
EXPERIMENTS WITH THE RESTRICTION FUNCTOR

ULI WALTHER

Abstract. We consider holonomic modules arising in singularity theory and
hypergeometric systems. We study their restrictions in the D-module sense.
This gives rise to interesting problems and conjectures arising from the com-
putations.

Let Dn be the n-th Weyl algebra,

Dn =
C{x1, ∂1, . . . , xn, ∂n}

〈∂i∂j − ∂j∂i, xixj − xjxi, ∂ixi − xi∂i − 1, ∂ixj − xj∂i : 1 ≤ i < j ≤ n〉
.

In [17] an algorithm is explained that has as input a holonomic Dn-module M
and returns a stratification of Cn such that on each stratum the i-th restriction
ρi

X,Cn(M) of M to X is a connection of rank ri(X, M).
This paper deals with applications of two types of this algorithm. We first con-

sider the Malgrange module Mf associated to a polynomial f ∈ Rn = C[x1, . . . , xn]
and its endomorphism s with minimal Bernstein-Sato polynomial bf (s). The second
type of modules that we study are hypergeometric systems of the type introduced
by Gelfand, Graev, Kapranov and Zelevinsky.

In both cases the interest derives from the change of the stratification (or certain
multiplicities of the strata) under the variation of an external quantity. For the
singularity examples, this external quantity is the choice of a factor of the Bernstein-
Sato polynomial. In the GKZ-case we vary the parameter vector β. The explicit
computations give rise to speculations and questions that are listed together with
comments and progress known to the author.

1. Introductions

In this section we briefly explain some background on D-modules. We refer to
[17] for more details and references.

1.1. D-basics. The general references for D-module theory are [1, 2].
Let Xan be an analytic manifold over C. We always use the superscript to

indicate analytic spaces. Symbols without the superscript refer to algebraic objects.
The sheaf of differential operators DXan acts via • on the sheaf of holomorphic
functions OXan . If X is algebraic, let DX ,OX be the algebraic versions of these
sheaves. Abusing notation, OX ⊆ OXan and DXan = OXan ⊗OX

DX .
Let M ∈ DX -mods. The filtration on DXan by order of differential operators

induces a graded object gr(0,1)(M). The singular locus sing(M) is the variety of

the intersection of the annihilator of gr(0,1)(M) with the subring OX of gr(0,1)(D).
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1.2. Holonomic modules and the Sol-functor. The category of holonomic mod-
ules Hol(X) = {M• ∈ DX -mods : dim gr(0,1)(H

i(M•)) = dim(X)∀i} is a full
subcategory of DX -mods, closed under subquotients and extensions. Near p 6∈
sing(M), Man ∈ Hol(Xan) is a connection and dimC(HomDan,p

(Man,p,Oan,p)) is
the rank rk(M).

Let M• ∈ DXan -mods. Then Sol(M•) = RHomDXan (M•,OXan) is its solu-

tion complex. By [6] if M•,L• ∈ Hol(X) then the sheaves Ext i
DXan (M•,L•) are

constructible and dimC(Ext i
Dan(M•,L•))p < ∞∀p ∈ X.

1.3. Restriction. Let i : Y →֒ X and suppose that Y = Var(I(Y )) is smooth of
codimension dX/Y := dim(X) − dim(Y ). For M• ∈ DX -mods set ρY,X(M•) =

i−1
(

DX/I(Y ) · DX ⊗L
DX

(M•)
)

[dX/Y ]. If M is a connection on X then ρY,X(M)
is one on Y , in cohomological degree dX/Y . For all M• ∈ Hol(X), the complexes
ρx,X(M) are smooth deformations of each other for x ∈ X \ sing(M•).

1.4. Regular singular modules. If M ∈ Hol(Xan) it is called regular at p ∈ X
if and only if the natural map

R HomDXan (Mp,OXan,p) → R HomDXan (Mp, ÔXan,p)(1.1)

is a quasi-isomorphism, and simply regular if for all i : Xan → Xan with compact
Xan, the direct image i+(M) is regular at all p ∈ Xan. We write Reg(X) for the
category of complexes with regular cohomology.

Let p ∈ X, i : p →֒ X the embedding. There is a natural isomorphism

R HomDXan (M, ÔX,p) = R HomC(ρp,Cn(M), C).

induced by HomC(i−1(OX/I(p) ⊗ M), C) ∋ f 7→
∑

α∈Nn xα · f(∂α)
α! . So for M ∈

Reg(X), ρp,X(M) and Sol(M)p are equivalent.
It remains an important open question to find an algorithm that determines

regularity of a D-module near a given point. However, Reg(X) contains OX , is
closed under formation of direct and inverse images, and exterior tensor product
(i.e., tensors over C in different sets of variables), as well as subquotients and
extensions.

The assignment M• → RHomDXan
(M•

an,OXan) sets up an equivalence from
Hol(X) to the category of constructible sheaves.

In [6, 7] it was proved that if X = Cn and M•, L• ∈ Hol(Cn) are algebraic then
there exists an algebraic stratification S of Cn such that on the strata ρi

p,X(M•)

is locally constant as a sheaf of vector spaces. In [17] an algorithm was given to
find such a stratification, and to determine the vector space dimensions of these
restrictions ∀p ∈ X, ∀i. We call such a stratification a Kashiwara stratification of

M•, L•.

Example 1.1. Consider P = x2
1∂1 + 1 on C1 and M = D1/D1P . It has singular

locus equal to the origin. Outside the singular locus, it is a connection of rank 1.
At x1 = 0 we have a restriction D1/x1D1 ⊗L

D1
M equal to zero. This is clear for

the 1-st restriction as exp(1/x1) is singular there. For the 0-th restriction one may
use a method of Oaku [12] as implemented in [5], or note that M is x1-torsion free.

On the other hand, let p be the origin. The solution complex RHomD(M,O)p

turns out to have one-dimensional cohomology in degree 1, because Ext1
D(M,O)p

equals Op modulo the convergent series expressions in the C-linear relations xn
1 +

nxn+1
1 , which are the images under P of xn

1 . So the Ext1-group is generated, for
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example, by x1. That this is not the zero class follows from the fact that if one
tries to reduce x1 modulo PD one has

x1 = (x1 + x2
1) − x2

1

= (x1 + x2
1) − (x2

1 + 2x3
1) + 2x3

1

= (x1 + x2
1) − (x2

1 + 2x3
1) + 2(x3

1 + 3x4
1) − 6x4

1

= (x1 + x2
1) − (x2

1 + 2x3
1) + 2(x3

1 + 3x4
1) − . . . ± (n − 1)!(xn

1 + nxn+1
1 ) ∓ n!xn+1

1

and the series f = −
∑∞

n=1(n − 1)!(−x1)
n is not convergent.

This means also that the natural morphism

RHomD(M,O)x = RHomD(Mx,Ox) → RHomD(Mx, Ôx)(1.2)

is not an isomorphism. Namely, we just established that the coset of x1 = −P •
∑∞

n=1(n − 1)!(−x1)
n is a boundary with formal power series, while it is not so

for convergent ones. Consequently, HomD1
(Mx, Ôx/Ox) is nonzero. Indeed, the

power series f given above has the property that Pf ∈ Ox so that it represents a
homomorphism from D to Ôx/Ox that is zero on DP .

2. Examples

In this section we study explicit examples with the help of computer algebra
programs.

2.1. Singularities. Let f ∈ Rn and pick a new indeterminate s. Differentiating fs

formally with respect to x1, . . . , xn, one obtains the (finitely generated) Dn-module

Mf =
D[s] • fs

D[s] · f • fs
.

The action of s on Mf has a minimal polynomial, bf (s), called the Bernstein-Sato

polynomial of f . The module Mf is regular holonomic supported in Var(f) (see [1])
and was introduced by Malgrange [9]. Locally near p ∈ Cn, the part of Mf that is
annihilated by s + 1 agrees with Mf if and only if f is smooth near p.

Example 2.1 (Whitney umbrella). Let n = 3, f(x) = x2−y2z and X = C3. With
Macaulay2 [5] one computes a presentation for Mf :

{-2} | yDy-2zDz |

{-3} | yzDx+xDy |

{-3} | y2Dx+2xDz |

{-3} | x2Dx+2xzDz+2x |

{-3} | y2z-x2 |

{-4} | z2DxDz+1/2xDy^2+1/2zDx |

{-4} | yz2Dz-1/2x2Dy+yz |

{-5} | z3Dz^2-1/4x2Dy^2+5/2z2Dz+1/2z |

The characteristic variety has three components. Their projections under πX :
T ∗(X) → X are to

{Var(x, y, z) = o, Var(x, y) = l, Var(f) = V }.

These are the strata of a Kashiwara stratification of Mf . For p ∈ X, write ρ(Mf , p)
for the restriction diagram (dimC ρ0

p,X(Mf ), . . . , dimC ρ3
p,X(Mf )). By definition, a

Kashiwara stratification on X makes the ρ(Mf , p) constant along strata, since on
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all strata the restrictions are fiber bundles. To compute these diagrams along all
strata one picks a point on each stratum and restricts Mf to that point. We obtain

p stratum ρ(Mf , p)

(0, 0, 0) o (0, 1, 0, 1)
(0, 0, 1) l (0, 1, 1, 0)
(1, 1, 1) V (0, 1, 0, 0)

where (here and in all further examples below) all points p ∈ X that are not listed
in the table have ρ(Mf , p) equal to zero.

Consider now the singular part Mf,sing = (s + 1)Mf of Mf with presentation

{-1} | x |

{-2} | yDy-2zDz |

{-2} | yz |

{-2} | y2 |

{-3} | z2Dz+1/2z |

Now we obtain the following nonzero restriction data:

p stratum ρ(Mf,sing, p)

(0, 0, 0) o (0, 0, 0, 1)
(0, 0, 1) l (0, 0, 1, 0)

In fact every factor of the Bernstein-Sato polynomial bf (s) = (s + 1)2(s + 3/2)
may be used to study Mf . The following table lists ρ(q(s)Mf , p) for all factors:

stratum \ q 1 (s + 1) (s + 1)2 (s + 3/2) (s + 1)(s + 3/2)

o (0, 1, 0, 1) (0, 0, 0, 1) (0, 0, 0, 1) (0, 1, 0, 0) (0, 0, 0, 0)
l (0, 1, 1, 0) (0, 0, 1, 0) (0, 0, 0, 0) (0, 1, 1, 0) (0, 0, 1, 0)
V (0, 1, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 1, 0, 0) (0, 0, 0, 0)

One can see that multiplication by (s+1) kills ρ1(Mf , p) for all p, but has no other
effect. Although (s + 1) will always kill a “one” in ρ1(Mf , o), it may have other
effects as well.

Example 2.2. If f = x3 + y3 + z3, then the restriction of Mf to the origin gives
(0, 1, 1, 9) while the restriction of (s + 1)Mf to the origin o results in (0, 0, 0, 8).
The Bernstein-Sato polynomial is here (s+1)(s+31/30)(s+37/30)(s+41/30)(s+
43/30)(s + 47/30)(s + 49/30)(s + 53/30)(s + 59/30), and each factor contributes a
one-dimensional space to ρ3(Mf , o).

Example 2.3. Consider now f = xy(x+y)(x+2y) in C2. Here bf (s) = (s+1)(s+
2/4)(s + 3/4)(s + 4/4)(s + 5/4)(s + 6/4). The origin is the only singular point of
f , so we move directly to the table of restrictions to the origin.

q(s) ρ(q(s) · Mf , (0, 0))∗

1 (0, 1, 9)

(s + 1) (0, 0, 9)

(s + 1)(s + 1/2) (0, 0, 8)
(s + 1)(s + 3/4) (0, 0, 7)

(s + 1)2 (0, 0, 6)
(s + 1)(s + 5/4) (0, 0, 7)
(s + 1)(s + 3/2) (0, 0, 8)

One is tempted to associate (for example) to (s+5/4) the diagram (0, 0, 2) since this
is the drop in the restriction diagram caused by considering (s + 5/4)Mf instead
of Mf . There is a 2-dimensional eigenspace of the de Rham cohomology of the
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Milnor fiber f−1(1) of f at the origin corresponding to s + 5/4. Indeed, one has
the following general fact (see, for example, [8, 16]): if f is a homogeneous isolated
singularity then (s + 1)Mf is isomorphic as a graded module to the quotient of
Rn by the Jacobian ideal of f . This space in turn is identified with the top de
Rham cohomology of the Milnor fiber of f , and both isomorphisms preserve the
s-action. It follows that the restriction diagrams mirror the eigenspaces of the
top cohomology of the Milnor fiber under the s-action, which turns out to be
multiplication by (shifted) degree of the forms.

Example 2.4. We consider a generic hyperplane arrangement f of five planes in
C3, where by generic we mean that the intersection of any i of the participating
five hyperplanes meets in a space of codimension min(3, i). The most interesting
singular point is the origin as in all other points f is a normal crossing divisor where
the restriction diagram is always given by binomial coefficients. The Bernstein-Sato
polynomial of f is (s+ 1)2(s + 3+0

5 ) · · · (s+ 3+5
5 ) The restriction diagrams for some

choices of q(s) are as follows.

q(s) ρ(q(s) · Mf , (0, 0, 0))∗

1 (0, 1, 4, 18)

(s + 1) (0, 0, 4, 18)

(s + 1)2 (0, 0, 0, 18)

(s + 1)2(s + 8/5) (0, 0, 0, 16)
(s + 1)2(s + 7/5) (0, 0, 0, 15)
(s + 1)2(s + 6/5) (0, 0, 0, 15)

(s + 1)3 (0, 0, 0, 12)
(s + 1)2(s + 4/5) (0, 0, 0, 15)
(s + 1)2(s + 3/5) (0, 0, 0, 17)

It is known that generic arrangements have their Bernstein-Sato polynomial only
depend on the dimension of the ambient space and the number of participating
hyperplanes. It is not clear that the same holds for the restriction diagrams.

Example 2.5. Let us consider the singularity f = xyz(x + y)(x + z). This is a
non-generic central arrangement. The Kashiwara stratification of Mf is (as for all
arrangements) the natural one coming from the intersection lattice. There are two
types of points that are not normal crossings: the origin, and the lines x = y = 0
and x = z = 0. Correspondingly, the Bernstein-Sato polynomial is

bf (s) = (s + 1)

(s + 2/3)(s + 3/3)(s + 4/3)

(s + 3/5)(s + 4/5)(s + 5/5)(s + 6/5)(s + 7/5)

At the origin one obtains the following restriction diagrams:

q(s) ρ(q(s) · Mf , (0, 0, 0))

1 (0, 1, 4, 8)

(s + 1) (0, 0, 4, 8)

(s + 1)2 (0, 0, 0, 8)

(s + 1)2(s + 8/5) (0, 0, 0, 7)
(s + 1)2(s + 7/5) (0, 0, 0, 7)
(s + 1)2(s + 6/5) (0, 0, 0, 7)

(s + 1)3 (0, 0, 0, 4)
(s + 1)2(s + 4/5) (0, 0, 0, 7)
(s + 1)2(s + 3/5) (0, 0, 0, 7)
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Again, one would associate “drop diagrams” to certain factors of bf (s). We compare
in this way this f to a generic 5-arrangement

3/5 4/5 5/5 6/5 7/5 8/5

generic 1 3 6 3 3 2
f 1 1 4 1 1 0

We remark that (s + 2/3), (s + 3/3) and (s + 4/3) give drop diagrams for f at
p ∈ Var(x, y) ∪ Var(x, z) \ Var(x, y, z) since in these points f is equivalent to a 3
lines in the plane.

The drop diagrams we computed for the generic arrangement are in exact agree-
ment with the graded components of the top cohomology of the Milnor fiber. These
graded components can be computed as the integral of a suitable power on a decone
of the arrangement:

For generic arrangements, Orlik and Randell have conjectured a formula for these
numbers [13].

We now list a few questions that arose from our computations.

(1) In [16] we introduced aq(s) = {r ∈ R|q(s) · r = 0 ∈ Mf}. Can one relate
them to strata of ρ0,Cn(Mf )? Are the restriction dimensions determined
by the multiplicities of these schemes?

(2) Can one give a formula for the eigenvalues of the top de Rham cohomology
of the Milnor fiber in terms of restrictions?

(3) Is there an explicit formula for the dimensions of the graded pieces of the
Milnor fiber cohomology for arrangements via the intersection lattice?

(4) Considering f, f2, f3, . . ., is there an asymptotic formula for ρ(Mfk , 0)?
(5) The Bernstein-Sato polynomial is related to jump loci of multiplier ideals

[3]. The ideals aq(s) were used in [16] to compute the Bernstein-Sato poly-
nomial. Are the ideals aq(s) related to multiplier ideals?

(6) In [16] the Bernstein-Sato polynomials of generic arrangements are calcu-
lated by providing a sequence of polynomials qi(s) such that codim(qi(s) ·
Mf ) = i. Is there a way of “peeling off” higher dimensional components of
Mf one at a time while preserving the interesting features of the s-action?

Example 2.6. If f is the generic arrangement of five planes in 3-space,
q1(s) = s + 1, q2(s) = (s + 1)2 and q3(s) =

∏5
i=0(5s + i + 3). Mf itself

is supported on the entire arrangement, q1(s) · Mf only in the ten lines of
intersection, and q2(s) · Mf only at the origin. Both q1(s) and q2(s) are
minimal with respect to the support property.

The question is really asking whether the structure of the singular locus,
the restrictions of Mf and the Bernstein-Satop polynomial can be put into
one statement.

2.2. GKZ-systems. Let A ∈ Zd,n of rank d with columns a1, . . . , an, and β ∈
Cd. Following [4] we set IA = 〈∂u − ∂v : u, v ∈ Nn, Au = Av〉 ⊆ C[∂1, . . . , ∂n] and
Ei =

∑

j Ai,jxj∂j for 1 ≤ i ≤ d. The A-hypergeometric system to β is HA(β) =

Dn · (IA, {Ei − βi}
n
1 ), [4, 15].

The matrix A induces a torus action of (C×)d on Cn via the action of the j-th

column on the j-th component of Cn: (t1, . . . , td) • yi = yi ·
∏d

i=1(ti)
ai,j . Reading

C[∂1, . . . , ∂n] as cootdinate ring of Cn, the orbit under this action of (1, . . . , 1) is
isomorphic to T and its closure in Cn is an algebraic variety with defining ideal IA.
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It is proved in [10] that there is r ∈ N, called the rank of HA(β), such that
in a generic point p ∈ Cn the number of local holomorphic solutions to HA(β)
equals r as long as β is outside a certain subspace arrangement, while if β is
in this arrangement then number of solutions strictly exceeds r. Near a generic
point p ∈ Cn holomorphic modules are regular, so the rank of HA(β) is equal to
dim ρ0

p,Cn(D/HA(β)). In fact, HA(β) is regular for all matrices A for which IA is
homogenous in the usual sense – this happens if and only if all columns of A lie in
a hyperplane of Cn not crossing the origin.

We now consider the behaviour of the Kashiwara stratification of HA(β) under
variation of β.

Example 2.7. Let A =

(

1 1 1 1
0 1 3 4

)

. The associated GKZ-system

x1∂1 + x2∂2 + x3∂3 + x4∂4 − β1

x2∂2 + 3x3∂3 + 4x4∂4 − β2

∂2∂3 − ∂1∂4, ∂3
3 − ∂2∂

2
4 , ∂1∂

2
3 − ∂2

2∂4, ∂3
2 − ∂2

1∂3

has rank 4 unless β = (1, 2)T . If β = (1, 2)T then the rank is 5.
One of the features of A-hpergeometric systems that lend them to explicit study

is the fact that their characteristic variety can only take finitely many values for
fixed A but varying β. In fact, for this particular A independently of the parameter
vector, char(HA(β)) is the union of Var(〈D1, D2, D3, x4〉), Var(〈D2, D3, D4, x1〉),
Var(〈D1, D2, D3, D4〉) and the closure of the conormal bundle of the big torus orbit
T • (1, 1, 1, 1) which is the variety of IA without Var(x1x4). For all β then the
Kashiwara stratification is the weakest Whitney stratification that contains the
four varieties above.

Denote

F1 = 〈x2x3 + 8x1x4, x
3
3 + 8x2x

2
4, x1x

2
3 − x2

2x4, x
3
2 + 8x2

1x3〉

and

F2 = 〈x2x3 − 4x1x4, x
3
3 + 4x2x

2
4, x1x

2
3 + x2

2x4, x
3
2 + 4x2

1x3〉.

These two ideals show up in the primary decomposition of the singular locus of the
discriminant. Write also

G1 = 〈x1, x
3
3 + 27/4x2x

2
4〉, G2 = 〈x4, x

3
2 + 27/4x2

1x3〉.

These arise as components of intersections of (f = 0) with (x1 = 0) and (x4 = 0).
In the following table we have in each column the restriction diagrams at the given
value β to the various strata of S(HA(β)). We only give the first four entries of
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ρ(p, HA(β)), since ρ4
p,C4(HA(β)) = ρ5

p,C4(HA(β)) = 0 in all cases.

variety\β = (1, 2) (2,−1) (2, 4) (−1,−1) (0, 3) (∗, ∗)
〈∅〉 (5, 0, 0) (4, 0, 0) (4, 0, 0) (4, 0, 0) (4, 0, 0) (4, 0, 0)

〈x1〉 (4, 0, 0) (4, 1, 0) (3, 0, 0) (3, 0, 0) (3, 0, 0) (3, 0, 0)

〈x4〉 (4, 0, 0) (3, 0, 0) (3, 0, 0) (3, 0, 0) (4, 1, 0) (3, 0, 0)

〈f〉 (4, 0, 0) (3, 0, 0) (3, 0, 0) (3, 0, 0) (3, 0, 0) (3, 0, 0)

F1 (3, 0, 0) (2, 0, 0) (2, 0, 0) (2, 0, 0) (2, 0, 0) (2, 0, 0)

F2 (3, 0, 0) (2, 0, 0) (2, 0, 0) (2, 0, 0) (2, 0, 0) (2, 0, 0)

〈x3, x4〉 (2, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (2, 1, 0) (1, 0, 0)

〈x1, x2〉 (2, 0, 0) (2, 1, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)

G1 (3, 0, 0) (3, 1, 0) (2, 0, 0) (2, 0, 0) (2, 0, 0) (2, 0, 0)

G2 (3, 0, 0) (2, 0, 0) (2, 0, 0) (2, 0, 0) (3, 1, 0) (2, 0, 0)

〈x1, x4〉 (3, 0, 0) (3, 1, 0) (2, 0, 0) (3, 1, 0) (3, 1, 0) (2, 0, 0)

〈x1, x2, x3〉 (1, 0, 0) (1, 1, 0) (1, 1, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

〈x1, x2, x4〉 (1, 0, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (0, 0, 0)

〈x1, x3, x4〉 (1, 0, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (0, 0, 0)

〈x2, x3, x4〉 (1, 0, 0) (0, 0, 0) (1, 1, 0) (0, 0, 0) (1, 1, 0) (0, 0, 0)

〈x1, ..., x4〉 (0, 0, 1) (0, 0, 0) (1, 2, 1) (0, 0, 0) (0, 0, 0) (0, 0, 0)

H1
m

(R/IA) H1
〈a4〉

(R/IA) NA H2
m

(R/IA) H1
〈a1〉

(R/IA)

It is very interesting to contemplate the “A-partition” of the parameter space
C2 into subsets where the restriction diagrams are the same for all p ∈ C4. Since
the Kashiwara stratification S(HA(β)) is always the same we suspect this to be
a finite partition. To be more precise, we believe that the A-partition of C2 has
six components, and our six parameter choices are a set of representatives for the
cosets of this partition. In fact, the partition seems to correspond to the natural
partition of multidegrees induced by the Čech complex of {∂1, ∂4} on the toric ring
C[∂1, . . . , ∂4].

Suppose one only considers the rank ρ0
p,C4(HA(β)) in a generic point p. As

IA is homogeneous in the usual sense, rk(HA(β)) = vol(A) for generic β by [15].
A theorem of Matusevich, Miller and the author [10] states that E(A) = {β :
rk(HA(β)) > vol(A)} agrees with the Zariski closure E(A) in Cd of {deg(γ) : 0 6=
γ ∈ Hi

m
(C[{∂i}

n
1 ]/IA), i < d}, the set of multidegrees of local cohomology elements

witnessing the failure of R/IA to be Cohen-Macaulay. This is a subspace arrange-
ment.

The local cohomology partition induced on the parameter space is not fine enough
to stratify the entire restriction diagram, because in our example (1, 2) is the only
“unusual” degree predicted by E(A). As stated above, we think that the six sets
E1 = NA, E2 = (1, 2), E3 = (NA + Za1) \ (NA ∪ (1, 2)), E4 = (NA + Za4) \ (NA ∪

(1, 2)), E5 = Z2 \ ((NA+Za1)∪ (NA+Za4)) and C2 \
⋃5

i=1 Ei form the A-partition
of C2.

This suggests in particular a combinatorial, but non-algebraic, A-partition. In
general, the A-partition of Cd cannot be algebraic. For example, if A = (1) then
β ∈ N and β 6∈ N have different restriction at the origin due to the existence of the
polynomial solution xβ (or the failure of its existence). Again, this stratification is
the one naturally induced by the Čech complex.

The next example gives more evidence to this pattern but shows that the situa-
tion is more complicated than one may expect.

can i make laura’s 5-point example? (1,0,0),(1,1,0),(1,0,1),(1,1,1),(1,0,-2)
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Example 2.8. Even within NA with Cohen-Macaulay IA not all β are created
equal. The example is due to M. Saito who used it to illustrate his sets Eτ (β), [14].

Let A =





1 1 1 1
0 0 1 2
0 1 1 0



. Then the parameters β = a1, β = a3 give different

ρ0
p,C4(HA(β) on some strata:

variety\β a3 a1
(1, 1, 0) ∈

Q(a1, a4) \ Z(a1, a4)
(1, 1,−1) ∈

(NA + Za2) ∩ (NA + Za3) \ NA

〈∅〉 (3, 0, 0, 0, 0) (3, 0, 0, 0, 0) (3, 0, 0, 0, 0) (3, 0, 0, 0, 0)
〈x1〉 (1, 0, 0, 0, 0) (1, 0, 0, 0, 0) (2, 1, 0, 0, 0) (2, 1, 0, 0, 0)
〈x2〉 (2, 0, 0, 0, 0) (2, 0, 0, 0, 0) (2, 0, 0, 0, 0) (2, 0, 0, 0, 0)
〈x3〉 (2, 0, 0, 0, 0) (2, 0, 0, 0, 0) (2, 0, 0, 0, 0) (2, 0, 0, 0, 0)
〈x4〉 (1, 0, 0, 0, 0) (1, 0, 0, 0, 0) (2, 1, 0, 0, 0) (2, 1, 0, 0, 0)

〈x1, x2〉 (1, 1, 0, 0, 0) (1, 1, 0, 0, 0) (1, 1, 0, 0, 0) (1, 1, 0, 0, 0)

〈x2, x3〉 (2, 2, 0, 0, 0) (1, 1, 0, 0, 0) (1, 1, 0, 0, 0) (0, 0, 0, 0, 0)

〈x1, x4〉 (1, 1, 0, 0, 0) (1, 1, 0, 0, 0) (1, 1, 0, 0, 0) (2, 3, 1, 0, 0)
〈x3, x4〉 (1, 1, 0, 0, 0) (1, 1, 0, 0, 0) (1, 1, 0, 0, 0) (1, 1, 0, 0, 0)

〈x1x
2
3 + x2

2x4〉 (3, 1, 0, 0, 0) (2, 0, 0, 0, 0) (3, 1, 0, 0, 0) (2, 0, 0, 0, 0)

〈x1, x2, x3, x4〉 (1, 3, 3, 1, 0) (1, 3, 3, 1, 0) (0, 0, 0, 0, 0) (0, 0, 0, 0, 0)
〈x1, x2, x3〉 (1, 2, 1, 0, 0) (1, 2, 1, 0, 0) (0, 0, 0, 0, 0) (0, 0, 0, 0, 0)
〈x1, x2, x4〉 (1, 2, 1, 0, 0) (1, 2, 1, 0, 0) (1, 2, 1, 0, 0) (1, 2, 1, 0, 0)
〈x1, x3, x4〉 (1, 2, 1, 0, 0) (1, 2, 1, 0, 0) (1, 2, 1, 0, 0) (1, 2, 1, 0, 0)
〈x2, x3, x4〉 (1, 2, 1, 0, 0) (1, 2, 1, 0, 0) (0, 0, 0, 0, 0) (0, 0, 0, 0, 0)

As for Mf we offer some problems and questions that arose from our computa-
tions.

• Can one give a ρ-classification of β? As a fist step towards this question
one should perhaps determine whether the cosets are countable unions of
algebraic sets.

Consider the example A =

(

1 1 1 1
0 1 3 4

)

but this time we view β

as an indeterminate. If one restricts HA(β) to a generic point x1 − a1 =
x2 − a2 = x3 − a3 = x4 − a4 = 0, one obtains a module over C[β1, β2] with
five generators and the following syzygy:

[(β2 − 0)(β2 − 1)(β2 − 2)3a
3

1
a3,

(β1 − 1)(β1(4a1a
3

2
a4 + 2a

4

2
a3) + (4a1a

3

2
a4 + 18a

2

1
a2a

2

3
+ 2a

4

2
a3))

+ (β2 − 2)(−β1(5a1a
3

2
a4 + 18a

2

1
a2a

2

3
+ 4a

4

2
a3) − β2(24a

3

1
a3a4 − a1a

3

2
a4 − 12a

2

1
a2a

2

3
− 2a

4

2
a3)

+ (60a
3

1
a3a4 + a1a

3

2
a4 − 30a

2

1
a2a

2

3
− 4a

4

2
a3)),

(β1 − 1)(12a1a
3

2
a
2

4
+ 36a

2

1
a2a

2

3
a4 + 6a

4

2
a3a4) + (β2 − 2)(48a

3

1
a3a

2

4
− 3a1a

3

2
a
2

4
− 39a

2

1
a2a

2

3
a4 − 6a

4

2
a3a4),

(β1 − 1)(−β13a1a
3

2
a3 + 4a

2

1
a
2

2
a4 + 2a1a

3

2
a3)

+ (β2 − 2)(β1(−4a
2

1
a
2

2
a4 + 4a1a

3

2
a3) + β2(a

2

1
a
2

2
a4 − 9a

3

1
a
2

3
− a1a

3

2
a3) + (a

2

1
a
2

2
a4 + 9a

3

1
a
2

3
− a1a

3

2
a3)),

(β1 − 1)(16a
2

1
a
2

2
a
2

4
+ 7a1a

3

2
a3a4 + 27a

2

1
a2a

3

3
+ 4a

4

2
a
2

3
)

+ (β2 − 2)(−4a
2

1
a
2

2
a
2

4
+ 36a

3

1
a
2

3
a4 − a1a

3

2
a3a4 − 27a

2

1
a2a

3

3
− 4a

4

2
a
2

3
)]

In particular, the syzygy vanishes at E(A). Since the restrictions of HA(β)
to a generic point can be completed to formal solutions of the hypergeo-
metric ideal, and since in a generic point formal and convergent solutions
agree, this syzygy “explains” the rank jump at E(A).
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A natural question is whether there always are algebraic syzygies for the
solutions at indeterminate points. This is not obvious since the functions
in question are not algebraic most of the time.

• Do the restriction diagrams determine the isomorphism class of HA(β)?
Saito has shown that isomorphy of A-hypergeometric systems is measured
by his sets Eτ (β). The question hence becomes whether the A-partition of
Cd agrees with the partition induced by the Eτ (β).

• Can one determine the restriction diagrams combinatorially? For the rank,
this is in part answered by [10]. Before, for simplicial A, Saito had done it
[14].

• Can one give a good bound for the restriction numbers? There is one for
the rank [15], but it seems not very sharp. It would be nice to get a bound
through understanding the restrictions step by step.

It is a natural to ask whether one can make rank jumps arbitrarily large.
Recently Matusevich and the author [11] have shown that rank jumps can
be arbitrarily high. Indeed, a family of systems is given where the difference
between the rank and the volume grows linearly with n = 2d.
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[4] I. M. Gel′fand, A. V. Zelevinskĭı, and M. M. Kapranov. Hypergeometric functions and toric
varieties. Funktsional. Anal. i Prilozhen., 23(2):12–26, 1989.

[5] D. Grayson and M. Stillman. Macaulay 2. a system for computation in algebraic geometry
and commutative algebra. With scripts for D-modules by A. Leykin and H. Tsai. available
via anonymous ftp from math.uiuc.edu. 1996.

[6] M. Kashiwara. On the maximally overdetermined system of linear differential equations. I.
Publ. Res. Inst. Math. Sci., 10:563–579, 1974/75.

[7] M. Kashiwara. On the holonomic systems of linear differential equations. II. Invent. Math.,
49(2):121–135, 1978.

[8] M. Kashiwara. D-modules and microlocal calculus, volume 217 of Translations of Mathemat-
ical Monographs. American Mathematical Society, Providence, RI, 2003. Translated from the
2000 Japanese original by Mutsumi Saito, Iwanami Series in Modern Mathematics.
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