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Abstract. Let X = C

n

. In this paper we present an algorithm that

computes the cup product structure for the de Rham cohomology ring

H

�

dR

(U ; C ) where U is the complement of an arbitrary Zariski-closed set

Y in X.

Our method relies on the fact that Tor is a balanced functor, a prop-

erty which we make algorithmic, as well as a technique to extract ex-

plicit representatives of cohomology classes in a restriction or integration

complex. We also present an alternative approach to computing V -strict

resolutions of complexes that is seemingly much more e�cient than the

algorithm presented in [16].

All presented algorithms are based on Gr�obner basis computations

in the Weyl algebra.
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1. Introduction and the V -filtration

1.1. The main purpose of this paper is to give an algorithm that determines

the multiplicative structure of the singular cohomology ringH

�

(U ; C ) on the

complement U of a complex variety Y in a�ne space X = C

n

. We shall

utilize the fact that singular and algebraic de Rham cohomology H

�

dR

(�; C )

coincide and compute the latter. The computations will be done via D-

module theory, in particular by using the V -�ltration (see Subsection 1.7).

The fundamental algorithmic techniques for D-module theoretic restric-

tion and integration (see Subsections 1.6, 1.7) based on the V -�ltration were

introduced in the landmark papers [10, 11]. They were used for example to

compute local cohomology modules [11, 15], the dimensions of the de Rham

cohomology groups of complements of hypersurfaces [12] and general a�ne

varieties [16]. In short, these latter two papers consider the algebraic de

1



2 ULI WALTHER

Rham complex on U as a complex for D-module theoretic restriction to the

origin via the Fourier transform (see Subsection 1.3). In the hypersurface

case the restriction procedure (see Algorithm 2.4) is applied to the Fourier

image of the ring of sections �(U;O

U

) on U , while in the general setting the

(reduced)

�

Cech complex

�

C

�

(Y ) of Y takes this place (Subsection 1.2). An

algorithm to compute

�

C

�

(Y ) as complex of �nitely generated modules over

the Weyl algebra was given in [15].

The structure of the paper is as follows. In the remainder of this section we

give basic de�nitions and principles. Section 2 is devoted to the hypersurface

case. There we give an algorithm to compute the ring structure of H

�

dR

(X n

Y ; C ) if Y = Var(f) for f 2 �(X;O

X

). In Section 3 we introduce the reader

to a new technique of computing free V -strict resolutions of complexes.

It generalizes the module case in a di�erent way than Cartan-Eilenberg

resolutions do and constructs apparently much smaller resolutions than the

method from [16].

In Section 4 �nally we give an algorithm to compute the multiplicative

structure of H

�

dR

(X n Y ; C ) for general Zariski closed Y in X.

The algorithmic main components of this paper are Corollary 3.3 for the

computation of a free V -strict complex quasi-isomorphic to a given one, and

the Transfer Theorem (Theorem 2.5), which explicitly relates the cohomol-

ogy classes of the de Rham complex on U to the cohomology classes of the

complex computed in [11, 12, 16].

1.2. We need to �x some notation. D

n

will denote the n-th Weyl alge-

bra C hx

1

; @

1

; : : : ; x

n

; @

n

i where [@

i

; x

j

] = 0 if i 6= j, [@

i

; x

i

] = 1, [@

i

; @

j

] =

[x

i

; x

j

] = 0. @

i

represents the operator

@

@x

i

on R

n

= C [x

1

; : : : ; x

n

]. We shall

write � for the product of elements in D

n

or R

n

, while � denotes the action

of D

n

on R

n

. So @

i

� x

i

= @

i

x

i

= x

i

@

i

+ 1 2 D

n

while @

i

� x

i

= 1 2 R

n

.

We use parentheses to indicate the order of operations so that for example

@

i

� (x

j

) �x

i

= 0 �x

i

= 0. We use multi-index notation: x

�

= x

1

�

1

� : : : �x

n

�

n

,

@

�

= @

1

�

1

� : : : � @

n

�

n

.

If (C

�

; �

�

) is a complex and c 2 ker(�

i

) then c denotes the cohomology

class generated by c. If (A

�

; �

�

) is another complex and � : A

�

! C

�

is a chain map then we write � : A

�

�

=

�! C

�

provided that � induces an

isomorphism on cohomology, in which case we call � a quasi-isomorphism.

Let f

0

; : : : ; f

r

2 R

n

, set X = C

n

, Y = Var(f

0

; : : : ; f

r

) � X and U =

X n Y . If I is a subset of f0; : : : ; rg then we will write jIj for its cardinality

and F

I

for the product

Q

�2I

f

�

. Throughout, let

�

C

�

=

�

C

�

(f

0

; : : : ; f

r

) denote

the reduced

�

Cech complex (cf. [4], Section A4.1) which in [16] is called the

Mayer-Vietoris complex:

0!

M

jIj=1

R

n

[F

I

�1

]

| {z }

degree 0

! : : :!

M

jIj=r+1

R

n

[F

I

�1

]

| {z }

degree r

! 0:(1.1)
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If U = X, then we set

�

C

�

to be the complex concentrated in degree zero

whose entry

�

C

0

is R

n

.

The action � extends to an action of D

n

on the �eld of fractions of R

n

in a natural way. For all f 2 R

n

there is an operator P

f

(s) 2 D

n

[s] and a

polynomial b

f

(s) 2 Q [s] such that there is an identity

P

f

(s) � f

s+1

= b

f

(s)f

s

:(1.2)

Here, the � represents the symbol of the action ofD

n

[s] on the freeR

n

[s; f

�1

]-

moduleM

f

= R

n

[s; f

�1

]
 f

s

given by

x

i

�

�

g(x; s)

f

k


 f

s

�

=

x

i

� g(x; s)

f

k


 f

s

;

@

i

�

�

g(x; s)

f

k


 f

s

�

=

�

@

i

�

�

g(x; s)

f

k

�

+ s@

i

� (f) �

g(x; s)

f

k+1

�


 f

s

;

s �

�

g(x; s)

f

k

�

=

s � g(x; s)

f

k


 f

s

:

The monic b

f

(s) of smallest degree satisfying an equation of type (1.2) is

called the Bernstein-Sato polynomial of f and a corresponding P

f

(s) we

shall call a Bernstein operator [1]. P

f

(s) is, as opposed to b

f

(s), not unique

and only determined up to elements in J

�

(f

s

), the annihilator ideal inside

D

n

[s] of 1
f

s

2M

f

. For ways of computing b

f

(s) and J

�

(f

s

) see [10, 15].

1.3. Let 


�

U

= 


�

(

�

C

�

) stand for the algebraic

�

Cech-de Rham complex on

U . This is de�ned iteratively by

�

C

�

0

=

�

C

�

, setting

�

C

�

i+1

equal to the total

complex of

�

C

�

i

!

�

C

�

i

^ dx

i+1

where the map

�

C

j

i

!

�

C

j

i

^ dx

i+1

is given by

(�1)

j

@

i+1

� (�), and 


�

(

�

C

�

) =

�

C

�

n

.

The origin of 


�

U

is as follows. De�ne on X a complex DR

�

X

of sheaves

by DR

�

0

= O

X

, DR

�

i+1

= Tot

�

(DR

�

i

@

i+1

�

�! DR

�

i

^ dx

i+1

) and DR

�

X

= DR

�

n

.

DR

�

X

is a resolution of the constant sheaf C , and if X

an

denotes the associ-

ated analytic space then

DR

�

X

an

= DR

�

X




O

X

O

X

an

induces a resolution of the constant sheaf C on all U

an

� X

an

.

By [9], sheaf cohomology with coe�cients in the constant sheaf C co-

incides with singular cohomology with complex coe�cients. By standard

homological algebra, H

�

(U ; C ) can therefore be computed as the hyperco-

homology of (DR

�

X

an

)j

U

an

. By algebraic-analytic comparison theorems we

may instead compute the hypercohomology of (DR

�

X

)j

U

=: DR

�

U

. By [5],

Theor�eme 5.9.2, this can be done with

�

Cech cohomology on a suitable cover.

We choose the cover U =

S

r

�=0

(X n Var(f

�

)) of a�ne sets. 


�

(

�

C

�

) is the

resulting complex for the computation of

�

Cech cohomology.
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1.4. If U is a�ne, then H

i

(U

an

;DR

j

U

an

) = 0 for all i > 0 because DR

j

U

an

is

a �nite sum of copies of O

U

an

. Hence each C

1

-cohomology class has a holo-

morphic representative ([7], pp. 448-449) and by the comparison theorems

the holomorphic representative can be picked to be algebraic ([3], Theorem

6.1.21). So in this case the multiplicative structure of H

�

(U ; C ) is equivalent

to the wedge-product within �(U ;DR

�

U

).

For non-a�ne U , the corresponding multiplication of

�

Cech cocycles in




�

(

�

C

�

) is described in Theorem 4.1.

1.5. Denote by F(M) the Fourier transform of the D

n

-moduleM (see Sub-

section 1.6) and let 
 = D

m

=(@

1

; : : : ; @

n

) �D

n

. The techniques used in [12]

and [16] to compute de Rham cohomology make it somewhat complicated

to understand the results of the algorithms in terms of di�erential forms.

This is because these papers compute the cohomology of a complex that is a

subquotient of F(
)


D

n

A

�

where A

�

is a D

n

-free resolution of F(R

n

[f

�1

])

(or free and quasi-isomorphic to F(

�

C

�

) if r > 0). Thus one needs to trace

several quasi-isomorphisms in order to multiply two classes. In this paper

we make these quasi-isomorphisms algorithmic.

Routines for the computation of de Rham cohomology of U have been im-

plemented in Macaulay 2 by A. Leykin and H. Tsai. Some of these routines

are still under construction and so some steps in our algorithms do at this

moment have to be done by hand. Currently there are procedures available

that compute localizations, local cohomology modules, and integration and

restriction modules of holonomic modules. In particular de Rham cohomol-

ogy is implemented. Besides that there are many other objects de�ned over

rings of di�erential operators that can be computed.

Macaulay 2 can be obtained from www.math.uiuc.edu/Macaulay2. The

routines needed to do D-module computations as well as an online docu-

mentation are available under www.math.berkeley.edu/~htsai/.

1.6. We need to de�ne some special objects in the category of D

n

-modules.


 = D

n

=(@

1

; : : : ; @

n

) � D

n

is a right D

n

-module and is as an R

n

-module

non-canonically isomorphic to R

n

. Let S

k

be the set of strictly increasing

sequences of length k of integers strictly between 0 and n+1. Let jSj be the

length of such a sequence and for S = fs

1

; : : : ; s

k

g set dx

S

= dx

s

1

� : : : � d

s

k

.

We write (


�

; "

�

) for the Koszul cocomplex of right D

n

-modules on D

n

induced by the sequence @

1

; : : : ; @

n

. That means




k

=

M

S2S

k

D

n

� dx

S

and 


k

! 


k+1

is the sum of the maps




k

!! D

n

� dx

S

(�1)

sgn(S;t)

@

t

�

-

D

n

� dx

S[ftg

,! 


k+1

where sgn(S; t) is the number of elementary permutations needed to order

the sequence (S; t) (and sgn(S; t) = 0 if t 2 S). Then 
 = H

n

(


�

) is the

only nonzero cohomology group of 


�

.
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If M is a module then we write M(b) for the complex that consists

of a single module, M , placed in cohomological degree b. We shall call

� the quasi-isomorphism 


�

!! 
(n). For S 3 S = (s

1

; : : : ; s

k

) write

dx

^S

:= dx

s

1

^ � � � ^ dx

s

k

. Then there is an isomorphism 


�




D

n

R

n

�

=




�

X

identifying dx

s

1

: : : dx

s

k


 g with gdx

s

1

^ : : :^ dx

s

k

. More generally, there is

an isomorphism of Tot

�

(


�




D

n

�

C

�

) with 


�

(

�

C

�

).

By way of rephrasing the Grothendieck-Deligne comparison theorem it

has been observed in [12, 16] that thus

H

i

dR

(U ; C )

�

=

H

i

(
(n)


L

D

n

�

C

�

(Y ));

the L denoting the left (hyper-)derived functor of (�)


D

n

(�). The functor





L

D

n

(�) is called integration.

1.7. Let us now introduce some basic concepts related to the

~

V -�ltration

which is the mirror image of the V -�ltration (cf. [11, 16]) under the Fourier

transform.

If � 2 Z

n

we write j�j for

P

n

i=1

�

i

. We let

~

F

k

(D

n

) be the subgroup

~

F

k

(D

n

) =

X

j���j�k

C � x

�

@

�

of D

n

using multi-index notation, and for a given operator P 2 D

n

we de�ne

~

V

n

deg(P ) = minfkjP 2

~

F

k

(D

n

)g:

So

~

F

k

(D

n

) = fP 2 D

n

j

~

V

n

deg(P ) � kg. This gives an increasing

~

V

n

-

�ltration on D

n

which we generalize to free modules

L

t

i=1

D

n

� e

i

[m] by

~

F

k

(

t

M

1

D

n

� e

i

[m]) =

t

X

i=1

X

j���j+m(i)�k

C � x

�

@

�

� e

i

and

~

V

n

deg(P [m]) = minfkjP 2

~

F

k

(D

n

t

[m])g

for �xed m 2 Z

t

. m is called the shift vector. Submodules and quotient

modules inherit a �ltration by taking intersections and images of

~

F

k

on free

modules respectively.

In order to make 


�

a

~

V

n

-strict (in fact, graded) resolution of 
, we shift




n�k

by �k.

There is an equivalence of the category of left D

n

-modules with itself

induced by the algebra automorphism of D

n

given by the Fourier transform

F ,

F(x

i

) = @

i

; F(@

i

) = �x

i

:

The minus sign is required to keep the Leibniz relation [@

i

; x

i

] = 1 intact.

We shall often write

~

M instead of F(M) in order to keep notation at a

minimum. Since F(
) =

~


 = D

n

=(x

1

; : : : ; x

n

) � D

n

, the Fourier transform
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turns the computation of 



L

D

n

(�) into a restriction, the derived functor

of

~





D

n

(�).

If one de�nes

F

k

(D

n

) =

X

j��+�j�k

C � x

�

@

�

on D

n

then one obtains the V -�ltration. The V -�ltration is the mode of

writing in [10, 11, 12, 13, 16], but not convenient for dealing with de Rham

cohomology. By the symmetry

~

F

k

(D

n

) = F(F

k

(D

n

)) every statement about

the V -�ltration proved in those papers has a corresponding companion for

the

~

V -�ltration. In the sequel we will state facts about the

~

V -�ltration

proved in the above papers about the V -�ltration.

A complex of D

n

-modules fA

�

[m

�

]; �

�

g is

~

V

n

-adapted if

�

i

�

~

F

k

(A

i

[m

i

])

�

�

~

F

k

(A

i+1

[m

i+1

])

for all i; k, and we call the complex

~

V

n

-strict if in addition

�

i�1

�

~

F

k

(A

i�1

[m

i�1

)])

�

= �

i�1

(A

i�1

) \

~

F

k

(A

i

[m

i

])

for all i; k. For a

~

V

n

-adapted complex one can compute the associated graded

complex ~gr

�

(A

�

[m

�

]).

~

V

n

-strict complexes are those in which taking coho-

mology commutes with the formation of graded objects. In [16], Algorithm

3.8. it is shown how for a given right bounded complex of �nitely generated

left D

n

-modules one can construct a quasi-isomorphism onto it from a V

n

-

strict D

n

-free complex which can easily be modi�ed to construct

~

V

n

-strict

complexes instead. The purpose of Section 3 is to improve this algorithm,

i.e., to give an algorithm that computes smaller complexes A

�

[m

�

].

1.8. Recall that a �nitely generated D

n

-module M is called holonomic if

Ext

i

D

n

(M;D

n

) = 0 unless i = n. The holonomic D

n

-modules form a full

Abelian subcategory of the left D

n

-modules. If M=N is a holonomic module

described by the left submodules M � N of A[m] where A is D

n

-free, then

there exists a nonzero polynomial b(s) satisfying

b(�@

1

x

1

� : : :� @

n

x

n

+ j) �

~

F

j

(M [m]) �

~

F

j�1

(M [m]) +N(1.3)

for all j 2 Z. The monic polynomial of least degree with such a prop-

erty is called the b-function for integration of (M=N)[m] along @

1

; : : : ; @

n

.

The b-function for integration of a

~

V

n

-strict complex A

�

[m

�

] is the nonzero

polynomial b(s) of minimal degree that satis�es

(1.4)

b(�@

1

x

1

� : : :� @

n

x

n

+ j) �

~

F

j

(H

i

(A

�

[m

�

])) �

~

F

j�1

(H

i

(A

�

[m

�

]))

for all i.

We remind the reader that for all I � f0; : : : ; rg the module R

n

[F

I

�1

] is

holonomic [1] and thus the complex

�

C

�

(Y ) has holonomic cohomology.
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1.9. If A[m] is a free D

n

-module with shift vector m then 
 


D

n

A[m] is

�ltered by the C -vector spaces

~

F

k

(



D

n

A[m]) := C � fP 


D

n

Q j

~

V

n

deg(P ) +

~

V

n

deg(Q[m]) � kg:

Since 


�

=

C [x

1

; : : : ; x

n

] as right D

n

-modules,

~

F

k

(
 


D

n

A[m]) equals the

free C -module on the symbols

fP

j;�

g = f(P

1

; : : : ; P

rk

D

n

(A)

)jP

j

= x

�

2 C [x

1

; : : : ; x

n

];(1.5)

j�j � k �m(j); P

l

= 08l 6= jg:

If A

�

[m

�

] is a

~

V

d

-strict complex, we denote by

~

F

k

(

A

�

[m

�

]) the complex

whose modules are the

~

F

k

(

 A

i

[m

i

]) as de�ned above, and the maps are

induced from A

�

.

Unless speci�ed otherwise, all tensor products in the sequel will be over

D

n

.

2. The case of a hypersurface

In this section we assume that r = 0 and hence that U is a�ne. We set

f = f

0

, M = R

n

[f

�1

] and we assume that M is generated by 1=f as D

n

-

module (which can always be arranged by replacing f by a suitable power

of f). Let us �rst consider an explicit

Example 2.1. Let X = C

2

, R

2

= C [x; y], f = xy, Y = Var(f) and U =

X n Y . The algebraic de Rham complex 


�

U

on U takes the form

(0! R

2

[f

�1

]

d

0

! R

2

[f

�1

] dx�R

2

[f

�1

] dy

d

1

! R

2

[f

�1

] dx ^ dy ! 0)

(2.1)

with maps given by d

0

=

�

@

x

�

@

y

�

�

and d

1

= (@

y

�;�@

x

�).

It is not hard to see that the cohomology groups of this complex are

H

0

�

=

C , H

1

�

=

C

2

and H

2

�

=

C , generated by the classes of the forms 1,

dx

x

� 0 and 0 �

dy

y

, and

1

xy

dx ^ dy. Let us compute the cup product of the

two classes in degree 1. To do this we recall the following theorem.

Theorem 2.2 (cf. [2], p.174). Let U � C

n

be an open subset. Assume that

c and c

0

are two cohomology classes in H

i

(U ; C ) and H

j

(U ; C ) respectively,

represented by the cycles

c =

X

S2S

i

g

S

dx

^S

and

c

0

=

X

S

0

2S

j

g

0

S

0

dx

^S

0
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where g

S

and g

0

S

0

are in �(U;O

U

). Then the cup product c[c

0

is represented

by the cycle

X

S2S

i

X

S

0

2S

j

g

S

� g

0

S

0

dx

^S

^ dx

^S

0

:

2

Remark 2.3. The theorem in [2] really deals with C

1

-di�erential forms,

but is in particular applicable if c and c

0

are represented by algebraic cy-

cles, in which case the product is algebraic as well. As pointed out in the

introduction, the de Rham cohomology ring can be modelled with algebraic

data.

It follows that in our example (

dx

x

� 0) [ (0�

dy

y

) =

1

xy

dx ^ dy.

In general, it is not easy to see what the cohomology groups of 


�

U

are.

Even if one knows the cohomology, it is very unlikely that the product of

any two of the chosen generators gives exactly another one. Moreover, if

the dimensions of the cohomology groups were computed by means of the

algorithms given in [12] and [16] then it is a priori rather unclear what

the meaning of their generators is in terms of the cohomology groups of




�

U

= 


�

(

�

C

�

). In order to understand this relationship better, let us re-

view Algorithm 2.1 in [12] (rephrased in terms of integration rather than

restriction):

Algorithm 2.4.

Input: f 2 R

n

; i 2 N.

Output: dim

C

(H

i

dR

(U ; C )) where U = C

n

nVar(f).

Begin

1. Find a

~

V

n

-strict resolution A

�

[m

�

] of the D

n

-module R

n

[f

�1

] by �nitely

generated free D

n

-modules where R

n

[f

�1

] is positioned in cohomolog-

ical degree 0.

2. Replace each D

n

by the right D

n

-module 
 = D

n

=(@

1

; : : : ; @

n

) �D

n

�

=

C [x

1

; : : : ; x

n

] in that resolution.

3. Find the b-function for the integration of R

n

[f

�1

] along @

1

; : : : ; @

n

; let

k

0

; k

1

2 Z with (b(k) = 0; k 2 Z)) (k

0

� k � k

1

).

4. Truncate the output of Step 2 to the complex of �nite dimensional

C -vector spaces

~

F

k

1

(
(n)
A

�

[m

�

])

~

F

k

0

�1

(
(n)
A

�

[m

�

])

(note the shift in cohomological de-

gree).

5. Take the i-th cohomology and return its dimension.

End.

The resolution in Step 1 is computed as follows. First write R

n

[f

�1

] as

A

0

=I

0

where A

0

= D

n

[0]. Compute a

~

V

n

-strict Gr�obner basis (see [10, 11,

14]) for I

0

, let A

�1

[m

�1

] be a free module surjecting its generators onto this

Gr�obner basis while preserving

~

V

n

-degree, let I

�1

be the kernel and iterate

this procedure to obtain a resolution of desired length.
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2.1. Let us consider the e�ects of Algorithm 2.4 on Example 2.1. First we

need to write M = C [x; y; (xy)

�1

] as a D

2

-module: M = D

2

=D

2

� (@

x

x; @

y

y)

generated by

1

xy

2M . M has a

~

V

2

-strict resolution (A

�

[m

�

]; �

�

) as follows:

(2.2)

0! D

2

[0]

| {z }

A

�2

[0]

�

�2

z }| {

� (@

y

y;�@

x

x)

-

(D

2

�D

2

)[0; 0]

| {z }

A

�1

[0;0]

�

�1

z }| {

�

�

@

x

x

@

y

y

�

-

D

2

[0]

| {z }

A

0

[0]

-

M ! 0:

Since

(�@

x

x� @

y

y) �

~

F

0

(D

2

) �

~

F

�1

(D

2

) +

~

F

0

(D

2

) � (�@

x

x� @

y

y)

�

~

F

�1

(D

2

) +D

2

� (@

x

x; @

y

y);

the b-function associated to the integration of M is b(s) = s.

Thus, replacing D

2

by 
(2) in the resolution (2.2) and truncating the

complex to forms of

~

V

2

-degree at most zero (modulo those of negative

~

V

2

-

degree) one obtains the complex

0! C � 1

|{z}

degree 0

! C � (1; 0) � C � (0; 1)

| {z }

degree 1

! C � 1

|{z}

degree 2

! 0;

in which all di�erentials are zero.

2.2. If the cohomology groups are obtained in this way, the cup product

is considerably more opaque. Continuing our example, we do not have an

obvious identi�cation of the classes (1; 0) and (0; 1) with forms in the de

Rham complex on U . (Note in particular, that it is completely coincidental

that the number of direct summands in degree j in (2.1) and (2.2) agree

for all j: one is

�

r+1

j

�

, the other depends on Gr�obner basis computations.)

Thus, we need to understand better the relation between what Algorithm

2.4 computes and the de Rham complex of U .

The basic reason for the output of Algorithm 2.4 to be the same as

H

�

dR

(U ; C ) is that both compute Tor

D

n

�

(
(n);M) as was pointed out in

[12]. The following theorem allows to construct an explicit algorithmic cor-

respondence between the cohomology groups of 


�

U

and those of the complex


(n)
A

�

appearing in Algorithm 2.4. In other words, it translates the out-

put of Algorithm 2.4 into the language of di�erential forms. This is the

most technical piece of the paper, and for the purpose of later reference,

we state the theorem somewhat more formally. Recall that B(m) denotes

the complex that consists of the single module B located in cohomological

degree m.

Theorem 2.5 (Transfer Theorem). Let (B

�

; �

�

)

m

0

�

�! B(m) be a free res-

olution for the right D

n

-module B(m). Let (A

�

; �

�

)

l

k

�

0

�! (C

�

; �

�

)

l

k

be a

quasi-isomorphism from a complex of free left D

n

-modules to a complex of
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�nitely generated D

n

-modules, constructed either as in our Section 3 or [16],

Section 3. There exists a natural C -module isomorphism

H

i

(Tot

�

(B(m)
A

�

)) 3 c$ �(c) 2 H

i

(Tot

�

(B

�


 C

�

));

as is well known. We shall call � the Transfer map.

� can be computed with Gr�obner basis techniques in the following sense. If

c is given by means of the representative c 2 B
A

i�m

with (B
�

i�m

)(c) = 0

then one can construct an element

X

a

m�j;i�m+j

2 ker(Tot

i

(B

�


A

�

)! Tot

i+1

(B

�


A

�

))

with (� 
A

�

)(

P

a

m�j;i�m+j

) = c and (B

�


 �

0

)(

P

a

m�j;i�m+j

) = �(c).

Similarly, if c

0

2 H

i

(Tot

�

(B

�


 C

�

)) is given by

X

c

m�j;i�m+j

2 ker(Tot

i

(B

�


 C

�

)! Tot

i+1

(B

�


 C

�

))

then one can compute an element

X

a

m�j;i�m+j

2 ker(Tot

i

(B

�


A

�

)! Tot

i+1

(B

�


A

�

))

with (B

�


 �

0

)(a

m�j;i�m+j

) = c

m�j;i�m+j

and (� 
A

�

)(

P

a

m�j;i�m+j

) =

�

�1

(c).

The necessary computations are exclusively Gr�obner basis computations

in free D

n

-modules.

Proof. Consider the double complex

B 
A

0

-

� � �

-

B 
A

m

B

m


A

k

6

�

m;k

-

� � �

�

m;l�1

-

B

m


A

l

6

.

.

.

�

m�1;k

6

.

.

.

�

m�1;l

6

B

0


A

k

�

0;k

6

�

0;k

-

� � �

�

0;l�1

-

B

0


A

l

�

0;l

6

(2.3)

together with its unique row of non-vanishing cohomology. Here we write

�

i;j

:= B

i


 �

j

, �

i;j

:= �

i


 A

j

and �

i;j

= B

i


 �

j

. The total complex

Tot

�

(B

�


A

�

) is quasi-isomorphic to both Tot

�

(B

�


C

�

) and Tot

�

(B(m)


A

�

) via the projections � : B

�

! B(m) and �

0

: A

�

! C

�

. We call these

induced chain maps � and �

0

as well.

Let c 2 H

i

(Tot

�

(B(m) 
 A

�

)) be represented by c 2 B 
 A

i�m

. Since

B

m

!! B(m) and A

i�m

is free, we can pick a

m;i�m

2 B

m


 A

i�m

with

�(a

m;i�m

) = c. So �

m;i�m

(a

m;i�m

) 2 ker(�) = im(�

m�1;i�m+1

) since B

�

is

a resolution and A

i�m+1

is 
at. Thus, there is a

m�1;i�m+1

2 B

m�1


A

i�m+1

with �

m;i�m

(a

m;i�m

) = �

m�1;i�m+1

(a

m�1;i�m+1

).

Then �

m�1;i�m+1

(a

m�i;i�m+1

) 2 ker(�

m�1;i�m+2

) = im(�

m�2;i�m+2

).

We can pick a

m�2;i�m+2

2 B

m�2


A

i�m+2

with �

m�1;i�m+1

(a

m�1;i�m+1

) =
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�

m�2;i�m+2

(a

m�2;i�m+2

). Progressing in this way we obtain successively

a

m�j;i�m+j

2 B

m�j


A

i�m+j

for 0 � j � m with

�

m�j;i�m+j

(a

m�j;i�m+j

) = �

m�j�1;i�m+j+1

(a

m�j�1;i�m+j+1

)

for 0 � j < m.

P

(�1)

j

a

m�j;i�m+j

represents a cohomology class in H

i

(Tot

�

(B

�


A

�

)),

this cohomology class projects onto c under �

�

and onto �(c) under �

0

�

. Thus,

�(c) = �

0

(

P

(�1)

j

a

m�j;i�m+j

) 2 H

i

(Tot

�

(B

�


 C

�

)). This construction is

additive and hence a group homomorphism.

Now we shall investigate the inverse map. The idea is similar but com-

plicated by the fact that A

�

may be non-exact in more than one place.

This time we have to start the diagram chase at the right \boundary"

of the double complex. Let c

0

= c

m;i�m

+ c

m�1;i�m+1

+ : : :+ c

i�l;l

be a co-

homology class in H

i

(Tot

�

(B

�


 C

�

)) with c

j;i�j

2 B

j


 C

i�j

. Clearly

�

i�l;l

(c

i�l;l

) = 0, and since B

i�l


 A

�

�

=

�! B

i�l


 C

�

there is a

i�l;l

2

ker(�

i�l;l

), �

0

(a

i�l;l

) = c

i�l;l

. Since A

l+1

= 0, �

i�l+1;l

(�

i�l;l

(a

i�l;l

)) = 0. So

�

i�l;l

(a

i�l;l

) represents a cohomology class in B

i�l+1


A

�

. Since by assump-

tion on c

0

we have �

0

(�

i�l;l

(a

i�l;l

)) = ��

i�l+1;l�1

(c

i�l+1;l�1

), �

i�l;l

(a

i�l;l

)

represents the zero cohomology class and therefore there is a

i�l+1;l�1

1

2

B

i�l+1


A

l�1

with �

i�l+1;l�1

(a

i�l+1;l�1

1

) = ��

i�l;l

(a

i�l;l

).

There is unfortunately little reason to hope that �

0

(a

i�l+1;l�1

1

) = c

i�l+1;l�1

,

which is what we really want. But, c

i�l+1;l�1

��

0

(a

i�l+1;l�1

1

) 2 ker(�

i�l+1;l�1

)

by construction. Therefore there is a

i�l+1;l�1

2

2 ker(�

i�l+1;l�1

) such that

�

0

(a

i�l+1;l�1

2

) = c

i�l+1;l�1

� �

0

(a

i�l+1;l�1

1

). We set

a

i�l+1;l�1

= a

i�l+1;l�1

1

+ a

i�l+1;l�1

2

2 B

i�l+1


A

l�1

which maps to c

i�l+1;l�1

under �

0

and satis�es

�

i�l+1;l�1

(a

i�l+1;l�1

) = ��

i�l;l

(a

i�l;l

):

Now we repeat this procedure with a

i�l+1;l�1

as follows. By construc-

tion �

i�l+2;l�1

(�

i�l+1;l�1

(a

i�l+1;l�1

)) = 0, and �

0

(�

i�l+1;l�1

(a

i�l+1;l�1

)) =

��

i�l+2;l�2

(c

i�l+2;l�2

). Hence �

i�l+1;l�1

(a

i�l+1;l�1

) represents the zero class

in B

i�l+2


 A

�

. So we can pick a

i�l+2;l�2

1

2 B

i�l+2


 A

l�2

such that

�

i�l+2;l�2

(a

i�l+2;l�2

1

) = ��

i�l+1;l�1

(a

i�l+1;l�1

). Since �

i�l+2;l�2

(c

i�l+2;l�2

�

�

0

(a

i�l+2;l�2

1

)) = 0 we can then pick a

i�l+2;l�2

2

2 B

i�l+2


 A

l�2

satisfying

�

0

(a

i�l+2;l�2

2

) = c

i�l+2;l�2

� �

0

(a

i�l+2;l�2

1

) and �

i�l+2;l�2

(a

i�l+2;l�2

2

) = 0.

Set

a

i�l+2;l�2

= a

i�l+2;l�2

1

+ a

i�l+2;l�2

2

2 B

i�l+2


A

l�2

:

So �

0

(a

i�l+2;l�2

) = c

i�l+2;l�2

and

�

i�l+2;l�2

(a

i�l+2;l�2

) = ��

i�l+1;l�1

(a

i�l+1;l�1

):

Proceeding in this way we obtain elements a

i�l+j;l�j

2 B

i�l+j


A

l�j

from

which we construct a =

P

a

i�l+j;l�j

. a is by construction in the kernel of
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Tot

�

(B

�


A

�

) and its cohomology class a in H

�

(B

�


A

�

) satis�es

�

0

�

(a) = c

0

:

This construction yields the desired inverse to the map � :

�(a) = �(a

m;i�m

) = �

�1

(c

0

):

In these computations we used that we can compute preimages under

maps between free modules, and images under such maps. These construc-

tions are all algorithmic because the construction of preimages of elements

under maps between free D

n

-modules is an application of Gr�obner bases.

This �nishes the proof of the transfer theorem. 2

2.3. A particular and important application for the theorem is given if we

set (B

�

; �

�

) = (


�

; "

�

), and let (C

�

; �

�

) be the Mayer-Vietoris complex as-

sociated to a variety. This is possible because 


�

is a resolution for 
(n).

In this case the theorem enables us to compute �rst generators for the coho-

mology of 
(n)
A

�

via Algorithm 6.1. in [16], and then from the generators

for this homology to compute actual di�erential forms representing the de

Rham cohomology of U (represented by elements of Tot

�

(


�




�

C

�

)).

The philosophy for evaluating the cup product is as follows. After com-

puting a basis for the cohomology of 
(n)
A

�

one lifts these basis elements

into cohomology generators of Tot

�

(


�


 A

�

) and computes their transfers

in Tot

�

(


�




�

C

�

). We can multiply those classes which are now actual di�er-

ential forms. Then one transfers the products back to 
(n)
A

�

. (The point

of the second transfer above is that one wishes to express the products in

terms of the chosen basis, but this is only possible in a truncation of 

A

�

because 

A

�

as well as Tot

�

(


�




�

C

�

) are too large.)

2.4. Let us consider how the Transfer Theorem works in our Example 2.1.

(This is a very special case of the Transfer Theorem since the complex

�

C

�

has only one nonzero entry.) To this end we consider the double complex

(2.4)


(2)
D

2

-


(2)
 (D

2

�D

2

)

-


(2) 
D

2

D

2


D

2

6

�

2;�2

-

D

2


 (D

2

�D

2

)

6

�

2;�1

-

D

2


D

2

6

-

D

2


M

0

@

D

2

[�1]

�

D

2

[�1]

1

A


D

2

"

1;�2

6

�

1;�2

-

0

@

D

2

[�1]

�

D

2

[�1]

1

A


 (D

2

�D

2

)

�"

1;�1

6

�

1;�1

-

0

@

D

2

[�1]

�

D

2

[�1]

1

A


D

2

"

1;0

6

-

0

@

D

2

[�1]

�

D

2

[�1]

1

A


M

6

D

2

[�2]
D

2

"

0;�2

6

�

0;�2

-

D

2

[�2]
 (D

2

�D

2

)

�"

0;�1

6

�

0;�1

-

D

2

[�2]
D

2

"

0;0

6

-

D

2

[�2]
M

6
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obtained by tensoring the resolution (2.2) for M with the complex 


�

. Note

that we have the following maps in the complex:

"

1;�2

((a; b) 
 c) = (�@

y

a+ @

x

b)
 c;

"

0;�2

(a
 c) = (@

x

a; @

y

a)
 c;

"

1;�1

((a; b)
 (c; d)) = (@

y

a� @

x

b)
 (c; d);

"

0;�1

(a
 (c; d)) = (@

x

a; @

y

a)
 (c; d);

"

1;0

((a; b) 
 c) = (�@

y

a+ @

x

b)
 c;

"

0;0

(a
 c) = (@

x

a; @

y

a)
 c:

Similarly,

�

2;�2

(a
 c) = a
 (c@

y

y;�c@

x

x);

�

2;�1

(a
 (c; d)) = a
 (c@

x

x+ d@

y

y);

�

1;�2

((a; b) 
 c) = (a; b) 
 (c@

y

y;�c@

x

x);

�

1;�1

((a; b)
 (c; d)) = (a; b) 
 (c@

x

x+ d@

y

y);

�

0;�2

(a
 c) = a
 (c@

y

y;�c@

x

x);

�

0;�1

(a
 (c; d)) = a
 (c@

x

x+ d@

y

y):

Let us now multiply our two cohomology classes (1; 0) and (0; 1) in H

1

(



A

�

) from the top row in (2.4).

First we lift the two classes into D

2


 (D

2

�D

2

), for example to 1
 (1; 0)

and 1 
 (0; 1). Now we �nd their transfers. Apply �

2;�1

to both to obtain

1 
 @

x

x = @

x


 x and 1 
 @

y

y = @

y


 y respectively. These are now in

the kernel of the projection D

2


 D

2

! 
 
 D

2

. Thus we can lift them

into

0

@

D

2

[�1]

�

D

2

[�1]

1

A


D

2

, resulting in (0; 1)
 x and (�1; 0)
 y. Multiplying

by (�1)

2�1

, we �nd (0;�1) 
 x and (1; 0) 
 y. These we can push into

0

@

D

2

[1]

�

D

2

[1]

1

A


M where they become the cosets of (0;�1)
(x) and (1; 0)
(y).

SinceM is generated by

1

xy

, these elements correspond to the forms

�xdy

xy

=

�dy

y

and

y dx

xy

=

dx

x

. The product is

1

xy

�dx^dy in D

2


M , which corresponds

to the lifted operator 1 
 1 in D

2


 D

2

. We obtain the element (1
 1) in



D

2

, establishing the multiplication rule (1; 0) [ (0; 1) = 1.

In our example we have tacitly been assuming the following things which

we need to explain a bit.

2.5. The output of Algorithm 2.4 is set of a cohomology classes in the

complex

~

F

k

1

(
(n)
A

�

[m

�

])

~

F

k

0

�1

(
(n)
A

�

[m

�

])

. We however pretended that they actually live
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in 
(n)
A

�

[m

�

]. This was crucial for applying the Transfer Theorem to it.

The following lemma explains the relationship between the cohomologies of

these two complexes.

Lemma 2.6. Let (A

�

[m

�

]; �

�

) be a

~

V

n

-strict free complex of left D

n

modules

with holonomic cohomology. Denote by b(s) the b-function of (A

�

[m

�

]; �

�

)

for integration along @

1

; : : : ; @

n

and let k

1

be the largest integral root of b(s).

Then

�

~

F

k

1

(

A

i

[m

i

]) is a �nite dimensional vector space for all i;

� 1 
 P 2

~

F

k

1

(
 
 A

i

[m

i

]) � 
 
 A

i

[m

i

] is in ker(

~

F

k

1

(
 
 �

i

)) if and

only if it is in ker(

 �

i

);

� 1 
 P 2

~

F

k

1

(
 
 A

i

[m

i

]) is in �

i�1

(

~

F

k

1

(
 
 A

i�1

[m

i�1

])) if and only

if it is in �

i�1

(

A

i�1

[m

i�1

]);

� if k

0

1

> k

1

and 1
 P 2 ker(

~

F

k

0

1

(

 �

i

)) then there exists an operator

Q 2

~

F

k

0

1

(A

i�1

[m

i�1

]) such that

�

i�1

(Q) + P = P

0

+ P

00

where P

0

is of

~

V

n

-degree at most k

1

and P

00

2 (@

1

; : : : ; @

n

) �A

i

(we will

see in 2.7 how construct such a Q and P

0

from a given P ).

Proof. The main points of this lemma have been proven in [11, 16]. There

it is shown that if B

�

[n

�

] is V

n

-strict and l

1

is the largest integral root of the

nonzero b-function of B

�

[n

�

] for restriction to the origin, then the inclusion

of complexes

F

l

1

(

~



B

�

[n

�

]) ,! F

l

0

1

(

~



B

�

[n

�

])

is a quasi-isomorphism for l

0

1

> l

1

in our situation. By the symmetry of

integration and restriction,

~

F

k

1

(

A

�

[m

�

]) ,!

~

F

k

0

1

(

A

�

[m

�

])(2.5)

is a quasi-isomorphism for k

0

1

> k

1

. This implies the �nal three claims.

The �rst claim is a consequence of the facts that ~gr

k

(
 
 A

�

[m

�

]) is �nite

dimensional in each degree, and

~

F

k

(
 
 A

�

[m

�

]) is the zero complex for

su�ciently small k (because

~

V

n

deg(P [j]) � j � 1 implies P 2 (@

1

; : : : ; @

n

) �

D

n

and hence 1
 P = 0 in 

D

n

). 2

By the lemma, taking the k

0

of Algorithm 2.4 su�ciently small results in

~

F

k

0

�1

(
 
 A

�

[m

�

]) = 0 and thus

~

F

k

1

(

A

�

[m

�

])

~

F

k

0

�1

(

A

�

[m

�

])

=

~

F

k

1

(
 
 A

�

[m

�

]). Fur-

thermore, any cohomology class 1
P in

~

F

k

1

(

A

�

[m

�

]) lifts immediately

to the class of 1 
 P in 
 
 A

�

[m

�

]. It is hence safe to assume that the

output of Algorithm 2.4 consists of classes of the complex

~

F

k

1

(

A

�

[m

�

]).

2.6. Another problem we evaded in the example is the following. Choose

two cohomology classes c; c

0

in

~

F

k

1

(
 
 A

�

[m

�

]), �nd their transfer and

take the cup product. The representative c

00

which we compute for the

transfer of this cup product may be of

~

V

n

-degree strictly bigger than k

1
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(see Example 2.8). This new representative therefore would not �t into the

complex

~

F

k

1

(

A

�

[m

�

]) within which we are carrying out all computations.

However, if k

0

1

=

~

V

n

deg(c

00

) then the complexes

~

F

k

1

(

A

�

[m

�

]) and

~

F

k

0

1

(



A

�

[m

�

]) are quasi-isomorphic according to Lemma 2.5. Thus, c

00

is simply a

bad representative for c

00

.

The following algorithm shows how to �nd for such a c

00

a good represen-

tative, namely one in

~

F

k

1

(

 A

�

[m

�

]), and in e�ect �nds implicitly the Q

and explicitly the P

0

in the fourth part of Lemma 2.6 for a given P . (We

continue to assume that the hypotheses of Lemma 2.6 hold, in particular

~

F

k

1

(

A

�

[m

�

])

�

=



A

�

[m

�

] is part of this assumption.)

Algorithm 2.7 (Minimal

~

V -degree representatives in 

A

�

[m

�

]).

Input: P 2 A

i

[m

i

] such that

~

V

n

deg(P [m

i

]) = k

0

1

> k

1

and 1
 P generates

a cohomology class in

~

F

k

0

1

(

A

�

[m

�

]).

Output: P

0

2 A

i

[m

i

] such that

~

V

n

deg(P

0

[m

i

]) � k

1

and 1 
 P

0

generates

the cohomology class in

~

F

k

1

(
 
 A

�

[m

�

]) that corresponds to the class of

1
 P under the quasi-isomorphism (2.5).

Begin

1. We use the presentation (1.5) for

~

F

k

1

(
 
 A

�

[m

�

]). In particular, we

assume that 1
 P contains no @

j

.

2. Let M

i�1

be the C -matrix that represents (by right multiplication by

M

i�1

) the (i � 1)-st di�erential in

~

F

k

0

1

(
 
 A

i�1

[m

i�1

]) !

~

F

k

0

1

(
 


A

i

[m

i

]). The C -module of rows of M

i�1

represents the i-boundaries in

~

F

k

0

1

(

A

�

[m

�

]).

3. Apply the Buchberger algorithm to the C -module of rows ofM

i�1

. For

this we assume that the order on the columns we use re�nes

~

V

n

-degree

of the elements of A

i

the columns correspond to (see the example

below).

4. Apply Buchberger reduction to 1 
 P relative to a Gr�obner basis for

the rows of M

i�1

.

5. Return the remainder, which now lies in

~

F

k

1

(
 
 A

�

[m

�

]) and in the

same cohomology class as the input.

End.

Example 2.8. Suppose in our running example we had chosen the operator

1 
 (1 + x

2

@

x

+ x) 2 


2


 D

2

as a lift for

1

xy

dx ^ dy 2 


2


 R

2

[f

�1

].

This is conceivable since (x

2

@

x

+ x) �

1

xy

= 0. Then 1
 (1 + x

2

@

x

+ x) =

1
 (1 + @

x

2

� x) = 1
 (1� x) 2 

A

0

.

Consider the matrix M

�1

representing the map

~

F

1

(
 
 A

�1

[m

�1

]) !

~

F

1

(
 
 A

0

[m

0

]). The monomials P

j;�

from (1.5) in

~

F

1

(
 
 A

�1

[m

�1

]) =

~

F

1

(

D

2

2

[0; 0]) are (x; 0), (y; 0), (0; x), (0; y), (1; 0), (0; 1). The monomials

in

~

F

1

(
 
 A

0

[m

0

]) =

~

F

1

(
 
 D

2

[0]) are x, y and 1. Then one can check
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that with these bases M

�1

=

0

B

B

B

B

B

B

@

�1 0 0

0 0 0

0 0 0

0 �1 0

0 0 0

0 0 0

1

C

C

C

C

C

C

A

. We have already ordered

the columns of this matrix by the

~

V

2

-degree of x, y and 1 (so that the

last column, corresponding to the operator 1, is the least important one).

The Buchberger algorithm (in this case equivalent to Gauss row reduction)

applied to this matrix yields a standard basis

�

1 0 0

0 1 0

�

. This allows the

reduction of P = 1 � x corresponding to (�1; 0; 1) to the element (0; 0; 1)

representing 1. Thus 1
 (1 � x) and 1
 1 represent the same cohomology

class but we prefer the latter as representative because it has smallest degree

in its class.

That Algorithm 2.7 works not only in our example but in general is easily

seen from the fact that

~

F

k

1

(

A

�

[m

�

]) ,!

~

F

k

0

1

(

A

�

[m

�

])

is a quasi-isomorphism.

2.7. At this point we have explained each step of Example 2.1 with the

exception of how to obtain elements of 


i


A

0

that map onto given elements

of 


i


R

n

[f

�1

], a crucial step of the Transfer mechanism.

The question reduces to the following: given is R

n

[f

�1

] as a left D

n

-

module via the presentation R

n

[f

�1

] = D

n

� (1=f); for g=f

k

2 R

n

[f

�1

], �nd

P 2 D

n

such that P � (1=f) = g=f

k

. This also addresses the problem of

�nding elements in 


i


A

�

that project onto a given sum of elements of the

form

g

f

k

dx

s

1

^ : : : ^ dx

s

i

since we can produce lifts componentwise.

The answer lies in the Bernstein operator associated to f introduced in

Section 1. Let P

f

(s) � f

s+1

= b

f

(s)f

s

. The construction of such P

f

(s) is

performed as follows. As in [15] �nd J

�

(f

s

) = fP 2 D

n

[s]jP (s) � f

s

= 0g.

Then compute (J

�

(f

s

) + D

n

[s]f) \ C [s] = C [s] � b

f

(s). The computation

of the intersection involves �nding a relation Q(s) + P (s)f = b

f

(s) 2 D

n

[s]

where Q(s) 2 J

�

(f

s

). P (s) is the desired operator.

Since 1=f generates R

n

[f

�1

], b

f

(s) is nonzero for negative integers. Hence

we have

g

P

f

(1� k) � : : : � P

f

(�1)

b

f

(1� k) � : : : � b

f

(�1)

�

�

1

f

�

=

g

f

k

:

We obtain thus

Algorithm 2.9 (The ring structure of a hypersurface complement).

Input: f 2 R

n

.

Output: A multiplication table for H

�

dR

(X nVar(f); C ).

Begin
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1. Replacing, if necessary, f by a power of itself �nd a presentation

R

n

[f

�1

] = D

n

� (

1

f

)

�

=

D

n

=I

0

.

2. Compute a

~

V

n

-strict resolution (A

�

[m

�

]; �

�

) of the D

n

-module D

n

=I

0

by �nitely generated free D

n

-modules where D

n

=I

0

is positioned in

cohomological degree 0.

3. Write down the double complex 


�


A

�

[m

�

].

4. Compute the b-function b(s) of D

n

=I

0

for integration along @

1

; : : : ; @

n

.

5. Let k

1

2 Z be the largest integral root of b(s). Then

~

F

k

1

(

A

�

[m

�

])

�

=

�! 

A

�

[m

�

]

(and

~

F

k

1

(

A

�

[m

�

]) is a complex of �nite dimensional vector spaces

over C , which is true for all k

1

).

6. Compute generators c

1

; : : : ; c

t

for the cohomology of

~

F

k

1

(
(n)
A

�

[m

�

])

with c

i

2 H

d

i

(

~

F

k

1

(
(n)
A

�

[m

�

]))

�

=

H

d

i

dR

(X n Y ; C ).

7. For each i compute �(c

i

) 2 H

d

i

(


�


 D

n

=I

0

)

�

=

H

d

i

(


�


 R

n

[f

�1

]).

For all pairs i; j compute �(c

i

) [ �(c

j

) and list the product c

0

i;j

2

H

d

i

+d

j

(


�


D

n

=I

0

).

8. Compute c

i;j

= �

�1

(c

0

i;j

) and if necessary use linear algebra (Algorithm

2.7) to convert the result into the coset of a representative of degree at

most k

1

. Express c

i;j

in terms of the c

i

.

9. Establish the product relation c

i

[ c

j

= c

i;j

.

End.

In Step 7, one picks a representative for �(c

i

) 2 H

i

(


�


 D

n

=I

0

) by an

element in 


d

i


 D

n

and applies it to

1

f

as a generator of R

n

[f

�1

] which

gives the di�erential forms to be multiplied.

Example 2.10. Here we give an example based on Macaulay 2. Let n = 3,

R

3

= C [x; y; z], f = x

3

+ y

3

+ z

3

. Then one computes with Macaulay 2

that R

3

[f

�1

] is generated over D

3

= C hx; y; z; @

x

; @

y

; @

z

i by f

�2

. In fact the

entire set of commands is the following

load "Dloadfile.m2"

R = QQ[x,y,z]

f=x^3+y^3+z^3

deRhamAll(f)

Macaulay 2 computes then that

R

3

[f

�1

]

�

=

D

3

=D

3

� (x@

x

+ y@

y

+ z@

z

+ 6;

z

2

@

y

� y

2

@

z

;

z

2

@

x

� x

2

@

z

;

y

2

@

x

� x

2

@

y

;

x

3

@

z

+ y

3

@

z

+ z

3

@

z

+ 6z

2

;

x

3

@

y

+ y

3

@

y

+ y

2

z@

z

+ 6y

2

);
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and constructs a

~

V

3

-strict free resolution of R

3

[f

�1

] of length 4 of the form

A

�

: D

3

8

! D

3

23

! D

3

27

! D

3

12

! D

3

! 0

and a b-function for integration of R

3

[f

�1

] of b(s) = s� 3.

Truncating the complex 

A

�

to forms of degree at most 3 one obtains

a complex of vector spaces C

138

! C

495

! C

641

! C

294

! C

20

! 0. From

this complex Macaulay 2 computes the following dimensions and generators

of the de Rham cohomology of U :

Group Dimension Generators

H

0

dR

(U ; C ) 1 e :=

f

2

f

2

H

1

dR

(U ; C ) 1 o :=

(x

2

dx�y

2

dy+z

2

dz)f

f

2

H

2

dR

(U ; C ) 2 t

1

:=

xyz(zdx^dy+ydz^dx+xdy^dz)

f

2

t

2

:=

z

3

(zdx^dy+ydz^dx+xdy^dz)

f

2

H

3

dR

(U ; C ) 2 d

1

:=

xyzdx^dy^dz

f

2

d

2

:=

z

3

dx^dy^dz

f

2

From this output one can determine the products of the classes. By mul-

tiplying by hand one sees that o [ t

1

= d

1

, o [ t

2

= d

2

, o [ o = 0 and e

operates as the identity. Hence the cohomology ring is the quotient of the

free C -algebra on 3 generators o; t

1

; t

2

subject to o

2

= t

1

2

= t

2

2

= t

1

t

2

=

t

2

t

1

= ot

1

� t

1

o = ot

2

� t

2

o = 0.

Remark 2.11. In the previous example we did not need to go through

Algorithm 2.7. In general this is will be necessary, but this step is not

implemented yet in Macaulay 2.

3. V -strict resolutions for complexes

In [16] we gave an algorithm to construct for a given right bounded com-

plex (C

�

; �

�

) of �nitely generated D

n

-modules a V

n

-strict complex of free

D

n

-modules that is quasi-isomorphic to (C

�

; �

�

). This was accomplished

by means of a Cartan-Eilenberg resolution constructed by splitting C

�

into

short exact sequences.

The purpose of this section is to outline an improvement on this algorithm.

We show by example that the new method can be distinctly more e�cient.

De�nition 3.1. Let R be an associative ring with identity and �

1

; : : : ; �

r

elements of a left R-module M . If

L

r

i=1

R � e

�

i

denotes the free left R-

module on generators (symbols) e

�

1

; : : : ; e

�

r

then the map

L

r

i=1

R�e

�

i

!M ,

e

�

i

! �

i

, is called the symbol map.

Proposition 3.2. Suppose (C

�

; �

�

) is a right bounded complex of �nitely

generated left modules over the left Noetherian ring R which is associative
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with identity element 1. The following recipe produces a right bounded com-

plex (A

�

; �

�

) of �nitely generated free left R-modules that is quasi-isomorphic

to (C

�

; �

�

) together with a quasi-isomorphism �

�

: A

�

�

=

�! C

�

.

1. Let b be the largest index for which C

b

6= 0. Set A

i

= 0, �

i

= 0 and

�

i

= 0 for i > b.

2. For i � b set K

i

= a free R-module generated by symbols for a set of

generators for ker(�

i

: C

i

! C

i+1

).

3. For i � b set J

i

= a free R-module generated by symbols for generators

of the submodule N

i+1

of A

i+1

given by

ker

�

�

i+1

: A

i+1

! A

i+2

�

\

�

(�

i+1

)

�1

(im(�

i

: C

i

! C

i+1

))

�

:(3.1)

4. Set A

i

= J

i

�K

i

.

5. De�ne �

i

: A

i

! A

i+1

to be the zero map on K

i

and the symbol map

on J

i

.

6. De�ne �

i

to be the symbol map on K

i

.

7. Let �

i

on J

i

be a lift into C

i

for �

i+1

� �

i

, that is to say, an R-linear

map that makes the diagram

C

i

�

i

-

C

i+1

J

i

�

i

j

J

i

6

.

.

.

.

.

.

.

.

.

.

.

�

i

j

J

i

-

K

i+1

� J

i+1

�

i+1

6

commutative.

Proof. The proof is straightforward. Noetherianness implies that all K

i

,

J

i

are �nitely generated. By de�nition, �

i+1

� �

i

= 0 since �

i

maps into

ker(�

i+1

). By construction, � is a chain map. By de�nition, �

i

: K

i

!!

ker(�

i

) and K

i

� ker(�

i

). Hence � is surjective on cohomology level. J

i

surjects onto N

i+1

, hence all P 2 ker(�

i+1

) with �

i+1

(P ) 2 im(�

i

) are in

im(�

i

) so that � is injective on cohomology. 2

The proposition, which is perhaps well known, allows the following con-

struction relevant for us.

Corollary 3.3. In the situation of the proposition, let R = D

n

. We modify

the construction as follows by inserting 3 steps:

2.5. For the generators of K

i

, i � b, choose an arbitrary shift vector m

K;i

.

3.5. Starting with i = b and decreasing i arrange J

i

to map its generators

onto a V

n

-strict reduced Gr�obner basis for N

i+1

inside A

i+1

= J

i+1

�

K

i+1

[m

J;i+1

;m

K;i+1

].

4.5. For each generator e

�

i

j

of J

i

de�ne the corresponding shift to be

V

n

deg(�

i

(e

�

i

j

)[m

J;i+1

;m

K;i+1

]):

Then (A

�

[m

�

]; �

�

) is V

n

-strict.
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Proof. It is clear that the resulting complex is V

n

-adapted. In order to check

V

n

-strictness we then have to make sure that each element of V

n

-degree say d

in the image of �

i

is realized as the image of an element of V

n

-degree d. But

this is guaranteed by the fact that J

i

maps its generators onto a V

n

-strict

Gr�obner basis for the image N

i+1

. (Compare Section 2 in [11].) 2

We note that since kernels and inverse images are computable with Gr�obner

basis techniques, this gives an alternative method to compute V -strict res-

olutions for complexes.

Remark 3.4. Of course, changing Steps 3.5 and 4.5 to

3.5.' Starting with i = b and decreasing i arrange J

i

to map its generators

onto a

~

V

n

-strict reduced Gr�obner basis for N

i+1

inside A

i+1

= J

i+1

�

K

i+1

[m

J;i+1

;m

K;i+1

].

4.5.' For each generator e

�

i

j

of J

i

de�ne the corresponding shift to be

~

V

n

deg(�

i

(e

�

i

j

)[m

J;i+1

;m

K;i+1

]):

leads to

~

V

n

-strict resolutions.

Remark 3.5. In [16], Example 3.21 we showed that the method for com-

puting V

n

-strict quasi-isomorphic free complexes given in [16] may produce

unnaturally large complexes if the input is already a V

n

-strict free resolution.

It is clear that our new method (from Corollary 3.3) does not su�er from

this 
aw because the new algorithm will simply compute the same resolution

as the given one (or perhaps a smaller one).

But also otherwise the new method appears to be better:

Example 3.6. Consider the complex

�

C

�

=

�

R

3

[(xy)

�1

]�R

3

[(xz)

�1

]! R

3

[(xyz)

�1

]

�

where R

3

= C [x; y; z]. This is the Mayer-Vietoris complex associated to the

complement of the variety Var(xy; xz). Its Fourier image C

�

is given by

(D

3

=D

3

� (x@

x

; y@

y

; z) �D

3

=D

3

� (x@

x

; y; z@

z

)! D

3

=D

3

� (x@

x

; y@

y

; z@

z

)) :

We compute a V

3

-strict resolution for this complex using the method of the

corollary.

Observation 1. H

1

(C

�

) = D

3

=D

3

� (x@

x

; @

y

; @

z

), H

0

(C

�

) = D

3

=(x@

x

; y; z).

H

1

(C

�

) is generated by the Fourier image of

1

xyz

in C

1

, H

0

(C

�

) by that of

(

1

x

;

1

x

) in C

0

. We conclude that K

1

= D

3

, K

0

= D

3

, J

1

= 0, A

1

= D

3

[0],

�

1

(P ) = P mod D

3

� (x@

x

; @

y

; @

z

).

Observation 2. J

0

should map its generators onto a V

3

-strict basis for

D

3

� (�@

z

; @

y

; x@

x

). These three elements already form a V

3

-strict basis.

So J

0

= D

3

3

, �

0

is right multiplication by (�@

z

; @

y

; x@

x

; 0)

T

, A

0

= D

3

3

�

D

3

[1; 1; 0; 2], �

0

(P

1

; P

2

; P

3

; P

4

) = (�P

4

� @

y

;�P

4

� @

z

) 2 C

0

. (We will in

Remark 4.4 explain the somewhat mysterious 2 in the shift for A

0

.)
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Observation 3. J

�1

should map its generators onto a V

3

-strict basis for

ker(D

3

3

�D

3

! D

3

) \ �

�1

0

(0). The kernel is generated by the rows of

0

B

B

@

0 0 0 1

@

y

@

z

0 0

0 x@

x

�@

y

0

x@

x

0 @

z

0

1

C

C

A

and these rows form a V

3

-strict basis. The preimage of 0 � C

0

inside A

0

is

generated by the rows of

0

B

B

B

B

B

B

@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 x@

x

0 0 0 y

0 0 0 z

1

C

C

C

C

C

C

A

:

The intersection of this preimage with ker(�

0

) is generated by the rows of

the matrix

0

B

B

B

B

B

B

@

@

y

@

z

0 0

0 x@

x

�@

y

0

x@

x

0 @

z

0

0 0 0 y

0 0 0 z

0 0 0 x@

x

1

C

C

C

C

C

C

A

:

The rows form a V

3

-strict Gr�obner basis. Hence J

�1

= D

3

6

, �

�1

is given

by right multiplication by the above 6� 4-matrix and �

�1

is the zero map

of course. For the shift we �nd A

�1

= D

3

3

�D

3

3

[2; 1; 1; 1; 1; 2].

Observation 5. J

�2

must map onto ker(�

�1

), J

�3

onto ker(�

�2

). This is

because K

i

= C

i

= 0 for negative i.

Observation 6. A V

3

-strict basis for N

�1

is given by the rows of

0

B

B

@

x@

x

�@

z

�@

y

0 0 0

0 0 0 z �y 0

0 0 0 x@

x

0 �y

0 0 0 0 x@

x

�z

1

C

C

A

:

Hence J

�2

= D

3

4

and �

�2

is given by the 4 � 6 matrix above. Then N

�2

has a V

3

-strict basis given by (0; x@

x

;�z; y) representing �

�3

and J

�3

= D

3

while J

i

= 0 for i < �3. So A

�2

= D

3

�D

3

3

[2; 0; 1; 1] and A

�3

= D

3

[0].

So in this resolution we get \Betti" numbers 1; 4; 6; 4; 1 and note that this

is considerably better than 3; 12; 23; 17; 3 as computed in Example 3.19 in

[16].
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Example 3.7. In a similar way one computes a

~

V

3

-strict resolution of

�

C

�

with matrices M

0

= (�z; y;�@

x

x; 0)

T

,

M

�1

=

0

B

B

B

B

B

B

@

y z 0 0

0 �@

x

x �y 0

�@

x

x 0 z 0

0 0 0 �@

y

0 0 0 �@

z

0 0 0 �@

x

x

1

C

C

C

C

C

C

A

;

M

�2

=

0

B

B

@

�@

x

x �z �y 0 0 0

0 0 0 �@

z

@

y

0

0 0 0 �@

x

x 0 @

y

0 0 0 0 �@

x

x @

z

1

C

C

A

;

and M

�3

= (0;�@

x

x; @

z

;�@

y

) with shift vectors m

1

= [0], m

0

= [1; 1; 0; 2],

m

�1

= [2; 1; 1; 1; 1; 2], m

�2

= [2; 0; 1; 1] and m

�3

= [0].

4. The general case

In this section we generalize Algorithm 2.9 to complements U of general

a�ne varieties Y in X, de�ned by f

0

= : : : = f

r

= 0. Let (

�

C

�

; �

�

) be the

reduced

�

Cech complex (1.1) to f

0

; : : : ; f

r

and for a list I = (�

0

; : : : ; �

i

) of

integers (with repetition allowed) between 0 and r set U

I

=

T

i

j=0

U

�

i

. Recall

that the de Rham cohomology of U is in a natural way the cohomology of

the complex Tot

�

(


�




D

n

�

C

�

) (cf. [8, 16]).

A general element ! 2 


i

(

�

C

j

) in the algebraic

�

Cech-de Rham complex on

U relative to the cover

S

r

�=0

U

�

is characterized by the set of forms !(U

I

) on

U

I

where I runs over (j+1)-tuples of distinct integers between 0 and r. For

bookkeeping purposes we shall extend the index set to ordered tuples. Then

we write !(U

I

) = 0 if I has repeated entries, and we set !(U

I

) = �!(U

I

0

)

if the strings I and I

0

di�er by an elementary permutation.

The following theorem can be found for example in [2] (but also see our

Remark 2.3).

Theorem 4.1 ([2], p.174, compare also Remark 2.3.). If !

0

2 


j

0

(

�

C

k

0

) and

!

00

2 


j

00

(

�

C

k

00

) then one can de�ne a bilinear product !

0

[!

00

2 


j

0

+j

00

(

�

C

k

0

+k

00

)

as the form � for which

�(U

(�

0

;::: ;�

k

0

+k

00

)

) = (�1)

k

0

�j

00

!

0

(U

(�

0

;::: ;�

k

0

)

) ^ !

00

(U

(�

k

0

;::: ;�

k

0

+k

00

)

):

This product descends to a product on cohomology in 


�

(

�

C

�

) and then

agrees with the usual cup product in singular cohomology under the de Rham

isomorphism. 2

We will now establish an algorithm similar to Algorithm 2.9. We assume

that we already computed

�

C

�

explicitly, which may be computed as follows:

1. �nd generators for

�

C

l

,

2. write

�

C

l

= (D

n

)

a

l

=I

l

,
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3. compute matrices over D

n

that represent the di�erentials in

�

C

�

in this

presentation of

�

C

�

.

This is explained in detail in [15].

Let (A

�

; �

�

) be a free

~

V

n

-strict complex surjecting onto (

�

C

�

; �

�

) via the

quasi-isomorphism �

0

constructed either as in our Section 3 or by the tech-

niques of [16], Section 3. The induced maps in the double complexes 


�


A

�

and 


�




�

C

�

will be denoted by �

i;j

= 


i


 �

j

, �

i;j

= 


i


 �

j

and "

i;j

=

(�1)

j

"

i


A

j

(resp. (�1)

j

"

i




�

C

j

).

In the remainder of this section we will explain the following algorithm.

Algorithm 4.2 (Cup products on Zariski-open sets in C

n

).

Input: f

0

; : : : ; f

r

� R

n

, Y = Var(f

0

; : : : ; f

r

).

Output: The ring structure of H

�

dR

(X n Y ; C ).

Begin

1. Compute the reduced

�

Cech complex

�

C

�

to f

0

; : : : ; f

r

as a complex

of �nitely generated D

n

-modules, where

L

r

�=0

R

n

[f

�

�1

] is placed in

cohomological degree 0 ([15]).

2. Compute a

~

V

n

-strict complex (A

�

[m

�

]; �

�

) that is quasi-isomorphic to

�

C

�

using Corollary 3.3 or the recipe from [16], Section 3. In particular,

A

j

= 0 for j � n+ r.

3. Write down the double complex 


�


 A

�

[m

�

] and �nd the b-function

b(s) for integration of A

�

[m

�

].

4. Let k

1

= max

a2Z

fb(a) = 0g. Then

~

F

k

1

(

A

�

[m

�

])

�

=



A

�

[m

�

].

5. Compute generators c

1

; : : : ; c

t

for the cohomology of

~

F

k

1

(
(n)
A

�

[m

�

])

with c

i

2 H

d

i

(

~

F

k

1

(
(n)
A

�

[m

�

]))

�

=

H

d

i

dR

(X n Y ; C ).

6. For each i compute �(c

i

) 2 H

d

i

(Tot

�

(


�




�

C

�

)). For all pairs i; j

compute �(c

i

)[�(c

j

) and list the product c

0

i;j

2 H

d

i

+d

j

(Tot

�

(


�




�

C

�

)).

7. Compute c

i;j

= �

�1

(c

0

i;j

) 2 H

d

i

+d

j

(
(n)
A

�

[m

�

]).

8. If necessary use linear algebra (Algorithm 2.7) to convert the result

into a representative of

~

V

n

-degree at most k

1

.

9. Establish the product rule c

i

[ c

j

= c

i;j

.

End.

Steps 1-5 are nothing but Theorem 6.1. of [16]. The complex

~

F

k

1

(
(n)


A

�

[m

�

]) is always a complex of �nite dimensional vector spaces over C , no

matter what our choice for k

1

is.

Most parts of Algorithm 4.2 are executable precisely the way they can be

done in the hypersurface case. The new challenges that occur come from the

process of lifting cohomology classes from Tot

�

(


�




�

C

�

) into Tot

�

(


�


A

�

).

4.1. Recall that

�

C

l

�

=

(D

n

)

a

l

=I

l

. Replacing the f

�

by powers of themselves

if necessary we assume that

�

C

l

=

L

jIj=l+1

R

n

[F

I

�1

] is generated by elements

of the form c

I

= F

I

�1

� �

I

where �

I

= (: : : ; 0; 1; 0; : : : ). Let c 2

�

C

l

be

given, so c is a sum c =

P

g

I

��

I

with g

I

2 R

n

[F

I

�1

]. Then using Bernstein

operators (i.e., P

I

(s) with P

I

(s)�F

I

s+1

= b

I

(s)F

I

s

and b

I

(s) 2 C [s], compare
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1.2) it is not di�cult to see that one can �nd an operator P 2 (D

n

)

a

i

such that P projects onto c via application to the F

I

�1

, similarly to the

hypersurface case in Subsection 2.7. This shows how to �nd preimages

under the surjection

L

jIj=l+1

D

n

!!

�

C

l

.

The situation is however slightly more complicated because if 1 
 c 2

ker(


j


 (

�

C

l

!

�

C

l+1

)) then we would like the corresponding 1
P to be in

ker(


j


 (A

l

! A

l+1

)). This means of course that P 2 A

l

, �

l

(P ) = 0 and

�

0

(P ) = c since 


i

is D

n

-free. Here is how this can be done:

4.2. For c 2 ker(

�

C

l

!

�

C

l+1

) let (P mod I

l

) = c under the isomorphism

�

C

l

= (D

n

)

a

l

=I

l

. By construction of A

l

[m

l

] ([16], Section 3 or Proposition

3.2 and its corollary), one can then lift (P mod I

l

) to Q 2 A

l

such that

Q 2 ker(�

l

), and �

0

(Q) = (P mod I

l

).

4.3. Let c; P be as in 4.1 but assume this time in addition that c = (P

mod I

l

) 2 im(

�

C

l�1

!

�

C

l

). From the construction of A

l

[m

l

] ([16], Section 3

or Proposition 3.2 and its corollary) one can read o� Q 2 A

l

with �

0

(Q) = (P

mod I

l

) and Q 2 im(�

l�1

).

The operator Q in both 4.2 and 4.3 can be found as follows.

� Case a, we used [16]:

By construction, A

l

is then the free module on

1. symbols for a generating set for im(

�

C

l�1

!

�

C

l

),

2. symbols for a generating set for H

l

(

�

C

�

),

3. symbols for a generating set for im(

�

C

l

!

�

C

l+1

),

plus another free module related to

�

C

j

with j > l. Moreover, the free

module spanned by the elements from 1. and 2. projects by construction

onto the kernel of

�

C

l

!

�

C

l+1

. Since (P mod I

l

) 2

�

C

l

maps to zero

in

�

C

l+1

= (D

n

)

a

l+1

=I

l+1

, P is in the submodule of (D

n

)

a

l

generated

by the images under �

0

of the elements from 1., 2., and I

l

. Reduce P

modulo a Gr�obner basis for this submodule to �nd a syzygy which can

be used to �nd an element in the kernel of A

l

! A

l+1

projecting to

the same coset as P modulo I

l

.

If we want to lift an image (P mod I

l

) 2 im(

�

C

l�1

!

�

C

l

) into

im(A

l�1

! A

l

) we reduce P modulo a Gr�obner basis for I

l

and the

elements from 1. only.

� Case b, we used Section 3:

K

l

maps onto ker((D

n

)

a

l

=I

l

! (D

n

)

a

l+1

=I

l+1

). If (P mod I

l

) is in

this kernel, then reduce P modulo a Gr�obner basis for K

l

+ I

l

� D

n

a

l

to obtain the desired syzygy. If on the other hand (P mod I

l

) is in

im((D

n

)

a

l�1

=I

l�1

! (D

n

)

a

l

=I

l

), reduce P modulo I

l

+ �

0

(�

l�1

(J

l�1

)).

Since the Transfer Theorem allows us to turn cohomology classes of 
(n)
A

�

into de Rham cohomology classes and vice versa as in the case r = 0, the

justi�cation of Algorithm 4.2 is then as follows:

� Step 1 is explained in [15], Step 2 in [16] and Section 3.

� Step 3 is automatic.
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� Step 4 is explained in [11, 16].

� Step 5 is linear algebra over the base �eld.

� Step 6 is the Transfer Theorem; the multiplications take place inside




�

(

�

C

�

) according to Theorem 4.1.

� Step 7 is the Transfer Theorem and Subsections 4.1, 4.2, 4.3 (for the

computation of good lifts from

�

C

�

to A

�

).

� Step 8 is Algorithm 2.7.

Example 4.3. We now move on to compute the de Rham cohomology ring

of the variety of Example 3.6. For that we need to tensor the resolution

of Example 3.7 with 
(3). Recall that appropriate shifts are: m

1

= [0],

m

0

= [1; 1; 0; 2], m

�1

= [2; 1; 1; 1; 1; 2], m

�2

= [2; 0; 1; 1] and m

�3

= [0]. The

fact that there was some choice involved warrants the following

Remark 4.4. The shift of K

i

in Corollary 3.3 can be chosen arbitrarily for

all i since �

i

(K

i

) = 0. However, in the case where

�

C

�

is a

�

Cech complex that

comes from homogeneous polynomials, there is a canonical degree associated

to all elements of

�

C

i

for all i as we explain now. R

n

[(f

0

� : : : � f

r

)

�1

] is

generated by (f

0

� : : : � f

r

)

�a

for some integer a. As soon as we �x the

~

V

n

-

degree of this generator all elements in the

�

Cech complex inherit a natural

~

V

n

-degree via the inclusion R

n

[F

I

�1

] ,! R

n

[(f

0

� : : : � f

r

)

�1

]. Choosing this

natural degree in a sense minimizes the b-function of the entire complex, and

hence the truncated integration complex. This is because the b-functions for

restriction or integration of submodules of the module M (equipped with

the �ltration inherited from M) divide the corresponding b-function of M

(compare Remark 3.5 of [16]).

If not all f

�

are homogeneous, we can still pull back the V

n

-degree from

�

C

r

to R

n

[F

I

�1

], but the e�ects may not be so drastic as in the homogeneous

case. Choosing this natural shift has good e�ects on the complexity.

In our example this natural degree is 2 for the generator of K

0

as can

easily be seen form the fact that ker(

�

C

0

!

�

C

1

) is generated by (

1

x

;

1

x

) and

�

C

1

is generated by

1

xyz

.

To compute the b-function of this complex we �rst need to identify gen-

erators for the cohomology of the complex. These are by construction given

by the generators of K

1

and K

0

. K

1

generates a module isomorphic to

D

3

=D

3

�(@

x

x; y; z)[0] which has a b-function equal to b

1

(s) = s. K

0

generates

a module isomorphic to D

3

=D

3

� (@

x

x; @

y

; @

z

)[2] with a b-function b

0

(s) = s

as well, since the b-function of D

3

=D

3

� (@

x

x; @

y

; @

z

)[0] is s + 2. Hence the

b-function for the complex (A

�

[m

�

]; �

�

) is b(s) = s and each cohomology

class of its integration will live in degree 0.

We �nd H

0

dR

(U ; C ) = C generated by 1 
 1 2 
(3) 
 A

�3

, H

1

dR

(U ; C ) =

C generated by 1 
 (0; 1; 0; 0) 2 
(3) 
 A

�2

, H

3

dR

(U ; C ) = C generated

by 1 
 (0; 0; 1; 0) 2 
(3) 
 A

0

and H

4

dR

(U ; C ) = C generated by 1 
 1 2


(3) 
 A

1

. We shall now compute the product of the two generators in

degrees 1 and 3. We compute �rst the transfer of the class of 1
 (0; 1; 0; 0)
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in 


3


 A

�2

representing H

1

dR

(U ; C ). �

3;�2

(1 
 (0; 1; 0; 0)dx dy dz) = 1 


(0; 0; 0;�@

z

; @

y

; 0)dx dy dz 2 


3


A

�1

which lifts to 1
(0; 0; 0; 0; 0; 0)dy dz+

1
 (0; 0; 0; 0;�1; 0)dx dz +1
 (0; 0; 0;�1; 0; 0)dy dz (where as before we use

dx dz etc. to distinguish the summands in 


2

. This maps under �

2;�1

to

(0; 0; 0; 0)dy dz+(0; 0; 0; @

z

)dx dz+(0; 0; 0; @

y

)dx dy in 


2


A

0

. Pulling back

to 


1


A

0

yields (0; 0; 0; 1)dx + (0; 0; 0; 0)dy + (0; 0; 0; 0)dz. Application of

�

1;0

results in zero. Thus starting with a = the class of 1 
 (0; 1; 0; 0) we

obtain a

3;�2

= 1
 (0; 1; 0; 0)dx dy dz, a

2;�1

= 1
 (0; 0; 0; 0;�1; 0)dxdz +1


(0; 0; 0;�1; 0; 0)dydz, a

1;0

= (0; 0; 0; 1)dx and a

0;1

= 0. Applying (a

3;�2

�

a

2;�1

+a

1;0

�a

0;1

) to the generators 0, 0, (

1

x

;

1

x

) and

1

xyz

of �(K

�

) we obtain

(

dx

x

;

dx

x

) 2 H

1

dR

(U ; C ).

Similarly, we see that 1 
 (0; 0; 1; 0)dx dy dz 2 


3


 A

0

becomes the

form

�x

xyz

dy dz 2 


2

(

�

C

1

). Since (

dx

x

;

dx

x

) [

dydz

yz

= 2

dxdydz

xyz

, H

1

dR

(U ; C ) [

H

3

dR

(U ; C ) = H

4

dR

(U ; C ).

Remark 4.5. If in the above example we choose the shift for K

0

to be

d 2 Z, then the b-function of A

�

is s(s+2�d), much to our disadvantage for

d 6= 2. In general, if

�

C

�

comes from homogeneous polynomials, its b-function

for integration is s+ n�

P

r

�=0

deg(f

�

) � a

i

if

Q

r

�=0

f

�

�a

�

is the generator for

R

n

[(f

0

� : : : � f

r

)

�1

] provided we choose the natural shifts. (This is because

this is the only nontrivial divisor of the b-function for integration of

�

C

r

.)
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