
by the line Ra0.)

By abuse of notation, we say that ∂a is a0-visible if a is.

Lemma 3.3. Assume that a0 is not in the cone R≥0A
′. Then the radical of JA,0 is generated by the a0-invisible

elements of SA′ , and in consequence the quasi-degrees of SA′/JA,0 are a union of shifted face spans where each
face is in its entirety visible from a0.

Proof . If ZA/ZA′ has positive rank then all points of NA are a0-visible while JA,0 is clearly zero, so that in
this case there is nothing to prove. We therefore assume that ZA/ZA′ is finite.

It is immediate that a is a0-visible if and only if any positive integer multiple of it is. This implies that no
power of an a0-visible element ∂a of SA′ can be in the radical of JA,0 since ∂m·a+ka0 can’t have its degree in
the cone of A′.

For the converse, suppose a is not a0-visible, so that there are positive integers p < q with a + (p/q) · a0 ∈
R≥0A

′. Then a high power of ∂q·a+p·a0 is in C[ZA ∩R≥0A
′] and a suitable power ∂b of that will be in

C[ZA′ ∩R≥0A
′] because of the finiteness of ZA/ZA′. Now let τ be the smallest face of R≥0A

′ that contains b;
this makes b an interior point of τ . Since C[τ ∩ ZA′] is a finitely generated C[τ ∩NA′]-module, some power of
∂b is in C[τ ∩NA′] ⊆ SA′ . This shows that some power of ∂q·a times some power of ∂p·a0 is in SA′ , establishing
the first claim of the lemma.

In every composition chain for SA′/JA,0, each composition factor is an SA′/
√
JA,0-module. Thus the quasi-

degrees of SA′/JA,0 are inside a union of shifted quasi-degrees of SA′/
√
JA,0 and hence all a0-visible, which

implies the second claim.

Our main theorem in this section is:

Theorem 3.4. The root locus of the b-function b(x0∂0) for restriction of MA(β) along x0 = 0 is, up to inclusion
of non-negative integers, contained in the locus of intersection (− qdegA′(SA′/JA,0) + β) ∩C · a0. The set of
integers needed can be taken to be the integers 0, . . . , k − 1 such that JA,0 =

∑
1≤i≤k JA,0;i.

In two extreme cases one can be explicit:

1. if dimSA − 1 = dimSA′ then the b-function is linear with root given by the intersection of (− qdegA(SA′) +
β) ∩C · a0;

2. if a0 ∈ R≥0A
′ then the b-function has integer roots in {0, 1, . . . , k − 1} where k = min{t ∈ N | 0 6= t · a0 ∈

NA′}.

Proof . We first dispose of the extreme cases. If dimSA − 1 = dimSA′ , then SA is the polynomial ring SA′ [∂0]
and A′ is a facet of A. By Lemma 1.3 there is v = (v1, . . . , vd) such that the Euler operator

E − βE =
∑

vi(Ei − βi)

is in HA(β) and equals θ0 − βE . In particular, the b-function is s− βE . On the other hand: JA,0 is zero in this

case, v = (v1, . . . , vd) is in the kernel of A′
T

, and aT0 v = 1. Therefore, the quasi-degrees of SA′/JA,0 form the
hyperplane given as the kernel of v and (vTβ)a0 = βEa0 is the intersection of − qdegA(SA′) + β with Ca0.

If a0 ∈ R≥0A
′ then Na0 meets NA′ and so ∂k0 = ∂u with u = (0, u1, . . . , un) ∈ NA′. In particular, JA,0 = SA′

in this case. Moreover, (x0∂0)(x0∂0 − 1) · · · (x0∂0 − k + 1) = xk0∂
k
0 = xk0(∂k0 − ∂u) + xk0∂

u ∈ HA(β) + V 1(DA)
shows the claim made in this case.

Now suppose that A and A′ have equal rank but a0 6∈ R≥0A
′. In that case, JA,0 is a non-trivial ideal of

SA′ . We shall use a toric filtration

(N) : 0 = N0 ( N1 ( . . . ( Nt = SA′/JA,0

and let Jα ⊇ JA,0 be the RA′ -ideal such that Nα = Jα/JA,0. We will view Jα as subset of DA′ or even DA.
In analogy to the previous case, for any ∂u in JA,0;k the b-function along x0 of the coset of ∂u in MA(β)
divides s(s− 1) · · · (s− k + 1). Indeed, ∂u ∈ JA,0;k implies that ∂k0∂

u − ∂v ∈ IA for some v with v0 = 0, and so



On the b-functions of hypergeometric systems 9

xk0∂
k
0∂

u ∈ HA(β) + V 1(DA). In particular, the root set of the b-function of the coset of ∂u in MA′(β) is inside
the set of integers described in the statement of the theorem.

For each composition factor Nα = Nα/Nα−1 choose now a facet τα of A′ and an element ∂uα of SA′

uα ∈ {0} ×Nn such that Nα is a quotient of SA′ · ∂uα and such that the annihilator of ∂uα in Nα contains the
toric ideal IταA′ . Then qdegA′(Nα) is contained in A′ · uα + qdegA′(Sτα).

Since a0 is not in R≥0A
′, Lemma 3.3 shows that the facet τα can be chosen such that a0 6∈ Q · τα. Indeed,

if an entire face of R≥0A
′ is visible from a0 then it sits in at least one facet whose span does not contain a0. By

Lemma 1.3 there is an element Eα of the Euler space of A that does not involve any element of τα, but which
has coefficient 1 for θ0. Notation 1.2 then associates a degree function degEα(−) to α.

As ∂j · ∂uα ∈ Nα−1 for j 6∈ τα it follows that the difference of (Eα − βα) · ∂uα and (θ0 − βα) · ∂uα is
inside (V 0DA)Nα−1. Since Eα − βα is in HA(β), so is ∂uα(Eα − βα) = (Eα − βα + degEα(∂uα))∂uα . Therefore,
(θ0 − βα + degEα(∂uα))∂uα is in HA(β) + (V 0DA)Nα−1. Then, in parallel to how Lemma 2.4 was used in the
proof of Theorem 2.5, the product ∏

α

(θ0 − βα + degEα(∂uα))

multiplies 1 ∈ DA into HA(β) + (V 0DA)JA,0 + (V 1DA). Multiplying by xk0∂
k
0 for suitable k one obtains the

desired bound for the b-function as in the second paragraph of the proof.

It follows as in Theorem 2.5 (with the modification that we have here θ0 rather than F−1(θ0), which affects
signs) that the intersection of the roots of all such bounds is the intersection of (− qdegA′(SA′/JA,0) + β) with
the line C · a0.

Example 3.5. With A = (a0,a1,a2) =

(
−1 0 3
1 1 1

)
, consider the b-function along x1 of the A-hypergeometric

system. The ideal JA,1 is generated by 1 ∈ SA′ = C[N(a0,a2)] since ∂4
1 is in SA′ . The set of necessary integer

roots is then {0, 1, 2, 3}. No other roots are needed since SA/JA,1 is zero, irrespective of β.

Fig. 3: The elements of SA r SA′ (black) and SA′ (green) for restriction to x1

Restriction to (x2 = 0) behaves differently. As SA′ = C[N(a0,a1)] now, JA,2 = JA,2;1 is generated by ∂3
0 , and

the quasi-degrees of SA′/JA,2 are the lines C · (0, 1) + (i, 0) with i = 0,−1,−2. The intersection of the negative

Fig. 4: The quasi-degrees of SA/JA,2 form three parallel lines.

of these three lines, shifted by β, with the line C · a2 is a2 · {(i+ β1)/3}i=0,1,2. So the b-function has (at worst)
roots {0, β1, β1 + 1, β1 + 2}/3.

Remark 3.6. We believe that both bounds in Theorems 2.5 (as is) and 3.4 (up to integers) are sharp.
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3.2 Restriction to a generic point

We suppose here that A is homogeneous; in other words, the Euler space contains a homothety. Let p =
(p0, . . . , pn) be a point of Cn+1. We wish to estimate here the b-function for restriction of MA(β) to the point
−p if p is generic. As a holonomic module is a connection near any generic point, this restriction yields a vector
space isomorphic to the space of solutions to HA(β) near −p, see Saito et al. [2000, Sec. 5.2].

Definition 3.7. Let θp = (x0 + p0)∂0 + . . .+ (xn + pn)∂n and write θ for θp if p = 0. The b-function for
restriction of a principal D-module M = D/I to the point x+ p = 0 is the minimal polynomial bp(s) such
that bp(θp) ∈ I + (V 1

p D) where V kp D is the Kashiwara–Malgrange V -filtration along Var(x+ p):

V kp D = C · {(x+ p)u∂v | |u| − |v| ≥ k}.

Remark 3.8. 1. For any pair of manifolds Y ⊆ X and given a D-module M on X one can define a b-function
of restriction for the section m ∈M along Y by a formula generalizing both Definition 0.1 and Definition 3.7.
Kashiwara proved their existence for holonomic M .

2. The roots of this b-function here relate to restriction of solution sheaves as follows. Near a generic point
x+ p = 0, a D-module M is a connection whose solution space has a basis consisting of a certain number of
holomorphic functions. The germs of these functions form a vector space that can be identified with the dual
of the 0-th homology group of (D/(x+ p)D)⊗LD M . Filtering this complex by V •p D, bp(k) annihilates the k-th
graded part of its homology, compare Oaku [1997], Oaku and Takayama [2001], Walther [2000]. In particular,
bp(s) carries information on the starting terms of the solution sheaf of M near x+ p = 0.

The purpose of this section is to bound bp(s) for I = HA(β) and generic p with the following strategy. We
first show that a polynomial b(s) is a multiple of bp(s) if b(θ) is in DA(IA, A · E · ∂) where

E =


p0 0 · · · 0

0 p1

...
...

. . . 0
0 · · · 0 pn

 ,

provided that p is component-wise nonzero. The generators of DA(IA, A · E · ∂) are independent of x and we
next observe that the radical of RA(IA, A · E · ∂) is RA · ∂, provided that p is generic. Thus, bp(s) will be a
factor of any polynomial that annihilates the finite length module RA/(IA, A · E · ∂) as long as p is generic. We
exhibit a particular such polynomial with all roots integral. In the case of a normal semigroup ring, we show
that the (necessarily integral) roots of bp(s) are in the interval [0, d− 1].

We begin with pointing out that b(θp) ∈ I + (V 1
p D) is equivalent to b(θ) ∈ Ip + (V 1

0 D) where Ip is the

image of I under the morphism induced by x 7→ x− p, ∂ 7→ ∂ and (V k0 D) is the Kashiwara–Malgrange
filtration along the origin. Among the generators of I = HA(β), only the Euler operators depend on x while
(IA)p = IA for any p; one has (Ei − βi)p =

∑
ai,j(xj − pj)∂j − βi = Ei − βi −

∑
ai,jpj∂j . We hence seek a

relation b(θ) ∈ DA · (IA, E − β −A · E · ∂) + (V 1
0 DA) with E as above.

Generally, a statement b(θ) ∈ I + (V 1
0 DA) is equivalent to b(θ) being in the degree zero part gr0

V0
(I) of

the associated graded object. Note that grV0
(DA) is a Weyl algebra again (although of course the symbol map

DA −→ grV0
(DA) is not an isomorphism). Abusing notation, we denote x and ∂ also the symbols in grV0

(DA)
of the respective elements of DA. By the previous paragraph then, the graded ideal grV0

(HA(β)p) contains
the elements that generate IA (since IA is homogeneous!), as well as the elements A · E · ∂ which arise as the
V0-symbols of Ep − β.

We need the following folklore result ) for which we know no explicit reference.

Claim. The RA-ideal generated by IA and A · E · ∂ has, for generic E , radical RA · ∂.

A sequence of d generic linear forms is of course a system of parameters on SA; the issue is to show that
linear forms of the type A · E · ∂ are sufficiently generic.

Proof . As IA and A · E · ∂ are standard graded, Var(IA, A · E · ∂) is a conical variety. It thus suffices to show
that the ideal Var(IA, A · E · ∂) is of height n+ 1.

The ideal RA[x](IA, A · θ) in the polynomial ring RA[x] defines in the cotangent bundle Spec(RA[x]) of
Cn+1 the union of the conormals to each torus orbit since the Euler fields are tangent to the torus and span a
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space of the correct dimension in each orbit point. Suppose the claim is false, so that there is a nonzero point
y ∈ Var(IA) such that (the generically chosen vector) p is a conormal vector to the orbit of y. If y is in a torus
orbit Oτ associated to a proper face τ of A then its coordinates corresponding to Ar τ are zero and we can
reduce the question to the case where A = τ . It is hence enough to show that there is p ∈ Cn+1 such that p is
not a conormal vector to any smooth point of Var(IA).

Let X ⊆ Cn+1 be any reduced affine variety and denote X0 its smooth locus. We define a set C(X) inside
Cn+1 by setting

[η ∈ C(X)] ⇐⇒ [∃y ∈ X0, η ∈ (T ∗X0
(Cn+1))y]

where (T ∗X0
(Cn+1))y is the fiber of the conormal bundle at y of the pair X0 ⊆ Cn+1. This is a constructible,

analytically parameterized union of a dim(X)-dimensional family of vector spaces of dimension n+ 1− dim(X),
which hence might fill Cn+1.

Now suppose that X is a conical variety; then the conormals of y and λy agree for all λ ∈ C∗. In particular,

C(X) =
⋃

y∈Proj(X)

(T ∗X0
(Cn+1))y

where Proj(X) is the associated projective variety. But this is now an analytically parameterized union of a
(dim(X)− 1)-dimensional family of vector spaces of dimension n+ 1− dim(X). It follows that most elements
of Cn+1 are outside C(X) in this case, and the claim follows.

It follows from the Claim that grV0
(HA(β)p) contains all monomials in ∂ of a certain degree k that depends

on A. Let E = θ0 + . . .+ θn; by hypothesis E − βE ∈ HA(β).

Lemma 3.9. Denote ∂kA be the set of all monomials of degree k in ∂0, . . . , ∂n, and DA · ∂kA the left DA-ideal
generated by ∂kA. Then in DA/DA · ∂kA, the identity E(E − 1) · · · (E − k + 1) ∼= 0 holds.

Proof . This is clear if k = 1. In general, by induction,

E(E − 1) · · · (E − k + 1) ∈ DA · ∂k−1
A · (E − k + 1) = DA · E · ∂k−1

A ⊆ DA · ∂kA.

Remark 3.10. The homogeneity of X is necessary in the Claim, since otherwise C(X) does not need to be
contained in a hypersurface. Consider, for example, A = (2, 1) in which case the union of all tangent lines
(nearly) fills the plane, and where the zero locus of IA and A · E · ∂ contains always at least two points.

The lemma implies that gr0
V0

(HA(β)p) contains E(E − 1) · · · (E − k + 1) if p is generic. In other words, the
b-function for restriction of MA(β) to a generic point divides s(s− 1) · · · (s− k + 1).

In some cases one can be more explicit about k − 1, the top degree in which RA/RA(IA, A · E · ∂) is nonzero.
Suppose SA is a Cohen–Macaulay ring, then systems of parameters are regular sequences. In particular, the
Hilbert series of QA := RA/RA(IA, A · E · ∂) is that of SA multiplied by (1− t)d. Suppose in addition, that SA
is normal. Since we already assume that SA is standard graded, let P be the polytope that forms the convex
hull of the columns of A. The Hilbert series of SA is then of the form

∑∞
m=0 pm · tm where pm is the number of

lattice points in the dilated polytope m · P . This number of lattice points is counted by the Erhart polynomial
EP (m) of P , a polynomial of degree d− 1 = dim(P ). If one writes the Hilbert series of SA in standard form
Q(t)/(1− t)d then the Hilbert series of QA is just the polynomial Q(t). In particular, the highest degree of a
non-vanishing element of QA is the degree of Q(t).

In order to determine deg(Q(t)) let EP (m) = ed−1m
d−1 + . . .+ e0. Now in

∞∑
m=0

EP (m)tm =

d−1∑
i=0

(
ei ·

∞∑
m=0

mi · tm
)
,

each term
∑∞

m=0m
i · tm, for m > 0, is a polylogarithm Li−i(t) given by (t d

dt )
n( t

1−t ). A simple calculation shows

that Li−i(t) is the quotient of a polynomial of degree i− 1 by (1− t)i. Hence the sum in the display is the
quotient of a polynomial of degree at most d− 1 by (1− t)d. The degree is truly d− 1 as one can check from
the differential expression for Li−i(t) above.

Therefore, the Hilbert series Q(t) of QA is a polynomial of degree d− 1. We have proved

Theorem 3.11. Let SA be standard graded. The b-function for restriction of MA(β) to a generic point x+ p = 0
divides s(s− 1) · · · (s− k + 1) where k denotes the highest degree in which the quotient SA/SA · (A · E · ∂) is
nonzero. If, in addition, SA is normal then one may take k = d.
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