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MATROID CONNECTIVITY

AND SINGULARITIES OF

CONFIGURATION HYPERSURFACES

GRAHAM DENHAM, MATHIAS SCHULZE, AND ULI WALTHER

Abstract. Consider a linear realization of a matroid over a field.
One associates to it a configuration polynomial and a symmetric bi-
linear form with linear homogeneous coefficients. The correspond-
ing configuration hypersurface and its non-smooth locus support
the respective first and second degeneracy scheme of the bilinear
form.

We show that these schemes are reduced and describe the effect
of matroid connectivity: for (2-)connected matroids, the configu-
ration hypersurface is integral, and the second degeneracy scheme
is reduced Cohen–Macaulay of codimension 3. If the matroid is
3-connected, then also the second degeneracy scheme is integral.

In the process, we describe the behavior of configuration poly-
nomials, forms and schemes with respect to various matroid con-
structions.
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1. Introduction

1.1. Feynman diagrams. A basic problem in high-energy physics is
to understand the scattering of particles. The basic tool for theoretical
predictions is the Feynman diagram with underlying Feynman graph
G “ pV,Eq. The scattering data correspond to Feynman integrals,
computed in the positive orthant of the projective space labelled by
the internal edges of the Feynman graph. The integrand is the square
root of a rational function in the edge variables xe, e P E, that depends
parametrically on the masses and moments of the involved particles (see
[Bro17]).

The convergence of a Feynman integral is determined by the struc-
ture of the denominator of this rational function, which always involves
a power of the square root of the Symanzik polynomial

ř

TPTG

ś

eRT xe
of G where TG denotes the set of spanning trees of G. The remaining
factor of the denominator, appearing for graphs with edge number less
than twice the loop number, is a power of the square root of the second
Symanzik polynomial obtained by summing over 2-forests and involves
masses and moments. Symanzik polynomials can factor, and the sin-
gularities and intersections of the individual components determine the
behavior of the Feynman integrals.

Until about a decade ago, all explicitly computed integrals were built
from multiple Riemann zeta values and polylogarithms; for example,
Broadhurst and Kreimer display a large body of such computations in
[BK97]. In fact, Kontsevich at some point speculated that Symanzik
polynomials, or equivalently their cousins the Kirchhoff polynomials

ψGpxq “
ÿ

TPTG

ź

ePT

xe

be mixed Tate; this would imply the relation to multiple zeta val-
ues. However, Belkale and Brosnan [BB03] proved that the collection
of Kirchhoff polynomials is a rather complicated class of singularities:
their hypersurface complements generate the ring of all geometric mo-
tives. This does not exactly rule out that Feynman integrals are in
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some way well-behaved, but makes it rather less likely, and explicit
counterexamples to Kontsevich’s conjecture were subsequently worked
out by Doryn [Dor11] as well as by Brown and Schnetz [BS12]. On the
other hand, these examples make the study of these singularities, and
especially any kind of uniformity results, that much more interesting.

The influential paper [BEK06] of Bloch, Esnault and Kreimer gen-
erated a significant amount of work from the point of view of complex
geometry: we refer to the book [Mar10] of Marcolli for exposition, as
well as [Bro17; Dor11; BW10]. Varying ideas of Connes and Kreimer on
renormalization that view Feynman integrals as specializations of the
Tutte polynomial, Aluffi and Marcolli formulate in [AM11b; AM11a]
parametric Feynman integrals as periods, leading to motivic studies on
cohomology. On the explicit side, there is a large body of publications
in which specific graphs and their polynomials and Feynman integrals
are discussed. But, as Brown writes in [Bro15], while a diversity of
techniques is used to study Feynman diagrams, “each new loop order
involves mathematical objects which are an order of magnitude more
complex than the last, [. . . ] the unavoidable fact is that arbitrary
integrals remain out of reach as ever.”

The present article can be seen as the first step towards a search for
uniform properties in this zoo of singularities. We view it as a stepping
stone for further studies of invariants such as log canonical threshold,
logarithmic differential forms and embedded resolution of singularities.

1.2. Configuration polynomials. The main idea of Belkale and Bros-
nan is to move the burden of proof into the more general realm of
polynomials and constructible sets derived from matroids rather than
graphs, and then to reduce to known facts about such polynomials.
The article [BEK06] casts Kirchhoff and Symanzik polynomials as very
special instances of configuration polynomials ; this idea was further
developed by Patterson in [Pat10]. We consider this as a more nat-
ural setting since notions such as duality and quotients behave well
for configuration polynomials as a whole, but these operations do not
preserve the subfamily of matroids derived from graphs. In particular,
we can focus exclusively on Kirchhoff/configuration polynomials, since
the Symanzik polynomial of G appears as the configuration polynomial
of the dual configuration induced by the incidence matrix of G.

The configuration polynomial does not depend on a matroid itself
but on a configuration, that is, on a (linear) realization of a matroid
over a field K. The same matroid can admit different realizations,
which, in turn, give rise to different configuration polynomials (see Ex-
ample 5.3). The matroid (basis) polynomial is a competing object,
which is assigned to any, even non-realizable, matroid. It has proven
useful for combinatorial applications (see [AOV18; Piq19]). For graphs
and, more generally, regular matroids, all configuration polynomials
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essentially agree with the matroid polynomial. In general, however,
configuration polynomials differ significantly from matroid polynomi-
als, as documented in Example 5.2.

Configuration polynomials have a geometric feature that matroid
polynomials lack: generalizing Kirchhoff’s matrix-tree theorem, the
configuration polynomial arises as the determinant of a symmetric bi-
linear configuration form with linear polynomial coefficients. As a con-
sequence, the corresponding configuration hypersurface maps naturally
to the generic symmetric determinantal variety. In the present arti-
cle, we establish further uniform, geometric properties of configuration
polynomials, which we observe do not hold for matroid polynomials in
general.

1.3. Summary of results. Some indication of what is to come can be
gleaned from the following note by Marcolli in [Mar10, p. 71]: “graph
hypersurfaces tend to have singularity loci of small codimension”.

Let W Ď KE be a realization of a matroid M of rank rkM “ dimW

on a set E (see Definition 2.14). Fix coordinates xE “ pxeqePE. There is
an associated symmetric configuration (bilinear) form QW with linear
homogeneous coefficients (see Definition 3.20). Its determinant is the
configuration polynomial (see Definition 3.2 and Lemma 3.23)

ψW “ detQW “
ÿ

BPBM

cW,B ¨
ź

ePB

xe P KrxEs

where BM denotes the set of bases of M and the coefficients cW,B P K˚

depend of the realization W . The configuration hypersurface defined
by ψW is the scheme

XW “ SpecpKrxEs{xψW yq Ď KE.

It can be seen as the first degeneracy scheme of QW (see Definition 4.9).
The second degeneracy scheme ∆W Ď KE of QW , defined by the
submaximal minors of QW , is a subscheme of the Jacobian scheme
ΣW Ď KE of XW , defined by ψW and its partial derivatives (see
Lemma 4.12). The latter defines the non-smooth locus of XW over K,
which is the singular locus ofXW ifK is perfect (see Remark 4.10). Pat-
terson showed ΣW and ∆W have the same underlying reduced scheme
(see Theorem 4.17), that is,

∆W Ď ΣW Ď KE, Σred
W “ ∆red

W .

We give a simple proof of this fact. He mentions that he does not
know the reduced scheme structure (see [Pat10, p. 696]). We show
that ΣW is typically not reduced (see Example 5.1), whereas ∆W often
is. Our main results from Theorems 4.16, 4.25, 4.36 and 4.37 can be
summarized as follows.

Main Theorem. Let M be a matroid on the set E with a linear real-
ization W Ď KE over a field K. Then the configuration hypersurface
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XW is reduced and generically smooth over K. Moreover, the second
degeneracy scheme ∆W is also reduced and agrees with Σred

W , the non-
smooth locus of XW over K. Unless K has characteristic 2, the Jaco-
bian scheme ΣW is generically reduced.

Suppose now that M is connected. Then XW is integral unless M has
rank zero. Suppose in addition that the rank of M is at least 2. Then
∆W is Cohen–Macaulay of codimension 3 in KE. If, moreover, M is
3-connected, then ∆W is integral. �

Note that XW “ H if rkM “ 0 and ΣW “ H “ ∆W if rkM ď 1 (see
Remarks 3.5 and 4.13.(a)). It suffices to require the connectedness hy-
potheses after deleting all loops (see Remark 4.11). IfM is disconnected
even after deleting all loops, then ΣW and hence ∆W has codimension
2 in KE (see Proposition 4.16).

While our main objective is to establish the results above, along the
way we continue the systematic study of configuration polynomials in
the spirit of [BEK06; Pat10]. For instance, we describe the behavior of
configuration polynomials with respect to connectedness, duality, dele-
tion/contraction and 2-separations (see Propositions 3.8, 3.10, 3.12 and
3.27). Patterson showed that the second Symanzik polynomial associ-
ated with a Feynman graph is, in fact, a configuration polynomial.
More precisely, we explain that its dual, the second Kirchhoff polyno-
mial, is associated to the quotient of the graph configuration by the
momentum parameters (see Proposition 3.19). In this way, Patterson’s
result becomes a special case of a formula for configuration polynomials
of elementary quotients (see Proposition 3.14).

1.4. Outline of the proof. The proof of the Main Theorem inter-
twines methods from matroid theory, commutative algebra and alge-
braic geometry. In order to keep our arguments self-contained and ac-
cessible, we recall preliminaries from each of these subjects and give de-
tailed proofs (see §2.1, §2.3 and §4.1). One easily reduces the claims to
the case where M is connected (see Proposition 3.8 and Theorem 4.36).

An important commutative algebra ingredient is a result of Kutz (see
[Kut74]): the grade of an ideal of submaximal minors of a symmetric
matrix cannot exceed 3, and equality forces the ideal to be perfect.
Kutz’ result applies to the defining ideal of ∆W . The codimension
of ∆W in KE is therefore bounded by 3 and ∆W is Cohen–Macaulay
in case of equality (see Proposition 4.19). In this case, ∆W is pure-
dimensional and hence it is reduced if it is generically reduced (see
Lemma 4.4).

On the matroid side our approach makes use of handles (see Defini-
tion 2.3), which are called ears in case of graphic matroids. A handle
decomposition builds up any connected matroid from a circuit by suc-
cessively attaching handles (see Definition 2.6). Conversely, this yields
for any connected matroid which is not a circuit a non-disconnective
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handle which leaves the matroid connected when deleted (see Defini-
tion 2.3). This allows one to prove statements on connected matroids
by induction.

We describe the effect of deletion and contraction of a handle H to
the configuration polynomial (see Corollary 3.13). In case the Jaco-
bian scheme ΣW zH associated with the deletion MzH has codimension
3 we prove the same for ΣW (see Lemma 4.22). Applied to a non-
disconnective H it follows with Patterson’s result that ∆W reaches the
dimension bound and is thus Cohen–Macaulay of codimension 3 (see
Theorem 4.25). We further identify three (more or less explicit) types
of generic points with respect to a non-disconnective handle (see Corol-
lary 4.26).

In case chK ‰ 2, generic reducedness of ΣW implies (generic) re-
ducedness of ∆W . The schemes ΣW and ∆W show similar behavior
with respect to deletion and contraction (see Lemmas 4.29 and 4.31).
As a consequence, generic reducedness can be proved along the same
lines (see Lemma 4.35). In both cases, we have to show reducedness
at all (the same) generic points. In what follows, we restrict ourselves
to ∆W . Our proof proceeds by induction on the cardinality |E| of the
underlying set E of the matroid M.

Unless M a circuit, the handle decomposition guarantees the exis-
tence of a non-disconnective handle H . In case H “ thu has size 1,
the scheme ∆W zh associated with the deletion Mzh is the intersection
of ∆W with the divisor xe (see Lemma 4.29). This serves to recover
generic reducedness of ∆W from ∆W zh (see Lemma 4.30). The same
argument works if H does not arise from a handle decomposition.

This leads us to consider non-disconnective handles independently
of a handle decomposition. They turn out to be special instances of
maximal handles which form the handle partition of the matroid (see
Lemma 2.4). As a purely matroid-theoretic ingredient, we show that
the number of non-disconnective handles is strictly increasing when
adding handles (see Proposition 2.12). For handle decompositions of
length 2, a distinguished role is played by the prism matroid (see Exam-
ple 2.7). Its handle partition consists of 3 non-disconnective handles
of size 2 (see Lemmas 2.10 and 2.25). Here an explicit calculation
shows that ∆W is reduced in the torus pK˚q6 (see Lemma 4.28). The
corresponding result for ΣW holds only if chK ‰ 2.

Suppose now that M is not a circuit and has no non-disconnective
handles of size 1. Then Mze might be disconnected for all e P E and
does not qualify for an inductive step. In this case, we aim instead for
contracting W by a suitable subset G Ĺ E which keeps M connected.
In the partial torus KF ˆ pK˚qG where F :“ EzG, the scheme ∆W {G

associated with the contraction M{G relates to the normal cone of
∆W along the coordinate subspace V pxF q where xF “ pxf qfPF (see
Lemma 4.31). To induce generic reducedness from ∆W {G to ∆W , we
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pass through a deformation to the normal cone, which is our main
ingredient from algebraic geometry. The role of xh above is then played
by the deformation parameter t.

In algebraic terms, this deformation is represented by the Rees al-
gebra ReesI R with respect to an ideal I E R, and the normal cone by
the associated graded ring grI R (see Definition 4.6). Passing through
ReesI R, we recover generic reducedness of R along V pIq from generic
reducedness of grI R (see Definition 4.3 and Lemma 4.7). By assump-
tion on M, there are at least 3 more elements in E than maximal
handles (see Proposition 2.12), and M is the prism matroid in case of
equality. Based on a strict inequality, we use a codimension argument
to construct a suitable partition E “ F \G for which all generic points
of ∆W are along V pxF q (see Lemma 4.34). This yields generic reduced-
ness of ∆W in this case (see Lemma 4.32). A slight modification of the
approach also covers the generic points outside the torus pK˚q6 if M is
the prism matroid. The case where M is a circuit is reduced to that
where M is a triangle by successively contracting an element of E (see
Lemma 4.33). In this base case ∆W is a reduced point, but ΣW is
reduced only if chK ‰ 2 (see Example 4.14).

Finally, suppose that M is a 3-connected matroid. Here we prove
that ∆W is irreducible and hence integral, which implies that Σ is ir-
reducible (see Theorem 4.37). We first observe that handles of (co)size
at least 2 are 2-separations (see Lemma 2.4.(e)). It follows that the
handle decomposition consists entirely of non-disconnective 1-handles
(see Proposition 2.5) and that all generic points of ∆W lie in the torus
pK˚qE (see Corollary 4.27). We show that the number of generic points
is bounded by that of ∆W ze for all e P E (see Lemma 4.30). Duality
switches deletion and contraction and identifies generic points of ∆W

and ∆WK (see Corollary 4.18). Using Tutte’s wheels-and-whirls the-
orem, the irreducibility of ∆W can therefore be reduced to the cases
where M is a wheel Wn or a whirl Wn for some n ě 3 (see Example 2.26
and Lemma 4.38). For fixed n, we show that the schemes XW , ΣW and
∆W are all isomorphic for all realizationsW of Wn and W

n (see Propo-
sition 4.40). An induction on n with an explicit study of the base cases
n ď 4 finishes the proof (see Corollary 4.41 and Lemma 4.43).

Acknowledgments. The project whose results are presented here
started with a research in pairs meeting at the Centro de Giorgi in
Pisa in February 2018. We thank the Institute for a pleasant stay
in a stimulating research environment. We also thank Aldo Conca,
Raul Epure, Darij Grinberg, Delphine Pol and Karen Yeats for helpful
comments. We are grateful to the referees for a careful reading of the
manuscript and resulting improvements to the exposition.
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2. Matroids and configurations

Our algebraic objects of interest are associated to a realization of
a matroid. In this section, we prepare the path for an inductive ap-
proach driven by the underlying matroid structure. Our main tool is
the handle decomposition, a matroid version of the ear decomposition
of graphs.

2.1. Matroid basics. In this subsection, we review the relevant basics
of matroid theory using Oxley’s book (see [Oxl11]) as a comprehensive
reference.

Denote by MinP and MaxP the set of minima and maxima of a
poset P. Let M be a matroid on a set E “: EM. We use this font
throughout to denote matroids. With 2E partially ordered by inclusion,
M can be defined by a monotone submodular rank function (see [Oxl11,
Cor. 1.3.4])

rk “ rkM : 2E Ñ N “ t0, 1, 2, . . . u
with rkpSq ď |S| for any subset S Ď E. The rank of M is then

rkM :“ rkMpEq.
Alternatively, it can be defined in terms of each of the following collec-
tions of subsets of E (see [Oxl11, Prop. 1.3.5, p. 28]):

‚ independent sets IM “ tI Ď E | |I| “ rkMpIqu Ď 2E ,
‚ bases BM “ Max IM “ tB Ď E | |B| “ rkMpBq “ rkMu Ď 2E ,
‚ circuits CM “ Minp2EzIMq Ď 2E,
‚ flats LM “ tF Ď E | @e P EzF : rkMpF Y teuq ą rkMpF qu.

For instance (see [Oxl11, Lem. 1.3.3]), for any subset S Ď E,

(2.1) rkMpSq “ max t|I| | S Ě I P IMu.
The closure operator of M is defined by (see [Oxl11, Lem. 1.4.2])

(2.2) clM : 2E ÞÑ LM, rkM “ rkM ˝ clM .
The following matroid plays a special role in the proof of our main

result.

Definition 2.1 (Prism matroid). The prism matroid has underlying
set E with |E| “ 6 and circuits

CM “ tte1, e2, e3, e4u, te1, e2, e5, e6u, te3, e4, e5, e6uu.
The name comes from the observation that its independent sets IM are
the affinely independent subsets of the vertices of the triangular prism
(see Figure 1).

The elements of EzŤBM and
Ş

BM are called loops and coloops in
M respectively. A matroid is free if E P BM, that is, every e P E is
a coloop in M. By a k-circuit in M we mean a circuit C P CM with
|C| “ k elements, 3-circuits are called triangles.
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Figure 1. The triangular prism.

e1 e3

e5 e2 e4

e6

The circuits in M give rise to an equivalence relation on E by declar-
ing e, f P E equivalent if e “ f or e, f P C for some C P CM (see [Oxl11,
Prop. 4.1.2]). The corresponding equivalence classes are the connected
components of M. If there is at most one such a component, then M is
said to be connected. The connectivity function of M is defined by

λM : 2E Ñ N, λMpSq :“ rkMpSq ` rkMpEzSq ´ rkpMq.
For k ě 1, a subset S Ď E, or the partition E “ S \ pEzSq, is called
a k-separation of M if

λMpSq ă k ď min t|S|, |EzS|u.
It is called exact if the latter is an equality. The connectivity λpMq of
M is the minimal k for which there is a k-separation of M, or λpMq “ 8
if no such exists. The matroid M is said to be k-connected if λpMq ě k.
Connectedness is the special case k “ 2.

We now review some standard constructions of new matroids from
old. Their geometric significance is explained in §2.3.

The direct sum M1 ‘ M2 of matroids M1 and M2 is the matroid on
EM1

\ EM2
with independent sets

(2.3) IM1‘M2
:“ tI1 \ I2 | I1 P IM1

, I2 P IM2
u.

The sum is proper if EM1
‰ H ‰ EM2

. Connectedness means that
a matroid is not a proper direct sum (see [Oxl11, Prop. 4.2.7]). In
particular, any (co)loop is a connected component.

Let F Ď E be any subset. Then the restriction matroid M|F is
the matroid on F with independent sets and bases (see [Oxl11, 3.1.12,
3.1.14])

(2.4) IM|F “ IM X 2F , BM|F “ Max tB X F | B P BMu.
Its set of circuits is (see [Oxl11, 3.1.13])

(2.5) CM|F “ CM X 2F .

By definition, rkM|F “ rkM |2F , so we may omit the index without
ambiguity. Thinking of restriction to EzF as an operation that deletes
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elements in F from E, one defines the deletion matroid

MzF :“ M|EzF .

The contraction matroid M{F is the matroid on EzF with independent
sets and bases (see [Oxl11, Prop. 3.1.7, Cor. 3.1.8])

IM{F “
 

I Ď EzF
ˇ

ˇ I Y B P IM for some/every B P BM|F

(

,(2.6)

BM{F “
 

B1 Ď EzF
ˇ

ˇ B1 Y B P BM for some/every B P BM|F

(

.

Its circuits are the minimal non-empty sets CzF where C P CM (see
[Oxl11, Prop. 3.1.10]), that is,

(2.7) CM{F “ Min tCzF | F Ğ C P CMu.
In §2.3, E will be a basis and E_ the corresponding dual basis. We

often identify E “ E_ by the bijection

(2.8) ν : E Ñ E_, e ÞÑ e_.

The complement of a subset S Ď E corresponds to

SK :“ νpEzSq Ď E_.

The dual matroid M
K is the matroid on E_ with bases

(2.9) BMK “
 

BK
ˇ

ˇ B P BM

(

.

In particular, we have (see [Oxl11, 2.1.8])

rkM ` rkMK “ |E|.
Connectivity is invariant under dualizing (see [Oxl11, Cor. 8.1.5]),

(2.10) λM “ λMK ˝ ν, λpMq “ λpMKq.
We use ν´1 in place of (2.8) for M

K, so that SKK “ S. For subsets
F Ď E and G Ď E_, one can identify (see [Oxl11, 3.1.1])

pM{F qK “ M
K|FK “ M

KzνpF q,(2.11)

pMzν´1pGqqK “ pM|GKqK “ M
K{G.

Various matroid data of MK is also considered as codata of M. A triad
of M is a 3-cocircuit of M, that is, a triangle of MK.

Example 2.2 (Uniform matroids). The uniform matroid Ur,n of rank
r ě 0 on a set E of size |E| “ n has bases

BUr,n
“ tB Ď E | |B| “ ru.

For r “ n it is the free matroid of rank r. It is connected if and only
if 0 ă r ă n. By definition, UK

r,n “ Un´r,n for all 0 ď r ď n.
Informally, we refer to a matroidM on E for which E P CM, and hence

CM “ tEu, as a circuit, and as a triangle if |E| “ 3. It is easily seen that
such a matroid is Un´1,n where n “ |E|, and that λpUn´1,nq “ 2. ˛
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2.2. Handle decomposition. In this subsection, we investigate han-
dles as building blocks of connected matroids.

Definition 2.3 (Handles). Let M be a matroid. A subset H ‰ H Ď E

is a handle in M if C X H ‰ H implies H Ď C for all C P CM. Write
HM for the set of handles in M, ordered by inclusion. A subhandle of
H P HM is a subset H ‰ H 1 Ď H . We call H P HM

‚ proper if H ‰ E,
‚ maximal if H P MaxHM,
‚ a k-handle if |H | “ k,
‚ disconnective if MzH is disconnected and
‚ separating if min t|H |, |EzH |u ě 2.

Singletons teu and subhandles are handles. If
Ť

CM ‰ E, then
EzŤ CM P MaxHM and is a union of coloops. The maximal han-
dles in

Ť

CM are the minimal non-empty intersections of all subsets of
CM. Together they form the handle partition of E

E “
ğ

HPMaxHM

H,

which refines the partition of
Ť

CM into connected components. In
particular, each circuit is a disjoint union of maximal handles. For any
subset F Ď E, (2.5) yields an inclusion

HM X 2F Ď HM|F .

Lemma 2.4 (Handle basics). Let M be a matroid and H P HM.

(a) If H “ E, then M “ Ur,n where n “ |E| ě 1 and r P tn ´ 1, nu
(see Example 2.2). In the latter case, |E| “ 1 if M is connected.

(b) Either H P IM or H P CM. In the latter case, H is maximal and
a connected component of M. In particular, if M is connected and
H is proper, then H P IM, H Ĺ C for some circuit C P CM, and
H P CM{pEzHq.

(c) For any subhandle H ‰ H 1 Ď H, HzH 1 consists of coloops in
MzH 1. In particular, non-disconnective handles are maximal.

(d) If H R CM, then there is a bijection

CM Ñ CM{H , C ÞÑ CzH.
If H R MaxHM, then there is a bijection

MaxHM Ñ MaxHM{H, H 1 ÞÑ H 1zH,
which identifies non-disconnective handles. In this case, the con-
nected components of M which are not contained in HzŤCM cor-
respond to the connected components of M{H.

(e) Suppose that M is connected and H is proper. Then

rkpM{Hq “ rkM ´ |H |, λMpHq “ 1.

In particular, if H is separating, then H is a 2-separation of M.
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Proof.
(a) Suppose that H “ E. Then CM Ď tEu and M “ Un´1,n in case

of equality. Otherwise, CM “ H implies BM “ tEu and M “ Un,n (see
[Oxl11, Prop. 1.1.6]).

(b) Suppose that H R IM. Then there is a circuit H Ě C P CM. By
definition of handle and incomparability of circuits, H “ CzpEzHq P
CM{pEzHq (see (2.7)) and H “ C is disjoint from all other circuits and
hence a connected component of M.

(c) Suppose that h P HzH 1 is not a coloop in MzH 1. Then h P CXH
for some C P CMzH 1 Ď CM (see (2.5)) and hence H 1 Ď H Ď C since H is
a handle, a contradiction.

(d) The first bijection follows from (2.7) with F “ H . The remaining
claims follow from the discussion preceding the lemma.

(e) Part (b) yields the first equality (see [Oxl11, Prop. 3.1.6]) along
with a circuit H ‰ C P CM. Pick a basis B P BMzH . Clearly S :“ B\H
spans M. For any h P H , we check that Szthu P IM. Otherwise, there is
a circuit Szthu Ě C P CM. Since C Ę B and by definition of handle, we
have HXC ‰ H and hence h P H Ď C, a contradiction. It follows that
rkM “ |S| ´1 “ rkpMzHq ` |H | ´1 and hence the second equality. �

Proposition 2.5 (Handles in 3-connected matroids). Let M be a 3-
connected matroid on E with |E| ą 3. Then all its handles are non-
disconnective 1-handles.

Proof. Let H P HM be any handle. By Lemma 2.4.(a), H must be
proper. By Lemma 2.4.(e), H is not separating, that is, |H | “ 1 or
|EzH | “ 1. In the latter case, M is a circuit by Lemma 2.4.(b) and
hence not 3-connected (see Example 2.2). So H is a 1-handle.

Suppose that H is disconnective. Consider the deletion M
1 :“ MzH

on the set E 1 :“ EzH . Pick a connected component X ofM1 of minimal
size |X| ă |E 1|. Since H ‰ H and |E| ą 3, both X Y H and its
complement EzpX Y Hq “ E 1zX have at least 2 elements. Since X is
a connected component of M1 and by Lemma 2.4.(e),

rkpXq ` rkpE 1zXq “ rkM1 “ rkM.

Since rkpX Y Hq ď rkpXq ` |H | “ rkpXq ` 1, it follows that

λMpX Y Hq “ rkpX Y Hq ` rkpEzpX Y Hqq ´ rkM ă 2.

Whence X Y H is a 2-separation of M, a contradiction. �

The following notion is the basis for our inductive approach to con-
nected matroids.

Definition 2.6 (Handle decompositions). Let M be a connected ma-
troid. A handle decomposition of length k of M is a filtration

CM Q F1 Ĺ ¨ ¨ ¨ Ĺ Fk “ E

such that M|Fi
is connected and Hi :“ FizFi´1 P HM|Fi

for i “ 2, . . . , k.
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By Lemma 2.4.(b) and (2.5), a handle decomposition yields circuits

(2.12) C1 :“ F1 P CM, Hi Ĺ Ci P CM|Fi
Ď CM, i “ 2, . . . , k.

Conversely, it can be constructed from a suitable sequence of circuits.

Example 2.7 (Handle decomposition of the prism matroid). The prism
matroid (see Example 2.1) has handle partition

E “ te1, e2u \ te3, e4u \ te5, e6u.
A handle decomposition of length 2 is given by

F1 “ te1, e2, e3, e4u Ĺ F2 “ E.

Note that all handles are proper, maximal, separating 2-handles. ˛
Proposition 2.8 (Existence of handle decompositions). Let M be a
connected matroid and C1 P CM. Then there is a handle decomposition
of M starting with F1 “ C1.

Proof. There is a sequence of circuits C1, . . . , Ck P CM which defines a
filtration Fi :“

Ť

jďiCj such that Ci XFi´1 ‰ H and CizFi´1 P CM{Fi´1

for i “ 2, . . . , k (see [CH96]). The hypothesis Ci X Fi´1 ‰ H implies
that M|Fi

is connected for i “ 1, . . . , k.
It remains to check that Hi “ CizFi´1 P HM|Fi

for i “ 2, . . . , k. Since
circuits are nonempty, H ‰ Hi Ĺ Fi. Let C P CM|Fi

be a circuit such
that e P C X Hi Ď C X Ci. Suppose by way of contradiction that
Hi Ę C. Then there exists some d P CizpC Y Fi´1q. By the strong
circuit elimination axiom (see [Oxl11, Prop. 1.4.12]), there is a circuit
C 1 P CM|Fi

Ď CM (see (2.5)) for which d P C 1 Ď pC Y Ciqzteu. Then

C 1zFi´1 Ď CizFi´1 P CM{Fi´1
by assumption on Ci. It follows that either

C 1 Ď Fi´1 or C 1zFi´1 “ CizFi´1 (see (2.7)). The former is impossible
because C 1 Q d R Fi´1, and the latter because C 1 Y Fi´1 S e P Ci. �

In the sequel, we develop a bound for the number of non-disconnective
handles.

Lemma 2.9 (Non-disconnective handles). Let M be a connected ma-
troid. Suppose that H P HM and H 1 P HMzH are non-disconnective with
H YH 1 ‰ E. Then there is a non-disconnective handle H2 P HM such
that H2 Ď H 1, with equality if H 1 P HM.

Proof. By hypothesis, M and MzH are connected and H Y H 1 ‰ E

implies that both H and H 1 are proper handles. Then Lemma 2.4.(b)
yields circuits C P CM and C 1 P CMzH Ď CM (see (2.5)) such that H Ĺ C

and H 1 Ĺ C 1.
Suppose that C Ď H Y H 1. Then the strong circuit elimination

axiom (see [Oxl11, Prop. 1.4.12]) yields a circuit C2 P CM for which
C2 Ď H Y C 1, H 1 Ę C2 and C2 Ę H Y H 1. Since C2 Ĺ C 1 con-
tradicts incomparability of circuits, H Ĺ C2 since H is a handle and
Lemma 2.4.(b) forbids equality.
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Replacing C by C2 if necessary, we may assume that H 1 Ę C and
C Ę H Y H 1. In particular, H2 :“ H 1zC P HMzH and H2 “ H 1 if
H 1 P HM. Since MzpH Y H 1q is connected by hypothesis, C witnesses
the fact that H , C X H 1 and EzpH Y H 1q are in the same connected
component of MzH2 (see (2.5)). In other words, MzH2 is connected.
If H2 P HM is a handle, then H2 is therefore non-disconnective.

Otherwise, there is a circuit C2 P CM such that H ‰ C2 XH2 ‰ H2.
In particular, H Ď C2 since otherwise C2 X H “ H and C2 P CMzH

(see (2.5)) which would contradict H2 P HMzH . This means that C2

connects H with C2 X H2. We may therefore replace H2 by H ‰
H2zC2 Ĺ H2 and iterate. Then H2 P HM after finitely many steps. �

Lemma 2.10 (Handle decomposition of length 2). Let M be a con-
nected matroid with a handle decomposition of length 2. Then M has
at least 3 (disjoint) non-disconnective handles. In case of equality, they
form the handle partition of M.

Proof. Consider the circuits C 1 :“ C1 P CM, C :“ C2 P CM (see (2.12)),
the non-disconnective handle H :“ H2 P HM and the subsets H ‰
H 1 :“ C 1zC Ď E and H ‰ H2 :“ C XC 1 Ď E. Then E “ H \H 1 \H2

and C 1 “ H 1 Y H2 and C “ H Y H2.
Let C2 P CM be any circuit with C 1 ‰ C2 ‰ C. By incompara-

bility of circuits, C2 Ę C 1 and hence H Ď C2 since H is a handle.
By Lemma 2.4.(d), we may assume that |H | “ 1. Then H 1 Ď C2

(see [Oxl11, §1.1, Exc. 5]). In particular, H 1 P HM is a third non-
disconnective handle. If HYH 1 Ď C2 is an equality, then also H2 P HM

is a non-disconnective handle and H \ H 1 \ H2 is the handle decom-
position.

Otherwise, C2 witnesses the fact that H , H 1 and H ‰ C2 XH2 ‰ H2

are in the same connected component of M|C2 (see (2.5)). If H2zC2 P
HM is a handle, then it is therefore non-disconnective. Otherwise,
iterating yields a third non-disconnective handle H2zC2 Ě H3 P HM.

�

Example 2.11 (Unexpected handles). Consider the matroid M on E “
t1, . . . , 6u whose bases

BM “ tt1, 2, 3, 4u, t1, 2, 3, 5u, t1, 2, 4, 5u, t1, 3, 4, 5u, t2, 3, 4, 5u,
t1, 2, 3, 6u, t1, 2, 4, 6u, t1, 3, 4, 6u, t2, 3, 4, 6u,
t1, 3, 5, 6u, t1, 4, 5, 6u, t2, 3, 5, 6u, t2, 4, 5, 6uu

index those sets of columns of the matrix
¨

˚

˚

˝

1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 0 1 2
0 0 0 1 1 2

˛

‹

‹

‚
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which form a basis of F4
3 (see Remark 2.15). Its circuits and maximal

handles are given by

CM “ tF1 :“ t1, 2, 3, 4, 5u, t1, 2, 3, 4, 6u, t1, 2, 5, 6u, t3, 4, 5, 6uu,
MaxHM “ tt1, 2u, t3, 4u, t5u, t6u “: H2u.

In particular M is connected with a handle decomposition

F1 Ĺ F1 \ H2 “: F2 “ E

of length 2. Here all 4 maximal handles are non-disconnective and the
inequality in Lemma 2.10 is strict. This can happen because M is not
a graphic matroid (see Lemma 2.25). ˛
Proposition 2.12 (Lower bound for non-disconnective handles). Let
M be a connected matroid with a handle decomposition of length k ě 2.
Then M has at least k ` 1 (disjoint) non-disconnective handles.

Proof. We argue by induction on k. The base case k “ 2 is cov-
ered by Lemma 2.10. Suppose now that k ě 3. By hypothesis (see
Definition 2.6), Hk P HM is a non-disconnective handle and the con-
nected matroid MzHk “ M|Fk´1

has a handle decomposition of length
k ´ 1. By induction, there are k (disjoint) non-disconnective han-
dles H 1

0, . . . , H
1
k´1 P HMzHk

. Since k ě 3 and handles are non-empty,
Hk YH 1

i ‰ E for i “ 0, . . . , k´ 1. For each i “ 0, . . . , k´ 1, Lemma 2.9
now yields a non-disconnective handle H 1

i Ě H2
i P HM. Thus, M has

k` 1 (disjoint) non-disconnective handles H2
0 , . . . , H

2
k´1, Hk P HM. �

We conclude this section with an observation.

Lemma 2.13 (Existence of circuits). Let M be a connected matroid of
rank rkM ě 2. Then there is a circuit C P CM of size |C| ě 3.

Proof. Pick e P E. Since M is connected, E is the union of all circuits
e P C P CM. Suppose that there are only 2-circuits. Then E “ clMpeq
(see [Oxl11, Prop. 1.4.11.(ii)]) and hence rkM “ 1 (see (2.2)), a con-
tradiction. �

2.3. Configurations and realizations. Our objects of interest are
not associated to a matroid itself but to a realization as defined in the
following. All matroid operations we consider come with a counter-
part for realizations. For graphic matroids, these agree with familiar
operations on graphs (see §2.4).

Fix a field K and denote the K-dualizing functor by

´_ :“ HomKp´,Kq.
We consider a finite set E as a basis of the based K-vector space KE

and denote by E_ “ pe_qePE the dual basis of

(2.13) pKEq_ “ KE_

.

By abuse of notation we set S_ :“ pe_qePS for any subset S Ď E.
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We consider configurations as defined by Bloch, Esnault and Kreimer
(see [BEK06, §1]).

Definition 2.14 (Configurations and realizations). Let E be a finite
set. A K-vector subspace W Ď KE is called a configuration (over K).
It defines a matroid MW on E with independent sets

(2.14) IMW
“ tS Ď E | S_|W is K-linearly independent in W_u.

LetM be a matroid andW Ď KE a configuration (over K). IfM “ MW ,
then W is called a (linear) realization of M and M is called (linearly)
realizable (over K). A matroid is called binary if it is realizable over F2.
A configuration W Ď KE is called totally unimodular if chK “ 0 and
W admits a basis whose coefficient matrix with respect to E has all
(maximal) minors in t0,˘1u. A matroid is called regular if it admits
a totally unimodular realization. Equivalently, a regular matroid is
realizable over every field (see [Oxl11, Thm. 6.6.3]).

Since E_|W generates W_, we have (see (2.14))

(2.15) rkpMW q “ dimW_ “ dimW.

Remark 2.15 (Matroids and linear algebra). The notions in matroid
theory (see §2.1) are derived from linear (in)dependence over K. Let
W Ď KE be a realization of a matroidM. Pick a basis w “ pw1, . . . , wrq
of W where r :“ rkM (see (2.15)). For each e P E, e_|W is then
represented by the vector pwieqi P Kr where wie :“ e_pwiq for i “
1, . . . , r. Order E “ te1, . . . , enu and set wij :“ wiej for j “ 1, . . . , n.
Then these vectors form the columns of the coefficient matrix A “
pwijqi,j P Krˆn of w. By construction, W is the row span of A. The
matroid rank rkMpSq of any subset S Ď E now equals the K-linear
rank of the submatrix of A with columns S (see (2.1) and (2.14)). An
element e P E is a loop in M if and only if column e of A is zero; e is
a coloop in M if and only if column e is not in the span of the other
columns. ˛
Remark 2.16 (Classical configurations). Suppose thatMW has no loops,
that is, e_|W ‰ 0 for each e P E. Then the images of the e_|W in PW_

form a projective point configuration in the classical sense (see [HC52]).
Dually, the hyperplanes kerpe_q X W form a hyperplane arrangement
in W (see [OT92]), which is an equivalent notion in this case. ˛

We fix some notation for realizations of basic matroid operations.
Any subset S Ď E gives rise to an inclusion and a projection

(2.16) ιS : K
S

ãÑ KE, πS : K
E ։ KE{KEzS “ KS

of based K-vector spaces.

Definition 2.17 (Realizations of matroid operations). Let W Ď KE

be a realization of a matroid M, and let F Ď E be any subset.
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(a) The restriction configuration (see (2.16))

W |F :“ πF pW q Ď KF

– pW ` KEzF q{KEzF – W {pW X KEzF q
realizes the restriction matroid M|F .

(b) The deletion configuration

W zF :“ W |EzF

realizes the deletion matroid MzF . We write W ze :“ W zteu for
e P E.

(c) The contraction configuration

W {F :“ W X KEzF Ď KEzF

realizes the contraction matroid M{F .
(d) The dual configuration (see (2.13))

WK :“ pKE{W q_ Ď KE_

realizes the dual matroid M
K.

(e) Any 0 ‰ ϕ P W_ defines an elementary quotient configuration

Wϕ :“ kerϕ Ď KE .

Remark 2.18. Let W Ď KE be a realization of a matroid M.

(a) An element e P E is a loop or coloop in M if and only ifW Ď KEzteu

or W “ pW zeq ‘ Kteu respectively. In both cases, W ze “ W {e Ď
KEzteu.

(b) For 0 ‰ ϕ P W_, pick w P W zWϕ and e R E. Consider the
configuration

Wϕ,w :“ Wϕ ‘ K ¨ pw ` eq Ď KE\teu.

Then Wϕ,wze “ W and Wϕ,w{e “ Wϕ. By definition, MWϕ
is

therefore an elementary quotient of MW ; it can be characterized in
terms of the notion of a modular cut (see [Kat16, §5.5] and [Oxl11,
§7.3]). ˛

Lemma 2.19 (Lift of direct sums to realizations). Let W Ď KE be
a realization of a matroid M. Suppose that M “ M1 ‘ M2 decomposes
with underlying partition E “ E1 \ E2. Then W “ W1 ‘ W2 where
Wi :“ M{Ej Ď KEi realizes Mi “ M|Ei

for ti, ju “ t1, 2u.
Proof. By definition (see Definition 2.17.(a) and (c)),

W1 ‘ W2 ãÑ W ãÑ W |E1
‘ W |E2

, Wi ãÑ W |Ei
, i “ 1, 2.

By the direct sum hypothesis, Wi and W |Ei
realize the same matroid

(see (2.3), (2.4) and (2.6))

M{Ej “ M|Ei
“ Mi, ti, ju “ t1, 2u.

Thus, dimWi “ dimpW |Ei
q for i “ 1, 2 (see (2.15)) and the claim

follows. �
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Example 2.20 (Realizations of uniform matroids). Let W Ď KE be the
row span of a matrix A P Krˆn (see Remark 2.15). If A is generic in
the sense that all maximal minors of A are non-zero, then W realizes
the uniform matroid Ur,n (see Example 2.2). ˛
2.4. Graphic matroids. Configurations arising from graphs are the
most prominent examples for our results. In this subsection, we review
this construction and discuss important examples such as prism, wheel
and whirl matroids.

A graph G “ pV,Eq is a pair of finite sets V of vertices and E of
(unoriented) edges where each edge e P E is associated to a set of one
or two vertices in V . This allows for multiple edges between pairs of
vertices, and loops at vertices.

A graph G determines a graphic matroid MG on the edge set E. Its
independent sets are the forests and its circuits the simple cycles in G.
Any graphic matroid comes from a (non-unique) connected graph (see
[Oxl11, Prop. 1.2.9]). Unless specified otherwise, we therefore assume
that G is connected. Then the bases of MG are the spanning trees of
G (see [Oxl11, p. 18]),

(2.17) BMG
“ TG.

Remark 2.21 (Graph and matroid connectivity). A vertex cut of a
graph G “ pV,Eq is a subset of V whose removal (together with all
incident edges) disconnects G. If G has at least one pair of distinct
non-adjacent vertices, then G is called k-connected if k is the minimal
size of a vertex cut. Otherwise, G is p|V | ´ 1q-connected by definition.
Suppose that |V | ě 3. Then MG is (2-)connected if and only if G
is 2-connected and loopless (see [Oxl11, Prop. 4.1.7]). Provided that
|E| ě 4, MG is 3-connected if and only if G is 3-connected and simple
(see [Oxl11, Prop. 8.1.9]). ˛
Example 2.22 (Prism matroid as graphic matroid). The prism matroid
(see Definition 2.1) is associated with the p2, 2, 2q-theta graph in Fig-
ure 2. In particular it is 3-connected as witnessed by the minimal vertex
cut tv1, v2, v3u (see Remark 2.21). ˛

Figure 2. The p2, 2, 2q-theta graph with a choice of orientation.

v2

v4

v1 v5

v3

e1

e2

e6

e5

e3

e4

Graphic matroids have realizations derived from the edge-vertex in-
cidence matrix of the graph (see [BEK06, §2]). A choice of orientation
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on the edge set E turns the graph G into a CW-complex. This gives
rise to an exact sequence

(2.18) 0 // H1
// KE δ

// KV σ
// H0

// 0

ps Ñ tq
P

✤ // t´ s
P

K
–

v ✤ // 1
P

where H‚ :“ H‚pG,Kq denotes the graph homology of G over K. The
dual exact sequence

(2.19) 0 H1oo KE_
oo KV _δ_

oo H0oo 0oo

involves the graph cohomology H‚ :“ H‚pG,Kq of G over K.

Definition 2.23 (Graph configurations). We call the image

KE_ Ě WG :“ δ_pKV _q kerpσq_δ_

–
oo

of δ_ the graph configuration of the graph G over K. Note that it is
independent of the orientation chosen to define δ in (2.18).

For any S Ď E, the sequence (2.18) induces a short exact sequence

0 // H1 X KS // KS // W_
G .

By definition of MG and MWG
(see Definition 2.14) and since H1 is

generated by indicator vectors of (simple) cycles, we have

S P IMG
ðñ H1 X KS “ 0 ðñ S P IMWG

,

which implies that

MG “ MWG
.

The configuration WG is totally unimodular if chK “ 0 (see [Oxl11,
Lem. 5.1.4]) which makes MG a regular matroid. By construction,
WK
G “ H1 Ď KE realizes the dual matroid M

K
G (see Definition 2.17.(d)).

Example 2.24 (Configuration of the p2, 2, 2q-theta graph). With the
orientation of the p2, 2, 2q-theta graph G depicted in Figure 2 the map
δ_ in (2.19) is represented by the transpose of the matrix

¨

˚

˚

˝

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

´1 0 ´1 0 ´1 0

˛

‹

‹

‚

.

Its rows generate the graph configuration WG realizing the prism ma-
troid (see Example 2.22). ˛
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Lemma 2.25 (Characterization of the prism matroid). Let M be a
connected matroid on E “ te1, . . . , e6u with |E| “ 6 whose handle
partition

E “ H1 \ H2 \ H3, H1 “ te1, e2u, H2 “ te3, e4u, H3 “ te5, e6u,
is made of 3 maximal 2-handles (see Example 2.7 and Lemma 2.10).
Then M is the prism matroid (see Definition 2.1). Up to scaling E, it
has the unique realization W Ď KE with basis

w1 :“ e1 ` e2, w2 :“ e3 ` e4, w3 :“ e5 ` e6, w4 :“ e1 ` e3 ` e5,

the graph configuration of the p2, 2, 2q-theta graph (see Example 2.24).

Proof. Each circuit C P CM is a (non-empty) disjoint union ofH1, H2, H3

(see Definition 2.3). By Lemma 2.4.(b), no Hi is a circuit but each Hi

is properly contained in one. By hypothesis, E is not a maximal handle
and hence E R CM. Up to renumbering H1, H2, H3, this yields circuits
H2 \ H3 and H1 \ H3. By the strong circuit elimination axiom (see
[Oxl11, Prop. 1.4.12]), there is a third circuit H1 \ H2. Then

CM “ tC1, C2, C3u, C1 “ H2 \H3, C2 “ H1 \H3, C3 “ H1 \H2,

identifies with the circuits of the prism matroid. It follows that M must
be the prism matroid.

Let W Ď KE be any realization of M. Then dimW “ rkM “ 4 (see
(2.15) and (2.17)). Pick a basis w “ pw1, . . . , w4q of W and denote by
A “ pwijqi,j the coefficient matrix (see Remark 2.15). We may assume
that columns 2, 4, 6, 5 of A form an identity matrix. Since C1 and C2

are circuits, w1
3 “ 0 ‰ w2

3 and w2
1 “ 0 ‰ w1

1. Thus,

A “

¨

˚

˚

˝

˚ 1 0 0 0 0
0 0 ˚ 1 0 0
˚ 0 ˚ 0 0 1
˚ 0 ˚ 0 1 0

˛

‹

‹

‚

.

Since C3 is a circuit, suitably replacing w3, w4 P xw3, w4y, reordering
H3 and scaling e1, e3 makes

A “

¨

˚

˚

˝

˚ 1 0 0 0 0
0 0 ˚ 1 0 0
0 0 0 0 ˚ 1
1 0 1 0 1 0

˛

‹

‹

‚

,

where w1
1, w

2
3, w

3
5 ‰ 0. Now suitably scaling first w1, w2, w3 and then

e2, e4, e6 makes

A “

¨

˚

˚

˝

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
1 0 1 0 1 0

˛

‹

‹

‚

.

Now w “ pw1, . . . , w4q is the desired basis. �
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The following classes of matroids play a distinguished role in con-
nection with 3-connectedness.

Example 2.26 (Wheels and whirls). For n ě 2 the wheel graph Wn in
Figure 3 is obtained from an n-cycle, the “rim”, by adding an additional
vertex and edges, the “spokes”, joining it to each vertex in the rim.
There is a partition of the set of edges

E “ S \ R, S “ ts1, . . . , snu, R “ tr1, . . . , rnu,
into the set S of spokes and the set R of edges in the rim. The symmetry
suggests to use a cyclic index set Zn :“ Z{nZ “ t1, . . . , nu.

sn

rn

s1

r1s2

r2

s3

r3

s4
r4

s5r5

s6

r6
s7

r7
s8

r8

s9

r9

Figure 3. The wheel graph Wn.

For n ě 3, the wheel matroid is the graphic matroid Wn :“ MWn
on

E. For n ě 2, the whirl matroid is the (non-graphic) matroid on E

obtained from MWn
by relaxation of the rim R, that is,

BWn :“ BMWn
\ tRu.

In terms of circuits, this means that

CWn “ CMWn
zR \ ttsu \ R | s P Su.

The matroids Wn and W
n are 3-connected (see [Oxl11, Exa. 8.4.3]) of

rank

rkWn “ n “ rkWn.

For each i P Zn, tsi, ri, si`1u is a triangle and tri, ri`1, si`1u a triad.
Conversely, this property enforces M P tWn,W

nu for any connected
matroid M on E (see [Sey80, (6.1)]). ˛

We describe all realizations of wheels and whirls up to equivalence.
In particular, we recover the well-known fact that whirls are not binary.
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Lemma 2.27 (Realizations of wheels and whirls). Let W Ď KE be any
realization of M P tWn,W

nu. Up to scaling E “ S \ R, W has a basis

(2.20) w1 “ s1 ` r1 ´ t ¨ rn, wi “ si ` ri ´ ri´1, i “ 2, . . . , n,

where t “ 1 if M “ Wn, and t P Kzt0, 1u if M “ W
n.

Proof. Since S P BM, we may assume that the coefficients of sj in wi

form am identity matrix, that is, wisj “ δi,j . The triangle tsj , rj, sj`1u
then forces wjrj , w

j`1
rj

‰ 0 and wirj “ 0 for all i P Znztj, j ` 1u. Suitably
scaling r1, w

2, r2, w
3, . . . , rn´1, w

n, s1, . . . , sn successively yields (2.20).
The claim on t follows from R P CWn

and R P BWn respectively. �

3. Configuration polynomials and forms

In this section, we develop Bloch’s strategy of putting graph polyno-
mials into the context of configuration polynomials and configuration
forms. We lay the foundation for an inductive proof of our main re-
sult using a handle decomposition. In the process, we generalize some
known results on graph polynomials to configuration polynomials.

3.1. Configuration polynomials. To prepare the definition of con-
figuration polynomials we introduce some notation.

Let W Ď KE be a configuration, and let S Ď E be any subset.
Compose the associated inclusion map with πS to a map (see (2.16))

(3.1) αW,S : W
� � // KE πS

// KS.

Fix an isomorphism

(3.2) cW : K
–

//
ŹdimW

W

and set c0 :“ idK for the zero vector space. Any basis of W gives rise
to such an isomorphism and any two such isomorphisms differ by a
non-zero multiple c P K˚. Up to sign or ordering E, we identify

(3.3)

|S|
ľ

KS “ K,
ŝPS

s ÞÑ 1,

as based vector spaces. Suppose that |S| “ dimW . Then the determi-
nant

(3.4) detαW,S : K
cW

–
//
Ź|S|

W

Ź|S| αW,S
//
Ź|S|

KS “ K

is defined up to sign. Its square

(3.5) cW,S :“ pdetαW,Sq2 P K

is defined up to a factor c2 for some c P K˚ independent of S. Note
that detα0,H “ idK and hence c0,H “ 1. By definition (see (2.14)),

(3.6) cW,S ‰ 0 ðñ S P BMW
.
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Remark 3.1 (Compatibility of coefficients with restriction). Let W Ď
KE be a configuration, and let S Ď F Ď E with |S| “ dimW . Then
the maps (3.1) for W and W |F form a commutative diagram

W

αW,S

##

πF |W –

��

� � // KE

πF
��

πS
// KS

W |F

αW |F ,S

<<

� � // KF πS
// KS

and hence cW,S “ c2 ¨ cW |F ,S for some c P K˚ independent of S. ˛
Consider the dual basis E_ “ pe_qePE of E as coordinates on KE ,

(3.7) xe :“ e_, Be :“
B

Bxe
, e P E.

Given an enumeration of E “ te1, . . . , enu, we write

xi :“ xei, Bi :“ Bei, i “ 1, . . . , n.

For any subset S Ď E, we set

(3.8) xS :“ pxeqePS, xS :“
ź

ePS

xe, x :“ xE .

Definition 3.2 (Configuration polynomials). Let W Ď KE be a real-
ization of a matroid M. Then the configuration polynomial ofW is (see
(3.5))

ψW :“
ÿ

BPBM

cW,B ¨ xB P Krxs.

Remark 3.3 (Well-definedness of configuration polynomials). Any two
isomorphisms cW (see (3.2)) differ by a non-zero multiple c P K˚. Using
the isomorphism c ¨ cW in place of cW replaces ψW by c2 ¨ψW . In other
words, ψW is well-defined up to a non-zero constant square factor.
Whenever ψW occurs in a formula, we mean that the formula holds
true for a suitable choice of such a factor. ˛
Remark 3.4 (Equivalence of configuration polynomials). Dividing e P
E by c P K˚ multiplies both xe “ e_ (see Remark 2.16) and the
identifications (3.3) with e P S by c. For each e P B P BM, this
multiplies cW,B by c2 and xB by c. This is equivalent to substituting
c3 ¨ xe for xe in ψW . Scaling E thus results in scaling x in ψW .

However, dropping the equality (3.7) and scaling e P E for fixed xe
replaces W in ψW by a projectively equivalent realization (see [Oxl11,
§6.3]). If M is binary, then all realizations of M over K are projectively
equivalent (see [Oxl11, Prop. 6.6.5]). The corresponding configuration
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polynomials are geometrically equivalent in this case. In general, how-
ever, there are geometrically different configuration polynomials for
fixed M and K (see Example 5.3). ˛

Remark 3.5 (Degree of configuration polynomials). Let W Ď KE be a
realization of a matroid M. Then (see (2.15) and (3.6))

degψW “ rkM “ dimW.

In particular, ψW ‰ 0, and ψW “ 1 if and only if rkM “ 0. By
definition, ψW is independent of (divided by) xe if and only if e P E is
a (co)loop in M. ˛

Remark 3.6 (Matroid polynomials and regularity). For any matroid M,
not necessarily realizable, there is a matroid (basis) polynomial

ψM :“
ÿ

BPBM

xB.

If M is regular, then ψW “ ψM for any totally unimodular realiza-
tion W of M over K. Conversely, this equality for some realization W
over K with chK “ 0 establishes regularity of M. For regular M, all
configuration polynomials over K are geometrically equivalent (see Re-
mark 3.4). In general, however, ψW and ψM are geometrically different
(see Example 5.2). ˛

Example 3.7 (Configuration polynomials of uniform matroids). Let
W Ď KE be a realization of a uniform matroid M “ Ur,n (see Ex-
ample 2.20).

(a) Suppose that M “ Un,n is a free matroid. Then E P BM and

ψW “ xE

is the elementary symmetric polynomial of degree n in n variables.
(b) Suppose that M “ Un´1,n is a circuit. Then E P CM and by

Remark 3.1 and (a)

ψW “
ÿ

ePE

ψW ze, ψW ze “ xEzteu.

A priori, substituting xEzteu for ψW ze in ψW is invalid (see Remark 3.3).
However, this can be achieved as follows: Ordering E “ te1, . . . , enu,W
has a basis wi “ ei ` ci ¨ en with ci P K˚ where i “ 1, . . . , n´ 1. Scaling
first w1, . . . , wn´1 and then e1, . . . , en´1 makes c1 “ ¨ ¨ ¨ “ cn´1 “ 1.
This turns ψW into

ψW “
ÿ

ePE

xEzteu,

the elementary symmetric polynomial of degree n´ 1 in n variables.
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(c) If M “ Un´2,n, then M has
`

n

n´2

˘

bases, and ψW has
`

n

n´2

˘

mono-
mials whose coefficients depend on the choice of W . For instance, the
row span W of the matrix

ˆ

1 0 1 1
0 1 1 ´1

˙

realizes U2,4 and

ψW “ x1x2 ` x1x3 ` x1x4 ` x2x3 ` x2x4 ` 4x3x4.

Realizations of U2,n are treated in in Example 5.4. ˛
In the following, we put matroid connectivity in correspondence with

irreducibility of configuration polynomials.

Proposition 3.8 (Connectedness and irreducibility). Let M be a ma-
troid of rank rkM ě 1 with realization W Ď KE. Then M is connected
if and only if M has no loops and ψW is irreducible. In particular, if
M “ Àn

i“1Mi with connected components Mi and induced decomposi-
tion W “ Àn

i“1Wi (see Lemma 2.19), then ψW “ śn

i“1 ψWi
where ψWi

is irreducible if rkMi ě 1, and ψWi
“ 1 otherwise.

Proof. First suppose that M “ M1‘M2 is disconnected with underlying
proper partition E “ E1 \ E2. By Lemma 2.19, W “ W1 ‘ W2 where
Wi Ď KEi realizes Mi. Then αW,B “ αW1,B1

‘αW2,B2
and hence cW,B “

cW1,B1
¨ cW2,B2

for all B “ B1 \B2 P BM where Bi P BMi
for i “ 1, 2 (see

(2.3)). It follows that ψW “ ψW1
¨ ψW2

. This factorization is proper
if M and hence each Mi has no loops (see Remark 3.5). Thus, ψW is
reducible in this case.

Suppose now that ψW is reducible. Then

ψW “ ψ1 ¨ ψ2

with ψi homogeneous non-constant for i “ 1, 2. Since ψW is a linear
combination of square-free monomials (see Definition 3.2), this yields
a proper partition E “ E1 \ E2 such that ψi P KrxEi

s for i “ 1, 2. Set

(3.9) Mi :“ M|Ei
, i “ 1, 2.

Each basis B P BM indexes a monomial xB in ψW (see (3.6)). Set
Bi :“ B X Ei P IMi

for i “ 1, 2 (see (2.4)). Then xB “ xB1 ¨ xB2 where
xBi is a monomial in ψi for i “ 1, 2. By homogeneity of ψi, Bi P BMi

for i “ 1, 2 and hence B “ B1 \ B2 P BM1‘M2
(see (2.3)). It follows

that BM Ď BM1‘M2
.

Conversely, let B “ B1 \ B2 P BM1‘M2
where Bi P BMi

for i “ 1, 2.
Then Bi “ B1

i X Ei for some B1
i P BM for i “ 1, 2 (see (2.4) and (3.9)).

As above, xBi is a monomial in ψi for i “ 1, 2. Then xB “ xB1 ¨ xB2

is a monomial in ψW and hence B P BM (see (3.6)). It follows that
BM Ě BM1‘M2

as well.
So M “ M1 ‘ M2 is a proper decomposition and M is disconnected.
This proves the equivalence and the particular claims follow. �
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We use the following well-known fact from linear algebra.

Remark 3.9 (Determinant formula). Consider a short exact sequence
of finite dimensional K-vector spaces

0 // W // V // U // 0.

Abbreviate
Ź

V :“ ŹdimV
V . There is a unique isomorphism

ľ

W b
ľ

U “
ľ

V

that fits into a commutative diagram of canonical maps

Ź

W b ŹdimU
V

��

//
ŹdimW

V b ŹdimU
V

��
Ź

W b Ź

U
Ź

V.

Tensored with

p
ľ

Uq_ “
ľ

pU_q, p
ľ

W q_ “
ľ

pW_q,
respectively it induces identifications

ľ

W “
ľ

V b
ľ

U_,
ľ

U “
ľ

W_ b
ľ

V.

Consider a commutative diagram of finite dimensional K-vector spaces
with short exact rows

0 // W

α –
��

// V

γ –
��

// U // 0

0 U 1oo V 1oo W 1

β –

OO

oo 0.oo

Then the above identifications for both rows fit into a commutative
diagram

Ź

W

Ź

α –
��

Ź

W b Ź

U b Ź

U_

Ź

αb
Ź

β´1b
Ź

β_ –
��

Ź

V b Ź

U_

Ź

γb
Ź

β_ –
��

Ź

U 1
Ź

U 1 b Ź

W 1 b Ź

W 1_
Ź

V 1 b Ź

W 1_.

˛
The following result of Bloch, Esnault and Kreimer describes the be-

havior of configuration polynomials under duality (see [BEK06, Prop. 1.6]).

Proposition 3.10 (Dual configuration polynomials). Let W Ď KE be
a realization of a matroid M. For a suitable choice of cW (see (3.2)),

detαWK,SK “ detαW,S

for all S Ď E of size |S| “ rkM. In particular,

ψWK “ xE
_ ¨ ψW ppx´1

e_ qePEq.
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Proof. Let S Ď E be of size |S| “ rkM. Then S P BM if and only if
SK P BMK (see Remark 3.3). We may assume that this is the case as
otherwise both determinants are zero. Then there is a commutative
diagram with exact rows

0 // W //

αW,S –

��

KE //

ν –

��

KE{W // 0

0 KSoo KE_πS˝ν´1

oo KSK
π_
SK

oo

α_
WK,SK–

OO

0oo

where the middle isomorphism is induced by (2.8). This yields a com-
mutative diagram (Remark 3.9 and (2.15))

K

cW

��

–
//
Ź|E|

KE bK K

idbc
WK

��
ŹrkM

W

Ź

rkM αW,S

��

Ź|E|
KE b ŹrkMK

WK

Ź|E| νb
Ź

rkM
K
α
WK,SK

��
ŹrkM

KS
Ź|E|

KE_ b ŹrkMK

KSK
.

Using (3.3), we may drop
Ź|E|

KE and
Ź|E|

KE_
. A suitable choice of

cW turns the upper isomorphism into an equality. The claim follows
by definiton (see (3.4) and Definition 3.2). �

The coefficients of the configuration polynomial satisfy the following
restriction-contraction formula.

Lemma 3.11 (Restriction-contraction for coefficients). Let W Ď KE

be a realization of a matroid M, and let F Ď E be any subset. For any
basis B P BM, B X F P BM|F if and only if BzF P BM{F . In this case,

cW,B “ c2 ¨ cW {F,BzF ¨ cW |F ,BXF

where c P K˚ is independent of B.

Proof. The equivalence for B P BM holds by definition of matroid con-
traction (see (2.6)). For any such B, there is a commutative diagram
with exact rows (see Definition 2.17.(a) and (c))

0 // W {F //
� _

��

W //
� _

��

W |F //
� _

��

0

0 // KEzF //

��

KE //

��

KF //

��

0

0 // KBzF // KB // KBXF // 0.
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Taking exterior powers yields (see Remark 3.9 and (2.15))

K

cW –

��

–

c
// K “ K b K

cW {F bcW |F–
��

ŹrkM
W

Ź

rkM αW,B –

��

ŹrkpM{F q
W {F b ŹrkpM|F q

W |F
Ź

rkpM{F q αW {F,BzF b
Ź

rkpM|F q αW |F ,BXF–
��

ŹrkM
KB

ŹrkpM{F q
KBzF b ŹrkpM|F q

KBXF .

�

The following result describes the behavior of configuration poly-
nomials under deletion-contraction. It is the basis for our inductive
approach to Jacobian schemes of configuration polynomials. The state-
ment on BeψW was proven by Patterson (see [Pat10, Lem. 4.4]).

Proposition 3.12 (Deletion-contraction for configuration polynomi-
als). Let W Ď KE be a realization of a matroid M, and let e P E.
Then

ψW “

$

’

&

’

%

ψW ze “ ψW {e if e is a loop in M,

ψW |e ¨ ψW {e “ ψW |e ¨ ψW ze if e is a coloop in M,

ψW ze ` ψW |e ¨ ψW {e otherwise,

where ψW |e “ xe if e is not a loop in M. In particular,

BeψW “

$

’

&

’

%

0 if e is a loop in M,

ψW {e “ ψW ze if e is a coloop in M,

ψW {e otherwise,

ψW |xe“0 “

$

’

&

’

%

ψW ze “ ψW {e if e is a loop in M,

0 if e is a coloop in M,

ψW ze otherwise.

Proof. Decompose

(3.10) ψW “
ÿ

eRBPBM

cW,B ¨ xB ` xe ¨
ÿ

ePBPBM

cW,B ¨ xBzteu.

The second sum in (3.10) is non-zero if and only if e is not a loop.
Suppose that this is the case. Then M|e is free with basis teu and
ψW |e “ xe by Remark 3.7.(a). By Lemma 3.11 applied to F “ teu, the
second sum in (3.10) then equals (see (2.6) and Remark 3.3)

c2 ¨ cW |e,teu ¨
ÿ

BPBM{e

cW {e,B ¨ xB “ ψW {e

for some c P K˚. The first sum in (3.10) is non-zero if and only if e is
not a coloop. By Lemma 3.11 applied to F “ Ezteu, it equals in this
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case (see (2.4) and Remark 3.3)

c2 ¨ c0,H ¨
ÿ

BPBMze

cW ze,B ¨ xB “ ψW ze

for some c P K˚. If e is a (co)loop, then W {e “ W ze (see Re-
mark 2.18.(a)). The claimed formulas follow. �

The following formula relates configuration polynomials with dele-
tion and contraction of handles. It is the starting point for our descrip-
tion of generic points of Jacobian schemes of configuration hypersur-
faces in terms of handles.

Corollary 3.13 (Configuration polynomials and handles). Let W Ď
KE be a realization of a connected matroid M on E, and let E ‰ H P
HM be a proper handle. Then

ψW “ ψW {pEzHq ¨ ψW zH ` ψW |H ¨ ψW {H ,(3.11)

ψW {pEzHq “
ÿ

hPH

ψW |Hzthu
,(3.12)

ψW |H “ xH , ψW |Hzthu
“ xHzthu.(3.13)

In particular, after suitably scaling H,

(3.14) ψW “
ÿ

hPH

xHzthu ¨ ψW zH ` xH ¨ ψW {H .

Proof. By Lemma 2.4.(b), H P CM{pEzHq and hence (3.12) by Exam-
ple 3.7.(b). By Lemma 2.4.(b) (see (2.4)), M|H is free, and equali-
ties (3.13) follows from Example 3.7.(a). Equality (3.14) follows from
(3.11), (3.12) and Example 3.7.(b). It remains to prove equality (3.11).

We proceed by induction on |H |. Let h P H and set H 1 :“ Hzthu.
Since M is connected, it has no (co)loops and hence

(3.15) ψW “ ψW zh ` ψW |h ¨ ψW {h

by Proposition 3.12. If |H | “ 1, then H P CM{pEzHq implies that
rkpM{pEzhqq “ 0 and hence ψW {pEzhq “ 1 (see Remark 3.5). Sup-
pose now that |H | ě 2. By Lemma 2.4.(b) and (c), M|H 1 is free and H 1

consists of coloops in Mzh. Iterating Proposition 3.12 thus yields

(3.16) ψW zh “
ź

h1PH 1

ψW |h1 ¨ ψW zH “ ψW |H1 ¨ ψW zH.

By Lemma 2.4.(d), the set H 1 is a proper handle in the connected
matroid M{h. By Lemma 2.4.(c), h is a coloop in MzH 1 and hence

W {hzH 1 “ W zH 1{h “ W zH 1zh “ W zH.
by Remark 2.18.(a). By the induction hypothesis,

(3.17) ψW {h “
ÿ

h1PH 1

ψW |
H1zth1u

¨ ψW zH ` ψW |H1 ¨ ψW {H .
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By Lemma 2.4.(b),M|H andM|Hzth1u are free. Iterating Proposition 3.12
thus yields

(3.18) ψW |h ¨ ψW |H1 “ ψW |H , ψW |h ¨ ψW |
H1zth1u

“ ψW |
Hzth1u

.

Using equalities (3.12) and (3.18), equality (3.11) is obtained by sub-
stituting (3.16) and (3.17) into (3.15) (see Remark 3.3). �

The following result describes the behavior of configuration polyno-
mials when passing to an elementary quotient.

Proposition 3.14 (Configuration polynomials of quotients). Let W Ď
KE be a realization of a matroid M, and let 0 ‰ ϕ P W_. Then

ψWϕ
“

ÿ

SĎE
|S|“rkM´1

˜

ÿ

eRS

˘ϕ̃e ¨ detαW,SYteu

¸2

xS,

where ϕ̃ “ pϕ̃eqePE P pKEq_ is any lift of ϕ with a sign ˘ determined
by a Laplace expansion.

Proof. Set V :“ WK and Vϕ :“ WK
ϕ and consider the commutative

diagram with short exact rows and columns

0

��

0

��

K

��

0 // Wϕ

��

// KE // V _
ϕ

//

��

0

0 // W //

ϕ

��

KE

ϕ̃
||③③
③③
③③
③③
③

// V _ //

��

0

K

��

0

0.
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Dualizing and identifying the two copies of K by the Snake Lemma
yields a commutative diagram with short exact rows and columns

(3.19) 0

0 K

OO

¨ϕ̃

}}④④
④④
④④
④④

0 W_
ϕ

oo

OO

KE_
oo Vϕoo

OO

0oo

0 W_oo

OO

KE_
oo Voo

OO

0oo

K

¨ϕ

OO

¨ϕ̃

;;✇✇✇✇✇✇✇✇✇

0

OO

0.

OO

By Remark 3.9 and with a suitable choice of cV (see Remark 3.3), the
right vertical short exact sequence in (3.19) gives rise to a commutative
square

K
cVϕ

//
ŹrkMK`1

Vϕ

K
cV

//
ŹrkMK

V

Let S 1 Ď E_ with |S 1| “ dim Vϕ “ rkMK ` 1 and denote (see (2.8))

ϕ̃S1 “ pϕ̃ν´1peqqePS1 P KS1

.

Due to (3.19) the maps αVϕ,S1 (see (3.1)) and

`

ϕ̃S1 αV,S1

˘

: K ‘ V // KE_ πS1
// KS1

agree after applying
ŹrkMK`1. Laplace expansion thus yields

detαVϕ,S1 “
ÿ

ePS1

˘ϕ̃ν´1peq ¨ detαV,S1zteu.

Let S Ď E with |S| “ dimWϕ “ rkM ´ 1 and S 1 “ SK. Then
Proposition 3.10 yields

cWϕ,S “
˜

ÿ

eRS

˘ϕ̃e ¨ detαW,SYteu

¸2

. �
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3.2. Graph polynomials. We continue the discussion of graphic ma-
troids from §2.4 and consider their configuration polynomials.

Definition 3.15 (Graph polynomials). The (first) Kirchhoff polyno-
mial of a graph G over K is the polynomial

ψG :“
ÿ

TPTG

xT P Krxs.

Replacing xT by xEzT defines the (first) Symanzik polynomial ψK
G of a

graph G over K. We refer to ψG and ψK
G as (first) graph polynomials.

By (2.17), we have ψG “ ψW for any totally unimodular realiza-
tion W of MG. In particular, this yields the following result of Bloch,
Esnault and Kreimer (see [BEK06, Prop. 2.2] and Proposition 3.10).

Proposition 3.16 (Graph polynomials as configuration polynomials).
The graph polynomials

ψG “ ψWG
, ψK

G “ ψWK
G
,

are the configuration polynomials of the graph configuration and of its
dual (see Definition 2.23). �

Example 3.17 (Graph polynomial of the prism). For the unique real-
ization W “ WG of the prism matroid (see Lemma 2.25),

ψW “ ψG “ x1x2px3 ` x4qpx5 ` x6q
` x3x4px1 ` x2qpx5 ` x6q
` x5x6px1 ` x2qpx3 ` x4q

is the Kirchhoff polynomial of the p2, 2, 2q-theta graph G (see Figure 2).
˛

Let G “ pE, V q be a graph. A 2-forest in G is an acyclic subgraph
T of G with |V | ´ 2 edges. Any such T “ tT1, T2u has 2 connected
components T1 and T2. We denote by T 2

G the set of all 2-forests in G.

Definition 3.18 (Second graph polynomials). The second Kirchhoff
polynomial of a graph G over K is the polynomial

ψGppq :“
ÿ

tT1,T2uPT 2

G

mT1ppq2 ¨ xT1\T2 P Krxs, mTippq :“
ÿ

vPTi

pv,

depending on a momentum 0 ‰ p P ker σ for G over K (see (2.18)).
Note that

mT1ppq “
ÿ

vPT1

pv “ ´
ÿ

vPT2

pv “ ´mT2ppq

and hence the coefficient mT1ppq2 P K of ψGppq is well-defined.
Replacing the 2-forests T1 \ T2 by cut sets EzpT1 \ T2q defines the

second Symanzik polynomial ψK
Gppq of a graph G over K (see [Pat10,

Def. 3.6]). We refer to ψGppq and ψK
Gppq as second graph polynomials.
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The following reformulation of a result of Patterson realizes second
graph polynomials as configuration polynomials of a (dual) elementary
quotient (see [Pat10, Prop. 3.3] and Proposition 3.10). Patterson’s
proof makes the general formula in Proposition 3.14 explicit in case of
graph configurations (see [Pat10, Lem. 3.4]).

Proposition 3.19 (Second graph polynomials as configuration poly-
nomials). The second graph polynomials

ψGppq “ ψpWGqp, ψK
Gppq “ ψppWGqpqK,

are the configuration polynomials of the quotient of the graph config-
uration by a momentum and of its dual (see Definitions 2.17.(d) and
(e) and 2.23). �

3.3. Configuration forms. The configuration form yields an equiv-
alent definition of the configuration polynomial as a determinant of
a symmetric matrix with linear entries. Its second degeneracy locus
turns out to be the non-smooth locus of the hypersurface defined by
the corresponding configuration polynomial.

Definition 3.20 (Configuration forms). Let µK denote the multipli-
cation map of K. Consider the generic diagonal bilinear form on KE ,

QKE :“
ÿ

ePE

xe ¨ µK ˝ pe_ ˆ e_q : KE ˆ KE Ñ Krxs.

Let W Ď KE be a configuration. Then the configuration (bilinear)
form of W is the restriction of QKE to W ,

QW :“ QKE |WˆW : W ˆ W Ñ Krxs.
Alternatively, it can be seen as the composition of canonical maps

(3.20) QW : W rxs // KErxs
Q
KE

// KE_rxs // W_rxs,
where ´rxs means ´ b Krxs. For k “ 0, . . . , r :“ dimW , it defines a
map

r´k
ľ

W b
r´k
ľ

W b Krxs Ñ Krxs.
Its image is the kth Fitting ideal Fittk cokerQW (see [Eis95, §20.2])
and defines the k ´ 1st degeneracy scheme of QW . We set

MW :“ Fitt1 cokerQW EKrxs.
Note the different fonts used for MW and MW (see Definition 2.14).

Remark 3.21 (Configuration forms as matrices). With respect to a basis
w “ pw1, . . . , wrq of W , QW becomes a matrix of Hadamard products
(see Remark 2.15)

Qw “ p
@

x, wi ‹ wj
D

qi,j “
˜

ÿ

ePE

xe ¨ wie ¨ wje

¸

i,j

P Krˆr, wie “ e_pwiq.
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Let Qi,j denote the submaximal minor of a square matrix Q obtained
by deleting row i and column j. Then

MW “
@

Q
i,j
W

ˇ

ˇ i, j P t1, . . . , ru
D

.

Any basis of W can be written as w1 “ Uw for some U P AutKW .
Then

Qw1 “ UQwU
t.

and the Qi,j
w1 become K-linear combinations of the Qi,j

w . We often con-
sider QW as a matrix Qw determined up to conjugation. ˛
Remark 3.22 (Configuration forms and basis scaling). Scaling E results
in scaling x in QW and in MW (see Remark 3.4). ˛

Bloch, Esnault and Kreimer defined ψW in terms of QW (see [BEK06,
Lem. 1.3]).

Lemma 3.23 (Configuration polynomial from configuration form).
For any configuration W Ď KE, the configuration polynomial

ψW “ detQW P MW

is the determinant of the configuration form (see Remarks 3.3 and
3.21). �

Example 3.24 (Configuration form of the prism realization). Consider
the realizationW of the prism matroid with basis given in Lemma 2.25.
Then the corresponding matrix of QW reads (see Remark 3.21)

QW “

¨

˚

˚

˝

x1 ` x2 0 0 x1
0 x3 ` x4 0 x3
0 0 x5 ` x6 x5
x1 x3 x5 x1 ` x3 ` x5

˛

‹

‹

‚

.

Lemma 3.23 recovers the polynomial detQW “ ψW in Example 3.17.
˛

The following result describes the behavior of Fitting ideals of con-
figuration forms under duality. We consider the torus

TE :“ pK˚qE Ă KE , KrTEs “ Krx˘1s “ KrxsxE .
The Cremona isomorphism TE – TE_

is defined by

(3.21) ζE : KrTEs – KrTE_s, x´1
e Ø xe_ , e P E.

Proposition 3.25 (Duality and cokernels of configuration forms). Let
W Ď KE be a configuration. Then there is an isomorphism over ζE,

cokerpQW qxE – cokerpQWKqxE_ ,

where the indices denote localization (see (3.8)). In particular, this
induces an isomorphism

pMW qxE – pMWKqxE_ .



CONFIGURATION HYPERSURFACES 35

Proof. Consider the short exact sequence

(3.22) 0 // W // KE // KE{W // 0

and its K-dual

(3.23) 0 W_oo KE_
oo WKoo 0.oo

We identify KE “ KE__
and KE{W “ WK_, and we abbreviate

Q :“ QKE , Q_ :“ QKE_ .

Then QxE and Q_
xE

_ are mutual inverses under ζE. Together with

(3.22) and (3.23) tensored by Krx˘1s and (3.20) for W and WK, they
fit into a commutative diagram with exact rows connected vertically
by morphisms over ζE

0

0

��

cokerpQWKqxE_

OO

0 // W rx˘1s
pQW q

xE

��

// KErx˘1s

66♥
♥

♥
♥

♥
♥

Q
xE

��

// WK_rx˘1s

OO

// 0

0 W_rx˘1s

��

oo KE_rx˘1s

ww♦
♦
♦
♦
♦
♦

Q_
xE

_

OO

oo WKrx˘1s

pQ
WK q

xE
_

OO

oo 0oo

cokerpQW qxE

��

0

OO

0,

where ´rx˘1s means ´ b Krx˘1s. Exactness of the columns is due to
detQW “ ψW ‰ 0 (see Lemma 3.23 and Remark 3.5). Composing
the middle vertical isomorphism over ζE with (taking preimages along)
the dashed compositions yields the claimed isomorphism by a diagram
chase. �

The following result describes the behavior of submaximal minors of
configuration forms under deletion-contraction. It is the basis for our
inductive approach to second degeneracy schemes.

Lemma 3.26 (Deletion-contraction for submaximal minors). Let W Ď
KE be a realization of a matroid M of rank r “ rkM, and let e P E.
Then any basis of W {e can be extended to bases of W and W ze such
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that Qi,j
W “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

Q
i,j

W ze “ Q
i,j

W {e if e is a loop in M,

ψW ze “ ψW {e if e is a coloop in M, i “ r “ j,

xe ¨Qi,j

W ze “ xe ¨Qi,j

W {e if e is a coloop in M, i ‰ r ‰ j,

0 if e is a coloop in M, otherwise,

ψW {e if e is not a (co)loop in M, i “ r “ j,

Q
i,j

W ze if e is not a (co)loop in M, i “ r or j “ r,

Q
i,j

W ze ` xe ¨Qi,j

W {e if e is not a (co)loop in M, i ‰ r ‰ j,

for all i, j P t1, . . . , ru. In particular, the Qi,j
W are linear combinations

of square-free monomials for any basis of W .

Proof. Pick a basis w1, . . . , wr of W Ď KE and consider

QW “
˜

ÿ

ePE

xe ¨ wie ¨ wje

¸

i,j

P Krˆr

as a matrix (see Remark 3.21). Recall that (see Definition 2.17.(b) and
(c)),

W ze “ πEzteupW q, W {e “ W X KEzteu,

and the description of (co)loops in Remark 2.18.(a):
‚ If e is a loop, then wie “ 0 for all i “ 1, . . . , r and hence W ze “

W “ W {e.
‚ If e is not a loop, then we may adjust w1, . . . , wr such that wie “ δi,r

for all i “ 1, . . . , r and then w1, . . . , wr´1 is a general basis of W {e.
‚ If e is a coloop, then we may adjust wr “ e and πEzteu identifies

w1, . . . , wr´1 with a basis of W ze “ W {e.
In the latter case,

(3.24) QW “
ˆ

QW ze 0
0 xe

˙

,

and the claimed equalities follow (see Lemma 3.23).
It remains to consider the case in which e is not a (co)loop. Then

ιEzteu and πEzteu (see (2.16)) identify w1, . . . , wr´1 and w1, . . . , wr with
bases of W {e and W ze respectively. Hence,

(3.25) QW ze “
ˆ

QW {e b

bt a

˙

, QW “
ˆ

QW {e b

bt xe ` a

˙

,

where both the entry a and column b are independent of xe. We con-
sider two cases. If i “ r or j “ r, then clearly Qi,j

W “ Q
i,j

W ze. Otherwise,

Q
i,j
W “ Q

i,j

W ze ` xe ¨Qi,j

W {e.

This proves the claimed equalities also in this case (see Lemma 3.23)
and the particular claim follows. �
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As an application of Lemma 3.23, we describe the behavior of con-
figuration polynomials under 2-separations.

Proposition 3.27 (Configuration polynomials and 2-separations). Let
W Ď KE be a realization of a connected matroid M. Suppose that
E “ E1 \ E2 is an (exact) 2-separation of M. Then

ψW “ ψW {E1
¨ ψW |E1

` ψW |E2
¨ ψW {E2

.

Proof. We adopt the notation from [Tru92, §8.2]. Extend a basis B2 P
BM|E2

to a basis B P BM. Then W is the row span of a matrix (see

[Tru92, (8.1.1)] and Remark 2.15)

A “
ˆ

I 0 A1 0
0 I D A1

2

˙

,

where the block columns are indexed by BzB2, B2, E1zB,E2zB2, and
rkD “ 1. After suitably ordering and scaling B2, E1zB the lower rows
of A, we may assume that

D “ p1 bqta1,
a1 “

`

1 ¨ ¨ ¨ 1 0 ¨ ¨ ¨ 0
˘

‰ 0,

b “
`

1 ¨ ¨ ¨ 1 0 ¨ ¨ ¨ 0
˘

.

The size of b and a1 is determined by number of rows and columns of
D, respectively. While b could be 0, at least one entry of a1 is a 1. After
suitable row operations and adjusting signs of B2, we can repartition

(3.26) A “

¨

˝

I 0 0 A1 0
0 1 0 a1 a2
0 bt I 0 A2

˛

‚.

Denote by e P E the index of the column p0 1 bqt. LetX1, xe, X2, X
1
1, X

1
2

be diagonal matrices of variables corresponding to the block columns
of A. Then the configuration form of W becomes (see Remark 3.21)

QW “

¨

˝

X1 ` A1X
1
1A

t
1 A1X

1
1a
t
1 0

a1X
1
1A

t
1 xe ` a1X

1
1a
t
1 ` a2X

1
2a
t
2 xeb ` a2X

1
2A

t
2

0 btxe ` A2X
1
2a
t
2 btxeb` X2 ` A2X

1
2A

t
2

˛

‚,

which involves

QW |E1
“
ˆ

QW {E2
A1X

1
1a
t
1

a1X
1
1A

t
1 a1X

1
1a
t
1

˙

,

QW {E2
“ X1 ` A1X

1
1A

t
1,

QW |E2
“
ˆ

xe ` a2X
1
2a
t
2 xeb ` a2X

1
2A

t
2

btxe ` A2X
1
2a
t
2 QW {E1

˙

,

QW {E1
“ btxeb` X2 ` A2X

1
2A

t
2.

Laplace expansion of ψW “ detQW (see Lemma 3.23) along the eth
column yields the claimed formula. �



38 G. DENHAM, M. SCHULZE, AND U. WALTHER

Remark 3.28 (Configuration polynomials and handles). Let W Ď KE

be a realization of a connected matroid M, and let H P HM be a sep-
arating handle. By Lemma 2.4.(e), H is a 2-separation of M. Propo-
sition 3.27 applied to E “ pEzHq \ H thus yields the statement of
Corollary 3.13 in this case. ˛

4. Configuration hypersurfaces

In this section, we establish our main results on Jacobian and second
degeneracy schemes of realizations of connected matroids: the second
degeneracy scheme is Cohen–Macaulay, the Jacobian scheme equidi-
mensional, of codimension 3 (see Theorem 4.25). The second degen-
eracy scheme is reduced, the Jacobian scheme generically reduced if
chK ‰ 2 (see Theorem 4.25).

4.1. Commutative ring basics. In this subsection, we review the rel-
evant preliminaries on equidimensionality and graded Cohen–Macaulay-
ness using the books of Matsumura (see [Mat89]) and Bruns and Her-
zog (see [BH93]) as comprehensive references. For the benefit of the
non-experts we provide detailed proofs. Further we relate generic re-
ducedness for a ring and an associated graded ring (see Lemma 4.7).

4.1.1. Equidimensionality of rings. Let R be a Noetherian ring. We
denote by Min SpecR and Max SpecR the sets of minimal and maximal
elements of the set SpecR of prime ideals of R with respect to inclusion.
The subset AssR Ď SpecR of associated primes of R is finite and
Min SpecR Ď AssR (see [Mat89, Thm. 6.5]).

One says that R is catenary if every saturated chain of prime ideals
joining p, q P SpecR with p Ď q has (maximal) length heightpq{pq (see
[Mat89, p. 31]). We say that R is equidimensional if it is catenary and

@p P Min SpecR : @m P Max SpecR : p Ď m ùñ heightpm{pq “ dimR.

If R is a finitely generated K-algebra, then these two conditions reduce
to (see [BH93, Thm. 2.1.12] and [Mat89, Thm. 5.6])

@p P Min SpecR : dimpR{pq “ dimR.

We say that R is pure-dimensional if

@p P AssR : dimpR{pq “ dimR,

which implies in particular that AssR “ Min SpecR. It follows that
pure-dimensional finitely generated K-algebras are equidimensional.

The following lemma applies to any equidimensional finitely gener-
ated K-algebra.

Lemma 4.1 (Height bound for adding elements). Let R be a Noether-
ian ring such that Rm is equidimensional for all m P MaxSpecR.

(a) All saturated chains of primes in p P SpecR have length height p.
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(b) For any p P SpecR, x P R and q P SpecR minimal over p ` xxy,
height q ď height p ` 1.

Proof.
(a) Take two such chains of length n and n1 starting at minimal

primes p0 and p1
0 respectively. Extend both by a saturated chain of

primes of length m containing p and ending in a maximal ideal m.
Since Rm is equidimensional by hypothesis, these extended chains have
length n` m “ n1 ` m. Therefore, the two chains have length n “ n1.

(b) By Krull’s principal ideal theorem, heightpq{pq ď 1. Take a
chain of primes in p of length height p and extend it by q if p ‰ q. By
(a), this extended chain has length height q and the claim follows. �

Lemma 4.2 (Equidimensional finitely generated algebras and local-
ization). Let R be an equidimensional finitely generated K-algebra and
x P R. If Rx ‰ 0, then Rx is equidimensional of dimension dimRx “
dimR.

Proof. Any minimal prime ideal of Rx is of the form px where p P
Min SpecR with x R p. By the Hilbert Nullstellensatz (see [Mat89,
Thm. 5.5]),

č

MaxV ppq “ p.

This yields an m P MaxSpecR such that p Ď m S x and hence px Ď
mx P MaxSpecRx. Since R and hence Rx is a finitely generated K-
algebra,

dimpRx{pxq “ heightpmx{pxq “ heightpm{pq “ dimR

by equidimensionality of R. The claim follows. �

4.1.2. Generic reducedness. The following types of Artinian local rings
coincide: field, regular ring, integral domain and reduced ring (see
[Mat89, Thms. 2.2, 14.3]). A Noetherian ring R is generically reduced
if the Artinian local ring Rp is reduced for all p P Min SpecR (see
[Mat89, Exc. 5.2]). This is equivalent to R satisfying Serre’s condition
(R0). We use the same notions for the associated affine scheme SpecR.

Definition 4.3 (Generic reducedness). We call a Noetherian scheme X
generically reduced along a subscheme Y if X is reduced at all generic
points specializing to a point of Y . If X “ SpecR is an affine scheme,
then we use the same notions for the Noetherian ring R.

Lemma 4.4 (Reducedness and purity). A Noetherian ring R is reduced
if it is generically reduced and pure-dimensional.

Proof. Since R is pure-dimensional, AssR “ Min SpecR and hence R
becomes a subring of localizations (see [Mat89, Thm. 6.1.(i)])

R ãÑ
à

pPAssR

Rp “
à

MinSpecR

Rp.
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The latter ring is reduced since R is generically reduced, and the claim
follows. �

Lemma 4.5 (Reducedness and reduction). Let pR,mq be a local Noe-
therian ring. Suppose that R{tR is reduced for a system of parameters
t. Then R is regular and, in particular, an integral domain and reduced.

Proof. By hypothesis, R{tR is local Artinian with maximal ideal m{tR.
Reducedness makes R{tR a field and hence m “ tR. By definition, this
means that R is regular. In particular, R is an integral domain and
reduced (see [Mat89, Thm. 14.3]). �

Definition 4.6 (Rees algebras). Let R be a ring and I E R an ideal.
The (extended) Rees algebra is the Rrts-algebra (see [HS06, Def. 5.1.1])

ReesI R :“ Rrt, It´1s Ď Rrt˘1s.
The associated graded algebra is the R{I-algebra

grI R :“
8
à

i“0

I i{I i`1.

Lemma 4.7 (Generic reducedness from associated graded ring). Let
R be a Noetherian d-dimensional ring, I E R an ideal, S :“ ReesI R
and R̄ :“ grI R.

(a) Suppose R is an equidimensional finitely generatedK-algebra. Then
S is a pd ` 1q-equidimensional finitely generated K-algebra.

(b) If S is pd`1q-equidimensional and I ‰ R, then R̄ is d-equidimensional.
(c) If S is equidimensional and R̄ is generically reduced, then R is

generically reduced along V pIq.
Proof. There are ring homomorphisms

R Ñ Rrts Ñ S Ñ S{tS – R̄.

Since R is Noetherian, I is finitely generated and S finite type over R.
(a) If R is an integral domain, then so are S Ď Rrt˘1s. By definition,

formation of the Rees ring commutes with base change. After base
change to R{p for some p P Min SpecR, we may assume that R is a d-
dimensional integral domain. Then S is a pd` 1q-dimensional integral
domain (see [HS06, Thm. 5.1.4]). Since S is a finitely generated K-
algebra (as R is one), S is equidimensional.

(b) Multiplication by t is injective on Rrt˘1s and hence on S. If
I ‰ R, then S{tS – R̄ ‰ 0 and t is an S-sequence. Since S is pd `
1q-equidimensional, R̄ is d-equidimensional by Krull’s principal ideal
theorem.

(c) Let p P Min SpecR and consider the extension prt˘1s P SpecRrt˘1s.
Then (see [HS06, p. 96])

t R p̃ :“ prt˘1s X S P Min SpecS
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and hence

(4.1) Sp̃ “ pStqp̃t “ Rrt˘1sprt˘1s.

Since prt˘1s X R “ p, the map R Ñ Rrt˘1s induces an injection

(4.2) Rp ãÑ Rrt˘1sprt˘1s.

To check injectivity, consider Rp Q x{1 ÞÑ 0 P Rrt˘1sprt˘1s. Then 0 “
xy P Rrt˘1s for some y “ ř

i yit
i P Rrt˘1szprt˘1s. Then 0 “ xyi P R for

all i and yj P Rzp for some j. It follows that 0 “ x{1 P Rp. Combining
(4.1) and (4.2) reducedness of Rp follows from reducedness of Sp̃.

Suppose now that V ppq XV pIq ‰ H and hence (the subscript denot-
ing graded parts)

R ‰ p ` I “ p̃0 ` ptSq0 “ pp̃ ` tSq0
implies that p̃ ` tS ‰ S. Let q P SpecS be a minimal prime ideal over
p̃ ` tS. No minimal prime ideal of S contains the S-sequence t P q.
By Lemma 4.1.(b), height q “ 1 and q is minimal over t. This makes
t a parameter of the localization Sq. Under S{tS – R̄, the minimal
prime ideal q{tS P SpecpS{tSq corresponds to a minimal prime ideal
q̄ P Spec R̄. Suppose that R̄ is generically reduced. Then

Sq{tSq “ pS{tSqq{tS – R̄q̄

is reduced. By Lemma 4.5, Sq and hence its localization pSqqp̃q “ Sp̃ is
reduced. Then also Rp is reduced, as shown before. �

4.1.3. Graded Cohen–Macaulay rings. Let pR,mq be a Noetherian ˚local
ring (see [BH93, Def. 1.5.13]). By definition, this means that R is a
graded ring with unique maximal graded ideal m. For any p P SpecR,
denote by p˚ P SpecR the maximal graded ideal contained in p (see
[BH93, Lem. 1.5.6.(a)]). For any p P SpecR, there is a chain of max-
imal length of graded prime ideals strictly contained in p (see [BH93,
Lem. 1.5.8]). If m R MaxSpecR, then such a chain for n P MaxSpecR
ends with m Ĺ n. It follows that

(4.3) dimR “
#

dimRm if m P Max SpecR,

dimRm ` 1 if m R Max SpecR.

For any proper graded ideal I ⊳ R also pR{I,m{Iq is ˚local and

(4.4) m P MaxSpecR ðñ m{I P MaxSpecpR{Iq.
Any associated prime p P AssR is graded (see [BH93, Lem. 1.5.6.(b).(ii)])
and hence p Ď m. This yields a bijection (see [Mat89, Thm. 6.2])

(4.5) AssR Ñ AssRm, p ÞÑ pm.

If I E R is a graded ideal and p P SpecR minimal over I, then p{I P
Min SpecpR{Iq Ď AsspR{Iq and hence p is graded.

The following lemma shows in particular that ˚local Cohen–Macaulay
rings are pure- and equidimensional.
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Lemma 4.8 (Height and codimension). Let pR,mq be a ˚local Cohen–
Macaulay ring and I E R a graded ideal. Then R is pure-dimensional
and

(4.6) height I “ codim I.

In particular, R{I is equidimensional if and only if height p “ codim I

for all minimal p P SpecR over I.

Proof. The ˚local ring pR,mq is Cohen–Macaulay if and only if the
localization Rm is Cohen–Macaulay (see [BH93, Exc. 2.1.27.(c)]). In
particular, Rm is pure-dimensional (see [BH93, Prop. 1.2.13]) and (see
[BH93, Cor. 2.1.4])

(4.7) height Im “ codim Im

Using (4.3), (4.4) for I “ p and bijection (4.5), it follows that R is
pure-dimensional:

@p P AssR : dimR “
#

dimRm if m P MaxSpecR,

dimRm ` 1 if m R MaxSpecR,

“
#

dimpRm{pmq if m P Max SpecR,

dimpRm{pmq ` 1 if m R Max SpecR,

“
#

dimpR{pqm{p if m P MaxSpecR,

dimpR{pqm{p ` 1 if m R MaxSpecR,

“ dimpR{pq.
Using (4.3) and (4.4), (4.6) follows from (4.7):

height I “ height Im “ codim Im

“ dimRm ´ dimpRm{Imq
“ dimRm ´ dimpR{Iqm{I

“ dimR ´ dimpR{Iq “ codim I.

Since R is Cohen–Macaulay, it is (universally) catenary (see [BH93,
Thm. 2.1.12]). By (4.4) and the preceding discussion of chains of prime
ideals in R{I and R{p, I is equidimensional if and only if dimpR{Iq “
dimpR{pq for all prime ideals p P SpecRminimal over I. The particular
claim then follows by (4.6) for I and p. �

4.2. Jacobian and degeneracy schemes. In this subsection, we as-
sociate Jacobian and second degeneracy schemes to a configuration.
By results of Patterson and Kutz, their supports coincide and their
codimension is at most 3.

For a Noetherian ring R, we consider the associated affine (Noether-
ian) scheme SpecR, whose underlying set consists of all prime ideals
of R. We refer to elements of Min SpecR as generic points, of AssR
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as associated points, and of AssRzMin SpecR as embedded points of
SpecR. An ideal I ER defines a subscheme SpecpR{Iq Ď SpecR.

By abuse of notation we identify

KE “ SpecKrxs.
Due to Lemma 4.8,

codimKE SpecpKrxs{Iq “ height I

for any graded ideal I EKrxs.
Definition 4.9 (Configuration schemes). Let W Ď KE be a configu-
ration. Then the subscheme

XW :“ SpecpKrxs{xψW yq Ď KE

is called the configuration hypersurface of W . In particular, XG :“
XWG

is the graph hypersurface of G (see Definition 2.23). The ideal

JW :“ xψW y ` xBeψW | e P Ey EKrxs
is the Jacobian ideal of ψW . We call the subschemes (see Defini-
tion 3.20)

ΣW :“ SpecpKrxs{JW q Ď KE, ∆W :“ SpecpKrxs{MW q Ď KE ,

the Jacobian scheme of XW and the second degeneracy scheme of QW .

Remark 4.10 (Degeneracy and non-smooth loci). If chK ffl rkM “
degψ (see Remark 3.5), then ψW is a redundant generator of JW due
to the Euler identity. By Lemma 3.23, Xred

W and ∆red
W are the first

and second degeneracy loci of QW (see Definition 3.20) whereas Σred
W is

the non-smooth locus of XW over K (see [Mat89, Thm. 30.3.(1)]). If
K is perfect, then Σred

W is the singular locus of XW (see [Mat89, §28,
Lem. 1]). ˛
Remark 4.11 (Loops and line factors). Let W Ď KE be a realization of
matroid M. Suppose that e is a loop in M, that is, e_|W “ 0. Then ψW
and QW are independent of xe (see Remark 3.5 and Definition 3.20)

XW “ XW ze ˆ A1, ΣW “ ΣW ze ˆ A1, ∆W “ ∆W ze ˆ A1. ˛
Lemma 4.12 (Inclusions of schemes). For any configurationW Ď KE,
there are inclusions of schemes ∆W Ď ΣW Ď XW Ď KE.

Proof. By definition, ψW P JW and hence the second inclusion. By
Lemma 3.23, ψW “ detQW P MW and hence BeψW P MW for all e P E.
Thus, JW Ď MW and the first inclusion follows. �

Remark 4.13 (Schemes for matroids of small rank). Let W Ď KE be a
realization of a matroid M.

(a) If rkM ď 1, then ψW “ 1 (see Remark 3.5) or ψW ‰ 0 is a
K-linear form. In both cases, ΣW “ H “ ∆W . If rkM ě 2, then
xxy P ΣW ‰ H ‰ ∆W Q xxy.
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(b) If rkM “ 2, then ∆W is a K-linear subspace of KE and hence an
integral scheme. If chK ‰ 2, the same holds for ΣW due to the Euler
identity (see Remark 4.10). Otherwise, the non-redundant quadratic
generator ψW of JW can make ΣW non-reduced (see Example 4.14). ˛
Example 4.14 (Schemes for the triangle). LetM be a matroid on E P CM

with |E| “ 3 and hence rkM “ |E| ´1 “ 2. Up to scaling and ordering
E “ te1, e2, e3u, any realization W Ď KE of M has the basis

w1 :“ e1 ` e3, w2 :“ e2 ` e3.

With respect to this basis, we compute

QW “
ˆ

x1 ` x3 x3
x3 x2 ` x3

˙

,

MW “ xx1 ` x3, x2 ` x3, x3y “ xx1, x2, x3y.
It follows that ∆W is a reduced point.

On the other hand,

ψW “ detQW “ x1x2 ` x1x3 ` x2x3,

JW “ xψW , x1 ` x2, x1 ` x3, x2 ` x3y.
The matrix expressing the linear generators x1 ` x2, x1 ` x3, x2 ` x3 in
terms of the variables x1, x2, x3 has determinant 2. If chK ‰ 2, then
JW “ xx1, x2, x3y and ΣW is a reduced point. Otherwise,

JW “ xψW , x1 ´ x3, x2 ´ x3y “
@

x1 ´ x3, x2 ´ x3, x
2
3

D

and ΣW is a non-reduced point. ˛
Lemma 4.15. Consider two sets of variables x “ x1, . . . , xn and y “
y1, . . . , ym. Let 0 ‰ f P I EKrxs and 0 ‰ g P J EKrys. Then

f ¨ Jrxs ` Irys ¨ g “ xf, gy X Irys X Jrxs EKrx, ys.
Proof. For the non-obvious inclusion, take h “ af ` bg P Irys X Jrxs.
Since f P Irys, bg P Irys and similarly af P Jrxs. Since f ‰ 0 and J are
in different variables, it follows that a P Jrxs and similarly b P Irys. �

Theorem 4.16 (Decompositions of schemes). Let W Ď KE be a re-
alization of a matroid M without loops. Suppose that M “ Àn

i“1Mi

decomposes into connected components Mi on Ei. Let W “ Àn

i“1Wi

be the induced decomposition into Wi Ď KEi (see Lemma 2.19). Then
XW is the reduced union of integral schemes XWi

ˆ KEzEi, and ΣW is
the union of ΣWi

ˆKEzEi and integral schemes XWi
ˆXWj

ˆKEzpEiYEjq

for i ‰ j. The same holds for Σ replaced by ∆. In particular, XW is
generically smooth over K.

Proof. Proposition 3.8 yields the claim on XW (see Remark 3.5). For
the claims on ΣW and ∆W , we may assume that n “ 2 withM1 possibly
disconnected. The general case then follows by induction on n.
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By Proposition 3.8 and Definition 3.20, ψW “ ψW1
¨ ψW2

and QW “
QW1

‘ QW2
. Then Lemma 4.15 yields

JW “ ψW1
¨ JW2

rxE1
s ` JW1

rxE2
s ¨ ψW2

“ xψW1
, ψW2

y X JW1
rxE2

s X JW2
rxE1

s,
and hence

ΣW “ pXW1
ˆ XW2

q Y pΣW1
ˆ KE2q Y pKE1 ˆ ΣW2

q.
The same holds for J and Σ replaced by M and ∆ respectively.

Suppose now that M is connected. By Proposition 3.12, ψW ∤ BeψW
for any e P E and hence ΣW Ĺ XW . The particular claim follows. �

Patterson proved the following result (see [Pat10, Thm. 4.1]). While
Patterson assumes chK “ 0 and excludes the generator ψW P JW , his
proof works in general (see Remark 4.10). We give an alternative proof
using Dodgson identities.

Theorem 4.17 (Non-smooth loci and second degeneracy schemes).
Let W Ď KE be a configuration. Then there is an equality of reduced
loci

Σred
W “ ∆red

W .

In particular, ΣW and ∆W have the same generic points, that is,

MinΣW “ Min∆W .

Proof. Order E “ te1, . . . , enu and pick a basis w “ pw1, . . . , wrq of
W . We may assume that its coefficients with respect to e1, . . . , er
form an identity matrix, that is, wiej “ δi,j for i, j P t1, . . . , ru. For

i, j P t1, . . . , ru denote by Q
ti,ju,ti,ju
W the minor of QW obtained by

deleting rows and columns i, j. Then there are Dodgson identities (see
Remark 3.21, Lemma 3.23 and [BEK06, Lem. 8.2])

pQi,j
W q2 “ Q

i,j
W ¨Qj,i

W “ Q
i,i
W ¨Qj,j

W ´ detQW ¨ Qti,ju,ti,ju
W

“ BiψW ¨ BjψW ´ ψW ¨Qti,ju,ti,ju
W P JW

for i, j P t1, . . . , ru. In particular, any prime ideal p P SpecKrxs over
JW contains MW and hence Σred

W Ď ∆red
W . The opposite inclusion is due

to Lemma 4.12. �

Corollary 4.18 (Cremona isomorphism). Let W Ď KE be a configu-
ration. Then the Cremona isomorphism TE – TE_

identifies

XW X TE – XWK X TE_

,

ΣW X TE – ΣWK X TE_

,

∆W X TE – ∆WK X TE_

.

In particular, ΣW , ∆W , ΣWK and ∆WK have the same generic points
in TE – TE_

.
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Proof. Propositions 3.10 and 3.25 yield the statements for XW and
∆W . The statement for ΣW follows using that ζE (see (3.21)) iden-
tifies xeBe “ ´xe_Be_ for e P E. The particular claim follows with
Theorem 4.17. �

Proposition 4.19 (Codimension bound). Let W Ď KE be a config-
uration. Then the codimensions of ΣW and ∆W in KE are bounded
by

codimKE ΣW “ codimKE ∆W ď 3.

In case of equality, ∆W is Cohen–Macaulay (and hence pure-dimensional)
and ΣW is equidimensional.

Proof. The equality of codimensions follows from Theorem 4.17. The
scheme ∆W is defined by the ideal MW of submaximal minors of the
symmetric matrix QW with entries in the Cohen–Macaulay ring Krxs
(see [BH93, p. 2.1.9]). In particular, codimKE ΣW “ gradeMW (see
[BH93, 2.1.2.(b)]). Kutz proved the claimed inequality and that MW

is a perfect ideal in case of equality (see [Kut74, Thm. 1]). In the
latter case, Krxs{MW “ Kr∆W s is a Cohen–Macaulay ring (see [BH93,
Thm. 2.1.5.(a)]) and hence pure-dimensional (see Lemma 4.8). Then
ΣW is equidimensional by Theorem 4.17. �

4.3. Generic points and codimension. In this subsection, we show
that the Jacobian and second degeneracy schemes reach the codimen-
sion bound of 3 in case of connected matroids. The statements on
codimension and Cohen–Macaulayness in our main result follow. In
the process, we obtain a description of the generic points in relation
with any non-disconnective handle.

Lemma 4.20 (Primes over the Jacobian ideal and handles). Let W Ď
KE be a realization of a connected matroid M, and let H P HM be a
proper handle.

(a) For any h P H, xHzthu ¨ ψW zH P JW .

(b) For any e, f P H with e ‰ f , xHzte,fu ¨ ψW zH P JW ` xxe, xfy.
(c) For any d P H and e P EzH, xHztdu ¨ BeψW zH P JW ` xxdy.
(d) If p P SpecKrxs with JW Ď p S ψW zH , then xxe, xf , xgy Ď p for

some e, f, g P H with e ‰ f ‰ g ‰ e.

Proof. By Remark 3.4 and Corollary 3.13, we may assume that

ψW “
ÿ

hPH

xHzthu ¨ ψW zH ` xH ¨ ψW {H

has the form (3.14).
(a) Using that ψW is a linear combination of square-free monomials

(see Definition 3.2),

xHzthu ¨ ψW zH “ ψW |xh“0 “ ψW ´ xh ¨ BhψW P JW .
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(b) This follows from

JW Q BeψW “
ÿ

hPH

xHzte,hu ¨ ψW zH ` xHzteu ¨ ψW {H

” xHzte,fu ¨ ψW zH mod xxe, xfy.
(c) This follows from

JW Q BeψW “
ÿ

hPH

xHzthu ¨ BeψW zH ` xH ¨ BeψW {H

” xHztdu ¨ BeψW zH mod xxdy.
(d) By (a), the hypotheses force xHzthu P p for all h P H and hence

xxe, xfy Ď p for some e, f P H with e ‰ f . Then xHzte,fu P p by (b)
and the claim follows. �

Remark 4.21 (Primes over the Jacobian ideal and 2-separations). Let
W Ď KE be a realization of a connected matroid M. Suppose that
E “ E1 \ E2 is an (exact) 2-separation of M. For ti, ju “ t1, 2u, note
that

di :“ degψW |Ei
“ degψW {Ej

` 1

and hence by Proposition 3.27

JW Q ψW “ ψW {Ei
¨ ψW |Ei

` ψW |Ej
¨ ψW {Ej

,

JW Q
ÿ

ePEi

xeBeψW “ di ¨ ψW {Ei
¨ ψW |Ei

` pdi ´ 1q ¨ ψW |Ej
¨ ψW {Ej

.

Subtracting di ¨ ψW from the latter yields ψW |Ej
¨ ψW {Ej

P JW , for

j “ 1, 2. It follows that, for every prime ideal p P SpecKrxs over JW
and every 2-separation F of M, we have ψW |F P p or ψW {F P p. ˛
Lemma 4.22 (Inductive codimension bound). Let W Ď KE be a re-
alization of a connected matroid M, and let H P HM be a proper non-
disconnective handle. Suppose that codimKEzH ΣW zH “ 3. Then ΣW is
equidimensional of codimension

codimKE ΣW “ 3

with generic points of the following types:

(a) p “ xxe, xf , xgy “: pe,f,g for some e, f, g P H with e ‰ f ‰ g ‰ e,
(b) p “

@

ψW zH, xd, xh
D

“: pH,d,h for some d, h P H with d ‰ h,
(c) ψW zH , ψW {H P p S xh for all h P H.

Proof. Since H is non-disconnective, ψW zH P KrxEzHs is irreducible by
Proposition 3.8. Since d, h P H with d ‰ h, pH,d,h P SpecKrxs with
height pH,d,h “ 3. The same holds for pe,f,g.

By Lemma 4.8 and the dimension hypothesis, JW zH E KrxEzHs has
height 3. Thus, for any d P H ,

(4.8) heightp
@

JW zH, xd
D

q “ height JW zH ` 1 “ 4.
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In particular, ΣW zH ‰ H and hence ΣW ‰ H by Remark 4.13.(a).
Let p P SpecKrxs be any minimal prime ideal over JW . By Lemma 4.8

and Proposition 4.19, it suffices to show for the equidimensionality that
height p ě 3. This follows in particular if p contains a prime ideal of
type pe,f,g or pH,d,h. By Lemma 4.20.(d), the former is the case if
ψW zH R p. We may thus assume that ψW zH P p. By Lemma 4.20.(c),

(4.9) xHztdu ¨ BeψW zH P p ` xxdy.
for any d P H and e P EzH .

First suppose that xd P p for some d P H . If xHztdu P p, then
p contains a prime ideal of type pH,d,h for some h P Hztdu. Other-
wise,

@

JW zH, xd
D

Ď p by (4.9) and hence height p ě 4 by (4.8) (see
Remark 4.23).

Now suppose that xh R p for all h P H and hence ψW {H P p by (3.11)
and (3.13) in Corollary 3.13. Let q P SpecKrxs be any minimal prime
ideal over p ` xxdy. By (4.9), q contains one of the ideals

(4.10)
@

ψW zH , ψW {H, xd, xh
D

“ pH,d,h `
@

ψW {H

D

,
@

JW zH, xd
D

,

for some h P Hztdu. By Lemma 2.4.(b) and (e) (see Remark 3.5),

degψW {H “ rkpM{Hq “ rkM ´ |H |
“ rkM ´ rkpHq “ rkpMzHq ´ λMpHq ă deg ψW zH

and hence ψW zH ffl ψW {H and ψW {H R pH,d,h. Thus, both ideals in (4.10)
have height at least 4 (see (4.9)) and hence height q ě 4. It follows that
heightpp ` xxdyq ě 4 and then height p ě 3 by Lemma 4.1.(b). �

Remark 4.23. The case where height p ě 4 in the proof of Lemma 4.22
does finally not occur due to the Cohen–Macaulayness of ∆W achieved
by the argument (see Proposition 3.8). ˛
Lemma 4.24 (Generic points for circuits). Let W Ď KE be a realiza-
tion of a matroid M on E P CM with |E| ´ 1 “ rkM ě 2. Then Σred

W is
the union of all codimension-3 coordinate subspaces of KE.

Proof. We apply the strategy of the proof of Lemma 4.22. By Re-
mark 4.13.(4.13), the rank hypothesis implies that ΣW ‰ H. Let
p P SpecKrxs be any minimal prime ideal over JW . If ψW zH R p

for some E ‰ H P HM, then Lemma 4.20.(d) yields e, f, g P H with
e ‰ f ‰ g ‰ e such that xxe, xf , xgy Ď p. Otherwise, p contains
xEzH “ ψW zH P p for all E ‰ H P HM and hence all xe where e P E.
(This can only occur if |E| “ 3.) By Lemma 4.8 and Proposition 4.19,
it follows that p “ xxe, xf , xgy. By symmetry, all such triples e, f, g P E
occur (see Example 3.7). �

Theorem 4.25 (Cohen–Macaulayness of degeneracy schemes). Let
W Ď KE be a realization of a connected matroid M of rank rkM ě 2.
Then ∆W is Cohen–Macaulay (and hence pure-dimensional) and ΣW
is equidimensional, both of codimension 3 in KE.
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Proof. By Proposition 4.19, it suffices to show that codimKE ΣW “ 3.
Lemma 2.13 yields a circuit C P CM of size |C| ě 3 and codimKC ΣW |C “
3 by Lemma 4.24. Proposition 2.8 yields a handle decomposition of M
of length k with F1 “ C. By Lemma 4.22 and induction on k, then
also codimKE ΣW “ 3. �

Corollary 4.26 (Types of generic points). Let W Ď KE be a realiza-
tion of a connected matroid M of rank rkM ě 2, and let H P HM be
a non-disconnective handle such that rkpMzHq ě 2. Then all generic
points of ΣW and ∆W are of the types listed in Lemma 4.22 with respect
to H.

Proof. Applying Theorem 4.25 to the matroid MzH with realization
W zH , the claim follows from Lemma 4.22 and Theorem 4.17. �

Corollary 4.27 (Generic points for 3-connected matroids). Let W Ď
KE be a realization of a 3-connected matroid M with |E| ą 3 if rank
rkM ě 2. Then all generic points of ΣW and ∆W lie in TE, that is,

MinΣW “ Min∆W Ď TE .

Proof. The equality is due to Theorem 4.17. We may assume that
ΣW ‰ H and hence rkM ě 2 by Remark 4.13.(a). Let p P MinΣW be
a generic point of ΣW . For any e P E, consider the 1-handle H :“ teu P
HM. By Proposition 2.5 and Lemma 2.4.(e), H is non-disconnective
with rkpMzHq “ rkM ě 2. Corollary 4.26 forces p to be of type (c) in
Lemma 4.22. It follows that p P Ş

ePE Dpxeq “ TE. �

4.4. Reducedness of degeneracy schemes. In this subsection, we
prove the reducedness statement in our main result as outlined in §1.4.

Lemma 4.28 (Generic reducedness for the prism). LetW Ď KE be any
realization of the prism matroid (see Definition 2.1). Then ∆W XTE is
an integral scheme of codimension 3, defined by 3 linear binomials, each
supported in a corresponding handle. If chK ‰ 2, then also ΣW XTE “
∆W X TE.

Proof. By Remark 3.22, we may assume that W is the realization from
Lemma 2.25. A corresponding matrix of QW is given in Example 3.24.
Reducing its entries modulo p :“ xx1 ` x2, x3 ` x4, x5 ` x6y makes all
its 3 ˆ 3-minors 0. Therefore, JW Ď MW Ď p by Lemma 4.12. Using
the minors

Q
2,3
W “ px1 ` x2q ¨ p´x3x5q,

Q
2,4
W “ px1 ` x2q ¨ p´x3q ¨ px5 ` x6q,

Q
3,4
W “ px1 ` x2q ¨ px3 ` x4q ¨ x5,

Q
4,4
W “ px1 ` x2q ¨ px3 ` x4q ¨ px5 ` x6q,
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one computes that

´Q2,3
W ` Q

2,4
W ´ Q

3,4
W ` Q

4,4
W “ px1 ` x2q ¨ x4x6.

By symmetry, it follows that x2x4x6 ¨ p Ď MW and hence

∆W X Dpx2x4x6q “ V ppq X Dpx2x4x6q.
Using ψW from Example 3.17, one computes that

px2 ¨ px2B2 ´ 1q ` x4x6 ¨ pB3 ` B5q ` px4 ` x6q ¨ p1 ´ x4B4 ´ x6B6qqψW
“ 2 ¨ px1 ` x2q ¨ x24x26.

By symmetry, it follows that 2 ¨ x22x24x26 ¨ p Ď JW and hence

ΣW X Dpx2x4x6q “ V ppq X Dpx2x4x6q.
if chK ‰ 2. �

More details on the prism matroid can be found in Example 5.1.

Lemma 4.29 (Reduction and deletion of non-(co)loops). Let e P E be
a non-(co)loop in a matroid M. For any I EKrxs set

Ī :“ pI ` xxeyq{xxey EKrxs{xxey “ KrxEzteus.
Then JW ze Ď J̄W and MW ze “ M̄W for any realization W Ď KE of M.

Proof. This follows from Proposition 3.12 and Lemma 3.26. �

Lemma 4.30 (Generic reducedness and deletion of non-(co)loops).
Let W Ď KE be a realization of a matroid M, and let e P E be
a non-(co)loop. Then ΣW ze “ H implies ΣW “ H. Suppose that
MinΣW Ď Dpxeq and that ΣW and ΣW ze are equidimensional of the
same codimension. If ΣW ze is generically reduced, then ΣW is generi-
cally reduced. In this case, each p P MinΣW defines a non-empty subset
γppq Ď MinΣW ze such that

V ppq X V pxeq “
ď

qPγppq

V pqq,(4.11)

p ‰ p
1 ùñ γppq X γpp1q “ H.(4.12)

In particular, |MinΣW | ď
ˇ

ˇMinΣW ze

ˇ

ˇ. The same statements hold for
Σ replaced by ∆.

Proof. The subscheme ΣW XV pxeq Ď KEzteu is defined by the ideal J̄W
(see Lemma 4.29). By Lemma 4.29 and since JW is graded,

ΣW ze “ H ðñ JW ze “ KrxEzteus ùñ J̄W “ Krxs{xxey
ðñ JW ` xxey “ Krxs ðñ JW “ Krxs ðñ ΣW “ H

which is the first claim.
Let p P MinΣW be a generic point of ΣW . Considered as an element

of SpecKrxs it is minimal over JW . Since JW and hence p is graded,
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p ` xxey ‰ Krxs. Let q P SpecKrxs be minimal over p ` xxey. By
Lemma 4.29,

(4.13) JW ze Ď J̄W Ď q̄.

Since xe R p by hypothesis, Lemma 4.1 shows that

height q “ height p ` 1,

height q̄ “ height q ´ height xxey “ height p.

By the dimension hypothesis, Lemma 4.8 and (4.13), it follows that q̄ is
minimal over both JW ze and J̄W . The former means that q̄ P MinΣW ze.
The set γppq of all such q̄ is non-empty and satisfies condition (4.11).

Denote by t P KrΣW s the image of xe. Then q R MinKrΣW s by
hypothesis and q is minimal over t since q̄ is minimal over J̄W . This
makes t is a parameter of the localization

R :“ KrΣW sq.
The inclusion (4.13) gives rise to a surjection of local rings

(4.14) KrΣW zesq̄ ։ KrΣW X V pxeqsq̄ “ R{tR.
Suppose now that ΣW ze is generically reduced. Then KrΣW zesq̄ is a
field which makes (4.14) an isomorphism. By Lemma 4.5, R is then an
integral domain with unique minimal prime ideal pq. Thus, KrΣW sp “
Rpq is reduced and p is uniquely determined by q̄. This uniqueness is
condition (4.12). The particular claim follows immediately.

The preceding arguments remain valid if Σ and J are replaced by ∆
and M respectively: Lemma 4.29 applies in both cases. �

Lemma 4.31 (Initial forms and contraction of non-(co)loops). Let
W Ď KE be a realization of a matroid M. Suppose E “ F \ G is
partitioned in such a way that M{G is obtained from M by successively
contracting non-(co)loops. For any ideal J E KrxsxG “ KrxF , x˘1

G s,
denote by J inf the ideal generated by the lowest xF -degree parts of the
elements of J . Then JW {Grx˘1

G s Ď pJ inf
W qxG andMW {Grx˘1

G s Ď pM inf
W qxG.

Proof. We iterate Proposition 3.12 and Lemma 3.26 respectively to pass
from W to W {G by successively contracting non-(co)loops e P G. This
yields a basis of W extending a basis w1, . . . , ws of W {G such that

ψW “ xG ¨ ψW {G ` p,(4.15)

BfψW “ xG ¨ BfψW {G ` Bfp,
Q
i,j
W “ xG ¨Qi,j

W {G ` qi,j,

for all f P F and i, j P t1, . . . , su, where p, qi,j P Krxs are polynomials

with no term divisible by xG. Since ψW and Q
i,j
W are homogeneous

linear combinations of square-free monomials (see Definition 3.2 and
Lemma 3.26), xG ¨ψW {G, x

G ¨ BfψW {G and xG ¨Qi,j

W {G are the respective

lowest xF -degree parts in (4.15). The claimed inclusions follow. �
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Lemma 4.32 (Generic reducedness and contraction of non-(co)loops).
Let W Ď KE be a realization of a matroid M. Suppose E “ F \ G is
partitioned in such a way that M{G is obtained from M by successively
contracting non-(co)loops. Then ΣW {G “ H implies ΣW X DpxGq X
V pxF q “ H. Suppose that ΣW XDpxGq and ΣW {G are equidimensional
of the same codimension. If ΣW {G is generically reduced, then ΣW X
DpxGq is generically reduced along V pxF q. The same statements hold
for Σ replaced by ∆.

Proof. Consider the ideal

I :“ xxF y EKrΣW X DpxGqs “: R

“ KrΣW sxG “ pKrxs{JW qxG “ KrxF , x˘1
G s{pJW qxG,

R being equidimensional by hypothesis. With notation from Lemma 4.31

R̄ “ grI R “ grIppKrxs{JW qxGq – pgrxxF ypKrxs{JW qqxG
– pKrxs{J inf

W qxG “ KrxF , x˘1
G s{pJ inf

W qxG .
Lemma 4.31 then yields the first claim:

ΣW {G “ H ðñ JW {G “ KrxF s ðñ JW {Grx˘1
G s “ KrxF , x˘1

G s
ùñ pJ inf

W qxG “ KrxF , x˘1
G s ðñ R̄ “ 0 ðñ I “ R

ðñ ΣW X DpxGq X V pxF q “ H.

The latter equality makes the second claim vacuous.
We may thus assume that I ‰ R. Lemma 4.31 yields a surjection

π : KrΣW {G ˆ TGs “ pKrxF s{JW {Gqrx˘1
G s

“ KrxF , x˘1
G s{pJW {Grx˘1

G sq ։ R̄.

By Lemmas 4.2 and 4.7 and the dimension hypothesis, source and tar-
get are equidimensional of the same dimension and hence π´1 induces

Min Spec R̄ Ď MinpΣW {G ˆ TGq.
Suppose now that ΣW {G and hence ΣW {G ˆ TG is generically reduced.
For any p P Min Spec R̄, this makes KrΣW {G ˆ TGsp a field and due to

πp : KrΣW {G ˆ TGsp ։ R̄p

also R̄p is a field. It follows that R̄ is generically reduced. By Lemma 4.7,
R is then generically reduced along V pIq. This means that ΣW XDpxGq
is generically reduced along V pxF q.

The preceding arguments remain valid if Σ and J are replaced by ∆
and M respectively: Lemma 4.31 applies in both cases. �

Lemma 4.33 (Generic reducedness for circuits). Let W Ď KE be a
realization of a matroid M on E P CM of rank rkM “ |E|´1 ě 2. Then
∆W is generically reduced. If chK ‰ 2, then also ΣW is generically
reduced.
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Proof. We proceed by induction on |E|. The case |E| “ 3 is covered
by Example 4.14; here we use chK ‰ 2.

Suppose now that |E| ą 3. Let p P MinΣW be a generic point
of ΣW . By Lemma 4.24, p “ xxe, xf , xgy for some e, f, g P H with
e ‰ f ‰ g ‰ e. Pick d P Ezte, f, gu. Then Eztdu P CM{d and hence
ΣW {d is generically reduced by induction. By Lemmas 4.2 and 4.32,

ΣW XDpxdq is then along V pxEztduq. By choice of d,
@

xEztdu

D

P V ppq X
Dpxdq. In other words, p P MinpΣW X Dpxdqq specializes to a point in
V pxEztduq X Dpxdq. Thus, ΣW is reduced at p. It follows that ΣW is
generically reduced.

By Theorem 4.17, ∆W has the same generic points as ΣW . Therefore,
the preceding arguments remain valid if Σ is replaced by ∆. �

Lemma 4.34 (Generic reducedness and contraction of non-maximal
handles). Let W Ď KE be a realization of a connected matroid M of
rank rkM ě 2. Assume that |MaxHM| ě 2 and set

~ :“ |E| ´ |MaxHM| ě 0.

Suppose that ΣW 1 is generically reduced for every realization W 1 Ď KE1

of every connected matroid M
1 of rank rkM1 ě 2 with |E 1| ă |E|.

(a) If ~ ą 3, then ΣW is generically reduced.
(b) If ~ ą 2 and e P E, then ΣW is reduced at all p P MinΣW X V pxeq.
The same statements hold for Σ replaced by ∆.

Proof. Let p P SpecKrxs with height p “ 3. Pick a subset F Ď E such
that |F X H 1| “ 1 for all H 1 P MaxHM . If possible, pick F XH 1 “ teu
such that xe P p. If ~ ą 3, then by Lemma 4.1.(b)

(4.16) heightpp`xxF yq ď 3`|F | “ 3`|MaxHM| ă |E| “ height xxy.
If ~ ą 2 and p P V pxeq, then (4.16) holds with 3 replaced by 2. In
either case pick q P SpecKrxs such that

(4.17) p ` xxF y Ď q Ĺ xxy.
Add to F all f P E with xf P q. This does not affect (4.17). Then
xg R q and hence xg R p for all g P G :“ EzF ‰ H. In other words,

(4.18) p P DpxGq, q P V ppq X DpxGq X V pxF q ‰ H.

By the initial choice of F , G X H 1 Ĺ H 1 for each H 1 P MaxHM. By
Lemma 2.4.(d), successively contracting all elements of G does, up to
bijection, not affect circuits and maximal handles. In particular, M{G
is a connected matroid on the set F , obtained from M by successively
contracting non-(co)loops.

Since |F | ě |MaxHM| ě 2, connectedness implies that rkpM{Gq ě 1.
If rkpM{Gq “ 1, then ΣW {G “ H by Remark 4.13.(a). Then ΣW X
DpxGq X V pxF q “ H by Lemma 4.32 and hence p R ΣW by (4.18).

Suppose now that p P ΣW and hence rkpM{Gq ě 2. Then ΣW {G is
generically reduced by hypothesis, and p P ΣW X DpxGq specializes to
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a point in V pxF qXDpxGq by (4.18). By Theorem 4.25 and Lemma 4.2,
ΣW , ΣW XDpxGq and ΣW {G are equidimensional of codimension 3. By
Lemma 4.8, height p “ 3 means that p P MinΣW . By Lemma 4.32,
ΣW is thus reduced at p. The claims follow.

The preceding arguments remain valid if Σ is replaced by ∆. �

Lemma 4.35 (Reducedness for connected matroids). Let W Ď KE be
a realization of a connected matroid M of rank rkM ě 2. Then ∆W is
reduced. If chK ‰ 2, then ΣW is generically reduced.

Proof. By Theorem 4.25, ∆W is pure-dimensional. By Lemma 4.4,
∆W is thus reduced if it is generically reduced. By Lemma 4.12 and
Theorem 4.17, the first claim follows if ΣW is generically reduced.

Assume that chK ‰ 2. We proceed by induction on |E|. By
Lemma 4.33, ΣW is generically reduced if E P CM; the base case where
|E| “ 3 needs chK ‰ 2. Otherwise, by Proposition 2.8, M has a han-
dle decomposition of length k ě 2. By Proposition 2.12, M has k ` 1
(disjoint) non-disconnective handles H “ H1, . . . , Hℓ P HM with

(4.19) ℓ ě k ` 1 ě 3.

Note that H1, . . . , Hℓ P MaxHM X IM by Lemma 2.4.(c) and (b). In
particular, rkpMzHq ‰ 0.

Suppose first that H “ thu. Then rkpMzhq ě 2 by Remark 4.13.(a)
and Lemma 4.30, and MinΣW Ď Dpxhq by Corollary 4.26. By The-
orem 4.25, both ΣW and ΣW zh are equidimensional of codimension 3.
Thus, ΣW is generically reduced by Lemma 4.30 and the induction
hypothesis.

Suppose now that |Hi| ě 2 for all i “ 1, . . . , ℓ, and set (see Lemma 4.34)

m :“ |MaxHM|, ~ :“ |E| ´ m.

If ~ ą 3, then ΣW is generically reduced by Lemma 4.34.(a) and the
induction hypothesis. Otherwise,

2ℓ ` pm´ ℓq ď
ℓ
ÿ

i“1

|Hi| ` pm ´ ℓq ď |E| “ ~ ` m ď 3 ` m

and hence 2ℓ ď řℓ

i“1 |Hi| ď 3` ℓ. Comparing with (4.19) yields ℓ “ 3,
k “ 2 and |Hi| “ 2 for i “ 1, 2, 3. By Lemma 2.10, E “ H1 \ H2 \H3

is then the handle partition of M. In particular, ~ “ 6´ 3 “ 3 ą 2. By
Lemma 2.25, M must be the prism matroid.

Let now p P MinΣW be a generic point of ΣW , with M the prism
matroid. If p P TE , then ΣW is reduced at p by Lemma 4.28; here we
use chK ‰ 2 again. Otherwise, p P V pxeq for some e P E. Then ΣW is
reduced at p by Lemma 4.34.(b) and the induction hypothesis.

The preceding arguments remain valid for arbitrary chK if Σ is re-
placed by ∆. �
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Theorem 4.36 (Reducedness). Let W Ď KE be a realization of a
matroid M. Then

∆W “ Σred
W

is reduced. If chK ‰ 2, then ΣW is generically reduced.

Proof. By Theorem 4.16 and Lemma 4.35 (see Remarks 4.11 and 4.13.(a)),
∆W is reduced and ΣW is generically reduced if chK ‰ 2. The claimed
equality is then due to Theorem 4.17. �

4.5. Integrality of degeneracy schemes. In this subsection, we
prove the following companion result to Proposition 3.8 as outlined
in §1.4.

Theorem 4.37 (Integrality for 3-connected matroids). Let W Ď KE

be a realization of a 3-connected matroid M of rank rkM ě 2. Then
∆W is integral and hence ΣW is irreducible.

Proof. The claim on ∆W follows from Remark 4.13.(a) and Lemmas 4.38
and 4.43 and Corollary 4.41 below. Theorem 4.17 yields the claim on
ΣW . �

In the following, we use notation from Example 2.26.

Lemma 4.38 (Reduction to wheels and whirls). It suffices to verify
Theorem 4.37 for M P tWn,W

nu with n ě 3.

Proof. Let M and W be as in Theorem 4.37. By Remark 4.13.(b) and
Theorem 4.17, the claim holds if rkM “ 2. If |E| ď 4, then M “ U2,n

where n P t3, 4u (see [Oxl11, Tab. 8.1]) and hence rkM “ 2. We may
thus assume that rkM ě 3 and |E| ě 5.

The 3-connectedness hypothesis on M holds equivalently for MK (see
2.10). By Corollaries 4.18 and 4.27, the Cremona isomorphism thus
identifies

(4.20) TE Ě Min∆W “ Min∆WK Ď TE_

.

It follows that integrality is equivalent for ∆W and ∆WK. In particular,
we may also assume that rkMK ě 3.

We proceed by induction on |E|. Suppose that M is not a wheel or a
whirl. Since rkM ě 3, Tutte’s wheels-and-whirls theorem (see [Oxl11,
Thm. 8.8.4]) yields an e P E such thatMze orM{e is again 3-connected.
In the latter case, we replace W by WK and use (2.11). We may thus
assume thatMze is 3-connected. Then ∆W ze is integral by induction hy-
pothesis. Note that Min∆W Ď Dpxeq by (4.20). By Theorem 4.25, ∆W

and ∆W ze are equidimensional of codimension 3. By Remark 4.13.(a)

and Lemma 4.30, ∆W ‰ H and |Min∆W | ď
ˇ

ˇMin∆W ze

ˇ

ˇ “ 1. It follows
that ∆W is integral. �
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Lemma 4.39 (Turning wheels). Let W Ď KE be the realization of Wn

from Lemma 2.27. Then the cyclic group Zn acts on XW , ΣW and ∆W

by “turning the wheel”, induced by the generator 1 P Zn mapping

(4.21) si ÞÑ si`1, ri ÞÑ ri`1, wi ÞÑ wi`1.

Proof. By Lemma 2.27, W has a basis w “ pw1, . . . , wnq where wi “
si ` ri ´ ri´1 for all i P Zn. The assignment (4.21) stabilizes W Ď KE .
The resulting Zn-action stabilizes ψW and QW , and hence JW andMW .
As a consequence, it induces an action on XW , ΣW and ∆W . �

The graph hypersurface of the n-wheel was described by Bloch, Es-
nault and Kreimer (see [BEK06, (11.5)]). We show that it is also the
unique configuration hypersurface of the n-whirl.

Proposition 4.40 (Schemes for wheels and whirls). Let W Ď KE be
any realization of M P tWn,W

nu where E “ S \ R. Then there are
coordinates z1

1, . . . , z
1
n, y1, . . . , yn on KE such that

ψW “ detQn, MW “ In´1pQnq,
where

Qn :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

z1
1 y1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 yn
y1 z1

2 y2 0 ¨ ¨ ¨ ¨ ¨ ¨ 0
0 y2 z1

3 y3 0 ¨ ¨ ¨ 0
...

. . .
. . .

. . .
. . .

. . .
...

0 ¨ ¨ ¨ 0 yn´3 z1
n´2 yn´2 0

0 ¨ ¨ ¨ ¨ ¨ ¨ 0 yn´2 z1
n´1 yn´1

yn 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 yn´1 z1
n

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

In particular, XW , ΣW and ∆W depend only on n up to isomorphism.

Proof. We may assume that W is the realization from Lemma 2.27.
Denote the coordinates on KE “ KS\R by

(4.22) z1, . . . , zn, y1, . . . , yn :“ s_
1 , . . . , s

_
n , r

_
1 , . . . , r

_
n ,

and consider the K-linear automorphism defined by

z1
1 :“ z1 ` y1 ` t2 ¨ yn, z1

i :“ zi ` yi ` yi´1, i “ 2, . . . , n.

Then QW is represented by the matrix
¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

z1
1 ´y1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 ´t ¨ yn

´y1 z1
2 ´y2 0 ¨ ¨ ¨ ¨ ¨ ¨ 0

0 ´y2 z1
3 ´y3 0 ¨ ¨ ¨ 0

...
. . .

. . .
. . .

. . .
. . .

...
0 ¨ ¨ ¨ 0 ´yn´3 z1

n´2 ´yn´2 0
0 ¨ ¨ ¨ ¨ ¨ ¨ 0 ´yn´2 z1

n´1 ´yn´1

´t ¨ yn 0 ¨ ¨ ¨ ¨ ¨ ¨ 0 ´yn´1 z1
n

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Suitable scaling of y1, . . . , yn turns this matrix into Qn. The particular
claim follows with Lemma 3.23. �
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Corollary 4.41 (Small wheels and whirls). Theorem 4.37 holds for
the matroids M “ W3 and M “ W

n for n ď 4.

Proof. Let W be any realization of M. By Theorem 4.36, ∆W is re-
duced and it suffices to check irreducibility, replacing K by its algebraic
closure. By Proposition 4.40, we may assume that ∆W “ V pIk`1pQnqq
for k “ n ´ 2.

Consider the morphism of algebraic varieties of matrices

Y :“ Knˆk Ñ
 

A P Knˆn | A “ At, rkA ď k
(

“: Z, B ÞÑ BBt.

Let yi,j and zi,j be the coordinates on Y and Z respectively. Then ∆W

identifies with V pz1,3, z2,4q Ď Z for n “ 4 and with Z itself for n ď 3.
Both the preimage Y of Z and for n “ 4 the preimage

V py1,1y1,3 ` y1,2y2,3, y2,1y1,4 ` y2,2y2,4q
of V pz1,3, z2,4q are irreducible. It thus suffices to show that Y surjects
onto Z, which holds for all k ď n.

Let A P Z and I Ď t1, . . . , nu with |I| “ rkA “ k and rows i P I

of A linearly independent. Apply row operations C to make the rows
i R I of CA zero. Then CACt is non-zero only in rows and columns
i P I. Modifying C to include further row operations turns CACt into a
diagonal matrix. As K is algebraically closed, CACt “ D2 where D has
exactly k non-zero diagonal entries. Then A “ BBt where B :“ C´1D,
considered as an element of Y by dropping zero columns. �

Lemma 4.42 (Operations on wheels and whirls). Let M P tWn,W
nu.

(a) The bijection

E “ S \ R Ñ E_, si ÞÑ r_
i , ri ÞÑ s_

i ,

identifies M “ M
K.

Suppose now that n is not minimal for M to be defined, that is, n ą 3
if M “ Wn and n ą 2 if M “ W

n.

(b) The matroid Mzsn is connected of rank rkpMzsnq ě 2. Its han-
dle partition consists of non-disconnective handles, the 2-handle
trn´1, rnu and 1-handles.

(c) The matroid M{rn is connected of rank rkpM{rnq ě 2. Its handle
partition consists of non-disconnective 1-handles.

(d) We can identify Wnzsn{rn “ Wn´1 and W
nzsn{rn “ W

n´1.

Proof.
(a) The self-duality claim is obvious (see [Oxl11, Prop. 8.4.4]).
(b) This follows from the description of connectedness in terms of

circuits (see (2.5) and Example 2.26).
(c) This follows from the description of connectedness in terms of

circuits (see (2.7) and Example 2.26).
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(d) The operation M ÞÑ Mzsn{rn deletes the triangle tsn´1, rn´1, snu
and maps the triangle tsn, rn, s1u to tsn´1, rn´1, s1u (see (2.5) and
(2.7)). By duality, it acts on triads in the same way (see (a) and
(2.11)). Moreover, R P CMzsn{rn is equivalent to R P CM and hence
M “ Wn (see (2.5), (2.7) and Example 2.26). The claim then follows
using the characterization of wheels and whirl in terms of triangles and
triads (see Example 2.26). �

Lemma 4.43 (Induction on wheels and whirls). Theorem 4.37 for
M “ Wn and M “ W

n follows from the cases n “ 3 and n ď 4
respectively.

Proof. Suppose that n is not minimal for M P tWn,W
nu to be defined.

Let W 1 be any realization of M{rn. Then W 1zsn is a realization of

M{rnzsn “ Mzsn{rn “ Mn´1

by Lemma 4.42.(d). By induction hypothesis and Corollary 4.27, ∆W 1zsn

is integral with generic point in TEztsn,rnu. By Lemma 4.42.(c) and
Corollary 4.26, Min∆W 1 Ď TEztrnu Ď Dpsnq. By Lemma 4.42.(c) and
Theorems 4.25, ∆W 1 and ∆W 1zsn are equidimensional of codimension 3.
By Remark 4.13.(a) and Lemma 4.30, ∆W 1 is then integral.

Let W be any realization of M and use the coordinates from (4.22).
By Lemma 4.42.(b) and Corollary 4.26, ∆W zsn has at most one generic

point q1 in V pyn´1, ynq while all the others lie in TEztsnu. By Corol-
lary 4.18, the Cremona isomorphism identifies the latter with generic
points of ∆pW zsnqK in TE_zts_

n u. Use (2.11) and Lemma 4.42.(a) to iden-
tify

pMzsnqK “ M
K{s_

n “ M{rn, E_zts_
n u “ Eztrnu,

and consider pW zsnqK as a realization W 1 of M{rn. By the above, ∆W 1

is integral with generic point in TEztrnu. Thus, ∆W zsn has a unique

generic point q in TEztsnu. To summarize,

(4.23) Min∆W zsn “ tq, q1u, q P TEztsnu, q
1 P V pyn´1, ynq.

By Lemma 4.42.(b) and Theorems 4.25 and 4.36, ∆W and ∆W zsn are
equidimensional of codimension 3 and reduced. It suffices to show that
∆W is irreducible. By way of contradiction, suppose that p ‰ p1 for
some p, p1 P Min∆W . By Corollary 4.27, Min∆W Ď TE Ď Dpsnq. By
Lemma 4.30 and (4.23), it follows that

∆W “ tp, p1u.
By (4.11) in Lemma 4.30, we may assume that

?
p̄ “ q and

?
p̄1 “ q1

where Ī :“ pI ` xznyq{xzny.
Consider first the case where M “ Wn with n ě 4. By Remark 3.22,

we may assume that W is the realization from Lemma 2.27. By
Lemma 4.39, the cyclic group Zn acts on tp, p1u by “turning the wheel”.
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If it acts identically, then
a

p1 ` xziy Ě xyi´1, yiy for all i “ 1, . . . , n and
hence

a

p1 ` xz1, . . . , zny “ xz1, . . . , zn, y1, . . . , yny.
Then heightpp1 ` xz1, . . . , znyq “ 2n which implies height p1 ě n ą
3 by Lemma 4.1.(b), contradicting Theorem 4.25 (see Lemma 4.8).
Otherwise, the generator 1 P Zn switches the assignment p ÞÑ q and
p ÞÑ q1 and n “ 2m must be even. Then

a

p ` xz2iy Ě xy2i´1, y2iy for
all i “ 1, . . . , m and hence

a

p ` xz2, z4, z6, . . . , zny Ě xz2, z4, z6, . . . , zn, y1, . . . , yny.
This leads to a contradiction as before.

Consider now the case where M “ W
n with n ě 5. For i “ 1, . . . , n,

denote by qi and q1
i the generic points of ∆W zsi as in (4.23). By the

pigeonhole principle, one of p and p1, say p, is assigned to q1
i for 3 spokes

si. In particular, p is assigned to q1
i and q1

j for two non-adjacent spokes
si and sj . Then

b

p ` xzi, zjy Ě xzi, zj, yi´1, yi, yj´1, yjy.
This leads to a contradiction as before. The claim follows. �

Theorem 4.37 proves the “only if” part of the following conjecture.

Conjecture 4.44 (Irreducibility and 3-connectedness). Let M be a
matroid of rank rkM ě 2 on E. Then M is 3-connected if and only
if, for some/any realization W Ď KE of M, both ∆W and ∆WK are
integral.

5. Examples

In this section, we illustrate our results with examples of prism, whirl
and uniform matroids.

Example 5.1 (Prism matroid). Consider the prism matroid M (see Def-
inition 2.1) with its unique realization W (see Lemma 2.25). Then

ψW “ x1x2px3`x4qpx5`x6q`x3x4px1`x2qpx5`x6q`x5x6px1`x2qpx3`x4q
by Example 3.17. By Lemma 4.28, ∆W has the unique generic point

xx1 ` x2, x3 ` x4, x5 ` x6y
in T6. By Corollary 4.26, there can be at most 3 more generic points
symmetric to

@

x1, x2, ψW zt1,2u

D

“ xx1, x2, x3x4x5 ` x3x4x6 ` x3x5x6 ` x4x5x6y.
OverK “ F2, their presence is confirmed by a computation in Singular
(see [Dec+18]). It reveals a total of 7 embedded points in ΣW . There
is xx1, . . . , x6y, and 3 symmetric to each of

xx3, x4, x5, x6y and xx1, x2, x3 ` x4, x5 ` x6y.
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Moreover, ΣW is not reduced at any generic point. Since the above
associated primes are geometrically prime, the conclusions remain valid
over any field K with chK “ 2.

A Singular computation over Q shows that ΣW has exactly the
above associated points for any field K with chK “ 0 or chK " 0. We
expect that this holds in fact for chK ‰ 2.

To verify at least the presence of these associated points in ΣW for
chK ‰ 2, we claim that

@

x1, x2, ψW zt1,2u

D

“ JW : 2ppx3 ` x4qx25 ´ px3 ` x4qx26q,
xx3, x4, x5, x6y “ JW : 2px1 ` x2q2x4x6,

xx1, x2, x3 ` x4, x5 ` x6y “ JW : 2x2px3 ` x4qx26,
xx1, . . . , x6y “ JW : 2px1 ` x2qpx3 ` x4qx6.

The colon ideals on the right hand side can be read off from a suit-
able Gröbner basis (see [GP08, Lems. 1.8.3, 1.8.10 and 1.8.12]). Using
Singular we compute such a Gröbner basis over Z which confirms our
claim. There are no odd prime numbers dividing its leading coeffi-
cients. It is therefore a Gröbner basis over any field K with chK ‰ 2
and the argument remains valid. ˛
Example 5.2 (Whirl matroid). Consider the whirl matroid M :“ W

3

(see Example 2.26). It is realized by 6 points in P2 with the collineari-
ties shown in Figure 4. Since M contracts to the uniform matroid U2,4,

Figure 4. Points in P2 defining the whirl matroid W
3.

s1 s2

s3

r1

r2r3

M is not regular (see [Oxl11, Thm. 6.6.6]). The configuration polyno-
mial reflects this fact. Using the realization W of M from Lemma 2.27
with t “ ´1, ts1, s2, s3u “ t1, 2, 3u and tr1, r2, r3u “ t4, 5, 6u, we find

ψW “ x1x2x3 ` x1x3x4 ` x2x3x4 ` x1x2x5 ` x1x3x5 ` x1x4x5

` x2x4x5 ` x3x4x5 ` x1x2x6 ` x2x3x6 ` x1x4x6 ` x2x4x6

` x3x4x6 ` x1x5x6 ` x2x5x6 ` x3x5x6 ` 4x4x5x6.

Replacing in ψW the coefficient 4 of x4x5x6 by a 1 yields the matroid
polynomial ψM (see Remark 3.6).

By Theorem 4.25, the configuration hypersurface XW defined by
ψW has 3-codimensional non-smooth locus Σred

W . Using Singular (see
[Dec+18]) we compute a Gröbner basis over Z of the ideal of partial
derivatives of ψM. The only prime numbers dividing leading coefficients
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are 2, 3 and 5. For chK ‰ 2, 3, 5, it is therefore a Gröbner basis
over K. From its leading exponents we calculate that the non-smooth
locus of the hypersurface defined by ψM has codimension 4 (see [GP08,
Cor. 5.3.14]). By further Singular computations, this codimension is
4 for chK “ 2, 5, and 3 for chK “ 3. ˛
Example 5.3 (Uniform rank-3 matroid). Suppose that chK ‰ 2, 3.
Then the configuration W “ xw1, w2, w3y Ď K3 defined by

pwijqi,j “

¨

˝

1 0 0 1 2 3
0 1 0 2 3 4
0 0 1 2 6 12

˛

‚

realizes the uniform matroid U3,6 (see Example 2.20). The entries of
Qw “ pqi,jqi,j satisfy the linear dependence relation (see Remark 3.21)

q1,2 ` q1,3 “ q2,3.

By Lemma 3.23, ψW thus depends on fewer than 6 variables. More
precisely, a Singular computation shows that ΣW has Betti numbers
p1, 5, 10, 10, 5, 1q, is not reduced and hence not Cohen–Macaulay.

Now, take W 1 to be a generic realization of U3,6. Then the entries
of QW 1 with indices pi, jq where i ď j are linearly independent (see
[BCK16, Prop. 6.4]), and ΣW 1 is reduced Cohen–Macaulay with Betti
numbers p1, 6, 8, 3q. So basic geometric properties of the configuration
hypersurface XW are not determined by the matroid M, but depend
on the realization W . ˛
Example 5.4 (Uniform rank-2 matroid). Suppose that chK ‰ 2 and
consider the uniform matroid U2,n for n ě 3 (see Examples 2.2 and
3.7.(c)). A realization W of U2,n is spanned by two vectors w1, w2 P Kn

for which (see Example 2.20)

cW,ti,ju “ det

ˆ

w1
i w1

j

w2
i w2

j

˙2

‰ 0,

for 1 ď i ă j ď n. Then

ψW “
ÿ

1ďiăjďn

cW,ti,ju ¨ xi ¨ xj ,

and the ideal JW is generated by n linear forms. These forms may be
written as the rows of the Hessian matrix

HW :“ HψW
“ pcW,ti,juqi,j,

where by convention cW,ti,iu “ 0. Since uniform matroids are connected,
Theorem 4.25 implies that HW has rank exactly 3.

For n ě 4, this amounts to a classical-looking linear algebra fact:
suppose that A “ pa2i,jqi,j P Knˆn is a matrix with squared entries.
Then its 4 ˆ 4 minors are zero provided that the numbers ai,j satisfy
the Plücker relations defining the Grassmannian Gr2,n. An elementary
direct proof was shown to us by Darij Grinberg (see [Gri18]). ˛
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