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Abstract. Let X = C

n

. In this paper we present an algorithm

that computes the de Rham cohomology groups H

i

dR

(U; C ) where

U is the complement of an arbitrary Zariski-closed set Y in X .

Our algorithm is a merger of the algorithm given by T. Oaku

and N. Takayama in [12], who considered the case where Y is a

hypersurface, and our methods from [14] for the computation of

local cohomology. We further extend the algorithm to compute de

Rham cohomology groups with supports H

i

dR;Z

(U; C ) where again

U is an arbitrary Zariski-open subset of X and Z is an arbitrary

Zariski-closed subset of U .

Our main tool is a generalization of the restriction process from

[11] to complexes of modules over the Weyl algebra. The restriction

rests on an existence theorem on V

d

-strict resolutions of complexes

that we prove by means of an explicit construction via Cartan-

Eilenberg resolutions.

All presented algorithms are based on Gr�obner basis computa-

tions in the Weyl algebra and the examples are carried out using

the computer system Kan by N. Takayama [13].
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1. Introduction

De Rham cohomology on smooth varieties in a purely algebraic con-

text seems to have been introduced by A. Grothendieck [5]. In the

famous paper [6] R. Hartshorne developed the concept of algebraic de

Rham cohomology of arbitrary algebraic varieties as an analog to classi-

cal (singular) cohomology. Results of A. Grothendieck and P. Deligne

prove that it agrees with classical cohomology if the base �eld is C .

Moreover, Hartshorne also developed the notion of algebraic de Rham

cohomology with supports and proved that it �ts into certain natural

long exact sequences related to inclusion maps (7.1).

In [12], the authors give an algorithm that computes (by Gr�obner

basis computations in the Weyl algebra) the algebraic de Rham coho-

mology of the complement U of any given hypersurface Y of X = C

n

.

Their method is based on the initial de�nition of Hartshorne, as the

hypercohomology of the de Rham complex on U . They show that this

complex is in the derived category the same as the tensor product over

O

X

of the sheaf of di�erential n-forms on X with a resolution of O

U

,

O

U

considered as a module over the sheaf of di�erential operators on

X. The computation of the hypercohomology of the latter complex re-

duces to computation of usual cohomology of the global sections since

U is a�ne and the sheaves involved are quasi-coherent. An algorithm

to compute the cohomology of complexes of the type one gets after

taking global sections was given in [11]. The strategy is to use the

method of restriction of a D-module to a linear subvariety ([10] and

Section 5 of [11]).

In this note we shall prove

Theorem 6.1. The de Rham cohomology groups of the complement

of an a�ne complex variety are e�ectively computable by means of

Gr�obner basis computations in Weyl algebras.

In fact, we shall �rst prove a general existence theorem about �nite

V

d

-strict D

n

-free complexes that are quasi-isomorphic to a given D

n

-

free complex C

�

. We give a constructive proof. Then we generalize the

restriction process to the restriction of a complex to a linear subvariety.

As applications we obtain an algorithm that computes de Rham coho-

mology of arbitrary Zariski-open U , and an algorithm that computes

de Rham cohomology of Zariski open sets with supports in a Zariski

closed subset Z of U .

Now we shall give a detailed overview of the structure of this paper.

Let D

n

= C [x

1

; : : : ; x

n

]h@

1

; : : : ; @

n

i be the n-th Weyl algebra over C .
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First of all, in Section 2, we show that if U is the complement of any

Zariski closed set Y de�ned by F = ff

0

; : : : ; f

r

g in X then computa-

tion of the de Rham cohomology of U can be performed by computing

the cohomology of the tensor product over D

n

of a D

n

-free resolution

of D

n

=(@

1

; : : : ; @

n

) �D

n

with the Mayer-Vietoris complex MV

�

(F ) as-

sociated to f

0

; : : : ; f

r

(cf. Subsection 2.4). This will require a review

of some of the algorithms given in [11] and [12].

In the following two sections we compute a certain D

n

-free complex

that is quasi-isomorphic to MV

�

(F ). In fact, let C

�

be an arbitrary

complex of �nitely generated D

n

-modules such that the cohomology

of C

�

is specializable to the subspace x

1

= : : : = x

d

= 0 for �xed

0 � d � n (cf. De�nition 3.2). We present a method that computes

a D

n

-free complex A

�

that is quasi-isomorphic to C

�

and has certain

properties related to the V

d

-�ltration (for facts about the V

d

-�ltration,

see also [11]). Section 3 concentrates on the algorithmic aspects of this

construction while Section 4 contains the required lemmas and proofs.

Section 5 is devoted to the explicit computation of the derived tensor

product (D

n

=(x

1

; : : : ; x

d

)�D

n

)


L

D

n

C

�

, 0 � d � n, where C

�

is required

to have cohomology that is specializable to the subspace x

1

= : : : =

x

d

= 0 but otherwise is arbitrary. As a corollary of this computation

we give in Section 6 an algorithm that computes H

�

dR

(U; C ), Algorithm

(6.1).

In Section 7 we review the de�nition of de Rham cohomology with

supports and derive an algorithm that computes H

i

dR;Z

(X n Y; C ) for

arbitrary closed subvarieties Y; Z of X. The idea here is similar to the

original argument in [12], twisted with the

�

Cech complex associated to

Z.

2. Algebraic de Rham Cohomology

2.1. Notation. Throughout this article, we shall use the following

notation. C will stand for the �eld of complex numbers, X denotes

the a�ne n-dimensional space C

n

and Y = Var(f

0

; : : : ; f

r

) will be a

closed subvariety of X cut out by polynomials ff

0

; : : : ; f

r

g � R

n

where

R

n

= C [x

1

; : : : ; x

n

]. We set U = X n Y .

D

n

will be the ring of di�erential operators on X (also called the

n-th Weyl algebra) generated by the multiplications by the x

i

(which

we will call also x

i

) and the partial derivatives @

i

= @=@x

i

. Set O

X

to be the structure sheaf on X. D

X

will be the sheaf version of D

n

,

D

X

= O

X




R

n

D

n

. Let




d

= D

n

=D

n

� (@

1

; : : : ; @

d

) and

~




d

= D

n

=D

n

� (x

1

; : : : ; x

d

)
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for 0 � d � n. In the special case n = d we write 
 for 


n

and de�ne


(D

X

) = 



D

n

D

X

.

If M is a D

X

- or D

n

-module, 


�

(M) will throughout stand for the

de Rham complex of M. In other words, 


k

(M) = M


Z

V

k

(Z

n

)

where

V

k

(Z

n

) is spanned by the symbols dx

i

1

^ : : : ^ dx

i

k

and the

di�erential � is de�ned in the usual way: �(u 
 dx

i

1

^ : : : ^ dx

i

k

) =

P

n

j=1

(@

j

�u)
dx

j

^dx

i

1

^ : : :^dx

i

k

. If V is a variety, 


�

(V ) will denote

the de Rham complex on V . Furthermore, set 


�

= �(X;


�

(X)).

If I is a �nite set, jIj will denote its cardinality.

Remark 2.1. Eventually we will be interested in implementations of

our algorithms. With this in mind we will assume that the coe�cients

of all f

i

belong to a sub�eld K of C that is computable. That is to say,

elements of K can be represented with a �nite set of data, their sum,

product and quotient can be calculated in a �nite number of steps, and

there is a �nite procedure that determines whether a given expression

of elements of K is zero or not.

2.2. De�nition of de Rham Cohomology. Let A be a smooth

scheme over the �eld K of characteristic zero, and B a closed sub-

scheme de�ned by the sheaf of ideals I. Recall the notion of completion

^

G of a quasi-coherent sheaf G on A with respect B: if V is open in A,

^

G(V \ B) = lim

 �

k

(G(V )=I

k

(V ) � G(V )).

Algebraic de Rham cohomology of an arbitrary closed subset B of

an arbitrary smooth scheme A over any �eld K of characteristic zero is

de�ned as the hypercohomology of the complex

^




�

(A) where the hat

denotes completion of 


�

(A) with respect to the system of ideals I

which de�nes B in A. (For a precise de�nition of the maps in

^




�

(A)

see [6], page 22.) It is shown in [6] that this de�nition does not depend

on the embedding of B in A nor in fact on A itself. The Comparison

Theorems of A. Grothendieck and P. Deligne state among other things

that if K = C then algebraic de Rham cohomology of the C -scheme B

agrees with its singular cohomology with coe�cients in C .

In the special case where B is smooth, one may take B = A and then

the sheaf of ideals I is the zero sheaf. In particular, for open subsets

of X, H

i

dR

(U; C ) is the hypercohomology of the complex 


�

(U).

2.3. The Idea of Oaku and Takayama. For this subsection, assume

that r = 0 and F = ffg so that Y = Var(f) is a hypersurface. Let

j : U ,! X be the embedding. We will review some of the algorithms

in [12].

The basic observation is the following
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Lemma 2.2. The complex 


�

(D

n

) = 


�

is (a complex in the category

of right D

n

-modules and in that category) quasi-isomorphic to the com-

plex that is zero except in position n and whose n-th entry is the right

D

n

-module D

n

=(@

1

; : : : ; @

n

) �D

n

= 
. A corresponding statement holds

for D

X

. 2

The hypercohomology H

�

(X;


�

(O

U

)) of 


�

(O

U

) equals the coho-

mology of the global sections because U is a�ne and 


�

(O

U

) consists

of quasi-coherent sheaves ([7], Theorem III.3.5 together with the spec-

tral sequence H

q

(X;


p

(O

U

))) H

p+q

(X;


�

(O

U

))). Also, 


�

(O

U

) and

j

�

(


�

(O

U

)) have the same cohomology and hence H

�

dR

(U; C ) is the co-

homology of j

�

(


�

(O

U

)) = 


�

(D

X

)


D

X

j

�

(O

U

).

It follows from the lemma that since 


�

(D

X

) is a complex of free D

X

-

modules, j

�

(


�

(O

U

)) is the complex that computes the torsion sheaves

T or

D

X

n��

(
(D

X

); j

�

(O

U

)). The cohomology of the global sections of this

complex will simply be Tor

D

n

n��

(
; R

n

[f

�1

]).

A crucial point is now to use the fact that the Tor-functor is balanced.

Let A

�

be a truncated �nite free resolution of length greater than n for

R

n

[f

�1

] in the category of leftD

n

-modules. That this is possible follows

for example from the fact that D

n

is left-Noetherian and that R

n

[f

�1

]

is D

n

-cyclic ([2]).

Then the cohomology of 
 


D

n

A

�

is the de Rham cohomology

of U with coe�cients in C shifted by n, since H

�i

(
 


D

n

A

�

) =

Tor

D

n

i

(
; R

n

[f

�1

]) and Tor

D

n

i

(
; R

n

[f

�1

]) = 0 for i < 0 and i > n.

T. Oaku and N. Takayama gave an algorithm in [11] for the com-

putation of the cohomology groups of this kind of complex. It is in

fact explained how one can �nd the cohomology groups of the com-

plex D

n

=(x

1

; : : : ; x

n

) �D

n




L

D

n

M where M is an arbitrary holonomic

D

n

-module and the tensor product is considered as an element in the

derived category. The algorithm is based on the concepts of V -�ltration

and V -strictness which are considered in detail in Sections 3-5. The

present problem can be reduced to that case by applying the Fourier

automorphism:

De�nition 2.3. The d-th Fourier transform F

d

of a free D

n

-module

is de�ned as follows. F

d

(x

i

) = @

i

;F

d

(@

i

) = �x

i

for 1 � i � d while

F

d

(x

i

) = x

i

and F

d

(@

i

) = @

i

for all i > d.

We write simply F for F

n

. IfM = D

n

t

=I then F

d

(M) := D

n

t

=F

d

(I).

Computation of H

i

dR

(U; C ) for a hypersurface can be summarized as

follows (compare [11], Algorithm 2.1 for restriction):

Algorithm 2.4.

Input: f 2 R

n

; i 2 N .

Output: H

i

dR

(U; C ) where U = C

n

n Var(f).
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Begin

1. Find a V

n

-strict �nite free resolutionA

�

of theD

n

-moduleF(R

n

[f

�1

]),

F(R

n

[f

�1

]) positioned in degree n.

2. Replace each D

n

by the right D

n

-module F(
)

�

=

C [@

1

; : : : ; @

n

]

in that resolution.

3. Truncate the resolution using the method of [11] to a complex of

�nite dimensional C -vector spaces.

4. Take the i-th cohomology.

End.

2.4. Computing de Rham Cohomology for arbitrary Y . Let Y

now be cut out by the r + 1 polynomials f

0

; : : : ; f

r

. The central prob-

lem arises from the fact that computation of the hypercohomology of




�

(D

U

) 


D

U

O

U

is not just Tor

D

n

n��

(
;�(U;O

U

)) anymore, due to the

existence of higher cohomology of quasi-coherent sheaves on U . The

strategy is to �nd an open covering of U such that each of the open

sets in the covering is acyclic for cohomology of quasi-coherent sheaves.

De�nition 2.5. Let < := the ordered nonempty subsets of f0; : : : ; rg.

Singleton subsets fjg 2 < we shall denote by just j. Set U

i

= X n

Var(f

i

). More generally for I 2 <, we de�ne U

I

=

T

i2I

U

i

.

Similarly, set f

I

=

Q

i2I

f

i

with the special cases f

I

= f

i

if I = fig

and abbreviate O

U

I

as O

I

.

To get started, notice that U

I

= X n Var(f

I

). This means in par-

ticular, that by Oaku{Takayama the de Rham cohomology groups

of U

I

with coe�cients in C are computable as the cohomology of




�

(D

n

)


D

n

R

n

[f

I

�1

]. Notice also that U = X n Y is just the union of

all the U

I

.

In [6], page 28, Hartshorne explains how de Rham cohomology of

schemes may be recovered from the de Rham complexes on the open

sets in a �nite covering. For our U that works as follows.

For each I 2 < let X

I

=

Q

i2I

U

i

. Then U

I

embeds in X

I

as the

diagonal. As X

I

is smooth,

^




�

(X

I

) computes de Rham cohomology of

U

I

, the hat denoting completion at the closed subscheme U

I

� X

I

.

Consider the direct imageM

�

I

of

^




�

(X

I

) in U , induced by the inclu-

sion j

I

: U

I

,! U .

Since U

I

is smooth,

^




�

(X

I

) is naturally quasi-isomorphic to 


�

(O

I

),

cf. [6], Proposition II.1.1. Hence M

�

I

is naturally quasi-isomorphic to

j

I�

(


�

(O

I

)), the direct image of 


�

(O

I

) = 


�

(D

n

)


D

n

O

I

.

For j 62 I, the natural maps X

I[fjg

!! X

I

and U

I[fjg

,! U

I

give

a natural map

^




�

(X

I

) !

^




�

(X

I[fjg

). Similarly, we get chain maps

�

�

I;j

: 


�

(O

I

) ! 


�

(O

I[fjg

) induced from the inclusion U

I[fjg

,! U

I

.
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It is not hard to see that the natural quasi-isomorphism from

^




�

(X

I

)

to 


�

(O

I

) transforms the map

^




�

(X

I

) !

^




�

(X

I[fjg

) into �

�

I;j

. So the

same is true for the direct images in U , the induced maps between

which we also denote by �

�

I;j

.

Multiply �

�

I;j

by (�1)

sgn(I;j)

, sgn(I; j) being the number of elemen-

tary permutations that are needed to make the string (I; j) an actual

element of < (that is, an ordered set).

Let us write J

�

I

:= j

I�

(


�

(D

n

) 


D

n

O

I

), a complex of sheaves on

U that is naturally quasi-isomorphic to M

�

I

. We will now construct a

double complexMV(J ) out of all the J

�

I

. LetMV(J )

k;l

=

L

jIj=l

J

k

I

.

The maps in the horizontal (k-) direction are simply the direct sums

of the di�erentials of the J

�

I

involved, while the vertical (l-) maps are

de�ned to be the sums of all maps which are composed as follows:

M

jIj=l

J

k

I

nat

�! J

k

I

�

k

I;j

�! J

k

I[fjg

,!

M

jI

0

j=l+1

J

k

I

0

:

Notice that this is in fact a double complex (and in particular anti-

commutative) due to the sign rule that applies to the �

k

I;j

.

Then, according to Hartshorne, the de Rham cohomology of U is the

hypercohomology of the associated total complex Tot

�

(MV(J )). Of

course, MV(J ) is just the origin of the usual Mayer-Vietoris spectral

sequence of de Rham cohomology and sometimes called the

�

Cech-de

Rham complex .

If Y is a hypersurface then U is a�ne, so hypercohomology on U

is necessarily cohomology of the global sections. In our more general

situation we claim

Lemma 2.6. The complex j

I�

(


�

(O

I

)) consists entirely of sheaves that

have no higher cohomology on U .

Proof. In order to see this observe that it is su�cient to show that

j

I�

(O

I

) has this property, because 


i

(D

n

) is D

n

-free. If E

�

I

is an O

I

-

injective resolution of O

I

on U

I

, then j

I�

(E

�

I

) is a complex of 
asque

sheaves on U as direct images of 
asque sheaves are 
asque. More-

over, as U

I

is a�ne, j

I�

is an exact functor on quasi-coherent sheaves

(and O

U

I

-morphisms), because R

i

j

I�

(�) is the sheaf associated to the

presheaf V ! H

i

(V \ U

I

;�) for open subsets V of U (Proposition

III.8.1 in [7]). Hence we actually get a 
asque resolution of j

I�

(O

I

).

Taking global sections we see that j

I�

(O

I

) has no higher cohomology

on U , as �(U; j

I�

(E

i

I

)) = �(U

I

; E

i

I

). 2

Remark 2.7. We note in passing that the proof actually shows that

H

i

(j

I�

(G); U) = 0 for positive i and all quasi-coherent G on U

I

.
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So the complex Tot

�

(MV(J )) consists of �(U;�)-acyclic sheaves.

Thus, in order to compute its hypercohomology it su�ces to compute

the cohomology of the global sections of that complex. We arrive at

Proposition 2.8. The de Rham cohomology of U with coe�cients in

C , which may be computed as the hypercohomology of the complex

Tot

�

(MV(J )), agrees with the cohomology of the global sections of

Tot

�

(MV(J )) and can be computed as H

�

(


�




D

n

MV

�

), where

MV

�

: 0!

M

jIj=1

R

n

[f

I

�1

]

| {z }

degree 0

! : : :!

M

jIj=r+1

R

n

[f

I

�1

]

| {z }

degree r

! 0:(2.1)

Proof. This follows from the discussion before the proposition, since

the global sections on U of j

I�

(


�

(O

I

)) are exactly the elements of




�

(D

n

) 


D

n

R

n

[f

I

�1

] and hence �(U; Tot

�

(MV(J ))) = 


�

(D

n

) 


D

n

MV

�

. 2

Remark 2.9. Recall that for any set of polynomials fp

i

g

m

0

, the

�

Cech

complex

�

C

�

(R

n

; p

0

; : : : ; p

m

) :=

N

m

0

�

C

�

(p

i

) is de�ned by

�

C

�

(p

i

) = (0! R

n

1!

1

1

�! R

n

[p

i

�1

]! 0):

Thus,MV

i

is the (i+1)-st entry of the

�

Cech complex

�

C

�

(R

n

; f

0

; : : : ; f

r

)

if i � 0 and zero otherwise.

In the special case where r = 0 one sees that the complex MV

�

degenerates to (0! R

n

[f

0

�1

]! 0) reducing to the case from [12].

In [14], Algorithm 5.1 we gave an algorithm that explicitly com-

putes the

�

Cech complex to a �nite set of polynomials as a complex

of �nitely generated left D

n

-modules by means of Gr�obner basis com-

putations. Using this algorithm we may explicitly compute MV

�

for

given f

0

; : : : ; f

r

. For the convenience of the reader we reproduce that

algorithm here:

Algorithm 2.10.

Input: f

0

; : : : ; f

r

2 R

n

.

Output: The

�

Cech complex

�

C

�

(R

n

; f

0

; : : : ; f

r

) in terms of generators

and relations as �nitely generated D

n

-modules.

Begin

1. Compute the annihilator ideal J

�

((F

I

)

s

) and the Bernstein poly-

nomial b

�

F

I

(s) for all k-fold products F

I

of f

0

; : : : ; f

r

, k running

through 0; : : : ; r (so I runs through <).

2. Compute the smallest integer root a

I

for each b

�

F

I

(s), let a be the

minimum of all a

I

and replace s by a in all the annihilator ideals.
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3. Set

�

C

k

= �

jIj=k

D

n

=J

�

((F

I

)

s

)j

s=a

.

4. Compute the matricesM

k

representing the D

n

-linear maps

�

C

k

!

�

C

k+1

.

5. Return these matrices and the presentations for the modules

�

C

k

.

End.

For more details the reader is encouraged to look at [14].

It will now be our task to develop an algorithm that computes the

cohomology of 


�




D

n

MV

�

= 



L

D

n

MV

�

.

To this end we devote the next section to the description of an al-

gorithm that turns a complex of �nitely generated left D

n

-modules

into a quasi-isomorphic V

d

-strict complex of �nitely generated free D

n

-

modules. In Section 4 we provide the proofs for the correctness of

the algorithm. Then, in Section 5, we prove the restriction theorem,

which allows to give an algorithm that computes the restriction (in the

derived category) of a complex of D

n

-modules to a hyperplane.

3. An Algorithm to construct a V -strict free Complex

In the next three sections we will develop algorithms that �nd the

cohomology of 
 


L

D

n

C

�

where C

�

is an arbitrary bounded complex

of �nitely generated D

n

-modules with specializable cohomology (cf.

De�nitions 3.1, 3.2). In particular, in this section we �nd a free D

n

-

complex with special properties related to the so-called V -�ltration,

quasi-isomorphic to a given complex C

�

while in the next section we

give the proofs for the correctness of the algorithms of this section.

3.1. We need to introduce some terminology from [11] related to the

V -�ltration.

De�nitions 3.1. Fix an integer d with 0 � d � n and set H =

Var(x

1

; : : : ; x

d

). For � 2 Z

n

, we set �

H

= (�

1

; : : : ; �

d

; 0; : : : ; 0).

On the ring D

n

we de�ne the V

d

-�ltration F

k

H

(D

n

) as the K-linear

span of all operators x

�

@

�

for which j�

H

j + k � j�

H

j. More generally,

on a free D

n

-module A = �

t

j=1

D

n

� e

j

we de�ne

F

k

H

(A[m]) =

t

X

j=1

F

k�m(j)

H

(D

n

) � e

j

;

where m is an element of Z

m

. We shall call m the shift vector. A shift

vector is tied to a �xed set of generators.

We de�ne the V

d

-degree of an operator P 2 A[m], V

d

deg(P [m]), to

be the smallest k such that P 2 F

k

H

(A[m]).
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If M is a quotient of the free D

n

-module A = �

t

1

D

n

� e

j

, M =

A=I, we de�ne the V

d

-�ltration on M by F

k

H

(M [m]) = F

k

H

(A[m]) +

I. For submodules N of A we de�ne the V

d

-�ltration by intersection:

F

k

H

(N [m]) = F

k

H

(A[m]) \N .

If A

�

is a free D

n

-resolution of the module M , M being positioned

in degree b, we say that A

�

[m

�

] is V

d

-strict if there exist shift vectors

m

i

such that F

k

H

(A

i

[m

i

])! F

k

H

(A

i+1

[m

i+1

])! F

k

H

(A

i+2

[m

i+2

]) is exact

for all i < b � 1 and all k, and F

k

H

(A

b�1

[m

b�1

]) ! F

k

H

(A

b

[m

b

]) !

F

k

H

(M [m

b

])! 0 is exact for all k.

IfM is a submodule of the free moduleA[m], then a V

d

-strict Gr�obner

basis or a V

d

-Gr�obner basis for M is a set of generators fm

1

; : : : ; m

�

g

for M which satis�es: for all m 2M we can �nd f�

i

g

�

1

2 D

n

such that

m =

P

�

i

m

i

and V

d

deg(�

i

m

i

[m]) � V

d

deg(m[m]) for all i.

It has been shown by T. Oaku and N. Takayama in [11] (Propo-

sition 3.8 and following remarks) how to compute V

d

-strict Gr�obner

bases, and for any D

n

-moduleM positioned in degree b a free V

d

-strict

resolution (A

�

[m

�

]; �

�

) of M [m

b

], A

i

= �

r

i

1

D

n

; r

i

= 0 if i > b. The

construction given in [11] allows for arbitrary m

b

.

The method employed is to construct a free resolution with the usual

technique of �nding a Gr�obner basis for ker(A

i

! A

i+1

) and calculating

the syzygies on this basis. The trick is to impose an order that re�nes

the partial ordering given by V

d

-degree, together with a homogenization

technique.

The vectors m

i

are obtained for each A

i

with decreasing i: if A

i

maps

its generators on a Gr�obner basis of ker(A

i+1

! A

i+2

) then the shift

component m

i

(j) corresponding to the j-th generator e

j

of A

i

is de�ned

as V

d

deg(�

i

(e

j

)[m

i+1

]).

We need to generalize the de�nitions of [11] to the case where the

complex A

�

is not a resolution and M is a complex rather than a

module.

De�nitions 3.2. A complex of free D

n

-modules � � � ! A

i�1

�

i�1

! A

i

�

i

!

A

i+1

! � � � is said to be V

d

-adapted at A

i

with respect to certain shift

vectors m

i�1

;m

i

;m

i+1

if

�

i

�

F

k

H

(A

i

[m

i

])

�

� F

k

H

(A

i+1

[m

i+1

])

and also

�

i�1

�

F

k

H

(A

i�1

[m

i�1

])

�

� F

k

H

(A

i

[m

i

])

for all k.
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We shall say that the complex is V

d

-strict at A

i

if it is V

d

-adapted at

A

i

and moreover

im(�

i�1

) \ F

k

H

(A

i

[m

i

]) = im(�

i�1

j

F

k

H

(A

i�1

[m

i�1

])

)

for all k.

For 1 � d � n we set �

d

= x

1

@

1

+ : : :+ x

d

@

d

and �

0

= 0. Recall that

a D

n

-module M [m] = A[m]=I is called specializable to H if there is a

polynomial b(s) in a single variable such that

b(�

d

+ k) � F

k

H

(M [m]) � F

k�1

H

(M [m])(3.1)

for all k (cf. [12]). Introducing

gr

k

H

(M [m]) = (F

k

H

(M [m]))=(F

k�1

H

(M [m]));

this can be written as

b(�

d

+ k) � gr

k

H

(M [m]) = 0:

The monic polynomial b(�) of least degree satisfying an equation of the

type (3.1) is called the b-function for restriction of M [m] to H.

Remark 3.3. Specializability descends to quotients and submodules.

Namely, assume that M [m] = (A=I)[m] is specializable and N [m] =

(A

0

=I)[m] is a submodule ofM (where I � A

0

� A). Let b(s) be a poly-

nomial that satis�es b(�

d

+k)�F

k

H

(A[m]) � F

k�1

H

(A[m])+I. Then clearly

b(�

d

+ k) �F

k

H

(A[m]) � F

k�1

H

(A[m])+A

0

as well and hence (M=N)[m] is

specializable toH. On the other hand, if P

0

2 F

k

H

(A

0

[m]) = F

k

H

(A[m])\

A

0

then b(� + k) � P = Q +Q

0

where Q 2 F

k�1

H

(A[m]) and Q

0

2 I and

hence Q 2 F

k�1

H

(A[m]) \ A

0

= F

k

H

(A

0

[m]). This implies that N is also

specializable and we see that the b-functions for restriction of N [m] and

for (M=N)[m] divide the b-function for restriction of M [m] to H.

Notice that independently of d, gr

�

H

(D

n

[0])

�

=

D

n

, as a ring.

The main purpose of this section is to construct for a given D

n

-�nite

complex 0 ! C

0

! : : : ! C

r

! 0 a quasi-isomorphic free V

d

-strict

complex A

�

[m

�

].

Remark 3.4. If A

�

[m

�

] is a free resolution of M and V

d

-strict in our

sense it is also V

d

-strict in the sense of [12]. In fact our de�nition is a

natural generalization to complexes that are not resolutions.

Let � � � ! A

i�1

[m

i�1

]

�

i�1

! A

i

[m

i

]

�

i

! A

i+1

[m

i+1

] ! � � � be a free V

d

-

strict complex. Then the V

d

-�ltration on A

i

induces a �ltration on

the i-cycles Z

i

= ker �

i

and since the complex is V

d

-strict this gives a

natural �ltration on the cohomology module H

i

,

F

k

H

(H

i

[m

i

]) = F

k

H

(Z

i

[m

i

])= imF

k

H

(A

i�1

[m

i�1

]):
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That this is a �ltration follows from

F

k

H

(Z

i

[m

i

]) \ im(F

k+1

H

(A

i�1

[m

i�1

])) = im(F

k

H

(Z

i�1

[m

i�1

])):

Let B

i

be im(�

i�1

), the i-boundaries. The short exact sequences 0 !

Z

i

! A

i

! B

i+1

! 0 give rise to short exact sequences of groups 0!

F

k

H

(Z

i

[m

i

]) ! F

k

H

(A

i

[m

i

]) ! F

k

H

(B

i+1

[m

i+1

]) ! 0 since the complex

is V

d

-strict. Similarly, the short exact sequences 0 ! B

i

! Z

i

!

H

i

! 0 induce short exact sequences 0! F

k

H

(B

i

[m

i

])! F

k

H

(Z

i

[m

i

])!

F

k

H

(H

i

[m

i

])! 0.

This in turn induces short exact sequences of the graded objects,

0! gr

k

H

(B

i

[m

i

])! gr

k

H

(Z

i

[m

i

])! gr

k

H

(H

i

[m

i

])! 0(3.2)

and

0! gr

k

H

(Z

i

[m

i

])! gr

k

H

(A

i

[m

i

])! gr

k

H

(B

i+1

[m

i+1

])! 0:(3.3)

These sequences are the main feature of V

d

-strict complexes. They

say that forming graded objects and taking cohomology commutes for

V

d

-strict complexes.

Remark 3.5. The previous remark supplies a more systematic proof

for the fact that specializability is inherited by subquotients. Namely,

in the notation of Remark 3.4, consider the exact sequence

0! (A

0

=I)[m]! (A=I)[m]! (A=A

0

)[m]! 0;

which is easily seen to be V

d

-strict for all d. Thus we get an associated

sequence of graded modules

0! gr

k

H

((A

0

=I)[m])! gr

k

H

((A=I)[m])! gr

k

H

((A=A

0

)[m])! 0:

If the middle module is annihilated by b(� + k) then necessarily so are

the two outer ones.

3.2. We shall usematrices to represent submodules, quotient modules,

and left D

n

-morphisms in our algorithms. In particular, we shall think

of free modules as row vectors. We note that since we are dealing with

left modules, the matrices that represent D

n

-morphisms will act by

right multiplication.

De�nitions 3.6. If I is a matrix, then rows(I) stands for the number

of rows of I and cols(I) for the number of columns of I. Assuming that

I : D

n

p

! D

n

q

is a map of left D

n

-modules given by multiplication by

the matrix I,

D

n

p

3 (P

1

; : : : ; P

p

) 7! (P

1

; : : : ; P

p

) � I 2 D

n

q

;

then D

n

p

is the domain of I and D

n

q

its range.
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Let I be a p� q matrix with entries in D

n

. The row vectors in I are

denoted by I

[i]

, (i = 1; : : : ; p), i.e., I is of the form

I =

0

B

B

@

I

[1]

I

[2]

.

.

.

I

[p]

1

C

C

A

9

>

>

=

>

>

;

p

The image of the morphism induced by I in D

n

q

is the module gen-

erated by the rows of I and denoted by im(I). The quotient module

D

n

q

= im(I) is coker(I).

LetM andM

0

be p�q and p

0

�q matrices respectively. We introduce

two basic operations for two matrices. These will be building blocks of

our algorithms. De�ne div(M;M

0

) := a set of generators for the left

D

n

-module

(

(c

1

; : : : ; c

p

) 2 D

n

p

j 9(d

1

; : : : ; d

p

0

) 2 D

n

p

0

;

p

X

i=1

c

i

M

[i]

+

p

0

X

j=1

d

j

M

0

[j]

= 0

)

:

We regard div(M;M

0

) as an r�p matrix where r is the number of gen-

erators. coker(div(M;M

0

)) is isomorphic to im(M)=(im(M)\ im(M

0

)).

If M

0

is the zero matrix we write syz(M) for div(M;M

0

), the syzygy

module on the rows of M .

We next de�ne sol(M;M

0

)

[i]

to be a solution of

(c

1

; : : : ; c

p

) 2 D

n

p

and

p

X

j=1

c

j

M

[j]

= e

i

modulo im(M

0

);

where e

i

is the i-th basis element on the common range of M and M

0

.

sol(M;M

0

) is regarded as a q � p matrix. Note that if M is surjective

onto coker(M

0

) (i.e., im(M) + im(M

0

) = D

n

q

), then there exists a

solution for the linear inde�nite equation above. div and sol can be

computed by standard techniques of computing syzygies (see, e.g., [1]).

We also de�ne pro(k; l) to be the matrix

�

0

k�l

id

l�l

�

, which is the

projection matrix on modules of rank k + l to the last l components.

We assume that the given bounded complex C

�

is expressed in terms

of matrices. This means that for all i, C

i

�

=

coker(I

i

) where I

i

is an

m

i

� n

i

matrix, and C

i

! C

i+1

is induced by the n

i�1

� n

i

matrix

f

i�1

which satis�es D

n

m

i�1

I

i�1

�! D

n

n

i�1

f

i�1

�! D

n

n

i

! coker I

i

is the zero

map. (This is equivalent to requiring that im(I

i�1

) � im(div(f

i�1

; I

i

)),

or that coker(I

i�1

)

f

i�1

�! coker(I

i

) is well de�ned.)
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We observe that since the matrices act by right multiplication then

the matrixM

�

0

��

corresponding to a composition of the maps � and �

0

is the product of the corresponding matrices, M

�

0

��

=M

�

�M

�

0

.

Our algorithm for the construction of a V

d

-strict free complex which

is quasi-isomorphic to the given complex consists of four subprocedures

which are explained below. These procedures will be presented with

examples for better understanding.

Example 3.7. Our running example is to construct a V

3

-strict free

complex that is quasi-isomorphic to

�

coker(I

0

)

f

0

�! coker(I

1

)

�

with

I

0

=

0

B

B

B

B

B

@

x@

x

0

y@

y

0

z 0

0 x@

x

0 y

0 z@

z

1

C

C

C

C

C

A

; I

1

=

0

@

x@

x

y@

y

z@

z

1

A

; f

0

=

�

@

z

�@

y

�

:(3.4)

(One can see that the requirement im(I

0

� f

0

) � im(I

1

) is satis�ed.)

This example is geometrically motivated: it will serve to compute the

de Rham cohomology groups of the complement of the union of a (com-

plex) line and a plane in C

3

(Example 6.3).

Now, let us describe the main algorithm. First we give an algorithm

that breaks the complex into a family of short exact sequences. The

main task will be to determine the matrices representing the short ex-

act sequences from those representing the complex. The second step

will be to establish an algorithm that turns short exact sequences into

V

d

-strict short exact sequences. In Step 3, for each short exact V

d

-strict

sequence, we construct a double complex of V

d

-strict free resolutions,

whose total complex is quasi-isormorphic to the given short exact se-

quence. The �nal step assembles the resolutions to a combined double

complex whose associated total complex gives a V

d

-strict free complex

quasi-isomorphic to the initial complex. More concisely, we have the

following algorithm whose steps are explained in detail below. (We

denote as before by B

i

the i-boundaries, by Z

i

the i-cycles and by H

i

the i-cohomology of the complex C

�

.)

Algorithm 3.8. (From a complex to a V

d

-strict free complex.)

Input: A complex C

�

= fcoker(I

i

); f

i

g, i = 0; : : : ; r. (I

i

and f

i

are

matrices.) A starting shift vector m

r

on the range of I

r

.

Output: A bounded V

d

-strict free complex (D

n

t

i

; g

i

) and shift vectors

m

i

. Here, g

i

are matrices representing the maps D

n

t

i

! D

n

t

i+1

.
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1. Break the complex into short exact pieces 0! B

i

! Z

i

! H

i

!

0 and 0 ! Z

i

! C

i

! B

i+1

! 0 with 0 � i � r. (Subsection

3.3.)

2. For each of these pairs of short exact sequences, starting with

0 ! B

r

! Z

r

! H

r

! 0 and 0 ! Z

r

! C

r

! B

r+1

= 0 ! 0,

change the pair to a pair of V

d

-strict short exact sequences such

that the shift vectors for Z

i

and B

i

agree in both short exact

sequences where these modules occur. (Algorithm 3.11.)

3. Over each short exact V

d

-strict sequence obtained in the previous

step construct a double complex with V

d

-strict rows and columns

such that

a) the resolutions forB

i

and Z

i

are identical in the two instances

where B

i

and Z

i

are resolved, and

b) the total complex of the double complex is quasi-isomorphic

to the initial three term sequence. (Algorithm 3.15.)

4. From the double complexes constructed in Step 3, assemble a V

d

-

strict Cartan-Eilenberg resolution over C

�

. (Algorithm 3.18.)

5. Take the total complex of the double complex obtained in the

previous step.

End.

3.3. Now, let us explain the subprocedures called from Algorithm 3.8.

Recall that f

i

is a n

i�1

� n

i

matrix, and I

i

is a m

i

� n

i

matrix. Since

B

i

is the submodule of C

i

generated by the cosets (modulo I

i

) of the

rows of f

i�1

, B

i

= coker(div(f

i�1

; I

i

)), a r

i�1

� n

i�1

matrix.

Z

i

is the kernel of the map C

i

! C

i+1

induced by f

i

. Generators of

Z

i

are given by the cosets of the rows of div(f

i

; I

i+1

) inside C

i

. Hence

Z

i

is the cokernel of div(div(f

i

; I

i+1

); I

i

) which we assume to be a

s

i

�r

i

matrix. The map from D

n

r

i

! D

n

n

i

that induces the embedding

Z

i

,! C

i

is given by div(f

i

; I

i+1

), which is an r

i

� n

i

matrix.

There is a natural map fromB

i

to C

i

given by inclusion. The n

i�1

�n

i

matrix f

i�1

lifts this map, by assumption. Since the image of f

i�1

is

contained in the image of div(f

i

; I

i+1

) (which stems from the fact that

f

i�1

� f

i

= 0 modulo the image of I

i+1

) we can �nd an n

i�1

� r

i

matrix

lift

i

with lift

i

� div(f

i

; I

i+1

) = f

i�1

.

Lemma 3.9. im(I

i�1

�lift

i

) � im(div(div(f

i

; I

i+1

); I

i

) for any lift

i

with

lift

i

� div(f

i

; I

i+1

) = f

i�1

.

Proof. We have im(I

i�1

� f

i�1

) � im(I

i

) by assumption on the input.

Hence im(I

i�1

� lift

i

� div(f

i

; I

i+1

)) � im(I

i

). The claim follows. 2

Thus, lift

i

represents the natural inclusion B

i

,! Z

i

.
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H

i

= Z

i

=B

i

has the same generators as Z

i

, but extra relations.

These are given by by the image of lift

i

. We arrive at the following two

presentations of families of short exact sequences derived from I

i

; f

i

:

B

i

Z

i

H

i

D

n

n

i�1

6

lift

i

-

D

n

r

i

6

id

r

i

�r

i

-

D

n

r

i

6

D

n

r

i�1

div(f

i�1

; I

i

)

6

D

n

s

i

div(div(f

i

; I

i+1

); I

i

)

6

D

n

n

i�1

+s

i

6

where

�

lift

i

div(div(f

i

; I

i+1

); I

i

))

�

is the missing matrix in the rightmost

column, and

Z

i

C

i

B

i+1

D

n

r

i

6

div(f

i

; I

i+1

)

-

D

n

n

i

6

id

n

i

�n

i

-

D

n

n

i

6

D

n

s

i

div(div(f

i

; I

i+1

); I

i

)

6

D

n

m

i

I

i

6

D

n

r

i

div(f

i

; I

i+1

)

6

:

Example 3.10. Since the sequence (3.4) has only two terms, Step 1 of

Algorithm 3.8 will result in exactly two short exact sequences, namely

0! Z

0

! C

0

! B

1

! 0 and 0! B

1

! Z

1

! H

1

! 0 together with

equalities B

0

= 0, Z

0

= H

0

, Z

1

= C

1

, B

2

= 0.

Let us �rst consider the sequence Z

0

! C

0

! B

1

. By the remarks

in 3.3, Z

0

= coker(div(div(f

0

; I

1

); I

0

)) while B

1

= coker(div(f

0

; I

1

))

and of course C

0

= coker(I

1

).

For the second sequence we note that Z

1

= coker(I

1

). Therefore

H

1

= coker

�

f

0

I

1

�

.

Using Kan [13], one computes

div(f

0

; I

1

) =

0

B

B

B

B

B

@

�@

y

�@

z

0 �y

�z 0

�x@

x

0

0 x@

x

y@

y

0

1

C

C

C

C

C

A
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and

div(div(f

0

; I

1

); I

0

) =

0

B

B

B

B

B

B

B

B

B

@

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

y 0 0 0 0 0

�z 0 0 0 0 0

x@

x

0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

A

:

We have lift

1

= f

0

because Z

1

= C

1

.

3.4. In this subsection we give an algorithm that accomplishes Step 2

of Algorithm 3.8. The correctness of the algorithm is shown in Lemma

4.1 and 4.2.

We assume that an arbitrary short exact sequence of D

n

-modules

0 �! P

A

=M

A

�! P

B

=M

B

�! P

C

=M

C

�! 0

(where P

A

, P

B

, P

C

are free D

n

-modules of rank n

A

, n

B

, n

C

and M

A

,

M

B

, M

C

are submodules) is given to us via the set of the following 5

matrices which we call the data structure of the short exact sequence:

0 �! coker(I

A

)

f

AB

�! coker(I

B

)

f

BC

�! coker(I

C

) �! 0

where

� I

A

; I

B

and I

C

are m

A

� n

A

; m

B

� n

B

and m

C

� n

C

matrices re-

spectively whose rows generate M

A

;M

B

;M

C

;

� f

AB

and f

BC

are n

A

� n

B

and n

B

� n

C

matrices to represent the

left D

n

-morphisms P

A

=M

A

! P

B

=M

B

and P

B

=M

B

! P

C

=M

C

respectively. (In particular, im(I

A

� f

AB

) � im(I

B

) and im(I

B

�

f

BC

) � im(I

C

) are part of the de�nition.)

We shall often abbreviate the data structure to

h

I

A

f

AB

�! I

B

f

BC

�! I

C

i

.

The proof of Lemma 4.1 implies the following algorithm to transform

a given short exact sequence into a V

d

-strict short exact sequence.

Algorithm 3.11. (Making a short exact sequence V

d

-strict.)

Input:

h

I

A

f

AB

�! I

B

f

BC

�! I

C

i

and a shift vector m

C

on the range of I

C

.

Output:

h

J

A

g

AB

�! J

AC

g

BC

�! J

C

i

and shift vectors m

A

, m

C

on the range

of J

A

and J

C

.

Begin

1. Let the rows of J

C

be a V

d

-strict Gr�obner basis for im(I

C

) �

P

C

[m

C

] and set J

A

= I

A

.
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2. Put f

CB

= sol(f

BC

; I

C

)

[�]

, i.e.,

f

CB

:=

0

@

sol(f

BC

; I

C

)

[1]

.

.

.

sol(f

BC

; I

C

)

[n

C

]

1

A

:

The matrix f

CB

represents a lift from P

C

to P

B

for the map

f

BC

, P

C

f

CB

�! P

B

f

BC

�! P

C

! coker(I

C

) is the projection P

C

!

coker(I

C

).

3. Set

f

ACB

:=

n

B

z}|{

n

A

f

n

C

f

�

f

AB

f

CB

�

;

J

AC

:= div(f

ACB

; I

B

):

(Then coker(J

AC

)

�

=

coker(I

B

).)

4. Determine the shift m

A

as follows. Compute elements f�

i

g

m

C

1

in

im(J

AC

) such that �

i

� pro(n

A

; n

C

) = (J

C

)

[i]

. Then set

m

A

(k) = min

ij�

i

(k)6=0

fV

d

deg(�

i

� pro(n

A

; n

C

)[m

C

])� V

d

deg(�

i

(k)g:

Here, �

i

(k) is the k-th element of the vector �

i

, considered without

shift.

5. Return

0 �! coker(J

A

)[m

A

]

g

AB

�! coker(J

AC

)[m

A

;m

C

]

g

BC

�! coker(J

C

)[m

C

] �! 0;

and m

A

;m

C

where

g

AB

:=

�

id

n

A

�n

A

0

n

A

�n

C

�

; g

BC

:=

�

0

n

A

�n

C

id

n

C

�n

C

�

:

End.

Remark 3.12.

3.12.1. The output of Algorithm 3.11 �ts into a diagram

0!coker(J

A

[m

A

])

-

coker(J

AC

[m

A

;m

C

])

-

coker(J

C

[m

C

])! 0

0!D

n

cols(J

A

)

[m

A

]

6

-

D

n

cols(J

AC

)

[m

A

;m

C

]

6

-

D

n

cols(J

C

)

[m

C

]

6

! 0

0! im(J

A

)[m

A

]

6

-

im(J

AC

)[m

A

;m

C

]

6

-

im(J

C

)[m

C

]

6

! 0
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where cols(J

AC

) = cols(J

A

) + cols(J

C

) and the rows and columns are

V

d

-strict and exact.

Another interpretation of the output is the following diagram

0! coker(I

A

)

-

coker(I

B

)

-

coker(I

C

) ! 0

0!D

n

cols(J

A

)

[m

A

]

6

-

D

n

cols(J

AC

)

[m

A

;m

C

]

6

-

D

n

cols(J

C

)

[m

C

]

6

! 0

0! D

n

rows(J

A

)

�J

A

6

-

D

n

rows(J

AC

)

�J

AC

6

-

D

n

rows(J

C

)

�J

C

6

! 0:

where rows(J

AC

) = rows(J

A

) + rows(J

C

). (This will be proved in

Lemma 4.4.) We can de�ne a shift vector n

A

on D

n

rows J

A

by n

A

(i) =

V

d

deg((J

A

)

[i]

[m

A

]), and proceed in a similar fashion with J

AC

; J

C

.

3.12.2. In Lemma 4.2 we will show how this algorithm can be mod-

i�ed to accomplish the following: assume given are two sequences

h

I

A

f

AB

�! I

B

f

BC

�! I

C

i

and

h

I

D

f

DA

�! I

A

f

AF

�! I

F

i

together with a shift vec-

tor m

C

on the range of I

C

. Then one can rewrite coker(I

A

), coker(I

B

),

coker(I

D

) and coker(I

F

) as well as �nd shift vectors m

A

;m

B

;m

D

;m

F

to

make both sequences V

d

-strict simultaneously.

Example 3.13. Returning to our running example we now perform

Algorithm 3.11 in order to make the two sequences obtained in Example

3.10 V

3

-strict. We start with 0 ! B

1

! Z

1

! H

1

! 0. One checks

that f@

y

; @

z

; x@

x

g is a V

3

-strict Gr�obner basis for im(f

0

) + im(I

1

) and

thus

H

1

= coker

0

@

@

y

@

z

x@

x

1

A

:

So we have in the notation of Algorithm 3.11 J

C

=

0

@

@

y

@

z

x@

x

1

A

, J

A

=

div(f

0

; I

1

), I

B

= I

1

, f

AB

= f

0

and f

BC

= id

1�1

.

Now we want to replace I

B

by a suitable matrix, according to Algo-

rithm 3.11. To this end we need a lift for the identity map D

3

! D

3

,

which we take to be the identity. Then according to Step 3 of Algorithm

3.11, J

B

will be a Gr�obner basis for the kernel of the map

D

3

2

�D

3

0

@

f

AB

id

1�1

1

A

�! D

3

! D

3

=I

B

;
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which is given by div(

�

f

AB

id

1�1

�

; I

B

). With Kan we compute J

B

to be

generated by the rows of the matrix

0

B

B

B

B

B

B

B

B

B

B

B

@

1 0 �@

z

0 1 @

y

0 0 �x@

x

�z 0 0

0 �y 0

@

y

@

y

0

y@

y

0 0

�x@

x

0 0

0 �x@

x

0

1

C

C

C

C

C

C

C

C

C

C

C

A

:

In order to make the sequence V

3

-strict we need to �nd the f�

i

g

3

1

of

Step 4 in the algorithm, i.e. preimages of the rows of J

C

inside im(J

B

)

for the projection D

3

2

�D

3

!! D

3

. These are given by the three top

rows of J

B

. Since @

z

and @

y

have degree 1 in D

3

[0], the shift vector for

D

3

2

�D

3

is [1; 1; 0].

Setting I

0

B;1

:= J

A

, I

0

C;1

:= J

B

, I

0

H;1

:= J

C

we obtain the new V

3

-strict

short exact sequence

0! coker(I

0

B;1

)[1; 1]! coker(I

0

C;1

)[1; 1; 0]! coker(I

0

H;1

)[0]! 0:

Now we make the sequence 0 ! Z

0

! C

0

! B

1

! 0 V

3

-strict. In

the new situation we put I

C

= J

C

= div(f

0

; I

1

), I

B

= I

0

, I

A

= J

A

=

div(div(f

0

; I

1

); I

0

), f

AB

= div(f

0

; I

1

) and f

BC

= id

6�6

. Proceeding in

a similar way as before we see that the new number of generators for C

0

will be 2+6=8, given by the images of the generators for Z

0

and preim-

ages for the generators of B

1

. Thus J

B

= div(

�

div(f

0

; I

1

)

id

2�2

�

; I

A

)
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which turns out to be

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 @

y

@

z

0 1 0 0 0 0 0 y

0 0 1 0 0 0 z 0

0 0 0 0 0 0 �z 0

0 0 0 0 0 0 0 �y

0 0 0 0 0 0 �x@

x

0

0 0 0 0 0 0 �y@

y

0

0 0 0 0 0 0 0 �x@

x

0 0 0 0 0 �1 0 0

0 0 0 �1 0 0 0 0

z 0 0 0 0 0 0 0

�y 0 0 0 0 0 0 0

0 0 0 0 �1 0 0 0

�x@

x

0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

As before we need preimages of the rows of J

C

inside J

A

. They are

given by rows 1, 5, 4, 6, 8, 7 in that sequence. We conclude that

the shift on D

3

6

must be [2; 0; 0; 1; 1; 1] (here the last three shifts are

arbitrary).

Thus the V

3

-strict sequence is (with I

0

C;0

:= J

B

, I

0

Z;0

= J

A

)

�

I

0

Z;0

[2; 0; 0; 1; 1; 1] �! I

0

C;0

[2; 0; 0; 1; 1; 1; 1; 1] �! I

0

B;1

[1; 1]

�

:

3.5. Now we come to an algorithm that shows how to perform \one

step" in the resolution of a short exact V

d

-strict sequence, a preparatory

result for Step 3 of Algorithm 3.8.

Algorithm 3.14. (From a V

d

-strict short exact sequence to a V

d

-strict

2� 3 complex.)

Input:

h

I

A

[m

A

]

f

AB

�! I

B

[m

B

]

f

BC

�! I

C

[m

C

]

i

such that

� I

A

and I

C

are V

d

-strict Gr�obner bases for im(I

A

)[m

A

] and im(I

C

)[m

C

]

respectively,

� cols(I

A

) + cols(I

C

) = cols(I

B

),

� f

AB

= (

id

cols(I

A

)�cols(I

A

)

0

cols(I

A

)�cols(I

C

)

),

f

BC

=

�

0

cols(I

A

)�cols(I

C

)

id

cols(I

C

)�cols(I

C

)

�

,

� m

B

= (m

A

;m

C

).

Output: A 2� 3 double complex, a one step free V

d

-strict resolution

of the input.

Begin



22 ULI WALTHER

1. Set n

C

(i) = V

d

deg((I

C

)

[i]

[m

C

]), n

A

(i) = V

d

deg((I

A

)

[i]

[m

A

]) and

n

B

= (n

A

; n

C

). This de�nes shift vectors on the domains of I

A

,

I

B

, I

C

.

2. Set J

A

a V

d

-strict Gr�obner basis for im(syz(I

A

)) � D

n

rows(I

A

)

[n

A

],

let J

C

be a V

d

-strict Gr�obner basis for im(syz(I

C

)) � D

n

rows(I

C

)

[n

C

].

3. Let

f

CB

= sol(f

BC

; I

C

)

[�]

;

f

ACB

=

�

f

AB

f

CB

�

;

J

B

= div(f

ACB

; I

B

):

4. Set

g

AB

= (

id

rows(I

A

)�rows(I

A

)

0

rows(I

A

)�rows(I

C

)

);

g

BC

=

�

0

rows(I

A

)�rows(I

C

)

id

rows(I

C

)�rows(I

C

)

�

:

5. Return

h

J

A

[n

A

]

g

AB

�! J

B

[n

A

; n

C

]

g

BC

�! J

C

[n

C

]

i

.

End.

The output of Algorithm 3.14 can be put into the following picture

coker(I

A

)

-

coker(I

B

)

-

coker(I

C

)

D

n

cols(I

A

)

[m

A

]

6

f

AB

-

D

n

cols(I

B

)

[m

B

]

6

f

BC

-

D

n

cols(I

C

)

[m

C

]

6

D

n

cols(J

A

)

[n

A

]

I

A

6

g

AB

-

D

n

cols(J

B

)

[n

B

]

I

B

6

g

BC

-

D

n

cols(J

C

)

[n

C

]

I

C

6

D

n

rows(J

A

)

J

A

6

-

D

n

rows(J

B

)

J

B

6

-

D

n

rows(J

C

)

J

C

6

which has exact and V

d

-strict rows and columns.

It is important to notice that

h

J

A

[n

A

]

g

AB

�! J

B

[n

A

; n

C

]

g

BC

�! J

C

[n

C

]

i

satis�es the conditions on the input of Algorithm 3.14. This facilitates

repetition of the algorithmwhich leads to a Cartan-Eilenberg resolution

for the sequence

h

I

A

[m

A

]

f

AB

�! I

B

[m

B

]

f

BC

�! I

C

[m

C

]

i

with V

d

-strict rows

and columns:

Algorithm 3.15. (From a short exact sequence to a V

d

-strict Cartan-

Eilenberg resolution of length L.)
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Input:

h

I

A

f

AB

�! I

B

f

BC

�! I

C

i

.

Output: a free double complex I

�

A

[m

A;�

]! I

�

B

[m

B;�

]! I

�

C

[m

C;�

] such

that the rows are exact, the columns resolutions, and the rows and

columns are V

d

-strict.

Begin

1. Apply Algorithm 3.11 with input

h

I

A

f

AB

�! I

B

f

BC

�! I

C

i

and output

�

I

0

A

[m

A;0

]

f

0

AB

�! I

0

B

[m

B;0

]

f

0

BC

�! I

0

C

[m

C;0

]

�

to render the sequence V

d

-

strict.

2. For l = 0; : : : ; L repeat

(a) Input(Algorithm 3.14):=

�

I

l

A

[m

A;l

]

f

l

AB

�! I

l

B

[m

B;l

]

f

l

BC

�! I

l

C

[m

C;l

]

�

,

(b) Output(Algorithm 3.14)=:

�

I

l+1

A

[m

A;l+1

]

f

l+1

AB

�! I

l+1

B

[m

B;l+1

]

f

l+1

BC

�! I

l+1

C

[m

C;l+1

]

�

.

3. Return the double complex of free modules with vertical maps

�

l+1

X

: P

l+1

X

= D

n

cols(I

l

X

)

! D

n

rows(I

l

X

)

= P

l

X

equal to right mul-

tiplication by I

l

X

(where X 2 fA;B;Cg and horizontal maps

(�1)

l

f

l

AB

: P

l

A

! P

l

B

, (�1)

l

f

l

BC

: P

l

B

! P

l

C

.

End.

Remark 3.16.

3.16.1. The modules in the resolution for B in the middle are the direct

sum of the outer two. Moreover, the map from the left column to the

middle one is an inclusion of resolutions while the map from the middle

to the right column is a projection of resolutions.

3.16.2. We do not need to build resolutions of length greater than n+r

since the global homological dimension of D

n

is n and we are interested

in computing hyper-Tor of a complex of length r.

3.16.3. We shall write

�

I

�

A

[m

A;�

]

f

�

AB

�! I

�

B

[m

B;�

]

f

�

BC

�! I

�

C

[m

C;�

]

�

for the

double complex returned by Algorithm 3.15.

Example 3.17. Now we come to the computation of resolutions in

our running example.

We �rst compute resolutions for I

Z;0

[2; 0; 0; 1; 1; 1], I

B;1

[1; 1] and I

H;1

[0].

These are as follows.

For Z

0

:

D

3

[0]

�

3

Z;0

�! D

3

3

[0; 1; 1]

�

2

Z;0

�! D

3

8

[0; 0; 1; 1; 1; 1; 1; 2]

�

1

Z;0

�! D

3

6

[2; 0; 0; 1; 1; 1]!! Z

0
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where

�

1

Z;0

=

0

B

B

B

B

B

B

B

B

B

@

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

y 0 0 0 0 0

�z 0 0 0 0 0

x@

x

0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

A

;

�

2

Z;0

=

0

@

0 0 0 0 0 �z �y 0

0 0 0 0 0 x@

x

0 �y

0 0 0 0 0 0 x@

x

z

1

A

and �

3

Z;0

= (

x@

x

z y

):

For B

1

:

D

3

2

[2; 1]

�

3

B;1

�! D

3

6

[2; 1; 1; 2; 1; 1]

�

2

B;1

�! D

3

6

[2; 1; 1; 1; 1; 1]

�

1

B;1

�! D

3

2

[1; 1]!! B

1

where

�

1

B;1

=

0

B

B

B

B

B

@

�@

y

�@

z

0 �y

�z 0

�x@

x

0

0 x@

x

y@

y

0

1

C

C

C

C

C

A

;

�

2

B;1

=

0

B

B

B

B

B

@

�y @

z

0 0 0 �1

0 0 0 y@

y

0 x@

x

0 0 y@

y

0 0 z

�x@

x

0 0 @

y

�@

z

0

0 0 �x@

x

z 0 0

0 x@

x

0 0 y 0

1

C

C

C

C

C

A

and �

3

B;1

=

�

�x@

x

�1 0 y 0 @

z

0 z �x@

x

0 �y@

y

0

�

:

For H

1

:

D

3

[2]

�

3

H;1

�! D

3

3

[2; 1; 1]

�

2

H;1

�! D

3

3

[1; 1; 0]

�

1

H;1

�! D

3

[0]!! H

1
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where �

1

H;1

=

0

@

@

y

@

z

x@

x

1

A

, �

2

H;1

=

0

@

@

z

�@

y

0

x@

x

0 �@

y

0 x@

x

�@

z

1

A

and �

3

H;1

=

�

x@

x

�@

z

@

y

�

.

We now construct the resolution for C

1

= Z

1

. From the above

resolutions for B

1

and H

1

we see that the modules in the resolution

will be

P

0

C;1

= D

3

2

[1; 1]�D

3

[0];

P

1

C;1

= D

3

6

[2; 1; 1; 1; 1; 1]�D

3

3

[1; 1; 0];

P

2

C;1

= D

3

6

[2; 1; 1; 2; 1; 1]�D

3

3

[2; 1; 1] and

P

3

C;1

= D

3

2

[2; 1]�D

3

[2]:

In order to produce the di�erentials in the complex P

�

C;1

we need to �nd

elements in ker(�

��1

C;1

) = I

��1

C;1

that project onto the rows of the matrices

in the resolution for H

1

under the projection.

For example, to �nd �

1

C;1

we need to �nd three 3-vectors in I

0

C;1

whose last (third) components are @

y

; @

z

and x@

x

respectively, and who

do have the same V

3

-degree inside P

1

C;1

as their projections into P

1

H;1

=

D

3

[0]. Those are for example (0; 1; @

y

), (�1; 0; @

z

) and (0; 0; x@

x

). Thus,

�

1

C;1

=

0

B

B

@

�

1

B;1

0

6�1

0 1 @

y

�1 0 @

z

0 0 x@

x

1

C

C

A

. In order to �nd �

2

C;1

we need to lift the rows

of �

2

H;1

into ker(�

1

C;1

) � P

1

C;1

without increasing V

3

-degree. One can see

that one way of accomplishing this is

�

2

C;1

=

0

B

B

@

�

2

B;1

0

6�3

1 0 0 0 0 0 @

z

�@

y

0

0 0 0 0 �1 0 x@

x

0 �@

y

0 0 0 �1 0 0 0 x@

x

�@

z

1

C

C

A

:

Finally one �nds

�

3

C;1

=

�

�

3

B;1

0

2�3

0 0 0 1 0 0 x@

x

�@

z

�@

y

�

:

For the �rst sequence, 0! Z

0

! C

0

! B

1

! 0 one computes

P

0

C;0

= D

3

6

�D

3

2

[2; 0; 0; 1; 1; 1; 1; 1];

P

1

C;0

= D

3

8

�D

3

6

[0; 0; 1; 1; 1; 1; 1; 2; 2; 1; 1; 1; 1; 1];

P

2

C;0

= D

3

3

�D

3

6

[0; 1; 12; 1; 1; 2; 1; 1];

P

3

C;0

= D

3

�D

3

2

[0; 2; 1]:
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Moreover, we may take

�

1

C;0

=

0

B

B

B

B

B

B

B

B

@

�

1

Z;0

0

8�2

�1 0 0 0 0 0 �@

y

�@

z

0 0 0 0 0 0 0 �y

0 0 0 0 0 0 �z 0

0 0 0 0 0 0 �x@

x

0

0 0 0 0 0 0 0 x@

x

0 0 0 0 0 0 y@

y

0

1

C

C

C

C

C

C

C

C

A

;

�

2

C;0

=

0

B

B

B

B

B

B

B

B

@

�

2

Z;0

0

3�6

0 0 0 0 0 �1 0 0 �y @

z

0 0 0 �1

0 0 0 0 0 0 0 0 0 0 0 y@

y

0 x@

x

0 0 0 0 0 0 0 0 0 0 y@

y

0 0 z

0 0 0 0 0 0 0 �1 �x@

x

0 0 @

y

�@

z

0

0 0 0 0 0 0 0 0 0 0 �x@

x

z 0 0

0 0 0 0 0 0 0 0 0 x@

x

0 0 y 0

1

C

C

C

C

C

C

C

C

A

;

�

3

C;0

=

0

@

�

3

Z;0

0

1�6

0 �1 0 �x@

x

�1 0 y 0 @

z

0 0 0 0 z �x@

x

0 �y@

y

0

1

A

:

Algorithm 3.15 shows how to compute V

d

-strict Cartan-Eilenberg

resolutions of short exact sequences. Remark 3.12 shows how to �nd

a V

d

-strict presentation of all the short exact sequences 0 ! B

i

!

Z

i

! H

i

! 0 and 0 ! Z

i

! C

i

! B

i+1

! 0 in a compatible way.

Lemma 4.2 in the next chapter explains how to modify Algorithm 3.15

in order to �nd simultaneously V

d

-strict resolutions for the short exact

sequences above in such a way that the two resolutions B

i

(resp. Z

i

)

are identical.

Assuming we have constructed such resolutions, we can now �nd a

V

d

-strict Cartan-Eilenberg resolution for C

�

as follows.

Algorithm 3.18. (Assembling double complexes.)

Input: A complex C

�

, broken into short exact sequences 0 ! B

i

!

Z

i

! H

i

! 0, 0 ! Z

i

! C

i

! B

i+1

! 0, and V

d

-strict Cartan-

Eilenberg resolutions

�

I

�

B;i

f

B

i

;Z

i

�! I

�

Z;i

f

Z

i

;H

i

�! I

�

H;i

�

and

�

I

�

Z;i

f

Z

i

;C

i

�! I

�

C;i

f

C

i

;B

i+1

�! I

�

B;i+1

�

for those sequences such that the two resolutions for Z

i

; B

i

are the same

for all i.

Output: A double complex

P

j

C;i

[m

C;i;j

]

-

P

j

C;i+1

[m

C;i+1;j

]

P

j+1

C;i

[m

C;i;j+1

]

6

-

P

j+1

C;i+1

[m

C;i+1;j+1

]

6
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such that

� P

�

C;i

[m

C;i;�

] is a V

d

-strict resolution of C

i

,

� the rows are exact and V

d

-strict,

� the total complex Tot

�

(P

�

C;�

[m

C;�;�

]) is V

d

-strict and quasi-isomorphic

to C

�

.

Begin

� Set P

l

C;i

[m

C;i;l

] = P

l

B

i

� P

l

Z

i

� P

l

B

i+1

[m

B;i;l

;m

Z;i;l

;m

B;i+1;l

],

� and take P

l

C;i

! P

l

C;i+1

to be the canonical map P

l

C;i

!! P

l

B;i+1

,!

P

l

C;i+1

multiplied by (�1)

l

.

End.

The correctness of this algorithm (i.e., the V

n

-strictness of the asso-

ciated total complex) is the topic of Proposition 4.5.

Example 3.19. In the running example we see that the complex C

�

is quasi-isomorphic to the V

3

-strict complex A

�

[m

�

] given by the total

complex of

(3.5)

D

6

6

�D

3

2

[2; 0; 0; 1; 1; 1; 1; 1]

�

0

6�3

id

2�2

0

2�1

�

-

D

3

2

�D

3

[1; 1; 0]

D

3

8

�D

3

6

[0; 0; 1; 1; 1; 1; 1; 2; 2; 1; 1; 1; 1; 1]

6

�

0

8�9

� id

6�6

0

6�2

�

-

D

3

6

�D

3

3

[2; 1; 1; 1; 1; 1; 1; 1; 0]

6

D

3

3

�D

3

6

[0; 1; 1; 2; 1; 1; 2; 1; 1]

6

�

0

3�9

id

6�6

0

6�3

�

-

D

3

6

�D

3

3

[2; 1; 1; 2; 1; 1; 2; 1; 1]

6

D

3

1

�D

3

2

[0; 2; 1]

6

�

0

1�3

� id

2�2

0

2�1

�

-

D

3

2

�D

3

1

[2; 1; 2]

6

with vertical maps given as in Example 3.17, horizontal maps as given

in Algorithm 3.18 and where the terminal module D

2

2

� D

3

[1; 1; 0] is

positioned in cohomological degree 1.

Remark 3.20. Set P

l

Z;i

= P

l

B;i

� P

l

H;i

. Since we are dealing with

Cartan-Eilenberg resolutions, then P

�

Z;i

[m

B;i;�

;m

H;i;�

] is a V

d

-strict res-

olution of Z

i

sitting inside P

�

C;i

[m

B;i;�

;m

H;i;�

;m

B;i+1;�

].

Example 3.21. This example will show that our algorithm does not

provide minimal resolutions, far from it. Let us �nd a V

2

-strict complex

quasi-isomorphic to

0! D

2

|{z}

degree 1

f

1

�! D

2

2

|{z}

degree 2

f

2

�! D

2

|{z}

degree 3

! 0(3.6)
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where

f

1

= (�xy; x+ x

2

+ y

2

); f

2

=

�

x+ x

2

+ y

2

xy

�

:

We note that this complex is quasi-isomorphic to

0! D

2

=D

2

� (x+ x

2

+ y

2

; xy)

| {z }

degree 3

! 0;

which is a complex with single support, so it is possible to transform

it into a V

d

-strict free complex by the method given in [11].

Let us execute the various steps of Algorithm 3.8. Consider the

complex (3.6). Then I

1

= I

2

= I

3

= I

4

= 0. We split it into short

exact sequences as we explained in subsection 3.3. The last short exact

sequence is

0! B

3

�! Z

3

�! H

3

! 0:

Here we have the following presentations of the modules.

B

3

= coker(div(f

2

; I

3

)) = coker(div(f

2

; 0))(3.7)

=: coker(I

A

);

Z

3

= coker(div(div(f

3

; I

4

); I

3

)) = coker(syz(syz(D

2

! 0)))(3.8)

= coker(0

1�1

):

Thus, with H

3

= Z

3

=B

3

=: coker(I

C

) we can express the above se-

quence with the data

I

A

= (xy;�x� x

2

� y

2

); I

B

= (0); I

C

=

�

x+ x

2

+ y

2

xy

�

;

f

AB

=

�

x+ x

2

+ y

2

xy

�

; f

BC

= (1):

We transform it into a V

2

-strict complex with the starting shift vector

m

C

= [0] applying Algorithm 3.11. In Step 1, we obtain

J

C

=

0

@

x+ x

2

+ y

2

xy

y

3

1

A

and J

A

= I

A

. In Steps 2 and 3, we determine J

AC

. We note that

f

BC

= (1) and f

CB

= (1) whence f

ACB

=

0

@

x+ x

2

+ y

2

xy

1

1

A

. So J

AC

is

the syzygy module on x+ x

2

+ y

2

, xy, 1 and consequently

J

AC

=

�

1 0 �x� x

2

� y

2

0 1 �xy

�

:
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From this we see that �

1

= (J

AC

)

[1]

, �

2

= (J

AC

)

[2]

. Then m

A

(1) =

min(�1� 0) = �1 and m

A

(2) = min(�2� 0) = �2. Hence the output

is

(3.9)

0! D

2

2

=J

A

[�1;�2]

0

@

1 0 0

0 1 0

1

A

�! (D

2

2

�D

2

)=J

AC

[�1;�2; 0]

0

B

B

@

0

0

1

1

C

C

A

�! D

2

=J

C

[0]! 0:

Now apply Algorithm 3.15 to (3.9). We obtain a double complex

over (3.9), which is a V

2

-strict free complex. It is given below. To save

space, we put p = x+ x

2

+ y

2

and (M) =

0

@

y

3

�xy

2

�x� y

2

0 y

2

�x

y �1� x �1

1

A

.

Horizontal boundary maps are either of the form

�

id 0

�

or

�

0

id

�

.

D

2

2

=I

A

-

(D

2

2

�D

2

)=I

AC

-

D

2

=I

C

D

2

2

[�1;�2]

6

-

D

2

2

�D

2

[�1;�2; 0]

6

-

D

2

[0]

6

D

2

[�3]

�(xy;�p)

6

-

D

2

�D

2

3

[�3;�1;�2;�3]

�

0

B

B

@

xy �p 0

0 0 p

0 0 xy

0 0 y

3

1

C

C

A

6

-

D

2

3

[�1;�2;�3]

�

0

@

p

xy

y

3

1

A

6

D

2

3

[�4;�4;�2]

�

0

@

0

0

0

M

1

A

6

-

D

2

3

[�4;�4;�2]

�(M)

6

D

2

[�4]

6

-

D

2

[�4]

�(1;�1;�y

2

)

6

The total complex of this double complex is substantially bigger than

the V

2

-strict resolution for D

2

=D

2

� (p; xy) one computes with Kan di-

rectly and which agrees essentially with the rightmost column of the

diagram.

4. Correctness of the Algorithms in Section 3

In this section we justify the algorithms from the previous section.

Let 0! C

0

! � � � ! C

r

! 0 be the given complex. For the remainder
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of the paper, if X is a module, P

X

will denote a free module projecting

onto X and I

X

the kernel of that projection.

4.1. We �rst prove the correctness of Algorithm 3.11.

Lemma 4.1. Let 0 ! P

A

=I

A

! P

B

=I

B

! P

C

=I

C

! 0 be exact and

assume that on P

C

there is given a shift vector m

C

.

Then P

B

=I

B

can be replaced by a certain other quotient of a free

module isomorphic to P

B

=I

B

, such that there exist shift vectors m

A

;m

B

making the sequence V

d

-strict.

Proof. We remark that making the sequence V

d

-adapted is trivial (but

not good enough).

Set Q

B

= P

A

� P

C

. Pick a D

n

-morphism  from P

C

to P

B

=I

B

that

lifts P

B

=I

B

! P

C

=I

C

. We then de�ne Q

B

! P

B

=I

B

as (Q

B

!! P

A

!!

P

A

=I

A

,! P

B

=I

B

) + (Q

B

!! P

C

 

�! P

B

=I

B

). This map is surjective.

Let I

A;C

= ker(Q

B

!! P

B

=I

B

). I

A;C

contains I

A

� 0, corresponding

to the natural inclusion P

A

=I

A

,! P

B

=I

B

= Q

B

=I

A;C

.

We prove now that this sequence can be given shift vectors to make

it V

d

-strict. De�ne the shift on Q

B

by taking the given shift from P

C

on

the second component, and for the generators of P

A

take an arbitrary

shift for the moment.

It is clear that the resulting short exact sequence

0! P

A

[m

A

]=I

A

! Q

B

[m

A

;m

C

]=I

A;C

! P

C

[m

C

]=I

C

! 0

is V

d

-adapted. It is just as clear that it is V

d

-strict at P

C

=I

C

and P

A

=I

A

.

Let b =

P

�

i

e

A;i

+

P




j

e

C;j

be an element of Q

B

that is sent to zero

in P

C

=I

C

. (Here, fe

A;i

g and fe

C;j

g represent a basis for P

A

and P

C

respectively, while �

i

and 


j

are in D

n

.) That means that

P




j

c

j

2 I

C

.

Since I

A;C

contains for all elements c 2 I

C

an element (a

c

; c) (after all,

modulo the �rst component of Q

B

, elements of 0 � I

C

must be zero

in Q

B

=I

A;C

!) we can transform our element b modulo I

A;C

into an

element of P

A

� 0. We would like this element to have V

d

-degree at

most V

d

deg(b).

Remember that we can still choose the shift for P

A

. Take a V

d

-strict

Gr�obner basis fc

i

g for I

C

relative to the given shift m

C

. For each c

i

�nd

a a

i

in P

A

such that (a

i

; c

i

) 2 I

A;C

. Now de�ne the shift on P

A

in such

a way that a

i

has V

d

-degree at most equal to the V

d

-degree of c

i

for all

i. We claim that with this shift the sequence is V

d

-strict. To see that,

return to b =

P

�

i

e

A;i

+

P




j

e

C;j

. The V

d

-degree of b is the maximum

of the degrees of the two sums. Since

P




j

e

C;j

is in I

C

, we can write

it as a sum

P




0

k

c

k

, where the V

d

-degree of the sum, let's call it e, is

the V

d

-degree of the largest summand in the sum, because the c

i

form
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a V

d

-strict Gr�obner basis. Modulo I

A;C

, this is the same as the sum

�

P




0

i

a

i

, which has lower or equal V

d

-degree, by construction of the

shift on P

A

. Then

P

�

i

e

A;i

�

P




0

k

a

k

2 P

A

is an operator that maps

onto b, modulo I

A;C

, and has V

d

-degree at most equal to e. Strictness

at Q

B

=I

A;C

follows.

This ends the proof and shows that Algorithm 3.11 is correct. 2

We obtain a commutative diagram with exact and V

d

-strict rows and

columns

0 0 0

0

-

P

A

=I

A

6

-

P

B

=I

B

6

-

P

C

=I

C

6

-

0

YH

H

H

H

 

0

-

P

A

[m

A

]

6

-

Q

B

[m

A

;m

C

]

6

-

P

C

[m

C

]

6

-

0

0

-

I

A

6

-

I

A;C

6

-

I

C

6

-

0

0

6

0

6

0

6

and  is V

d

-adapted.  corresponds to the map f

CB

in Algorithm 3.11.

We will have need of a slight improvement of Lemma 4.1, because in

Algorithm 3.8 we have to simultaneously make two interrelated short

exact sequences V

d

-strict.

Lemma 4.2. Suppose we have two short exact sequences

0! P

A

=I

A

! P

B

=I

B

! P

C

=I

C

! 0

and

0! P

D

=I

D

! P

A

=I

A

! P

F

=I

F

! 0

and assume that on P

C

is given a shift vector m

C

. Then one can

rewrite P

A

=I

A

as Q

A

=I

D;F

and P

B

=I

B

as Q

B

=I

D;F;C

and �nd shift vec-

tors m

A

;m

B

;m

D

;m

F

such that the resulting two sequences are exact

and V

d

-strict.

Proof. First use the �rst half of the proof of the previous lemma to write

P

A

=I

A

as Q

A

=I

D;F

and then with that presentation of P

A

=I

A

rewrite

P

B

=I

B

as Q

B

=I

D;F;C

. So in particular, Q

B

= Q

A

�P

C

= P

D

�P

F

�P

C

.

In order to �nd the proper shift vectors, proceed as follows:

1. Take a V

d

-strict Gr�obner basis fc

i

g for I

C

relative to the given

shift m

C

. For all i �nd a

i

= (d

i

; f

i

) such that (d

i

; f

i

; c

i

) 2 I

D;F;C

.

2. Pick a shift m

F

on F such that V

d

deg(f

i

[m

F

]) � V

d

deg(c

i

[m

C

])

for all i.
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3. Compute a V

d

-strict Gr�obner basis ff

i

0

g for I

F

, using the shift

m

F

. For all i

0

�nd d

0

i

0

with (d

0

i

0

; f

0

i

0

) 2 I

D;F

.

4. Pick a shift m

D

on P

D

such that V

d

deg(d

i

[m

D

]) � V

d

deg(c

i

[m

C

])

for all i and V

d

deg(d

0

i

0

[m

D

]) � V

d

deg(f

0

i

0

[m

F

]) for all i.

By arguments similar to those that prove Lemma 4.1, the sequences

are V

d

-strict. 2

Lemma 4.1 and 4.2 providing the basis for the construction, the

following result is the inductive step for Cartan-Eilenberg resolutions,

showing correctness of Algorithm 3.14.

Lemma 4.3. Let I

A

; I

B

; I

C

be three submodules of the free modules

F

A

[m

A

], F

B

[m

B

], F

C

[m

C

]. Assume that 0 ! I

A

[m

A

]

�

A

�! I

B

[m

B

]

�

B

�!

I

C

[m

C

]! 0 is exact and V

d

-strict.

Then one can construct a diagram

0 0 0

0

-

I

A

6

�

A

-

I

B

6

�

B

-

I

C

6

-

0

0

-

P

A

6

-

P

B

6

-

P

C

6

-

0

0

-

J

A

6

-

J

B

6

-

J

C

6

-

0

0

6

0

6

0

6

(4.1)

such that

� all P

X

are free,

� all rows and columns are exact,

� there are shift vectors n

A

; n

B

; n

C

such that if P

A

; P

B

; P

C

are shifted

accordingly, all rows and columns become V

d

-strict.

In fact, we may prescribe 0 ! J

A

! P

A

[n

A

] ! I

A

[m

A

] ! 0, provided

it is V

d

-strict.

Proof. Let fa

i

g and fc

j

g be V

d

-strict Gr�obner bases for I

A

and I

C

inside

F

A

[m

A

] and F

C

[m

C

] respectively.

Let P

A

be the free module on the symbols fe

a

i

g, de�ne the projection

from P

A

to I

A

by e

a

i

! a

i

. Let P

C

be a free module on the symbols

fe

c

j

g, de�ne the projection P

C

! I

C

by e

c

j

! c

j

. De�ne degree shifts

on P

A

; P

C

by n

A

(i) = V

d

deg(a

i

[m

A

]), n

C

(i) = V

d

deg(c

i

[m

C

]).

Set P

B

= P

A

� P

C

. For the generators of P

B

corresponding to

fc

i

g use a lift  : P

C

! B for �

B

(which exists as P

C

is free) that

satis�es: V

d

deg( (e

c

i

)[m

B

]) � V

d

deg(c

i

[m

C

]) (which exists because

0 ! I

A

[m

A

] ! I

B

[m

B

] ! I

C

[m

C

] ! 0 is V

d

-strict). Then de�ne
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P

B

!! I

B

by (P

B

!! P

A

!! I

A

,! I

B

) + (P

B

!! P

C

 

�! I

B

). Set

J

A

; J

B

; J

C

to be the kernels of the corresponding natural projections.

This gives the required diagram with exact rows and columns.

It is clear that 0! P

A

[n

A

]! P

B

[n

B

] and P

B

[n

B

]! P

C

[n

C

]! 0 are

V

d

-strict. If an element of V

d

-degree e is in the kernel of P

B

! P

C

, then

its second component (the one in P

C

) is zero, so the V

d

-degree came

from the P

A

-component. Hence the second row is V

d

-strict. Then

automatically the third row is too.

By [12], the remarks after Proposition 3.11, the outer columns are V

d

-

strict. By the lemma below, f�

A

(a

i

)g[ f (e

c

j

)g is a V

d

-strict Gr�obner

basis for I

B

[m

B

]. It follows that P

B

!! I

B

is V

d

-strict, and hence the

entire column. 2

Lemma 4.4. Let I

A

; I

B

; I

C

be three submodules of the free modules

F

A

[m

A

], F

B

[m

B

], F

C

[m

C

]. Assume that 0 ! I

A

[m

A

]

�

A

�! I

B

[m

B

]

�

B

�!

I

C

[m

C

]! 0 is exact and V

d

-strict.

Let fa

i

g and fc

j

g be V

d

-strict Gr�obner bases for I

A

and I

C

inside

F

A

[m

A

] and F

C

[m

C

] respectively.

Assume  (c

j

) 2 I

B

satis�es �

B

( (c

j

)) = c

j

and V

d

deg( (c

j

)[m

B

]) =

V

d

deg(c

j

[m

C

]) for all j. Then f (c

j

)g[f�

A

(a

i

)g is a V

d

-strict Gr�obner

basis for I

B

[m

B

].

Proof. Let b 2 I

B

[m

B

] be of V

d

-degree e. Then �

B

(b) =

P




j

c

j

with

V

d

deg(


j

c

j

[m

B

]) � V

d

deg(�

B

(b)[m

C

]) � V

d

deg(b[m

B

])

for all j as fc

j

g is a V

d

-strict Gr�obner basis. Therefore

b�

X




j

 (c

j

) 2 ker(�

B

) \ F

V

d

deg(b[m

B

])

H

(I

B

[m

B

]):

By exactness and V

d

-strictness of the sequence, b�

P




j

 (c

j

) =

P

�

i

a

i

with V

d

deg(�

i

a

i

[m

A

]) � V

d

deg(b[m

B

]). 2

This lemma shows in particular that we can assume rows(J

B

) =

rows(J

A

) + rows(J

C

) in the previous lemma if we want.

4.2. Here is an explanation what Algorithm 3.8 does. We assume we

have completed Step 1, which is explained in the algorithm itself.

Invoke Lemma 4.2 with P

C

=I

C

= B

r+1

= 0 to �nd a presentation

for Z

r

, H

r

, B

r

and C

r

together with shift vectors m

Z;r

;m

C;r

;m

H;r

and
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m

B;r

such that there are commutative diagrams

0 0 0

0

-

Z

r

6

-

C

r

6

-

B

r+1

= 0

6

-

0

0

-

P

0

Z;r

[m

Z;r;0

]

6

-

P

0

C;r

[m

C;r;0

]

6

-

P

0

B;r+1

[m

B;r+1;0

] = 0

6

-

0

0

-

I

0

Z;r

[m

Z;r;0

]

6

-

I

0

C;r

[m

C;r;0

]

6

-

I

0

B;r+1

[m

B;r+1;0

] = 0

6

-

0

0

6

0

6

0

6

and

0 0 0

0

-

B

r

6

-

Z

r

6

-

H

r

6

-

0

0

-

P

0

B;r

[m

B;r;0

]

6

-

P

0

Z;r

[m

Z;r;0

]

6

-

P

0

H;r

[m

H;r;0

]

6

-

0

0

-

I

0

B;r

[m

B;r;0

]

6

-

I

0

Z;r

[m

Z;r;0

]

6

-

I

0

H;r

[m

H;r;0

]

6

-

0

0

6

0

6

0

6

where the P

0

X

are free and the rows and columns are exact and V

d

-strict.

Then invoke the lemma again, this time starting with the shift just

obtained on B

r

and construct presentations for Z

r�1

; C

r�1

; H

r�1

; B

r�1

and shifts on P

0

Z;r�1

; P

0

C;r�1

; P

0

H;r�1

; P

0

B;r�1

. Repeating this process r

times leads to V

d

-strict commutative diagrams with exact rows and

columns

0 0 0

0

-

Z

i

6

-

C

i

6

-

B

i+1

6

-

0

0

-

P

0

Z;i

[m

Z;i;0

]

6

-

P

0

C;i

[m

C;i;0

]

6

-

P

0

B;i+1

[m

B;i+1;0

]

6

-

0

0

-

I

0

Z;i

[m

Z;i;0

]

6

-

I

0

C;i

[m

C;i;0

]

6

-

I

0

B;i+1

[m

B;i+1;0

]

6

-

0

0

6

0

6

0

6
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and

0 0 0

0

-

B

i

6

-

Z

i

6

-

H

i

6

-

0

0

-

P

0

B;i

[m

B;i;0

]

6

-

P

0

Z;i

[m

Z;i;0

]

6

-

P

0

H;i

[m

H;i;0

]

6

-

0

0

-

I

0

B;i

[m

B;i;0

]

6

-

I

0

Z;i

[m

Z;i;0

]

6

-

I

0

H;i

[m

H;i;0

]

6

-

0

0

6

0

6

0

6

for 0 � i � r. The point of this procedure is the creation of a presen-

tation of C

i

as P

0

C;i

=I

0

C;i

with V

d

-strict maps between these modules.

Now we assemble a V

d

-strict Cartan-Eilenberg resolution for C

�

.

First �nd a V

d

-strict resolution for B

0

using the method of [12]. With

Lemma 4.3 �nd step by step a resolution for Z

0

and H

0

over 0 !

B

0

! Z

0

! H

0

! 0. Then, using the resolution for Z

0

, construct

resolutions for C

0

and B

1

over 0! Z

0

! C

0

! B

1

! 0. Now use the

resolution obtained for B

1

to �nd V

d

-strict resolutions for Z

1

, H

1

over

0 ! B

1

! Z

1

! H

1

! 0. In this way construct resolutions for Z

i

,

H

i

, C

i

and B

i+1

for 0 � i � r which �t into appropriate V

d

-strict and

exact commutative diagrams.

We denote the l-th module of the resolution for X

i

(where X is

Z;C;B or H) by P

l

X;i

, and the l-th map P

l

X;i

! P

l�1

X;i

by �

l

X;i

. Then by

construction P

l

Z;i

= P

l

B;i

� P

l

H;i

and P

l

C;i

= P

l

Z;i

� P

l

B;i+1

. We de�ne a

map "

l

C;i

from P

l

C;i

to P

l

C;i+1

as the combined map P

l

C;i

!! P

l

B;i+1

,!

P

l

Z;i+1

,! P

l

C;i+1

, multiplied by (�1)

l

. So up to sign "

l

C;i

is P

l

C;i

=

P

l

B;i

� P

l

H;i

� P

l

B;i+1

!! P

l

B;i+1

,! P

l

B;i+1

� P

l

H;i+1

� P

l

B;i+2

. Clearly

P

l

C;i

! P

l

C;i+1

! P

l

C;i+2

is the zero map.

We have created a free double complex fP

�

C;�

; �

�

C;�

; "

�

C;�

g over D

n

such

that fP

�

C;i

; �

�

C;i

g is V

d

-strict for �xed i and fP

l

C;�

; "

l

C;�

g is V

d

-strict for

�xed l. Moreover, the associated total complex Tot

�

(P

�

C;�

) is quasi-

isomorphic to C

�

and by construction V

d

-adapted. We shall write �

T

(�)

for the di�erential of Tot

�

(P

�

C;�

).

Proposition 4.5. Tot

�

(P

�

C;�

) is in fact V

d

-strict.

Proof. To that end assume that the element p = p

0

i

�p

1

i+1

�� � ��p

r�i

r

2

Tot

i

(P

�

C;�

) = P

0

C;i

� P

1

C;i+1

� � � � � P

r�i

C;r

is in the image of the total

di�erential �

T

, and that the V

d

-degree of p under the shift vectors is e.

We have to show that p is the image of an element of V

d

-degree at most
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e. We need to take a closer look at the maps and modules in front of

us.

P

l

C;i

is by construction P

l

B;i

� P

l

H;i

� P

l

B;i+1

. The map �

l+1

C;i

: P

l+1

C;i

=

P

l+1

B;i

� P

l+1

H;i

� P

l+1

B;i+1

! P

l

C;i

= P

l

B;i

� P

l

H;i

� P

l

B;i+1

is on the �rst com-

ponent the di�erential from the resolution P

�

B;i

while the map from

P

l+1

H;i

� P

l+1

B;i+1

! P

l

C;i

is de�ned using certain lifts, obtained using

Lemma 4.3. Inspection shows that the matrix of boundary maps which

represents P

l+1

C;i

! P

l

C;i

looks like this:

0

@

�

l+1

B;i

�

l+1

1;i

 

l+1

1;i

0 �

l+1

H;i

 

l+1

2;i

0 0 �

l+1

B;i+1

1

A

where �

l+1

1;i

: P

l+1

H;i

! P

l

B;i

;  

l+1

1;i

: P

l+1

B;i+1

! P

l

B;i

;  

l+1

2;i

: P

l+1

B;i+1

! P

l

H;i

are

the maps that are used to produce the mentioned lifts. �

l+1

1;i

,  

l+1

1;i

, 

l+1

2;i

are all V

d

-adapted by construction. (Nota bene: if we wrote down the

matrices of operators that represent this map by right multiplication,

we would obtain a lower triangular block matrix.)

We shall argue by decreasing induction on the variable s, starting

with s = r + 1, that the components p

s�i

s

of p may be assumed to

be zero modulo images of V

d

-degree no greater than e under the total

di�erential. We will at the same time show that we may assume that

the third component of p

s�i�1

s�1

is zero. For s � r this will follow from

the induction. For s = r + 1 it follows from the fact that B

r+1

= 0.

So assume that s � r, that p has only zero components beyond

the s-th component and that the third piece (to P

s�i

B;s+1

) of the s-th

component of p is zero.

The following lemma will essentially show that our p is then in fact

the image of an element in Tot

i�1

(P

�

C;�

) with zero component in P

s�i+1

B;s+1

and only zeros in all columns beyond the s-th.

Lemma 4.6. Let (a; b; 0) 2 P

s�i

C;s

and assume (a; b; 0) = �

s�i+1

C;s

(�; �; 
)

with (�; �; 
) 2 P

s�i+1

C;s

. Then (a; b; 0) = �

s�i+1

C;s

(�

0

; �

0

; 0) for some

(�

0

; �

0

; 0) in P

s�i+1

C;s

where V

d

deg(�

0

; �

0

; 0) � V

d

deg(a; b; 0).

Proof. By construction, ( 

s�i+1

1;s

(
);  

s�i+1

2;s

(
)) is in ker(P

s�i

B;s

�P

s�i

H;s

!

P

s�i�1

B;s

� P

s�i�1

H;s

). Since this kernel is exactly �

s�i+1

Z;s

(P

s�i+1

B;s

� P

s�i+1

H;s

),

it follows that

( 

s�i+1

1;s

(
);  

s�i+1

2;s

(
)) = �

s�i+1

Z;s

(�

00

; �

00

)
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where we can pick �

00

and �

00

to be of V

d

-degree at most V

d

deg(
).

Thus

�

s�i+1

C;s

(�; �; 
) = (�

s�i+1

B;s

(�) +  

s�i+1

1;s

(
) + �

s�i+1

1;s

(�);

�

s�i+1

H;s

(�) +  

s�i+1

2;s

(
); 0)

= �

s�i+1

C;s

(� + �

00

; � + �

00

; 0)

Since P

�

Z;�

is a V

d

-strict resolution, we can �nd (�

0

; �

0

; 0) such that

�

s�i+1

C;s

(�

0

; �

0

; 0) = �

s�i+1

C;s

(�+�

00

; �+�

00

; 
) and V

d

deg(�

0

; �

0

; 0) � V

d

deg(a; b; 0).

2

Since by assumption p

s�i

s

= (a; b; 0), the lemma tells us that b equals

�

H

(b

1

) for some b

1

2 P

s�i+1

H;s

, of V

d

-degree at most e because P

�

H;s

is

V

d

-strict. We replace p by p := p� �

T

(b

1

). This erases a nonzero entry

in p, keeps it in the image of �

T

, leaves components beyond the s-th

invariant and is a modi�cation by the image of an element of V

d

-degree

at most V

d

deg(p).

Lemma 4.7. Let (a; 0; 0) 2 P

s�i

C;s

be the image of (�; �; 
) 2 P

s�i+1

C;s

under �

s�i+1

C;s

. Then there is �

0

2 P

s�i+1

B;s

with �

s�i+1

C;s

(�

0

; 0; 0) = (a; 0; 0)

and �

0

can be chosen to be of V

d

-degree no bigger than V

d

deg(a).

Proof. By the previous lemma, we can assume that (a; 0; 0) is the im-

age of (�; �; 0) 2 P

s�i+1

C;s

. By construction, �

s�i+1

1;s

(�) 2 ker(P

s�i

B;s

!

P

s�i�1

B;s

) = im(P

s�i+1

B;s

! P

s�i

B;s

). As P

�

B;s

is a resolution , �

s�i+1

1;s

(�) =

�

s�i+1

B;s

(�

00

) for some �

00

2 P

s�i+1

B;s

. Hence

�

s�i+1

C;s

(�; �; 0) = (�

s�i+1

B;s

(�) + �

s�i+1

1;s

(�); 0; 0)

= �

s�i+1

C;s

(�; 0; 0) + �

s�i+1

C;s

(�

00

; 0; 0):

This proves that (a; 0; 0) is in fact the image of an element (�

0

; 0; 0).

Since P

�

B;s

is a V

d

-strict resolution, we can choose �

0

to be of V

d

-degree

at most V

d

deg(a). 2

Before Lemma 4.7 we reduced the component of p that corresponds

to P

s�i

C;s

to the form (a; 0; 0). Lemma 4.7 tells us that since p is an

image under �

T

, a = �

s�i+1

B;s

(�

0

) + (�1)

s�1

� where �

0

belongs to P

s�i+1

B;s

(the �rst component of P

s�i+1

C;s

) and � 2 P

s�i

B;s

(the third component of

P

s�i

C;s�1

).

Then the third component of p in P

s�i�1

C;s�1

must be exactly �

s�i

B;s

(�) =

(�1)

s�1

�

s�i

B;s

(a). Replace p by p� �

T

((�1)

s�1

(0; 0; a)), where (0; 0; a) 2

P

s�i�1

C;s�1

.
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The result is a p with zero component for P

s�i

C;s

and zero component

in the third component of P

s�i�1

C;s�1

. Furthermore, it di�ers from the

original p by the �

T

-boundary of the element (0; 0; a) 2 P

s�i�1

C;s�1

of V

d

-

degree at most e. This completes the induction step and the proof of

Proposition 4.5. 2

We have proved

Theorem 4.8. If C

�

is a bounded complex of left D

n

-modules and pre-

sentations of all C

i

in terms of generators and relations over D

n

are

given, then one can produce a V

d

-strict complex of free D

n

-modules that

is quasi-isomorphic to C

�

. 2

Remark 4.9. It is not true that the total complex associated to any

double complex with V

d

-strict rows and columns is V

d

-strict. This

would be equivalent to saying that all �nite subsets of a free D

n

-module

form a Gr�obner basis for any order re�ning V

d

-degree. Consider for

example the diagram

degree 0

z }| {

D

1

[1]

� @

1

-

degree 1

z }| {

D

1

[0] g degree 1

0

6

-

D

1

[1]

�(@

1

� 1)

6

g degree 0

:

Here, 1 = 1 � @

1

� 1 � (@

1

� 1) 2 im(F

1

H

(Tot

1

[1; 1])) but it is not in

im(F

0

H

(Tot

1

[1; 1])) � F

0

H

((Tot

2

[0]))), although it is of V

1

-degree 0.

5. The Restriction of a Complex to a Subspace

For this section let A

�

[m

�

] be a given bounded V

d

-strict complex of

�nitely generated D

n

-free modules. We shall assume further that the

cohomology modules of A

�

[m

�

] are specializable toH = Var(x

1

; : : : ; x

d

)

(cf. De�nition 3.2).

De�nition 5.1. The restriction of the complex A

�

[m

�

] to the subspace

H is the complex

~




d




L

D

n

A

�

[m

�

] considered as a complex in the category

of C hx

d+1

; @

d+1

; : : : ; x

n

; @

n

i-modules.

The main purpose of this section is to determine a �nite dimensional

truncation of

~





D

n

A

�

such that the cohomology of

~





D

n

A

�

is cap-

tured by the cohomology of that truncation.

Computation of the truncation accomplishes then to the computa-

tion of (a complex that is homotopy equivalent to) 



L

D

n

A

�

. We shall

exhibit a method to compute more generally 


d




L

D

n

A

�

represented by

a bounded complex of free C hx

d+1

; @

d+1

; : : : ; x

n

; @

n

i-modules of �nite

rank.
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Recall that in [11] A

�

is a V

n

-strict resolution of a specializable mod-

ule M and the truncation is determined by considering roots of the

b-function b(M) corresponding to restriction to the origin ([11], Algo-

rithm 5.4). Our approach generalizes this method.

5.1. Let H as before be the subspace de�ned by x

1

= : : : = x

d

= 0.

De�nition 5.2. Let � 2 Z

i

= ker(A

i

! A

i+1

). Recall that �

j

=

x

1

@

1

+ : : : + x

j

@

j

for 1 � j � n and �

0

= 0. We call 0 6= b

�

(s) 2 K[s]

the b-function for restriction of �[m

i

] to the subspace x

1

= : : : = x

d

= 0

provided that

b

�

(� + k + V

d

deg(�)) � F

k

(D

n

) � � � F

k�1

H

(D

n

) � �+ im(A

i�1

! A

i

)

for all k, and b

�

(s) is of minimal degree. The least common multiple

b

A

�

[m

�

]

(s) of all b

�

(s) (� varies over Z

i

, i over all integers) is called the

b-function for restriction of A

�

[m

�

] to x

1

= : : : = x

d

= 0.

We need to insure that this is a meaningful de�nition (i.e., that

b

A

�

[m

�

]

(s) is nonzero), and that we can compute b

A

�

[m

�

]

(s). Pick gener-

ators �

i;l

for the modules Z

i

. To each of the generators is associated a

degree in the V

d

-�ltration on A

i

[m

i

] which we shall call �

i;l

.

Let a bar denote cosets of elements of Z

i

in H

i

= H

i

(A

�

) = Z

i

=B

i

where B

i

= im(A

i�1

! A

i

). Since D

n

� ��

i;l

is an H-specializable D

n

-

module (see Remark 3.3), there is a b-function b

i;l

(�

d

) associated to it

which corresponds to the restriction ofD

n

���

i;l

[m

i

] to x

1

= : : : = x

d

= 0.

Therefore,

b

i;l

(�

d

) � �

i;l

2 F

�1

H

(D

n

) � �

i;l

+ im(A

i�1

! A

i

):

Let b(�

d

) be the least common multiple of all b

i;l

(�

d

� �

i;l

).

Assume that for each i the �

i;l

form a V

d

-strict Gr�obner basis for

Z

i

[m

i

] and consider the associated complex of graded gr

�

H

(D

n

)-modules

�F

k

H

(A

�

[m

�

])=F

k�1

H

(A

�

[m

�

]), the sum being taken over k.

For all � 2 Z

i

we can write � =

P

�

i;l

(�)�

i;l

with V

d

deg(�

i;l

(�)�

i;l

[m

i

]) �

V

d

deg(�[m

i

]). Hence the �

i;l

are generators for gr

�

H

(H

i

[m

i

]) and more-

over gr

k

H

(Z

i

[m

i

]) =

P

gr

k��

i;l

H

(D

n

)�

i;l

. Since

im(F

k

H

(A

i�1

[m

i�1

])! F

k

H

(A

i

[m

i

])) = F

k

H

(A

i

[m

i

]) \ im(A

i�1

! A

i

)

we have gr

k

H

(H

i

(A

�

[m

i

])) =

P

l

gr

k��

i;l

(D

n

)��

i;l

.

Then observe the following:

b(�

d

+ k) � gr

k

H

(H

i

(A

�

[m

�

])) = b(�

d

+ k) �

X

gr

k��

i;l

H

(D

n

) � ��

i;l

=

X

gr

k��

i;l

H

(D

n

) � b(�

d

+ �

i;l

) � ��

i;l

(5.1)

= 0
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because b(�

d

+�

i;l

) sends �

i;l

into F

�1

H

(D

n

) ��

i;l

+im(A

i�1

! A

i

), which

is zero in gr

�

i;l

H

[m

i

](H

i

(A

�

)).

b(�

d

) is thus a multiple of the b-function for restriction of A

�

[m

�

] to

H with respect to the given shift vectors and by construction cannot

be a proper multiple.

Hence we have found an algorithm to compute b

A

�

[m

�

]

(s) and shown

that it is nonzero.

Example 5.3. We now proceed to calculate the b-function for re-

striction of the complex (3.5) under the given shift. For this, set

H = Var(x; y; z), the origin. We have to �nd the b-functions for all

generators of the cohomology objects, and then take the least common

multiple.

The cohomology of (3.5) comes exclusively from the top row of the

double complex, and its generators are (by construction) the right sum-

mands in the right column and the left summands of the left column.

Thus there is exactly one �

1;l

, namely �

1;1

= 1 2 D

3

[0]. Since the

entries of (the V

3

-strict map) �

1

H;1

are @

y

; @

z

and x@

x

, gr

H

(H

1

[0]) =

D

3

=D

3

� (@

y

; @

z

; x@

x

). Clearly x@

x

+ y@

y

+ z@

z

= 0 in gr

H

(H

1

) and thus

b

1;1

(�) = �.

For H

0

there are 6 generators. We observe that

gr

H

(H

0

[2; 0; 0; 1; 1; 1]) = D

3

6

[2; 0; 0; 1; 1; 1]= im(�

1

Z;0

)

�

=

D

3

[2]=D

3

� (y; z; x@

x

):

Hence (@

y

y+ @

z

z + x@

x

) � gr

0

H

(H

0

[2; 0; 0; 1; 1; 1]) = 0 and thus b

0;1

(�) =

� + 2 while b

0;l

(�) = 1 for 2 � l � 6.

We conclude that the least common multiple of all b

i;l

(��V

3

deg(�

i;l

))

is b(�) = �.

5.2. We have paved the way for a result generalizing Proposition 5.2

in [11]. The proof is very similar to the one given there.

We need to introduce a number of Koszul complexes. Let L be a

gr

�

H

(D

n

)-module and let L

k

, k 2 Z, be subgroups of L such that

x

i

L

k

� L

k�1

and @

i

L

k

� L

k+1

for 1 � i � d, L

k

\L

k

0

= 0 for all k 6= k

0

, and L =

S

k

L

k

. In that case

we will say that the L

k

give an H-grading for L. For any integer k let

K

�

(L

�

; x

1

; : : : ; x

d

)[k] be the Koszul complex

0! L

k+d




Z

0

^

Z

d

! L

k+d�1




Z

1

^

Z

d

! � � � ! L

k




Z

d

^

Z

d

! 0

equipped with the usual Koszul maps �(u
 e

i

1

^ � � � ^ e

i

j

) =

P

l

x

l

u


e

l

^ e

i

1

^ � � � ^ e

i

j

.
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Unifying all the graded pieces, let K

�

(L

�

; x

1

; : : : ; x

d

) be the usual

Koszul complex of L relative to x

1

; : : : ; x

d

.

More generally, for a complex of H-graded gr

�

H

(D

n

)-modules (L

�

; �

�

)

with a di�erential �

�

that respects the H-grading we de�ne inductively

K

�

(L

�

�

; x

1

; : : : ; x

d

)[k] as the total complex of the double complex

K

�

(L

�

�

; x

1

; : : : ; x

d�1

)[k]

K

�

(L

�

�

; x

1

; : : : ; x

d�1

)[k + 1]

(�1)

i

x

d

�

6

where K

�

(L

�

�

; ;)[k] = L

�

�

[k] = (� � � ! L

i

k

! L

i+1

k

! � � � ) is the k-th

piece of theH-grading of the original complex. Thus K

�

(L

�

�

; x

1

; : : : ; x

d

)[k]

is the component of the usual Koszul complex K

�

(L

�

; x

1

; : : : ; x

d

) asso-

ciated to L

�

and x

1

; : : : ; x

d

that \ends" in the k-th piece of the grading.

In the following theorem, which is also interesting in its own light, we

will explain which H-graded pieces of the complex K

�

(L

�

; x

1

; : : : ; x

d

)

are responsible for nontrivial cohomology.

Theorem 5.4. Let (L

�

; �

�

) be a complex of H-graded gr

�

H

(D

n

)-modules

where the maps �

i

: L

i

! L

i+1

preserve the grading. Assume that there

is a polynomial b(�) in C [�] that satis�es

b(�

d

+ k) � ker(L

i

k

! L

i+1

k

) � im(L

i�1

k

! L

i

k

)

for all k and all i. Let k

0

be an integer for which b(k

0

) 6= 0. Then

K

�

(L

�

�

; x

1

; : : : ; x

d

)[k

0

] is exact.

Proof. Let H

0

= Var(x

1

; : : : ; x

d�1

). The complex K

�

(L

�

�

; x

d

) inherits

an H

0

-grading via the given H-grading. Here is the essential idea of

the argument:

Lemma 5.5. If b(�

d

+ k) kills the cohomology of K

�

(L

�

�

; ;)[k] then

b

2

(�

d�1

+ k) kills the cohomology of K

�

(L

�

�

; x

d

)[k].

Proof. We may assume that b(�

d

) is not a constant since otherwise L

�

is exact and then a spectral sequence argument shows that K

�

(L

�

; x

d

)

is exact as well.

So assume that (u

i+1

k+1

; u

i

k

) 2 L

i+1

k+1

�L

i

k

is in K

i

(L

�

�

; x

d

)[k] and suppose

this element is in the kernel of the di�erential in K

�

(L

�

; x

d

). For the

convenience of the reader we illustrate the situation with the following

diagram.

L

i�1

k

�

i�1

-

L

i

k

�

i

-

L

i+1

k

�

i+1

-

L

i+2

k

L

i�1

k+1

�

i�1

-

L

i

k+1

(�1)

i

x

d

�

6

�

i

-

L

i+1

k+1

(�1)

i+1

x

d

�

6

�

i+1

-

L

i+2

k+1
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Then we must have

�

i+1

(u

i+1

k+1

) = 0;(5.2)

(�1)

i+1

x

d

u

i+1

k+1

+ �

i

(u

i

k

) = 0:(5.3)

By hypothesis on b, b(�

d

+ k + 1)u

i+1

k+1

= �

i

(u

i

k+1

) for some u

i

k+1

2

L

i

k+1

. So b(�

d�1

+ k + @

d

x

d

)u

i+1

k+1

= �

i

(u

i

k+1

) and therefore b(�

d�1

+

k)u

i+1

k+1

+@

d

Px

d

u

i+1

k+1

= �

i

(u

i

k+1

) for some V

d

-homogeneous P 2 F

0

H

(D

n

)n

F

�1

H

(D

n

). Hence b(�

d�1

+k)u

i+1

k+1

= �

i

(u

i

k+1

+(�1)

i

@

d

Pu

i

k

) using relation

(5.3). Let us write this as

b(�

d�1

+ k) � u

i+1

k+1

= �

i

(a

i

k+1

);(5.4)

a

i

k+1

2 (L

i

k+1

� 0) � K

i�1

(L

�

�

; x

d

)[k + 1].

This implies that if (u

i+1

k+1

; u

i

k

) is in the kernel of �

i

T

, the di�erential

on the total complex K

�

(L

�

; x

d

), then b(�

d�1

+ k)(u

i+1

k+1

; u

i

k

) is, modulo

the image of �

i�1

T

, congruent to an element (0; v

i

k

). Namely, (0; v

i

k

) =

b(�

d�1

+k) � (u

i+1

k+1

; u

i

k

)� �

i

T

(a

i

k+1

; 0) which of course is also in the kernel

of �

i

T

. So it su�ces to show that any such kernel element (0; v

i

k

) satis�es

b(�

d�1

+ k)(0; v

i

k

) 2 im �

i�1

T

.

Since �

i

T

(0; v

i

k

) = 0, we must have �

i

(v

i

k

) = 0. Hence b(�

d

+ k)v

i

k

=

�

i�1

(a

i�1

k

) for some a

i�1

k

2 L

i�1

k

by assumption on b(�). Now b(�

d

+

k)v

i

k

= b(�

d�1

+ k)v

i

k

+ x

d

Q@

d

v

i

k

for some V

d

-homogeneous operator

Q 2 F

0

H

(D

n

)nF

�1

H

(D

n

). Therefore b(�

d�1

+k)v

i

k

= �

i�1

(a

i�1

k

)�x

d

Q@

d

v

i

k

.

The element Q@

d

v

i

k

2 L

i

k+1

satis�es �

i

(Q@

d

v

i

k

) = Q@

d

�

i

(v

i

k

) = 0. It

follows that b(�

d�1

+k)(0; v

i

k

) = �

i�1

T

((�1)

i

Q@

d

v

i

k

; a

i�1

k

). This concludes

the proof of the lemma. 2

Now recall the inductive de�nition of K

�

(L

�

; x

1

; : : : ; x

d

), which to-

gether with the lemma shows that if the cohomology of K

�

(L

�

�

; ;)[k

0

]

is killed by b(�

d

+ k

0

) then the cohomology of K

�

(L

�

�

; x

1

; : : : ; x

d

)[k

0

] is

killed by b

(2

d

)

(k

0

).

Since b(k

0

) 6= 0 and K � C is a domain the theorem follows. 2

We come now to the �nal result of this section. The purpose is

to exhibit an algorithm that computes the cohomology groups of the

restriction of a complex.

We need to make a convention about the V

d

-�ltration on tensor prod-

ucts over D

n

with

~




d

= D

n

=(x

1

; : : : ; x

d

) �D

n

.

De�nition 5.6. If A[m] is a free H-graded D

n

-module with shift vec-

tor m then

~




d




D

n

A[m] is �ltered by F

k

H

(

~




d




D

n

A[m]) := the K-span

of f

�

P 


D

n

QjV

d

deg(P ) + V

d

deg(Q[m]) � kg. Note that as

~




d

equals

C [@

1

; : : : ; @

d

]hx

d+1

; @

d+1

; : : : ; x

n

; @

n

i as right D

n

-module, F

k

H

(

~




d




D

n
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A[m]) equals the free C hx

d+1

; @

d+1

; : : : ; x

n

; @

n

i-module on the symbols

f(P

1

; : : : ; P

rk

D

n

(A)

)jP

j

2 C [@

1

; : : : ; @

d

]; deg

@

(P

j

) � k �m(j) 8jg.

If A

�

[m

�

] is a V

d

-strict complex, we denote by F

k

(

~




d


 A

�

[m

�

]) the

complex whose modules are the F

k

(

~




d


A

i

[m

i

]) as de�ned above, and

the maps are induced from A

�

.

Before we state our theorem we point out that if A

�

[m

�

] is a V

d

-strict

complex ofD

n

-modules then the associated graded complex gr

�

H

(A

�

[m

�

])

is an H-graded complex.

Theorem 5.7. Let (A

�

[m

�

]; �

�

) be a V

d

-strict complex of freeD

n

-modules.

The restriction of A

�

[m

�

] to H = Var(x

1

; : : : ; x

d

), interpreted as a

complex of modules over C hx

d+1

; @

d+1

; : : : ; x

n

; @

n

i, can be computed as

follows:

1. Compute the b-function b

A

�

[m

�

]

(s) for restriction of A

�

[m

�

] to H.

2. Find integers k

0

; k

1

with (b

A

�

[m

�

]

(k) = 0; k 2 Z)) (k

0

� k � k

1

).

3.

~




d




L

D

n

A

�

is quasi-isomorphic to the complex

� � � !

F

k

1

H

(

~




d




D

n

A

i

[m

i

])

F

k

0

�1

H

(

~




d




D

n

A

i

[m

i

])

!

F

k

1

H

(

~




d




D

n

A

i+1

[m

i+1

])

F

k

0

�1

H

(

~




d




D

n

A

i+1

[m

i+1

])

! � � �(5.5)

This is a complex of free �nitely generated C hx

d+1

; @

d+1

; : : : ; x

n

; @

n

i-

modules.

Proof. Set b(s) := b

A

�

[m

�

]

(s). Let us consider �rst the complex gr

�

H

(A

�

[m

�

])

with di�erential induced from �

�

. The hypotheses on b(s) imply by the-

orem 5.4 that K

�

(gr

�

H

(A

�

[m

�

]); x

1

; : : : ; x

d

)[k] is exact for k 62 [k

0

; k

1

]\Z.

Let us de�ne inductively (on d) K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fkg to be the

complex

� � � ! F

k

(A

i

[m

i

])! F

k

(A

i+1

[m

i+1

])! � � �

if d = 0 and to be the total complex of the double complex

K

�

(A

�

[m

�

]; x

1

; : : : ; x

d�1

)fkg

K

�

(A

�

[m

�

]; x

1

; : : : ; x

d�1

)fk + 1g

(�1)

i

x

d

�

6

for d > 0. We also write K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fk=k

0

g for the complex

whose j-th entry is the j-th entry of K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fkg modulo

the j-th entry of the complex K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fk

0

g and whose

maps are induced from K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fkg.

Lemma 5.8. K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fkg is exact for k < k

0

.

Proof. We observe �rst that for k � 0 this is a consequence of the

fact that operators of negative V

d

-degree in D

n

[0] are necessarily right
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multiples of x

j

for 1 � j � d and hence in small V

d

-degrees left mul-

tiplication by such x

j

is a quasi-isomorphism between F

k+1

(A

�

[m

�

])

and F

k

(A

�

[m

�

]), forcing the corresponding Koszul complex to be ex-

act. Let �� 2 H

i

(K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fkg) with V

d

deg(�) � k. Then

� represents a cohomology class in K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fk=k � 1g =

K

�

(gr

�

H

(A

�

[m

�

]); x

1

; : : : ; x

d

)[k]. Since that latter complex is acyclic by

Theorem 5.4, � = �

0

+ �

i�1

T

(�

1

) where V

d

deg(�

0

) � k � 1. As A

�

[m

�

]

is V

d

-strict, �

1

can be chosen to be of V

d

-degree at most k which proves

that �� = ��

0

in K

�

(A

�

; x

1

; : : : ; x

d

)fkg. Since A

�

[m

�

] is V

d

-adapted, �

0

represents also a cohomology class in K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fk � 1g.

By induction on k we can assume that this cohomology class is zero,

proving that �

0

is in fact an image of an element of V

d

-degree at most

k � 1. This proves the lemma. 2

Lemma 5.9. If K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)f1g stands for the Koszul com-

plex K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

), then K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)f1=kg is exact

for k � k

1

.

Proof. It is su�cient to prove this for k = k

1

. We show �rst that

K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fk=k

1

g is exact for k � k

1

.

The complex K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fk=k

1

g is �ltered by the com-

plexes K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fk

0

=k

1

g with k

1

� k

0

� k. Since each

quotient K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fk

0

=k

0

� 1g is exact by Theorem 5.4, so

must be the complex K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fk=k

1

g.

If now �� is a cohomology class of K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)f1=k

1

g

and represented by the element � of V

d

-degree k, then � also repre-

sents a class in K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fk=k

1

g. Since the latter complex

is exact, �� is the class of an image and hence is the zero class in

K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)f1=k

1

g. 2

Now we turn to the proof of the theorem. Consider the exact se-

quence of complexes

K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)f1=k

1

g

K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)f1g

6

K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fk

1

g:

6
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Lemma 5.9 shows that the middle and the bottom complex are quasi-

isomorphic under the inclusion. Similarly,

K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fk

1

=k

0

� 1g

K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fk

1

g

6

K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fk

0

� 1g

6

is exact and Lemma 5.8 shows that the top two complexes are quasi-

isomorphic under the projection. Therefore, bothK

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)

and K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fk

1

=k

0

�1g represent the same object in the

derived category.

We �nish the proof of Theorem 5.7 with the following

Lemma 5.10. The cohomology of the complex (5.5) is precisely the

cohomology of the complex K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fk

1

=k

0

� 1g.

Proof. We show thatK

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fk

1

=k

0

�1g is quasi-isomorphic

to

F

k

1

H

(

~



A

�

[m

�

])

F

k

0

�1

H

(

~



A

�

[m

�

])

. To this end consider the sequence of complexes

0! F

k+1

(A

�

[m

�

])

x

1

�

�! F

k

(A

�

[m

�

])!

F

k

(A

�

[m

�

])

x

1

� F

k+1

(A

�

[m

�

])

! 0:

By de�nition, the complex on the right is F

k

(

~




1


A

�

[m

�

]). The map-

ping cone L

�

of the inclusion on the left is by Exercise II.5.3 of [9] quasi-

isomorphic to the quotient on the right. However, inspecting the map-

ping cone de�nition we �nd that L

�

= K

�

(A

�

[m

�

]; x

1

)fkg. This proves

that K

�

(A

�

[m

�

]; x

1

)fkg and F

k

(

~




1


 A

�

[m

�

]) are quasi-isomorphic.

By the inductive de�nition of K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fkg and the fact

that

~




d




D

n

(�) can be interpreted as killing x

j

with 1 � j � d one

at a time, K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fkg and F

k

(

~




d


 A

�

[m

�

]) are quasi-

isomorphic.

It is not hard to see that inclusions K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fkg ,!

K

�

(A

�

[m

�

]; x

1

; : : : ; x

d

)fk

0

g for k < k

0

are carried into inclusions F

k

(

~




d




A

�

[m

�

]) ,! F

k

0

(

~




d


 A

�

[m

�

]) under this family of quasi-isomorphisms.

The Lemma follows. 2

2

Remark 5.11. The complex (5.5) is a complex in the category of

�nitely generated left modules over the Weyl algebra in the n � d

variables x

d+1

; : : : ; x

n

, and the i-th module of that complex is the free

C hx

d+1

; @

d+1

; : : : ; x

n

; @

n

i-module on the symbols f(P

1

; : : : ; P

rk

D

n

(A

i

)

)jP

j

2
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C [@

1

; : : : ; @

d

]; k

0

�m

i

(j) � deg

@

(P

j

) � k

1

�m

i

(j)g. Thus, the cohomol-

ogy objects of (5.5) are �nitely generated modules over C hx

d+1

; @

d+1

; : : : ; x

n

; @

n

i

and computable by standard Gr�obner basis procedures. In particular,

if d = n then the resulting complex is a complex of �nite-dimensional

C -vector spaces.

6. Computation of de Rham Cohomology

Recall that X = C

n

; Y = Var(f

0

; : : : ; f

r

); U = X nY . In this section

we apply the results of the previous sections to obtain an algorithm

that computes H

�

dR

(U; C ). We proved in Section 2 that

H

i

dR

(U; C ) = H

i�n

(



L

D

n

MV

�

) = H

i�n

(K

�

(MV

�

; @

1

; : : : ; @

n

)):

In order to cope with the problem that we would like to compute the

cohomology of K

�

(MV

�

; @

1

; : : : ; @

n

) and not K

�

(MV

�

; x

1

: : : ; x

n

), we

shall make use of the Fourier transform.

The n-th Fourier transform F = F

n

sends 
 to

~


 = D

n

=(x

1

; : : : ; x

n

)�

D

n

. Thus, H

i

(K

�

(MV

�

; @

1

; : : : ; @

n

)) is isomorphic as a vector space

to H

i

(K

�

(

~

MV

�

; x

1

; : : : ; x

n

)), where

~

MV

�

is the image of the complex

MV

�

under the n-th Fourier transform.

Then

~

MV

�

may be replaced by a free V

n

-strict complex A

�

[m

�

] as

constructed in Section 3 and the cohomology of

~

MV

�

is holonomic and

therefore specializable to the origin [8].

Let b(s) 2 K[s] be the polynomial found in Subsection 5.1 for d = n,

the b-function for the complex A

�

[m

�

] for restriction to the origin. Then

b(�

d

+k) gr

k

H

(H

i

(A

�

[m

�

])) = b(�

d

+k)�H

i

(gr

k

H

(A

�

[m

�

])) is zero according

to (5.1). Therefore by Theorem 5.4, b(k) kills the degree k pieces

of the cohomology of K

�

(gr

�

H

(A

�

[m

�

]); x

1

; : : : ; x

n

). In other words, if

k

0

; k

1

are integers with fb(s) = 0; s 2 Zg ) fs 2 [k

0

; k

1

] \ Zg, then

K

�

(gr

�

H

(A

�

[m

�

]); x

1

; : : : ; x

n

)[k] is exact if k 62 [k

0

; k

1

] \ Z.

Theorem 6.1. Let X = C

n

; Y = Var(f

0

; : : : ; f

r

); U = X n Y . Then

H

i

dR

(U; C ) = H

i�n

(



L

D

n

MV

�

). Moreover, the cohomology of 



L

D

n

MV

�

can be computed as follows:

1. Compute MV

�

= 0 !

�

C

1

! : : : !

�

C

r+1

! 0 as in [14], Algo-

rithm 5.1 as complex of �nitely generated D

n

-modules and place

�

C

1

in homological degree 0.

2. Compute a V

n

-strict D

n

-free complex

� � � ! A

r�1

[m

r�1

]! A

r

[m

r

]! 0

quasi-isomorphic to

~

MV

�

, where

~

MV

�

denotes the image of MV

�

under the n-th Fourier automorphism F

n

.
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3. Compute the b-function b(s) = b

A

�

[m

�

]

(s) for the restriction of

A

�

[m

�

] to the origin.

4. Find integers k

0

; k

1

with (b(k) = 0; k 2 Z)) (k

0

� k � k

1

).

5. 



L

D

n

MV

�

is quasi-isomorphic to the complex

� � � !

F

k

1

H

(

~





D

n

A

i

[m

i

])

F

k

0

�1

H

(

~





D

n

A

i

[m

i

])

!

F

k

1

H

(

~





D

n

A

i+1

[m

i+1

])

F

k

0

�1

H

(

~





D

n

A

i+1

[m

i+1

])

! � � �(6.1)

which is a complex of �nite dimensional C -vector spaces.

Proof. We already remarked that H

i

(K

�

(MV

�

; @

1

; : : : ; @

n

)) is isomor-

phic to H

i

(K

�

(

~

MV

�

; x

1

; : : : ; x

n

)), and so we only need to show that

the latter can be computed from (6.1).

By Theorem 5.7 the complex (6.1) is quasi-isomorphic to

~


 


D

n

A

�

[m

�

]. Since

~


 


D

n

A

�

[m

�

] is quasi-isomorphic to

~


 


D

n

MV

�

, the

conclusion follows. 2

Remark 6.2.

6.2.1. The quotient

F

k

1

H

(

~





D

n

A

i

[m

i

])

F

k

0

�1

H

(

~





D

n

A

i

[m

i

])

should be thought of as vectors

of polynomials in @

1

; : : : ; @

n

of degrees bounded between k

0

�m

i

(j) and

k

1

� m

i

(j).

6.2.2. Since Gr�obner bases do not change under �eld extensions,

we may interpret (6.1) as a complex of K-vector spaces and evaluate

the dimension of its (i� n)-th cohomology group which will equal the

complex dimension of H

i

dR

(U; C ).

6.2.3. Since K

r�i

(gr

�

H

(A

�

[m

�

]); x

1

; : : : ; x

n

) involves only terms from

A

r

; : : : ; A

r�i

, the following statement can be made: ifMV

�

is exact in

degree r�i and beyond, then 



L

D

n

MV

�

is exact in degree j � n+r�i.

That follows by considering b(s)

�

=

1, which kills the last i cohomology

terms in MV

�

; inspecting the proof of Theorem 5.4 one sees that then

1 also kills the last i cohomology terms in K

�

(A

�

[m

�

]; x

1

; : : : ; x

n

). As

a byproduct we obtain the well-known estimate

H

i

dR

(U; C ) = 0 if i � n + cd(f

0

; : : : ; f

r

):

Example 6.3. In this example we compute the de Rham cohomology

of U = X n Y where X = C

3

and Y = Var(xy; xz). In this case we get

a Mayer-Vietoris complex of the form

MV

�

=

�

R

3

[(xy)

�1

]� R

3

[(xz)

�1

]! R

3

[(xyz)

�1

]

�

;

cd(xy; xz) = 2 and hence de Rham cohomology may be nonzero up

to degree 2 + 3 � 1 = 4. The image of this complex under F

3

is the

complex given in Example 3.7. In Example 3.19 we computed a V

3

-

strict D

3

-free complex quasi-isomorphic to

~

MV

�

. Now we compute the

cohomology of

~



 A

�

[m

�

].
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In Example 5.3 we computed that the b-function for restriction of

~

MV

�

to the origin in C

3

is b(s) = s. Since b(s) has the unique root

s = 0, Theorem 6.1 proves that the de Rham cohomology of U is

captured by the complex

F

0

H

(

~





D

3

A

�

[m

�

])

F

�1

H

(

~





D

3

A

�

[m

�

])

which is given below.

C � 1� C � 1

�

�

0

0

�

-

C � 1

C � 1� C � 1

�

�

1 0

0 1

�

6

�

�

0

0

�

-

C � 1

�(0)

6

C � 1

�(0; 0)

6

-

0

6

C � 1

�(0)

6

-

0

6

From this diagram we read o� the cohomology groups

H

1

(

~



 A

�

)

�

=

C ;

H

0

(

~



 A

�

)

�

=

C ;

H

�1

(

~



 A

�

)

�

=

0;

H

�2

(

~



 A

�

)

�

=

C ;

H

�3

(

~



 A

�

)

�

=

C ;

H

k

(

~



 A

�

)

�

=

0

for all other indices. Hence the de Rham cohomology of U isH

0

(U; C ) =

H

1

(U; C ) = H

3

(U; C ) = H

4

(U; C ) = C and zero otherwise.

7. De Rham Cohomology with Supports

Let Y; Z be two Zariski-closed subsets of X. In this section we are

concerned with �nding an algorithm that computes the de Rham co-

homology groups H

�

dR;Z

(U; C ) of U = X n Y with coe�cients in C and

supports in Z.

H

�

dR;Z

(U; C ) is de�ned as follows. Recall the de Rham complex 


�

(U)

on U . The usual de Rham cohomology is de�ned as the hypercoho-

mology of 


�

(U). De Rham cohomology with supports is de�ned as

the hypercohomology with supports in Z of 


�

(U). In other words,

H

�

dR;Z

(U; C ) = H

�

(R�

Z

(U;


�

(U))).
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As was pointed out by Hartshorne, there is a natural exact sequence

� � � ! H

i

dR;Z

(U; C ) ! H

i

dR

(U; C ) ! H

i

dR

(U n Z; C ) ! H

i+1

dR;Z

(U; C ) ! � � �

(7.1)

which indicates that H

�

dR;Z

(U; C ) measures the change in cohomology

due to the removal of Z \ U from U .

Notation 7.1. For the entire section we assume that F = (f

0

; : : : ; f

r

),

Y = Var(F ) and G = (g

0

; : : : ; g

s

), Z = Var(G). Write F � G =

ff

i

� g

j

j0 � i � r; 0 � j � sg. As before we will write F

I

for

Q

i2I

f

i

and G

J

for

Q

j2J

g

j

.

There is a natural map of Mayer-Vietoris complexes

MV

�

(F �G;F )!MV

�

(F �G)

given by the natural projection

M

jIj+jJj+jKj=l

R

n

[(F

I

�G

J

)

�1

]


R

n

R

n

[F

K

�1

]!

M

jIj+jJj=l

R

n

[(F

I

�G

J

)

�1

]

sending each summand with jKj > 0 to zero. This map corresponds

to the embedding X n (Y [Z) ,! X n Y . Clearly the map is surjective

and the kernel is the subcomplex of MV

�

(F �G;F ) consisting of those

pieces which contain at least one factor from F . It is not hard to check

that this kernel is exactlyMV

�

(F )


R

n

�

C

�

(F �G), where

�

C

�

(F �G) is the

�

Cech complex to F �G given by

N

i;j

(0! R

n

nat

�! R

n

[(f

i

� g

j

)

�1

]! 0).

Notice that the sequences

0!

�

MV

�

(F )


R

n

�

C

�

(F �G)

�

i

!MV

i

(F �G;F )!MV

i

(F �G)! 0

are all split exact. Then there is a short exact sequence of complexes




�




D

n

�

MV

�

(F )


R

n

�

C

�

(F �G)

�

!(7.2)

! 


�




D

n

MV

�

(F �G;F )! 


�




D

n

MV

�

(F �G)

with split exact rows. In other words, we have a short exact sequence

of complexes.

As was explained in previous sections, the cohomology of 


�




D

n

MV

�

(F �G;F ) isH

i

dR

(XnY; C ) while the cohomology of 


�




D

n

MV

�

(F �

G) is H

i

dR

(X n (Y [ Z); C ) and the map on cohomology is induced by

the natural inclusion.

Comparison of the long exact sequence (7.1) with the long exact

sequence that results from the short exact sequence of complexes (7.2)

shows that the cohomology of 


�




D

n

(MV

�

(F )


R

n

�

C

�

(F �G)) is exactly

H

i

dR;Z

(X n Y; C ).
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Computationally this situation is very bad: de Rham cohomology

of X n Y and X n Z come from the Mayer-Vietoris complex of F and

G respectively while here we have (approximately) the Mayer-Vietoris

complex of F [ F �G. We shall try to improve this situation now. As

a �rst step in that direction we point out that the long exact sequence

(7.1) shows that for complements of a�ne closed varieties H

i

dR;Z

(X n

Y; C ) is in fact nothing but the relative cohomology groupH

i

(XnY;Xn

(Y [ Z); C ).

Consider the space X n (Y \ Z) and its open covering by the two

sets X n Y and X n Z. It follows from [4], Example 17.1, that this

is an exact triad for homology with integer coe�cients, and from [3],

Theorem 11.4, that the same holds for cohomology with coe�cients in

C . This means that the natural inclusion of pairs

(X n Y;X n (Y [ Z)) ,! (X n (Y \ Z); X n Z)

induces a natural isomorphism between the groups H

i

(X nY;X n (Y [

Z); C ) and H

i

(X n (Y \Z); X nZ; C ). This in turn implies that instead

of H

i

dR;Z

(X n Y; C ) we may calculate H

i

dR;Z

(X n (Y \ Z); C ).

Now consider the natural projection of complexes

MV

�

(F;G)!MV

�

(G)

given by

L

jIj+jJj=l

R

n

[F

I

�1

]


R

n

R

n

[G

J

�1

] !

L

jIj=l

R

n

[F

I

�1

] induced

by the inclusion X nZ ,! X n (Y \Z). As before, this induces a short

exact sequence of complexes

0!MV

�

(F )


R

n

�

C

�

(G)!MV

�

(F;G)!MV

�

(G)! 0:

Applying 


�




D

n

(�) we discover that the cohomology of 


�




D

n

(MV

�

(F )


R

n

�

C

�

(G)) is H

�

dR;Z

(X n (Y \Z))

�

=

H

�

dR;Z

(X nY ). Now the

complexity is down to the level of computing H

�

dR

(X n (Y \Z)). So we

have

Algorithm 7.2.

Input: Polynomials F = ff

0

; : : : ; f

r

g de�ning Y; and G = fg

0

; : : : ; g

s

g

de�ning Z; i 2 N .

Output: The de Rham cohomology groups of U = XnY with supports

in Z, H

i

dR;Z

(X n Y; C ), which equal the relative cohomology groups

H

i

(X n Y;X n (Y [ Z); C ).

Begin

1. Compute the complex MV

�

(F ) 


R

n

�

C

�

(G) as a complex of left

D

n

-modules as in [14], Algorithm 5.1.

2. Compute a free V

n

-strict complex A

�

[m

�

] that is quasi-isomorphic

to the image of MV

�

(F )


R

n

�

C

�

(G) under the n-th Fourier auto-

morphism as in Section 3, Theorem 4.8.
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3. Find the b-function b(s) for restriction of A

�

[m

�

] to the origin. Let

k

0

; k

1

2 Z satisfy fb(k) = 0; k 2 Zg ) fk

0

� k � k

1

g.

4. Replace each D

n

in A

�

by k[@

1

; : : : ; @

n

] =

~


 and restrict the com-

plex to the components of V

n

-degree k with k

0

� k � k

1

.

5. Take the (i�n)-th cohomology of the resulting complex of vector

spaces and return its dimension d

i

.

6. H

i

dR;Z

(X n Y; C )

�

=

C

d

i

.

End.

Example 7.3. Let us computeH

�

dR;Var(xz)

(XnVar(xy; xz)) in C

3

. Here,

F = fxy; xzg and G = fxzg.

The relative de Rham complex is the tensor product of 
 and

�

R

3

[(xy)

�1

]� R

3

[(xz)

�1

]! R

3

[(xyz)

�1

]

�

O

�

R

3

! R

3

[(xz)

�1

]

�

:

This tensor product has cohomology H

2

�

=

H

4

�

=

C and H

3

�

=

C

2

while

all other cohomology groups are zero.

Note that the de Rham cohomology ofXnVar(xz) is 1-dimensional in

degrees 0 and 2 and 2-dimensional in degree 1, and that these groups �t

perfectly into the long exact sequence (7.1) and that from this sequence

we can for example infer that the elements of H

i

dR

(X nY; C ) for i = 3; 4

are supported on X n Z while those of H

1

dR

(X n Y; C ) are not.
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