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Abstract. In this note we study families of Gauß–Manin systems arising

from Laurent polynomials with parametric coefficients under projection to
the parameter space. For suitable matrices of exponent vectors, we exhibit

a natural four-term exact sequence for which we then give an interpretation

via generalized A-hypergeometric systems. We determine the extension groups
from the parameter sheaf to the middle term of this sequence and show that the

four-term sequence does not split. Auxiliary results include the computation

of Ext and Tor groups of A-hypergeometric systems against the parameter
sheaf.
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1. Introduction

During the 1980s Gel′fand, Graev, Kapranov and Zelevinskĭı introduced a class
of systems of complex partial differential equations which are a vast generaliza-
tion of the Gauß hypergeometric equation and which are nowadays known as A-
hypergeometric (or GKZ) systems (cf. [GGZ87, GZK89] and a string of other
articles of that period). Such A-hypergeometric system has a hybrid combinatorial
and algebraic flavor, its initial datum being an integer matrix A and a parameter
vector β in the column space of A. This determines a left ideal HA(β) in the Weyl
algebra D and the A-hypergeometric system with respect to A and β is then the

cyclic left D-module Mβ
A := D/HA(β). From this definition it is far from clear that

these systems have any geometric interpretation.

The analytic behavior of Mβ
A (as a system of PDEs) is highly dependent on

the parameter vector β. A technique to study this dependence, the Euler–Koszul
functor, was developed by Matusevich, Miller and the second author in [MMW05].
This is a functor from the category of toric modules, which are a mild generalization
of ZA-graded C[NA] modules, to the category of complexes of D-modules. The
construction of this functor generalizes the Euler–Koszul complex on the semi-
group ring C[NA] (already known to Gel′fand, Kapranov and Zelevinskĭı, [GZK89])
and was inspired by it.

The Euler Koszul complex provides a D-resolution of the corresponding A-
hypergeometric system provided β does not lie in the A-exceptional locus, defined
via the local cohomology of C[NA]. An important step in the geometric interpreta-
tion of A-hypergeometric systems was achieved by Schulze and the second author
in [SW09], generalizing work of Gel′fand et al. There they showed, using the Euler–

Koszul complex, that the Fourier–Laplace transform of Mβ
A can be identifed with

the direct image of a twisted structure sheaf on a torus under a monomial map
(depending on A) to affine space whenever β is outside the set of strongly resonant
parameters.

If A is homogeneous, i.e. if (1,...,1) is in its row span, then this embedding
descends to an embedding of a torus of dimension one less into projective space. It
was realized by Brylinski [Bry86] that the Fourier–Laplace transform of a D-module
on affine space which is constant on all punctured lines through the origin can be
expressed by a Radon transform of the corresponding D-module on the projective
space.

Using this Radon transform the first author showed in [Rei14] that homogeneous
A-hypergeometric systems with not strongly resonant, but integer parameter vec-
tor β carry the structure of a mixed Hodge module. Furthermore, there exists a

morphism to Mβ
A from the Gauß–Manin system of the maximal family of Laurent

polynomials with Newton polytope equal to the convex hull of the columns of A.
This map has O-free kernel and cokernel, and is compatible with the natural mixed

Hodge module structure on the Gauß–Manin system and on Mβ
A respectively.

Since Mβ
A is the terminal Euler–Koszul homology of the semigroup ring C[NA]

one wonders whether the Euler–Koszul homology of other toric modules (for ex-
ample, A-graded ideals of C[NA]) carry a natural mixed Hodge module structure
as well. In this paper we consider the maximal graded ideal of C[NA] and prove
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that its terminal Euler–Koszul homology is isomorphic to the Gauß–Manin system
of a map whose fibers are the complement of the fibers of the Laurent polynomial
alluded to above.

We now give a short overview of the content of this article. In the first section we
review the definition of A-hypergeometric systems, of the Euler–Koszul complex,
and several functors on D-modules. In the following section we compute the restric-

tion of Mβ
A to the origin, its de Rham cohomology, and the groups Ext•D(Mβ

A,O).
A novel feature of this article is that we work throughout over any field of char-
acteristic zero, rather than specifically over C. In this more general setting we
(re)prove that for not strongly resonant parameter the Fourier–Laplace transformed
A-hypergeometric system can be viewed as the direct image of a twisted structure
sheaf under a torus embedding. In the third section we show that the long exact
Euler–Koszul homology sequences induced by the inclusion of the maximal graded
ideal in C[NA] is isomorphic to certain Gauß–Manin systems coming from a family
of Laurent polynomials and compare this sequence with the sequence obtained in
[Rei14].

1.1. A-hypergeometric systems. We introduce here the main notation and re-
view some basis facts on A-hypergeometric systems and the Euler–Koszul functor.
We refer to [MMW05, SW09] for more details.

Notation 1.1. Throughout, we work over the field k of characteristic zero.
In general we adopt the convention that we denote a sheaf by a calligraphic letter

such asM, a module by an Italic letter such as M , and categories and functors by
Roman letters such as M.

Notation 1.2. Throughout, A will be an integer matrix that we assume to be
pointed: there should be a Z-linear functional on the column space of A that
evaluates positively on each column of A.

For any integer matrix A, let kA be a vector space with basis corresponding to
the columns {aj}j of A. Let RA (resp. OA) be the polynomial ring over k generated
by the variables ∂A = {∂j}j (resp. xA = {xj}j) corresponding to {aj}j ; we read
RA as coordinate ring on the variety XA := k

A. Further, let DA be the ring of
k-linear differential operators on OA, where we identify ∂

∂xj
with ∂j so that both

RA and OA are subrings of DA.
For any (semi)ring of coefficients C we write CA for the set of C-linear combi-

nations of the columns of A. In particular, kA is a vector space.

Definition 1.3. Let A be an integer matrix with independent rows whose Z-ideal
of maximal minors equals Z.

For the parameter β ∈ kA let HA(β) be the DA-ideal generated by the homo-
geneity equations

{Ei • φ = βi · φ}i
together with the toric partial differential equations

{(∂v+

A − ∂
v−
A ) • φ = 0 | A · v = 0},

using (throughout) multi-index notation. Here, with 0A = (0, . . . , 0) in k
A, we

write Ei :=
∑
j aijxj∂j and v+ = max(v,0A), v− = −min(v,0A). We put

Mβ
A := DA/HA(β).



4 THOMAS REICHELT AND ULI WALTHER

�

We have

xuEi − Eixu = −(A · u)ix
u,

∂uEi − Ei∂u = (A · u)i∂
u.

The A-degree function (with values in ZA) on RA and DA is:

−degA(xj) := aj =: degA(∂j).

We denote degA,i(−) the degree function associated to the weight given by the i-th
row of A. Then EiP = P (Ei − degA,i(P ))P for A-graded P . Let

εA :=
∑
j

degA(∂j) =
∑
j

aj .

Let M be an A-graded DA-module. There are commuting DA-linear endomor-
phisms Ei via

Ei ◦m := (Ei + degi(m)) ·m.
for A-graded m ∈ M . In particular, if N is an A-graded RA-module one obtains
commuting sets of DA-endomorphisms on the left DA-module DA ⊗RA N by

Ei ◦ (P ⊗Q) := (Ei + degi(P ) + degi(Q))P ⊗Q.
The Euler–Koszul complex K•(N ;E − β) of the A-graded module N is the ho-

mological Koszul complex induced by E − β := {(Ei − βi)◦}i on DA ⊗RA N . In
particular, the terminal module DA ⊗RA N sits in cohomological degree zero. We
denote K•(N ;E − β) the corresponding complex of quasi-coherent sheaves. The
cohomology objects are H•(N ;E − β) and H•(N ;E − β) respectively. If N(α) de-
notes the usual shift-of-degree functor on the category of graded RA-modules, then
K•(N ;E − β)(α) and K•(N(α);E − β + α) are identical.

Identifying ZA with Zrk(A) we get coordinates {ti}i on TA = Spec (k[ZA]) =
Spec (k[{t±i }i]) and then an embedding

hA : TA −→ Spec (C[{∂j}j ]) = k
A(1.1.1)

induced by the monomial morphism

t := {ti}i −→ {
∏
i

t
aij
i }j =: tA(1.1.2)

The closure of the image of hA in XA becomes a toric variety via hA and is defined
by the RA-ideal IA given as the kernel of (1.1.2) and generated by all binomials
∂
v+

A − ∂
v−
A where Av = 0. We denote the semigroup ring

SA := RA/IA ' k[NA].

We denote ÑA the saturation of NA and by S̃A the associated semigroup ring,
identical with the normalization of SA.

The faces τ of the rational polyhedral cone R+A, i.e. the subsets of (the columns
of) A that minimize (over A) some linear functional ZA −→ Z, correspond to A-
graded prime ideals IτA of RA with IτA = IA + RA({∂j}j 6∈τ ). We let RA∂A be the
unique A-graded maximal RA-ideal.

An RA-module N is toric if it is A-graded, and if it has a (finite) A-graded
composition chain

0 = N0 ( N1 ⊆ N2 · · · ( Nk = N
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such that each composition factor Ni/Ni−1 is isomorphic as A-graded RA-module
to a face ring RA/I

τ
A or one of its shifts by an element of ZA.

For a finitely generated A-graded RA-module N =
⊕

α∈ZANα, let

degA(N) = {α ∈ ZA | Nα 6= 0},

qdegA(N) = degA(N)
Zar

,

the latter being the Zariski closure of the former in kA = k⊗Z ZA. For unions of
such modules, degrees as well as quasi-degrees are defined to be the corresponding
unions, compare [SW09].

Let N = k(−α) be the graded RA-module whose module structure is that of

RA/I
∅
A = RA/RA∂A ' k, and which lives entirely inside degree α ∈ Zd. Then

K•(N ;E− β) is an exact complex if β 6= α, and its differentials are zero otherwise.

Definition 1.4. If the row span of A contains 1A we call A homogeneous. Homo-
geneity is equivalent to IA defining a projective variety, and to the system HA(β)
having only regular singularities [SW08]. �

1.2. D-module functors. Let X be a smooth algebraic k-variety of dimension dX .
We denote by DX the sheaf of algebraic differential operators and by DX its ring of
global sections. For X = An we sometimes write Dn . We denote by Mod(DX) the
Abelian category of left DX -modules. The full triangulated subcategories of the
derived category Db(DX) := Db(Mod(DX)) consisting of objects with OX -quasi-
coherent (resp. holonomic) cohomology are denoted by Db

qc(DX) (resp. Db
h(DX)).

We recall the notation for cohomological shifting a complex C•: C•[1] is the
complex C• shifted one step left, (C•[1])i = Ci+1, with corresponding shift of the
morphisms.

Let f : X → Y be a map between smooth algebraic varieties. LetM∈ Db
qc(DX)

and N ∈ Db
qc(DY ), then we denote by

f+M := Rf∗(DY←X
L
⊗M) and f+N := DX→Y

L
⊗ f−1N [dX − dY ]

the direct and inverse image functors for D-modules; both preserve holonomicity
and if f is non-characteristic with respect to N then f+ is exact (up to a shift),
(see e.g. [HTT08, Def. 2.4.2 & Thm 2.4.6]). We denote by

D : Db
h(DX) −→ (Db

h(DX))opp

M 7→ RHom(M,DX ⊗OX Ω⊗−1
X )[dX ]

the duality functor, which also preserves holonomicity. We additionally define the
functors

f† := D ◦ f+ ◦ D and f† := D ◦ f+ ◦ D.
If X is an affine variety, we have an equivalence of categories

Mod(DX) −→ Mod(DX)

M 7→M := Γ(X,M)(1.2.1)

where Mod(DX) is the category of left DX -modules.

Definition 1.5. Let

〈−,−〉 : A` × Â` → A1, (λ1, . . . , λ`, µ1, . . . µ`) 7→
∑̀
i=1

λiµi.
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(Here, and elsewhere, Â` denotes an affine space of dimension `; we use the “hat”
to keep apart source and range of the two functors defined in (1.2.2) below). Now
define two DA`×Â`-modules by

L := OA`×Â`e
〈·,·〉, L := OA`×Â`e

−〈·,·〉.

We refer to [KS97, Section 5] for details on these sheaves. Denote by p1 : A`×Â` →
A` and p2 : A`× Â` → Â` the projection to the first and second factors respectively.
The Fourier–Laplace transform is defined by

FL : Db
qc(DA`) −→ Db

qc(DÂ`)

M 7→ p2+(p+
1 M

L
⊗ L)(1.2.2)

and

FL−1 : Db
qc(DÂ`) −→ Db

qc(DA`)

M 7→ p1+(p+
2 M

L
⊗ L)(1.2.3)

Then FL−1 ◦FL(M) ' ι+M where ι is given by λ 7→ −λ, and we set

M̂β
A := FL−1(Mβ

A)

with global sections M̂β
A. �

Notation 1.6. If A` and Â` are an FL-pair with A` = k
A for some matrix A, we

shall denote by R̂A, ÔA, ŜA, . . . the A-graded objects on Â` corresponding to the
A-graded objects RA, OA, SA, . . . on A`. �

2. Restriction and de Rham functors of Euler–Koszul complexes

In this section we make some computations considering certain functors on the
class of (generalized) hypergeometric systems.

2.1. Local cohomology. Relevant in several ways are the local cohomology func-
tors H•∂A(−) given as the higher derived functors of the ∂A-torsion functor

Γ∂A(M) := {m ∈M | ∂ki ·m = 0∀k � 0,∀i},
a subfunctor of the identity functor on the category of RA-modules. If M is A-
graded, so are all Hi

∂A
(M) since the support ideal is A-graded. See [ILL+07] for

details and background.

Lemma 2.1. For any RA-module N there is a functorial isomorphism

RΓ∂A(N)[dim(XA)] = (DA/∂ADA)⊗LRA N

so that H•∂A(N) = TorRAdim(X)−•(DA/∂ADA, N). Any RA-grading deg(−) on N

makes this isomorphism graded if the right side is shifted by
∑
j deg(∂j).

Proof. One representative for RΓ∂A(−) is the Čech (i.e., stable Koszul) complex
Č•A(−) = (−)⊗RA

⊗
j(RA −→ RA[1/∂j ]). On RA, this returns a DA-complex with

unique cohomology group, in cohomological degree dimXA, given by
⊕

v<0 k · ∂v
where v is componentwise negative. The DA-isomorphism of this module with
DA/DA∂A that identifies the coset of 1/

∏
j ∂j in the former with the coset of 1 in

the latter (is A-graded of degree εA and) shows that (up to this shift in degree)
this is the injective hull of RA/RA · ∂A over RA. The anti-automorphism induced
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by xu∂v −→ ∂v(−x)u allows to view Č•A as complex of right DA-modules with-

out affecting the RA-structure. Then HdimXA
∂A

(RA) = DA/∂ADA is the canonical
module of RA with its natural right DA-structure.

The modules in Č•A are flat, so Č•A ⊗RA N [dimXA] = DA/∂ADA ⊗LRA N . If

N is graded, then—since ∂A is monomial—DA/∂ADA and its flat resolution Č•A
are also graded. Hence Č•A ⊗RA N has graded cohomology. The identification

HdimXA(Č•A)[dimXA] ' DA/∂ADA shifts the grading by the degree of the socle
element 1/

∏
j ∂j of the left hand side. �

2.2. Strongly resonant parameters. We recall from [MMW05, SW09] the fol-
lowing important sets. The exceptional locus EA is

EA := qdegA

( ⊕
k>dimXA−dimTA

ExtkRA(SA, RA)

)
=

⋃
k<dimTA

(
degAH

k
∂A

(SA)
Zar
)
.

A larger interesting set is

sRes(A) :=
⋃
j

qdegA(H1
∂j (SA)),

the strongly resonant parameters of A.
For k = C the following results were shown in [MMW05, SW09]. A parameter

is in EA if and only if the complex K•(SA;E − β) fails to be a resolution of Mβ
A;

it is in sRes(A) if and only if K•(SA;E − β) fails to resolve the Fourier–Laplace

transform of hA+(OβTA) where

OβTA = DTA/DTA({∂titi + βi}i),

or alternatively if and only if hA+(OβTA) disagrees with M̂β
A. We are interested in

these results over k:

Theorem 2.2. Let k be an arbitrary field of characteristic zero. For each j, the
following are equivalent:

(1) β 6∈ sResj(A) := qdegA(H1
∂j

(SA));

(2) left-multiplication by ∂xj is a quasi-isomorphism on K•(E − β;SA).

Corollary 2.3. Over any coefficient field k of characteristic zero, the following are
equivalent:

(1) β 6∈ sRes(A);

(2) K•(E − β;SA) represents the Fourier–Laplace transform of hA+OβTA
(3) Mβ

A is naturally isomorphic to the Fourier–Laplace transform of H0hA+OβTA
Inspection shows that, apart from formal computations that do not depend on

k, there are the following logical dependencies in [SW09].

• [SW09, Cor. 3.7] needs [SW09, Thm. 3.5, Cor. 3.1,Prop. 2.1] and [MMW05,
Prop. 5.3], and the fact that higher Euler–Koszul homology is (

∏
j ∂j)-

torsion.
• [SW09, Thm. 3.5] needs [SW09, Lem. 3.2] and [MMW05, Prop. 5.3].
• [SW09, Lem. 3.2] is completely formal and independent of the field k.
• [SW09, Cor. 3.1] needs the left and right Øre properties of DA, and [SW09,

Prop. 2.1].
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• [SW09, Prop. 2.1] needs that direct images over k are formally the same for
all k (which they are), plus D-affinity of tori, plus various formal compu-
tations contained in [BGK+87], namely an identification of a direct image
module in VI.7.3, the chain rule in VI.4.1, exactness of direct images for
affine closed embeddings in VI.8.1, and equality of direct images under open
embeddings in the D- and O-category in VI.5.2.

Tori are D-affine since they are O-affine. Higher Euler–Koszul homology is
(
∏
j ∂j)-torsion since localizing every ∂j leads to Euler–Koszul homology of the

quasi-toric Cohen–Macaulay module k[ZA] (compare [SW09] for quasi-toricity).
The Øre properties of DA rely on the Leibniz rule and are unaffected by k. Any
closed embedding over k can be base-changed to a closed embedding (and hence to
an affine faithful map) over C, by viewing k (algebraically) as a subfield of C. Since
C is fully faithful over k and affine faithful maps over C yield exact direct image
functors, so do they over k. Direct images for open embeddings agree over D and O
more or less by definition. It therefore remains to inspect [MMW05, Prop. 5.3] and
exactness of the Euler–Koszul complex on maximal Cohen–Macaulay input over k.

Using superscripts to indicate base fields, Kk

A(Dk

A;E−β)⊗kC = KC
A(DC

A;E−β)
as long as β ∈ kA. The notion of a toric module is formally independent of k, and
so the categories of toric modules and their Euler–Koszul complexes embed into
one another for containments of fields. In particular, the formal mechanisms are
identical and scale from one field to another faithfully.

The required part of [MMW05, Prop. 5.3] is the equivalence (3)⇔(4). The
proof passes through the equivalences (2)⇔(3) and (2)⇔(4). For both we need,
modulo formal computations involving toric composition chains, only to check the
equivalence of conditions (1) and (3) in [MMW05, Lem. 4.9]. The implication
(1)⇒(3) is linear algebra over any field. The reverse follows by contradiction from
base change to C.

Finally, if M is a maximal Cohen–Macaulay toric module over k then vanishing
of higher Euler–Koszul homology follows like over C from the spectral sequence
[MMW05, Thm. 6.3] since the existence of the spectral sequence is abstract homo-
logical nonsense. However, this use of the spectral sequence requires the concept
of holonomicity: one would like to use that Euler–Koszul homology modules are
holonomic and that therefore their duals are modules.

The Euler–Koszul homology modules induce DA-modules on affine space. On
that class, (dimension, and hence) holonomicity can be defined over all fields, via
the theory of good filtrations. That holonomic modules have holonomic modules
as their duals was proved by Roos, see the Bernstein notes [Ber, Thm. 3.15].

2.3. Restriction to the origin. Let ρ be the restriction functor to 0A ∈ kA,

ρ(−) := (DA/xADA)⊗LRA (−)

from the category of (A-graded) DA- or DA-modules to the category of (A-graded)
k-vector spaces. Denote ρk(−) its k-th homology.

We start with a topological observation derived from [SW09]. By H•dR(−;k) we
mean the algebraic de Rham cohomology in the sense of Grothendieck [Gro66].
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Lemma 2.4. If β 6∈ sRes(A) then ρ(Mβ
A) is naturally identified with the homology

of the local system to OβTA on the torus TA:

Hj(ρ(Mβ
A)) = ρj(Mβ

A) '
{
Hj
dR(TA;k) if β ∈ ZAr sRes(A);

0 if β ∈ kAr (ZA ∪ sRes(A)).

Proof. By [SW09] and 2.3, if β 6∈ sRes(A) then FL−1(Mβ
A) ' hA+(OβTA). Under

Fourier–Laplace, restriction ρ converts to the functor (DA/∂ADA) ⊗LDA (−). On

the affine space XA = k
A this is the D-module direct image under the map to a

point. Hence with β 6∈ sRes(A), ρ(Mβ
A) represents the direct image of OβTA under

projection to a point—in other words, the cohomology of the local system. �

We next extend this lemma by identifying algebraically ρ(Mβ
A) with

∧
(kA) for

non-exceptional β. (We view the exterior algebra as an abstract copy of the co-

homology of TA). Note that in this case the Euler–Koszul complex resolves Mβ
A

but is not necessarily a representative for FL−1 hA+(OβTA). Studying restrictions of
Euler–Koszul complexes turns out to be very down to earth.

Lemma 2.5. If φ : N −→ N ′ is an A-graded morphism (of degree zero) of A-graded
RA-modules then

(1) the restriction ρ(K•(N ;E−β)) is naturally
∧

(kA)⊗kNβ, in the sense that
(2) the induced morphism ρ(K•(N ;E − β)) −→ ρ(K•(N ′;E − β)) is identified

with the morphism
∧

(kA)⊗k Nβ −→
∧

(kA)⊗k N ′β induced from φβ.

Proof. We extend the domain of the Euler–Koszul functor to modules of the form
Q⊗RA N where N is an A-graded RA-module and Q a right A-graded DA-module
by setting Ei ◦ (q ⊗ ν) = q(Ei + degA,i(ν))⊗ ν.

Morally, Ei ◦ (−) remains right-multiplication by Ei and (since multiplications
on the left and right commute) one easily checks that there is an isomorphism of
functors ρ(K•(−;E − β)) = K•(ρ(DA ⊗RA (−));E − β) = K•((DA/xADA) ⊗LRA
(−);E−β) from the category of A-graded RA-modules to the category of A-graded
vector spaces.

As right RA-module, (DA/xADA) ⊗RA N = N for any A-graded N . Hence
(DA/xADA)⊗LRA (−) = (DA/xADA)⊗RA (−). The Ei-action is then Ei ◦ (1⊗ν) =
(degA,i(ν))⊗ν. In particular, the Euler–Koszul complex of E−β on (DA/xADA)⊗
N is in degree α ∈ ZA the Koszul complex on Nα induced by the numbers {αi−βi}i.
If α = β then this Koszul complex is

∧
(kA)⊗k Nα with zero differential. If α 6= β

then this Koszul complex is the Koszul complex (over Z) of a set of generators of
the unit ideal and hence exact.

The final claim is clear from the construction. �

Corollary 2.6. If β 6∈ EA then

ρj(Mβ
A) '

{
Hj
dR(TA;k) if β ∈ NA;

0 if β 6∈ NA.

Proof. If β 6∈ EA then ρ(Mβ
A) = ρ(K•(SA;E − β)). Now use Lemma 2.5. �

The natural morphism ρ(K•(SA;E − β)) −→ ρ(Mβ
A) need not be an isomor-

phism:
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Example 2.7. Let A =

(
1 1 1 1
0 1 3 4

)
and take β = (1, 2), the only parameter with

higher Euler–Koszul homology for this A (by [ST98]). The k-dimension vectors for

ρ(Mβ
A) and ρ(K•(SA;E − β)) are (0, 0, 1, 0, 0) and (0, 0, 0, 0, 0) respectively. �

In order to better understand the relationship between the restrictions of the
A-hypergeometric system and the Euler–Koszul complex respectively, we consider
the 3-rd quadrant spectral sequence

E2
−i,−j = ρj(Hi(−;E − β)) =⇒ (ρ(K•(−;E − β)))i+j .

The k-th differential is dk : Ek−p,−q −→ Ek−p−k+1,−q+k. A toric map N −→ N ′

induces a morphism of corresponding spectral sequences.

All our experiments indicate that if β ∈ NA then ρj(Mβ
A) = Hj

dR(TA), irrespec-
tive of exceptionality. While we cannot show that, we have a one-way estimate:

Lemma 2.8. If β ∈ NA then there is a natural inclusion
∧

(kA) ↪→ ρ(Mβ
A).

Proof. Consider the morphism of spectral sequences attached to the inclusion SA ↪→
S̃A of SA into its normalization. For any β ∈ NA, the induced map of abutments
ρ(K•(SA;E − β)) −→ ρ(K•(S̃A;E − β)) is an isomorphism by Lemma 2.5. Since

S̃A is Cohen–Macaulay, it has no higher Euler–Koszul homology and so the abut-
ment ρ(K•(S̃A;E − β)) is stored in the i = 0 column of the E2-term. It follows
that the isomorphism on abutments must be coming from the map of the i = 0
column, for k � 0. But Ek0,−j is a submodule of E2

0,−j for k ≥ 2. In particular,

ρ(K•(S̃A;E − β)) '
∧

(kA) is contained in ρ(K•(SA;E − β)) = ρ(Mβ
A). �

2.4. De Rham cohomology. We consider now the effect of (D/∂ADA) ⊗LDA
(−) on Mβ

A and on the Euler–Koszul complex. This behaves differently since
(DA/∂ADA)⊗DA N is not N for most A-graded RA-modules N .

Definition 2.9. If β is in degA(RΓ∂A(SA)) =
⋃
k<dimTA

degA(Hk
∂A

(SA)) ⊆ EA it
is called strongly A-exceptional. �

Theorem 2.10. For any A-graded RA-module N , (D/∂ADA)⊗LDA K•(N ;E − β)
vanishes whenever β is not an A-degree of RΓ∂A(N)). More precisely,

(D/∂ADA)⊗LDA K•(N ;E − β) '

(⊕
i

Hi
∂A(N)

)
β

⊗k
∧

(kA)[dimXA].

As in Lemma 2.5, an A-graded map N −→ N ′ induces a map of de Rham complexes
that is identified with (RΓ∂A(N) −→ RΓ∂A(N ′))β ⊗k

∧
(kA)[dimXA].

If β is not strongly exceptional ( e.g, if SA is Cohen–Macaulay), then

TorDA• (D/∂ADA,K•(SA;E − β)) = H•+dimXA
dR (TA;k)

if β is in degA(HdimTA
∂A

(SA)) and zero otherwise.

Proof. As in the proof of Lemma 2.5, we extend the action of the Euler operators
to the quotient (DA/∂ADA)⊗RA N for any A-graded N . Hence (DA/∂ADA)⊗LDA
K•(N ;E − β) = K•((DA/∂ADA)⊗LRA N ;E − β) for any A-graded RA-module N .

Recall that εA =
∑
j aj and that its components εA,i satisfy Ei + εA,i =∑

j aij∂jxj . Take now a free A-graded RA-resolution F• for N . Then for any

A-graded element P ⊗ f ∈ (DA/∂ADA)⊗RA Fk the cosets of (Ei− βi) ◦ (P ⊗ f), of
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(Ei−βi+degA,i(P⊗f))P⊗f and of (−εA,i−βi+degA,i(P⊗f))P⊗f coincide. So,
as in Lemma 2.5, the Euler–Koszul complex on (DA/∂ADA)⊗F• is in degree α the
Koszul complex on DA/∂ADA⊗F• induced by the numbers {−εAi−βi+αi}. Hence
K•((DA/∂ADA)⊗LRAN ;E−β) can only have cohomology when (DA/∂ADA)⊗LRAN
has a cohomology class in degree β + εA. By Lemma 2.1 this is equivalent to β
being the degree of a nonzero cohomology class in Č•A⊗RA N which proves the first
claim.

If RΓ∂A(N) is non-exact in degree β then (DA/∂ADA)⊗LRA (K•(N ;E−β− εA))
is (H•∂A(N))β tensored with a Koszul complex (shifted by dimXA) on dim(TA)
maps k −→ k each of which is the zero map. Hence in this case, the resulting
cohomology is (H•∂A(N))β ⊗k

∧
(kA)[dimXA]. The indicated naturality condition

is clear from the discussion.
If β is not strongly exceptional then (RΓ∂A(SA))β ' (HdimTA

∂A
(SA))β . The latter

is a subquotient of k[ZA] and hence its A-graded Hilbert function takes values in
{0, 1}. The final claim follows. �

Example 2.11. Let A =

(
1 1 1 1
0 1 3 4

)
. Then (H2

∂A
(SA))β is nonzero exactly if

β is an interior lattice point of −R+A, while H1
∂A

(SA) is a 1-dimensional vector

space concentrated in degree (1, 2). It follows that TorDA• (D/∂ADA,K•(SA;E −
β)) is H•+4(TA;k) when β supports H2

∂A
(SA); it is the shifted H•+4(TA;k)[1] =

H•+5(TA;k) when β = (1, 2); it is zero in all other cases.
In particular, no simple general formula (not appealing to local cohomology

modules) for TorDA• (D/∂ADA,K•(SA;E − β)) comes to mind. �

Corollary 2.12. TorDA• (D/∂ADA,M
β
A) and Ext•DA(OA,M

β
A) are nonzero only if

β ∈ EA ∪ (degA(H
dim(SA)
∂A

(SA))).

Proof. Note first that resolving OA over DA and dualizing the resolution gives a
resolution of (a cohomologically shifted) DA/∂ADA, so that the Ext- and Tor-claims
are equivalent.

By [MMW05], the Euler–Koszul complex resolves Mβ
A whenever β 6∈ EA. So, for

such β not in degA(H
dim(SA)
∂A

(SA)), the indicated Ext- and Tor-groups vanish by
Theorem 2.10. �

Definition 2.13. Let NA be the interior ideal of SA, generated by the monomials
whose degrees are in the topological interior of R+A. �

Corollary 2.14. If SA is normal, then

TorDA• (D/∂ADA,M
β
A) = TorDA• (D/∂ADA,K•(SA;E − β))

=

{
H•+dimXA
dR (TA;k) if − β ∈ degA(NA);

0 else.

Proof. The exceptional locus is here empty. The interior ideal is the canonical mod-
ule ωSA in the A-graded category by [BH93, Cor. 6.3.6] while also in the A-graded

category ωSA = ExtdimXA−dimTA
RA

(SA, ωRA), [BH93, Prop. 3.6.12]. Then graded

local duality [BH93, Thm. 3.6.19] yields that degA(HdimTA
∂A

(SA)) = −degA(NA).
Now use Theorem 2.10. �
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For our applications, it is interesting to know that NA does not meet the strongly
A-exceptional locus where for τ ⊆ A a face we write ∂τ for {∂j}j∈τ :

Lemma 2.15. For any face τ of A, no element of NA is a degree of RΓ∂τ (SA).

Proof. For j ∈ τ ,
⊗

τ (SA → SA[∂−1
j ]) ' (SA → SA[∂−1

j ]) ⊗
⊗

τ3j′ 6=j(SA →
SA[∂−1

j′ ]). The corresponding double complex spectral sequence starts on the E1-

page with modules of the form SA[(∂j ·
∏
j′∈τ ′ ∂j′)

−1]/SA[(
∏
j′∈τ ′ ∂j′)

−1] for all pos-

sible τ ′ ⊆ τr{j}. The k-dimension of A-graded localizations of SA in each A-degree
is zero or one, and SA is a domain,. So, SA[(∂j ·

∏
j′∈τ ′ ∂j′)

−1]/SA[(
∏
j′∈τ ′ ∂j′)

−1]
is of dimension zero in each degree β ∈ NA. Hence the same holds for the abut-
ment. �

In contrast, elements of NA, including the origin 0, can indeed be quasi -degrees
of lower local cohomology (and hence exceptional parameters):

Example 2.16. Let A =

2 1 0 1 0
0 1 1 0 1
0 0 0 1 1

. The exceptional locus is the line k ·a1.

�

The following corollary will be used in Section 3

Corollary 2.17. Suppose SA is Cohen–Macaulay, and put M = H0(SA∂A;E−β).
Then for β = 0,

TorDAi (DA/∂ADA,M) =

 k
dimTA if i = dimXA;
k if i = dimXA − 1;
0 if i < dimXA − 1;

while all Tor-groups vanish if 0 6= β ∈ NA.

Proof. Consider the toric sequence 0 −→ SA∂A −→ SA −→ k −→ 0. Cohen–
Macaulayness ensures, by [MMW05], that the Euler–Koszul functor produces an
exact sequence

0 −→ H1(k;E − β) −→ H0(SA∂A;E − β) −→Mβ
A −→ H0(k;E − β) −→ 0.

(2.4.1)

For β 6= 0, the outer modules are zero. For β = 0, the right module is OA and
the left is OdimTA

A . The claim then follows from Theorem 2.10 and Lemma 2.15:

apply TorDA• (DA/∂ADA,−) to 0 −→ M/OdimTA
A −→ Mβ

A −→ OA −→ 0 and

0 −→ OdimTA
A −→M −→M/OdimTA

A −→ 0. �

2.5. Ext and the polynomial solution functor. Dualizing a DA-resolution of
OA gives a resolution of (a cohomologically shifted) DA/∂ADA. Hence, up to

shift by εA in the A-grading, Ext•DA(OA,M
β
A) = TorDAdimXA−•(DA/∂ADA,M

β
A). In

particular, the vanishing results in the previous section apply to Ext•DA(OA,M
β
A).

In this subsection we consider the behavior of the solution functor HomDA(−, OA)
with values in the ring of polynomials on the class of A-hypergeometric modules

Mβ
A. It is immediately clear that HomDA(Mβ

A, OA) can only be nonzero if β ∈ NA,

and it is an old result that β ∈ NA implies that HomDA(Mβ
A, OA) is 1-dimensional,

see [SST00, Prop. 3.4.11]. We investigate here the derived polynomial solution
functor and prove
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Theorem 2.18. If β 6∈ EA (for example, if SA is Cohen–Macaulay) then

ExtiDA(Mβ
A, OA) =

{
Hi
dR(TA;k) if β ∈ NA;

0 else.

(All experiments indicate this to be true even if β ∈ EA.)

Proof. Write τ(−) for the transposition xu∂v 7→ ∂v(−x)u on DA. Let F• be an
A-graded RA-free resolution of SA and denote ωRA = DA/∂ADA[dimXA]. Then
we have the following equalities, where (−)∨ is the vector space dual:(

R HomDA(Mβ
A, OA))

)∨ (a)
' R HomDA(OA,DMβ

A)

(b)
' ωRA ⊗LDA DMβ

A

(c)
= ωRA ⊗LDA DK•(SA;E − β)

(d)
= ωRA ⊗LDA DK•(F•;E − β)

(e)
= ωRA ⊗LDA K•(HomRA(F•, RA);E + β + εA)

' ωRA ⊗LDA K•(R HomRA(SA, RA);E + β + εA)

(f)
' K•(ωRA ⊗LRA R HomRA(SA, RA);E + β + εA)

(g)
' (RΓ∂AR HomRA(SA, RA))−β−εA ⊗

∧
(kA)

(h)
'

(
(R HomRA(R HomRA(SA, RA), RA))β ⊗

∧
(kA)

)∨
=

(
(SA)β ⊗

∧
(kA)

)∨
.

The following notes justify the above transformations:

•(a) Duality gives R HomDA(M,M ′) ' (R HomDA(DM ′,DM))
∨

, [HTT08, §2.6].
•(b) Resolve OA and dualize the resolution, incurring a cohomological shift.
•(c) By [MMW05], the hypergeometric system is resolved by the Euler–Koszul

complex as long as β is not exceptional.
•(d) The Euler–Koszul functor can be applied to any A-graded resolution.
•(e) K•(F•;E − β) is a free complex. Applying HomDA(−, DA) and the trans-

position τ turns DA ⊗RA F• into DA ⊗RA HomRA(F•, RA) and the Euler–
Koszul complex on β into that on −β − εA since xj∂j turns into −∂jxj .

•(f) As in the proof of Theorem 2.10.
•(g) Theorem 2.10 works for A-graded complexes just as well.
•(h) Apply local A-graded duality (responsible for the dual).

�

3. Three four-term sequences

Notation. From now on, A is a (d+ 1)× (n+ 1) matrix and NA is assumed to be
saturated, in addition to the conventions in Notation 1.2 and Definition 1.3.

All products of k-schemes are by default over k. �

Consider the exact toric sequence 0 −→ SA∂A −→ SA −→ k −→ 0. Normality
ensures, by [MMW05, Prop. 5.3, Thm. 6.6], that the Euler–Koszul functor produces
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the exact sequence (2.4.1), and, for i ≥ 1, isomorphisms

Hi(k;E − β) '

{
O

(d+1
i )

A for β = 0;

0 else.
(3.0.1)

In this section we will show that the sequence (2.4.1) has a geometric interpreta-
tion when A is homogeneous. Our approach is inspired by [Sti98], where Stienstra
defined on the torus TA a family F of Laurent polynomials using the matrix A. He
showed that one term in the long exact cohomology sequence of the pair (TA, fiber
of F ) could be naturally identified with a fiber in the A-hypergeometric system M0

A

when F is smooth. We will extend this identification to the non-smooth fibers of
F .

We will proceed as follows. First we identify the second term of (2.4.1) as
a concatenation of (proper) direct image functors applied to the structure sheaf
OTA . The third term already has such an interpretation by Corollary 2.3 above.
The remaining terms are identified as the cohomology of the cone of a natural
adjunction morphism between the second and third term.

As a second step we show in Lemma 3.7 that the sequence (2.4.1) is part of a
long exact sequence coming from a triangle of elementary D-modules on the line
Â1. We also show in Proposition 3.8 that the Fourier–Laplace transform of (2.4.1)
is induced by the FL-transformed triangle of elementary D-modules from Lemma
3.7. This enables us to give a geometric interpretation of the exact sequence in
Theorem 3.10 in terms of Gauß–Manin systems of the pair (TA, fiber of F ) as
alluded to above.

As a preparatory result we begin with an identification of two functors on certain
sheaves.

3.1. Quasi-equivariant bundles. Denote Gm the scheme of units of k. A Gm-
action on the variety Y is a multiplicative morphism µ : Gm × Y −→ Y where
1 ∈ Gm acts as identity. That is, µ is a morphism, µ(g, µ(g′, y)) = µ(gg′, y) and
µ(1, y) = y.

Let X be an affine smooth variety and π : E = X × An → X be a trivial vector
bundle on X. Write E∗ = E \ (X × {0}) and let Ex be the fiber over x ∈ X. The
zero section is identified with X as closed subvariety via the embedding

i : X ↪→ E.

Definition 3.1. A Gm-action µ : Gm × E −→ E on E is fibered if
(1) µ preserves fibers, µ : Gm × Ex −→ Ex;
(2) µ is the restriction of a morphism µ : A1 × E −→ E under Gm ↪→ A1;
(3) 0 ∈ A1 multiplies into the zero section, µ : 0× Ex −→ i(X);
(4) A1 fixes the zero section, µ : A1 × i(X) −→ i(X).

�

Definition 3.2. Let µ : Gm × E → E be a fibered Gm-action on E. Write
p : Gm × E −→ E for the projection and denote by µ′ and p′ the restrictions of µ
and p to Gm × E∗.

A holonomic DE-module M is called Gm-quasi-equivariant if (µ′)+M|E∗ '
(p′)+M|E∗ . �

We consider the derived category of bounded complexes of DE-modules with
holonomic and quasi-equivariant cohomology.
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Lemma 3.3. Let π : E → X be fibered and denote i : X → E the inclusion of the
zero section. For every Gm-quasi-equivariant DE-module M,

π+M' i†M and π†M' i+M

Proof. By duality, it suffices to prove the first claim. Denote by j : E∗ → E the
open embedding of the complement of the zero section and let π be the projection
to the base X. We have the exact triangles

j†j
−1M−→M−→ i+i

†M +1−→(3.1.1)

π+j†j
−1M−→ π+M−→ i†M +1−→(3.1.2)

and the Cartesian diagram

Gm × E∗
j′ //

µ′

��

A1
m × E

µ

��
E∗

j // E

where µ′ is the restriction of µ to Gm × E∗ and j′ is the canonical inclusion. The
morphism s : E → A1×E with s(x) = (1, x) is a section of µ. Thus, the composition
(induced by the natural transformation idE −→ µ+µ

†)

π+j†j
−1M→ π+µ+µ

†j†j
−1M→ π+µ+s+s

†µ†j†j
−1M = π+j†j

−1M

is an isomorphism by (3.1.2); hence it is enough to prove π+µ+µ
†j†j

−1M = 0. By
base change,

π+µ+µ
†j†j

−1M' π+µ+j
′
†(µ
′)†j−1M.

Since M is Gm-quasi-equivariant, we have

(µ′)†j−1M' p† j−1M' OGm � j−1M .

Therefore (letting a : A1 → {pt} be the map to the point) we get

π+µ+j
′
†(µ
′)†j−1M' π+µ+j

′
†(OGm � j−1M)

' π+µ+(j1†OGm � j†j
−1M)

' π+ p+(j1†OGm � j†j
−1M)

' a+j1†OGm � π+j†j
−1M

where j1 : Gm → A1 is the canonical inclusion. Since a+j1†OGm = 0 in Db(D{pt})
we have π+µ+µ

†j†j
−1M = 0. �

Recall that A is a (d + 1) × (n + 1) matrix. Let TA = Spec (k[t±0 , . . . , t
±
d ]) and

consider the ring homomorphism

k[y0, . . . , yn] −→ k[t±0 , . . . , t
±
d ]

yi 7→ tai

which gives rise to a morphism

hA : TA → Ân+1,

where Ân+1 = Spec (k[y0, . . . , yn]). We factorize this embedding as

TA
h1−→ Ân+1 \ {0} h2−→ Ân+1 .
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We are now ready to show a useful property of A-hypergeometric systems and their
Fourier–Laplace transforms.

Lemma 3.4. The DÂn+1-module hA+OTA is Gm-quasi-equivariant.

Proof. We view Ân+1 as trivial bundle over itself. Since A is pointed, there is
u ∈ Zd+1 with v = uT · A componentwise positive. Let µ′ : Gm × Ân+1 −→ Ân+1

be the monomial action induced by v and let µ̃ : Gm × TA −→ TA be the action
induced by u. (Compare the discussion on the Euler space in [RSW17].) Consider
the Cartesian diagram

Gm × TA
h1×id //

µ̃

��
p

��

Gm × Ân+1 \ {0}

µ′

��
p

��
TA

h1 // Ân+1 \ {0} h2 // Ân+1

and note that the positivity of v allows to extend µ′ to A1 × Ân+1. Then

p+ h1+OTA ' (h1 × id)+ p+OTA ' (h1 × id)+µ̃
+OTA ' (µ′)+h1+OTA

and so p+ h1+OTA ' (µ′)+h1+OTA . �

3.2. The four-term sequence in terms of direct images. Recall Notation
1.6 regarding Fourier–Laplace transforms and consider the inverse Fourier–Laplace
transformation of the sequence (2.4.1):

0 −→ H1(k; Ê + β) −→ H0(ŜA · yA; Ê + β) −→ M̂β
A −→ H0(k; Ê + β) −→ 0.

(3.2.1)

Definition 3.5. Let B0 be the unique simple DÂn+1-module supported in 0 ∈ Ân+1.
�

Proposition 3.6. For β = 0 there is an isomorphism of exact 4-term sequences

0 // H1(k; Ê) // H0(ŜA · yA; Ê) // M̂0
A

// H0(k; Ê) // 0

0 // B0
d+1

'

OO

// H0(h2†h1+OTA)

'

OO

// H0(h+OTA)

'

OO

// B0
//

'

OO

0

Proof. By Corollary 2.3, hA+OTA ' M̂0
A. By (3.0.1), Hi(k; Ê) ' B0

(d+1
i ). Re-

stricting to Ân+1 \ {0} we see that

H0(ŜA · yA; Ê)|Ân+1\{0} ' (M̂0
A)|Ân+1\{0} ' h1+OTA in Modh(DÂn+1) .

Since H>0(SA · yA; Ê)|Ân+1\{0} = 0, we have

H0(SA · yA; Ê)|Ân+1\{0} ' K•(SA · yA; Ê)|Ân+1\{0} in Db
h(DÂn+1) .

By adjunction this gives a morphism

h2†h1+OTA
'−→ h2†h

−1
2 K•(ŜA · yA; Ê) −→ K•(ŜA · yA; Ê)

and so induces a morphism H0(h2†h1+OTA) −→ H0(ŜA ·yA; Ê) such that the center
and right squares in our diagram commute. We need to prove that the morphism

(3.2.2) h2†h
−1
2 K•(ŜA · yA; Ê) −→ K•(ŜA · yA; Ê)
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is an isomorphism. (While we know that H1(k; Ê) and B0
d+1 are isomorphic, it is

not yet clear that H0(h2†h1+OTA)→ H0(ŜA · yA; Ê) induces such isomorphism.)
In order to prove that the morphism (3.2.2) is an isomorphism we have to show

that the third term in the adjunction triangle

(3.2.3) h2†h
−1
2 K•(ŜA · yA; Ê) −→ K•(ŜA · yA; Ê) −→ i+i

†K•(ŜA · yA; Ê)
+1−→

vanishes. By Kashiwara equivalence it is enough to show that i†K•(ŜA · yA; Ê) is

isomorphic to zero. Since K•(ŜA · yA; Ê)|Ân+1\{0} ' (hA+OT )|Ân+1\{0}, the com-

plex K•(ŜA · yA; Ê) is Gm-quasi-equivariant. By Lemma 3.3, i†K•(ŜA · yA; Ê) '
a+K•(ŜA · yA; Ê) where a is the map to a point. Now a+K•(ŜA · yA; Ê) is dual to
ρK•(SA∂A;E) which allows us to use Lemma 2.5 to conclude. �

3.3. The four-term sequence with Gauß–Manin systems.

Notation. From now on, in addition to the assumptions in Notation 1.2 and Def-
inition 1.3 as well as normality, we assume that the matrix A is homogeneous, i.e.
that (1, . . . , 1) is in the row span of A.

Furthermore, for the remainder of the paper, β = 0. �

One may put A into the following shape by elementary row operations

(3.3.1) A = (a1, . . . ,an) =


1 1 . . . 1
0 a11 . . . a1n

...
...

...
0 ad1 . . . adn

 =


1 1 . . . 1
0
... B
0


where B = (b1, . . . ,bn) is the d× n-matrix with entries (aij)1≤i≤d,1≤j≤n.

Using this homogeneity assumption, we will here give a geometric interpretation
to our 4-term sequence (2.4.1). For this we will need a variant of a comparison the-
orem of d’Agnolo and Eastwood [DE03], between the Radon and Fourier–Laplace
transform, and several other preparatory statements.

Set TB := Spec (k[t±1 , . . . , t
±
d ]) and Â1 := Spec (k[t0]). We will identify TA with

TB × (Â1 \ {0}). From the ring homomorphism

k[y0, . . . , yn] −→ k[t0, t
±
1 , . . . , t

±
d ]

(y0, . . . , yn) 7→ (t0, t0t
b1 , . . . , t0t

bn)

we get a map

k : TB × Â1 −→ Ân+1(3.3.2)

whose restriction to TA is just our old morphism hA. Let k̃ be the closed embedding

k̃ := (idTB × k) : TB × Â1 → TB × Ân+1,

let j, i be the embedding and inclusion

j : TA = TB × (Â1 \ {0})→ TB × Â1, i : TB × {0} → TB × Â1.
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Then there is a commutative diagram

{0}

i0
��

TB
aoo

i
��

k0

&&
Â1 TB × Â1 k //poo Ân+1

Â1 \ {0}

j0

OO

TA
p′oo

hA

88

j

OO

h1 // Ân+1 \ {0}

h2

OO

where p : TB × Â1 → Â1 is the projection and k0 sends TB to the origin. Define the
following D-modules on Â1:

DÂ1 • 1 := DÂ1/(∂t), DÂ1 • H := DÂ1/(t∂t),

DÂ1 • 1/t := DÂ1/(∂tt), DÂ1 • δ := DÂ1/(t).

(The module DÂ1 • H encodes the Heaviside distribution).

Lemma 3.7. We have the following isomorphisms:

k+OTB×Â1 ' k+p
+(DÂ1 • 1), hA+OTA ' k+p

+(DÂ1 • 1/t),

k0+OTB ' k+p
+(DÂ1 • δ), h2†h1+OTA ' k+p

+(DÂ1 • H).

The adjunction morphism h2†h1+OTA → hA+OTA is induced by the adjunction
morphism DÂ1 • H→ DÂ1 • 1/t.

Proof. The first three isomorphisms follow from

k+OTB×Â1 ' k+p
+OÂ1 = k+p

+(DÂ1 • 1),

hA+OTA ' k+j+OTA ' k+j+p
′+OÂ1\{0} ' k+p

+j0+OÂ1\{0} ' k+p
+(DÂ1 • 1/t),

k0+OTB ' k+i+OTB ' k+i+a
+O{0} ' k+p

+i0O{0} ' k+p
+(DÂ1 • δ).

For the last one we have

k+p
+(DÂ1 • H) ' k+p

+j0†OÂ1\{0} ' k+j†p
′+OÂ1\{0} ' k+j†OTA .

So it remains to prove that k+j†OTA ' h2†h1+OTA . For this consider the diagram
with Cartesian squares

TB

i

��

p0 // {0}

i0
��

TB × A1

p

II

k // An+1

π

UU

TA

j

OO

h1 // An+1 \ {0}

h2

OO

Base change in the lower square gives h1+OTA
'→ h1+j

−1j†OTA
'→ h−1

2 k+j†OTA .
Adjunction yields a morphism h2†h1+OTA → k+j†OTA . In order to prove that this

is an isomorphism, it is hence enough to show that h2†h1+OTA ' h2†h
−1
2 k+j†OTA →

k+j†OTA is an isomorphism. Using the triangle

h2†h
−1
2 k+j†OTA −→ k+j†OTA −→ i0+i

†
0k+j†OTA

+1−→ ,
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it remains to show that i0+i
†
0k+j†OTA is zero. For this we observe that

h+
2 k+j†OTA ' h1+j

+j†OTB ' h1+OTB

is the restriction of a quasi-equivariant module. This shows, via Lemma 3.4, that
k+j†OTA is Gm-quasi-equivariant. We therefore have

i0+i
†
0k+j†OTA ' i0+π+k+j†OTA ' i0+p0+p+j†OTA ' i0+p0+i

†j†OTA ,

using Lemma 3.3 to substitute p+ by i!. Since i†j†OTA is zero, the claim follows. �

Consider the diagram

A1 TB × An+1Foo q // An+1

where q is the projection and

F (t1, . . . , tn, λ0, . . . , λn) = λ0 +

n∑
i=1

λit
bi .

Denote Γ = Var(F ) and write

iΓ : Γ ⊂ TB × An+1, jU : U → TB × An+1

for the inclusion of Γ and its complement U . The Gauß–Manin system qU+OU is
of interest since it carries a mixed Hodge structure by Saito’s work in [Sai90]. Our
article gives evidence to our belief that many D-modules arising from Euler–Koszul
complexes also carry such structure, and that they relate to interesting geometric
information.

Proposition 3.8. With u = 1, δ, 1/t,H and û = δ, 1,H, 1/t, and with k as in (3.3.2)
we have the following isomorphisms

FL(k+p
+(DÂ1 • û)) ' q+F

+(DA1 • u).

Proof. Consider the diagram

Â1 TB × Â1poo k // Ân+1

Â1 × A1

p1

OO

p2

��

TB × Â1 × An+1

p12

OO

idÂ1×Foo

p13

��

k×idAn+1 // Ân+1 × An+1

q1

OO

q2

��
A1 TB × An+1Foo q // An+1

where pij are the projections to the factors i and j. Recall the Fourier–Laplace
sheaf L on An+1 from Definition 1.5 and denote L1 the Fourier–Laplace sheaf on
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A1 × A1. Then

FL(k+p
+(DÂ1 • ·û)) = q2+

(
(q+

1 k+p
+(DÂ1 • û))⊗ L

)
' q2+((k × id)+ p+

12 p
+(DÂ1 • û)⊗ L)

' q2+(k × id)+(p+
12p

+(DÂ1 • û)⊗ (k × id)+L)

' q+p13+((id× F )+p+
1 (DÂ1 • û)⊗ (k × id)+L)

' q+p13+((id× F )+p+
1 (DÂ1 • û)⊗ (id× F )+L1)

' q+p13+(id× F )+(p+
1 (DÂ1 • û)⊗ L1)

' q+F
+p2+p

+
1 (DÂ1 • û)⊗ L1)

' q+F
+(DA1 • u).

�

Now consider the diagram

{0}

i0
��

Γ
aoo

iΓ
��

qΓ

%%
A1 TB × An+1Foo q // An+1

A1 \ {0}

j0

OO

U

jU

OO

F |Uoo

qU

99

where q is the projection. We have, writing F for FU ,

q+F
+(DA1 • 1/t) ' q+F

+j0+OA1\{0} ' q+jU+F
+OA1\{0} ' qU+OU ,

q+F
+(DA1 • H) ' q+F

+j0†OA1\{0} ' q+jU†F
+OA1\{0} ' q+jU†OU ,

q+F
+(DA1 • δ) ' q+F

+i0+O{0} ' q+iΓ+a
+O{0} ' q+iΓ+OΓ ' qΓ+OΓ,

q+F
+(DA1 • 1) ' q+OTB×An+1 ,

where the second isomorphism in the second line follows from the smoothness of F .

Notation 3.9. If W is a k-space (for example, Hi
dR(TB ;k)) then W denotes the

trivial vector bundle W ⊗k OAn+1 . �

Consider the following exact sequence of DÂ1 -modules

0 −→ DÂ1 • δ −→ DÂ1 • H −→ DÂ1 • 1/t −→ DÂ1 • δ −→ 0(3.3.3)

Theorem 3.10. The exact sequence (3.3.3) induces an isomorphism of exact se-
quences

0 // H1(k;E) // H0(SA∂A;E) //M0
A

// H0(k;E) // 0

0 //
Hd
dR(TB ;k)

⊕
Hd−1
dR (TB ;k)

//

'

OO

H0(qU+OU ) //

'

OO

H0(q+jU†OU ) //

'

OO

Hd
dR(TB ;k)

'

OO

// 0
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Proof. The sequence (3.3.3) is part of the long exact sequence coming from the
triangle

j0†j
−1
0 OÂ1 −→ j0+j

−1
0 OÂ1 −→ i0+i

†
0j0+j

−1
0 OÂ1

+1−→

which is isomorphic to

DÂ1 • H −→ DÂ1 • 1/t −→ (DÂ1 • δ)⊕ (DÂ1 • δ[1])
+1−→

Applying the concatenated functor FL ◦ k+p
+ to the triangle above and using

Lemma 3.7, Proposition 3.6, and the fact that Hi(k0+OTB ) = B0
(di) we obtain the

upper sequence in the theorem. (Recall that k0 sends TB to the origin in Ân+1).
Applying q+F

+ ◦ FL instead gives the lower sequence. �

If one applies q+F
+ ◦ FL to the exact sequence

0 −→ DÂ1 • 1 −→ DÂ1 • 1/t −→ DÂ1 • δ −→ 0(3.3.4)

one obtains as a part of the resulting long exact sequence the piece
(3.3.5)

0 −→ Hd−1
dR (TB ;k) −→ H0(qΓ+OΓ) −→ H0(q+jU†OU ) −→ Hd

dR(TB ;k) −→ 0,

We now determine how this sequence relates to the two sequences in Theorem 3.10.

Proposition 3.11. The exact sequence (3.3.5) is the quotient of the exact sequence

0 −→ Hd
dR(TB ;k)⊕Hd−1

dR (TB ;k) −→ H0(qU+OU ) −→ H0(q+jU†OU ) −→ Hd
dR(TB ;k) −→ 0

by the exact sequence

0 −→ Hd
dR(TB ;k) −→ Hd

dR(TB ;k) −→ 0 −→ 0 −→ 0.

Proof. Consider the Fourier–Laplace transforms of the sequences (3.3.3) and (3.3.5).
We get a commutative diagram with exact rows and columns:

0 // DA1 • 1 //

��

DA1 • 1� _

��

// 0 //

��

0 //

��

0

0 // DA1 • 1 //

��

DA1 • 1/t //

����

DA1 • H //

��

DA1 • 1 //

��

0

0 // 0 // DA1 • δ // DA1 • H // DA1 • 1 // 0

and morphisms of triangles

DA1 • 1 //

��

0 //

��

(DA1 • 1)[1]
+1 //

��
DA1 • 1/t //

��

DA1 • H //

��

(DA1 • 1)⊕ (DA1 • 1)[1]

��

+1 //

DA1 • δ // DA1 • H // DA1 • 1
+1 //



22 THOMAS REICHELT AND ULI WALTHER

From this, we get an exact sequence of exact rows

0 // Hd
dR(TB ;k) //
� _

��

Hd
dR(TB ;k) //
� _

��

0 //

��

0 //

��

0

0 // Hd
dR(TB ;k)⊕Hd−1

dR (TB ;k) //

����

H0(qU+OU ) //

����

H0(q+jU†OU ) //

��

Hd
dR(TB ;k) //

��

0

0 // Hd−1
dR (TB ;k) // H0(qΓ+OΓ) // H0(q+jU†OU ) // Hd

dR(TB ;k) // 0

The lower middle maps are surjective since F+ is exact and q+ is right exact. �

We now introduce a family of Laurent polynomials defined on TB × An using
the columns of the matrix B. For this, recall Definition 3.3.1 and consider the ring
homomorphism

k[λ0, . . . , λn] −→ k[t±1 , . . . , t
±
d ]⊗k k[λ1, . . . , λn]

λi 7→

{
−
∑n
i=1 t

bi ⊗ λi for i = 0;

λi for i = 1, . . . , n,
(3.3.6)

which induces a family of Laurent polynomials

ϕB : TB × An −→ An+1 = A1 × An .(3.3.7)

and an isomorphism

iϕ : TB × An −→ Γ ⊆ TB × A× An

onto the graph Γ. Hence ϕB = qΓ◦iϕ and thereforeH0(ϕB+OTB×An) ' H0(qΓ+OΓ).
This recovers a special case of a theorem of [Rei14], i.e. there is an exact sequence

0 // Hd−1
dR (TB ;k) // H0(ϕB+OTB×An) //M0

A
// Hd

dR(TB ;k) // 0

(3.3.8)

which is isomorphic to the sequence (3.3.5).

3.4. Vanishing Gauß–Manin system and the extension class. In this section
we show that the A-hypergeometric system is an extension of a trivial vector bundle
of rank one by the quotient of a Gauß–Manin system modulo its flat sections. We
show that this extension does not split.

As before, β = 0 (and A is saturated, homogeneous, and pointed).

Definition 3.12. The vanishing Gauß–Manin system V with respect to the map
ϕB is the cokernel of the map Hd−1

dR (TBk) −→ H0(ϕB+OTB×An). In other words,

(3.4.1) 0 −→ V −→M0
A −→ Hd

dR(TB ;k) −→ 0

is exact. We write VA = Γ(An+1,VA) and note the short exact sequence

0 −→ VA −→M0
A −→ OA −→ 0.

�
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The terminology is borrowed from the vanishing cohomology of a hyperplane
section j : X ↪→ Y of an n-dimensional projective variety Y which is a direct
summand Hn−1(X) = Hn−1(X)van ⊕ j∗Hn−1(Y ).

The sheaf V appears perhaps for the first time in Stienstra’s article [Sti98, For-
mula (61)], essentially as a restriction of (3.4.1) to the smooth locus (where all
sheaves in (3.3.5) become vector bundles). However, our situation is more general
even in Stienstra’s set-up since in [Sti98] the matrix B is assumed to be homoge-
neous while it is arbitrary for us.

A natural question is: what is the extension class of M0
A inside the sequence

(3.4.1)? Our next result answers this question, confirming a prediction of Duco van
Straten.

Theorem 3.13. Write O for Hd
dR(TB ;k) ⊗OAn+1 . There are natural (in k) iso-

morphisms

ExtiD(O,V) '

{
k for i = 1

0 else.

The class of the sequence (3.4.1) is nonzero and induced by the identity on O under
the connecting morphism.

Proof. Since An+1 is affine it suffices to compute on the level of global sections. By

Corollary 2.12, Ext•DA(OA,M
β
A) vanishes for β ∈ NA. Hence, ExtiDA(OA, VA) =

Exti−1
DA

(OA, OA) and so has exactly the prescribed k-space structure. In particular,
(3.4.1) does not split.

The class of (3.4.1) inside Ext1
D(OA, V ) ' Ext0

D(OA, OA) is the image of the
identity on OA under the connecting morphism induced by (3.4.1), compare [Wei94,
Sec. 3.4]. Since the connecting morphism is an isomorphism, this element is non-
trivial. �
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