A CONNECTEDNESS RESULT IN POSITIVE CHARACTERISTIC

ANURAG K. SINGH AND ULI WALTHER

1. INTRODUCTION

All rings considered in this note are commutative and Noetherian. We give a
simple proof of the following result due to Lyubeznik:

Theorem 1.1. [Ly, Corollary 4.6] Let (R,m) be a complete local ring of positive
dimension with a separably closed coefficient field of positive characteristic. Then
the e-th iteration of the Frobenius map

F:H}(R) — H.:(R)

is zero for e > 0 if and only if dim R > 2 and Spec R \ {m} is connected in the
Zariski topology.

We also obtain, by similar methods, the following theorem:

Theorem 1.2. Let (R,m) be a complete local ring of positive dimension with an
algebraically closed coefficient field of positive characteristic. Then the number of
connected components of Spec R\ {m} is

1+dimg (| F(Hn(R)).
eeN
Theorem 1.1 is obtained in [Ly] as a corollary of the following theorems of
Lyubeznik and Peskine-Szpiro:

Theorem 1.3. [Ly, Theorem 1.1] Let (A,9N) be a regular local ring containing a
field of positive characteristic, and let A be an ideal of A. Then H}(A) =0 if and
only if there exists an integer e > 1 such that the e-th Frobenius iteration

Fe: HG™ 4= (A/A) — HE™A7H(A/)
is the zero map.

Theorem 1.4. [PS, Chapter III, Theorem 5.5] Let (A,9) be a complete regular
local ring with a separably closed coefficient field of positive characteristic, and let
2 be an ideal of A. Then H(A) =0 fori > dim A—1 if and only if dim(A/2A) > 2
and Spec(A/2A) \ {9} is connected.

Our proof of Theorem 1.1 is “simple” in the sense that it does not rely on
vanishing theorems such as those of [PS]—indeed the only ingredient, aside from
elementary considerations, is the local duality theorem.

We would like to mention that results analogous to Theorem 1.4 were discov-
ered by Hartshorne in the projective case [HaR, Theorem 7.5], and by Ogus in
equicharacteristic zero via de Rham cohomology [Og, Corollary 2.11].
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Theorem 1.5. Let (A,9M) be a regular local ring containing a field, and let 2A be
an ideal of A. Then HY(A) =0 for i > dim A — 1 if and only if

(1) dim(A/2) > 2, and

(2) Spec(A/A)\ {9} is formally geometrically connected (see Definition 2.1).

Huneke and Lyubeznik gave a characteristic free proof of this in [HL, Theo-
rem 2.9] using a generalization of a result of Faltings, [Fa, Satz 1]. We do not know
a criterion to detect connectedness of the punctured spectrum of A/l in terms of
Hi (A/2), except when A has positive characteristic.

2. PRELIMINARY REMARKS

Notation: When R is the homomorphic image of a ring A, we use upper-case letters
B, Q, M, A, B for ideals of A, and corresponding lower-case letters p,q, m, a, b for
their images in R.

Definition 2.1. Let (R, m) be a local ring. A field K C R is a coefficient field for
R if the composition K < R — R/m is an isomorphism. Every complete local ring
containing a field contains a coeflicient field.

We recall some notions from [Ra, Chapitre VIII]. Let (R, m, K) be a local ring
and let f(T) € K[T] denote the image of a polynomial f(T') € R[T]. Then R is
Henselian if for every monic polynomial f(T') € R[T], every factorization of f(T")
as a product of relatively prime monic polynomials in K[T] lifts to a factorization
of f(T') as a product of monic polynomials in R[T]. Hensel’s Lemma is precisely the
statement that every complete local ring is Henselian. The Henselization of a local
ring R is a local ring R, with the property that every local homomorphism from R
to a Henselian local ring factors uniquely through R". The ring R is obtained by
taking the direct limit of all local étale extensions S of R for which (R, m) — (S, n)

induces an isomorphism of residue fields R/m —» S/n.

A local ring (R, m, K) is said to be strictly Henselian if it is Henselian and its
residue field K is separably closed. It is easily seen that R is strictly Henselian if
and only if every monic polynomial f(T") € R[T] for which f(T') € K[T]is separable
splits into linear factors in R[T]. Every local ring has a strict Henselization R,
such that every local homomorphism from R to a strictly Henselian ring factors
through R*". The strict Henselization of a field K is its separable closure K°P.
In general, the strict Henselization of a local ring (R, m, K) is obtained by fixing
an embedding ¢ : K — K5%°P, and taking the direct limit of local étale extensions
(S,n, L) of (R,m, K) such that there is an induced map K — L — K®®P which
agrees with ¢ : K — K5°P,

The punctured spectrum of a local ring (R, m) is the set Spec R \ {m} with the
Zariski topology. We say that the punctured spectrum of R is formally geomet-

rically connected if the punctured spectrum of ]/%Sh, the completion of the strict
Henselization of the completion of R, is connected.

Definition 2.2. Let a be an ideal of a ring R. A ring homomorphism ¢ : R — S
induces a map of local cohomology modules Hi(R) = Hig4(S). In particular,
if R contains a field of characteristic p > 0, then the Frobenius homomorphism
F : R — R induces an additive map

Hi(R) %5 Hl,\(R) = HL(R),



A CONNECTEDNESS RESULT IN POSITIVE CHARACTERISTIC 3

called the Frobenius action on H:(R). An element n € H.(R) is F'-torsion if there
exists e € N such that F¢(n) = 0. The module H!(R) is F-torsion if every element
of H:(R) is F-torsion. The image of F is not, in general, an R-module. However,
it is a K-vector space when K is perfect, and in this case the F-stable part

Hi(R)s = [| F*(H (R))
eeN
of Hi(R) is a K-vector space as well. Results about F-torsion modules and F-stable
subspaces are summarized in §5.

Remark 2.3. Consider a local ring (R, m) of positive dimension. The punctured
spectrum of R is disconnected if and only if the minimal primes of R can be par-
titioned into two sets p1,...,pm and qi,...,q, such that rad(p; + q;) = m for all
pairs p;, q;. Consider the graph I' whose vertices are the minimal primes of R, and
there is an edge between minimal primes p and p’ if and only if rad(p +p’) # m. It
follows that the punctured spectrum of R is connected if and only if the graph I’
is connected. If the graph I' is connected, take a spanning tree. The spanning tree
must contain a vertex p; with only one edge, so I' \ {p;} is connected as well.

Let By, ..., B, be incomparable prime ideals of a local domain A. Their images
P1,...,pn are precisely the minimal primes of the ring R = A/(P1 N --- N PBy).
From the above discussion, we conclude that if the punctured spectrum of R is
connected, then there exists ¢ such that the punctured spectrum of the ring

A/PBin--NRiN--NP,)

is connected as well.

Theorems 1.1 and 1.2 state that connectedness issues for Spec R \ {m} are de-
termined by the Frobenius action on H} (R). We next record an observation about
the length of H} (R).

Proposition 2.4. Let (R,m) be a local ring which is a homomorphic image of a
Gorenstein domain. Then H (R) has finite length if and only if annp = 0 for every
prime ideal p of R with dim R/p = 1.

Proof. If dim R = 0 then H}(R) = 0 and R has no primes with dimR/p = 1. If
dim R = 1 then H} (R) has infinite length and dim R/p = 1 for some minimal,
hence associated, prime p of R. For the rest of the proof we hence assume that
dim R > 2.

Let R = A/Q where A is a Gorenstein domain. Localizing A at the inverse
image of m, we may assume that (A, 90) is a local ring. Using local duality over A,
the module HY (R) = Hb,(A/Q) has finite length if and only if Ext§™471(4/Q, A)
has finite length as an A-module. Since Ext®™471(4/9, A) is finitely generated,
this is equivalent to the vanishing of

Bt A4/, A)p = Bxiffy A (Ap /24y, Ay)

for all P € Spec A\ {M}. Using local duality over the Gorenstein local ring
(A, PAg), this is equivalent to the vanishing of
dim Agp —dim A+1 dim Agp —dim A+1
Hypay® (Ap/QAp) = Hyp ~% (Ry)
for all B € Spec A \ {9M}. This local cohomology module vanishes for P ¢ V(9Q).
Since dim Ap —dim A+ 1 < 0 for B € Spec A\ {9}, we need only consider primes
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P € V(Q) with dim Ap = dim A — 1. Since A is a catenary local domain, dim Ay
equals dim A — 1 precisely when dim A/ = 1, which is equivalent to dim R/p = 1.
Hence H,(R) has finite length if and only if H)p (R,) = HJ(R) vanishes for all
p € Spec R with dim R/p = 1, i.e., if and only if annp = 0 for all p € Spec R with

dim R/p = 1. O

3. MAIN RESULTS

Theorem 3.1. Let (R, m) be a strictly Henselian local domain containing a field of
positive characteristic. If dim R > 2 and R is a homomorphic image of a Gorenstein
domain, then H} (R) is F-torsion.

Proof. Suppose there exists n € H} (R) which is not F-torsion. Since R is a domain,
Proposition 2.4 implies that H} (A) has finite length. Hence for all integers e > 0,
the element F(n) belongs to the R-module spanned by n, F'(n), F2(n),...,F¢~1(n).
Amongst all equations of the form

(1) Ferrm) 4+ m PRty + - 4 r F*() = 0

with r; € R for all 7, choose one where the number of nonzero coefficients r; that
occur is minimal. We claim that r. must be a unit. Note that H} (A) is killed by
m¢ for some ¢’ = p¢ . If 7. € m, then applying F¢ to equation (1), we get

FEEeh () ol FOEE () o PR ) = 0,

But r¢ F¢'t*() € m? HL (R) = 0, so this is an equation with fewer nonzero coeffi-
cients, contradicting the minimality assumption. This shows that r. € R is a unit.
Since 7 is not F-torsion neither is F*(n), so after a change of notation we have an
equation

(2) Fe(n) +mF )+ +rn=0

where 7. is a unit and n € HL(R) is not F-torsion. Let n = [(y1/%1,...,Yd/T4)]
where HL (R) is regarded as the cohomology of a Cech complex on a system of
parameters 1, ..., 24 for R. Then (2) implies that there exists r.+1 € R such that
each y;/z; € R,, is a root of the polynomial

FT) =T + TP " 4 4 7.T +repy € R[T).
Now f'(T) = re is a unit, so f(T') € R/m[T] is a separable polynomial. Since R is
strictly Henselian, the polynomial f(T") splits in R[T], and hence any root of f(T")
in the fraction field of R must be an element of R. In particular, yi/z; = -+ =

ya/rq € R, and so n = 0. 0

We next prove the connectedness criterion. Proposition 5.1 states that H} (R)
is F-torsion if and only if there exists e such that F¢(HL(R)) = 0. Hence the
following theorem is equivalent to Theorem 1.1.

Theorem 3.2. Let (R, m) be a local ring with dim R > 0, which contains a field of
positive characteristic. Then HY (R) is F-torsion if and only if dim R > 2 and the
punctured spectrum of R is formally geometrically connected.

Proof. Quite generally, for a local ring (R, m) we have H, (ﬁ) = H} (R). Moreover,
S = RM is a faithfully flat extension of R and so Hi (R)®pS = H' ¢(S) is F-torsion
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if and only if H} (R) is F-torsion. Hence we may assume that R is a complete local
ring with a separably closed coefficient field.

Suppose that HL(R) is F-torsion. The local cohomology module H3™£(R) is
not F-torsion by Lemma 5.2, so dim R > 2. Let a and b be ideals of R such that
a+ b is m-primary and anNb = 0. Let

T1=Y1+z1, ..., Tg=Yd+2d

be a system of parameters for R where y; € a and 2; € b. Since ab Canb =0, we
have y;z; = 0 for all 4, j, and hence

vi(y; + 25) = v (ys + 2i).

These relations give an element of H}\ (R) regarded as the cohomology of a Cech
complex on x1, ..., Ty, namely

The hypothesis implies that F(n) = 0 for some e, so there exists ¢ = p® and r € R
such that (y;/x;)? =r in R,, for all 1 <i < d. Hence there exists ¢t € N such that
zlyl = m"i-”t, ie.,
(yi +20)'y! = r(yi +2:)""".

But y;z; = 0, so these equations simplify to give (1 — r)yf“ = rzl“t. Since R is a
local ring, either r or 1 — r must be a unit. If r is a unit, then ziq'H € a for all i,
and so a is m-primary. Similarly if 1 —r is a unit, then b is m-primary. This proves
that the punctured spectrum of R is connected.

For the converse, assume that dim R > 2 and that the punctured spectrum of R
is connected. Let n denote the nilradical of R. Note that Spec R is homeomorphic
to Spec R/n. Moreover, n supports a Frobenius action and is F-torsion. The long
exact sequence of local cohomology relating HL (R) and H}(R/n) implies that if
H!(R/n) is F-torsion then so is H} (R), and hence there is no loss of generality
in assuming that R is reduced. Let R = A/(P1 N ---NP,,) where Py,..., B,
are incomparable prime ideals of a power series ring A = K[[z1,...,2,,]] over a
separably closed field K. We use induction on n to prove that HL (R) is F-torsion;
the case n = 1 follows from Theorem 3.1, so we assume n > 1 below.

If dim R/p; = 1 for some i, then Spec R\ {m} is the disjoint union of V'(p;) \ {m}
and V(pyN---Np;N---Npy)\ {m}, contradicting the connectedness assumption.
Hence dim R/p; > 2 for all i. By Remark 2.3, after relabeling the minimal primes if
necessary, we may assume that the punctured spectrum of A/£ is connected where
Q=P>N---NP,. The short exact sequence

0— A/(BrNQ) — A/P1dA/Q — A/(P1+9) — 0
induces a long exact sequence of local cohomology modules containing the piece
(3) Hon(A/(P1+9Q) — Hyp(A/(F1NQ)) — Hy(A/F1) @ Hy(A/Q).

Since rad(P1 + Pi) # M for some i > 1, it follows that dim A/(P; + Q) > 1.
Proposition 5.2 (1) now implies that H3, (A/(P1+)) is F-torsion. By the inductive
hypothesis, H3, (A/PB1) and Hyp(A/Q) are F-torsion as well. The exact sequence
(3) implies that Hy,(A/(P1 N Q)) = HL(R) is F-torsion. O

The following lemma will be used in the proof of Theorem 1.2.



6 ANURAG K. SINGH AND ULI WALTHER

Lemma 3.3. Let (R, m) be a complete local domain with an algebraically closed co-
efficient field of positive characteristic. Then HL (R)s, the F-stable part of HL (R),
18 zero.

Proof. If dim R = 0 then HL(R) = 0; if dim R > 2 then the assertion follows from
Theorem 3.1. The remaining case is dim R = 1. Theorem 5.3 implies that HL (R)ss
has a vector space basis 71, ..., 7, such that F(n;) = n;.

Let n € HL(R)s be an element with F(n) = 5. Considering H}(R) as the
cohomology of a suitable Cech complex, let 7 be the class of y/x in R, /R = HL (R)
where y € R and x € m. Since F(n) =, there exists € R such that

(g)p _d = 0,
x x
and so y/x € R, is a root of the polynomial f(T) = T? — T —r € R[T]. The
polynomial m € KT is separable and R is strictly Henselian, so f(T") splits in
R[T]. Since y/z is a root of f(T) in the fraction field of R, it must then be an
element of R, and hence n = 0. O

Proof of Theorem 1.2. We may assume R to be reduced by Lemma 5.5. First con-
sider the case where the punctured spectrum of R is connected. If dim R > 2 then
H}(R) is F-torsion by Theorem 3.2, so Hy(R)s; = 0. If dimR = 1 then R is a
domain, and Lemma 3.3 implies that H} (R)s = 0.

We continue by induction on the number of connected components of the punc-
tured spectrum of R. If the punctured spectrum of R is disconnected, then R =
A/(RANDB) where (A,9M) is a power series ring over the field K, and 2 and B are
radical ideals of A which are not 9i-primary, but 2l + B is 9i-primary. There is a
short exact sequence

0— A/ANB) — A/ADA/B — A/(A+B) — 0.
Since Hy(A/A) = HY(A/B) = Hy(A/(2 + B)) = 0, the resulting long exact
sequence of local cohomology modules gives a short exact sequence
0 — HY(A/(A +B)) — Hon(A/(ANDB)) — Han(A/A) & Hyp(A/B) — 0.
By Theorem 5.4, we have a K-vector space isomorphism
Hyy (R)se = Han(A/(ANB))s = Hyn(A/ (A + B))st & Hyn(A/A)st © Hay (A/B)ss.

Since HJ;(A/(A + B))ss = K by Proposition 5.2 (3), the inductive hypothesis
completes the proof. O

We record the graded analogues of the result proved in this section:

Theorem 3.4. Let R be an N-graded ring of positive dimension which is finitely
generated over a field Ry = K of characteristic p > 0.
(1) If K is separably closed and R is a domain with dim R > 2, then HL (R) is
F'-torsion.
(2) Let K*%P denote the separable closure of K. Then H}(R) is F-torsion if
and only if dim R > 2 and Proj(R ® x K%¢P) is connected.
(3) If K is algebraically closed, then the number of connected components of
Proj R is

1+dimg (| FY(HL(R)) = 1+ dimg [ | F*([H(R)]o)-
eeN eeN
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Proof. The proofs are similar to those in the complete case, so we only sketch a
proof of (1). Note that HL(R) is a Z-graded R-module, and that

F:[HL(R)], — [HL(R)]np forallneZ.

The module H] (R) has finite length, so all elements of H} (R) of positive or neg-
ative degree are F-torsion; it remains to show that elements n € [HL(R)]o are
F-torsion as well. Let 7 be a element of [H} (R)]o which is not F-torsion. As in
the proof of Theorem 3.1, after a change of notation we may assume that

Fem)+rF )+ +rep=0

where all r; are in [R]o = K, and r, is nonzero. Let n = [(y1/21,...,Ya/xq)] where

H} (R) is regarded as the cohomology of a homogeneous Cech complex. Then there
exists re4; € K such that y;/z; € R, is a root of the polynomial

FT) =T 47T "+ 47T +r.4 € K[T).

But f(T') is a separable polynomial, so it splits in K[T']. The element y;/z; = y;/z;
is a root of f(T") in the fraction field of R, so it must be one of the roots of f(T") in
K. It follows that n = 0. O

4. F-PURITY

A ring homomorphism ¢ : R — Sis pureif p ® 1 : Rr M — S®r M is
injective for every R-module M. If R is a ring containing a field of characteristic
p > 0, then R is F-pure if the Frobenius homomorphism F' : R — R is pure. The
notion was introduced by Hochster and Roberts in the course of their study of rings
of invariants in [HR1, HR2].

Examples of F-pure rings include regular rings of positive characteristic and their
pure subrings. If a is generated by square-free monomials in the variables i, ..., z,
and K is a field of positive characteristic, then K[zy,...,z,]/a is F-pure.

Goto and Watanabe classified one-dimensional F-pure rings in [GW]: let (R, m)
be a local ring containing a field of positive characteristic such that R/m = K is
algebraically closed, F' : R — R is finite, and dim R = 1. Then R is F-pure if and
only if

R= K([z1, - ,z,)]/(@izj 11 < §).

Two-dimensional F-pure rings have attracted a lot of attention: in [Wal] Watan-
abe proved that F-pure normal Gorenstein local rings of dimension two are either
rational double points, simple elliptic singularities, or cusp singularities. Watanabe
also obtained a classification of two-dimensional normal N-graded rings R over an al-
gebraically closed field Ry, in terms of the associated Q-divisor on the curve Proj R,
[Wa2]. In [MS] Mehta and Srinivas obtained a classification of two-dimensional
F-pure normal singularities in terms of the resolution of the singularity. Hara com-
pleted the classification of two-dimensional normal F-pure singularities in terms of
the dual graph of the minimal resolution of the singularity, [HaN].

The results of §3 imply that over separably closed fields, F-pure domains of
dimension two are Cohen-Macaulay. The point is that if R is an F-pure ring, then
the Frobenius action F : H! (R) — H (R) is an injective map.

Corollary 4.1. Let R be a local ring with dim R > 2 which contains a field of
positive characteristic. If R is F-pure and the punctured spectrum of R is formally
geometrically connected, then depth R > 2.
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In particular, if R is a complete local F-pure domain of dimension two, with a
separably closed coefficient field, then R is Cohen-Macaulay.

Proof. An F-pure ring is reduced, so H2(R) = 0. By Theorem 3.1, H} (R) is
F-torsion. Since R is F-pure, it follows that H} (R) = 0. a

In the graded case, we similarly have:

Corollary 4.2. Let R be an N-graded ring with dim R > 2 which is finitely
generated over a field Ry = K of positive characteristic. If R is F-pure and
Proj(R ®k K*°P) is connected, then depth R > 2.

In the following example, R is a graded F-pure domain of dimension 2, but
depth R = 1. The issue is that Proj R is connected though Proj(R ® x K*°P) is not.

Example 4.3. Let K be a field of characteristic p > 2, and a € K an element such
that v/a ¢ K. Let R = K|[z,y,z+\/a,y+/a]. The domain R has a presentation

R = K[z,y,u,v]/(u* — ax?,v* — ay®,uv — azy, vz — uy),
and if K*°P denotes the separable closure of K, then
R®g K% =2 K5Px gy u,v]/(u — xv/a,v — yva)(u + zv/a,v + y/a).

Using a change of variables, R ® K®P = K*P[z' y' ' v']/(2',y")(u',v"). Since
(«',y")(u',v") is a square-free monomial ideal, R ® x K®¢P is F-pure and it follows
that R is F-pure. However, R is not Cohen-Macaulay since z,y is a homogeneous
system of parameters with a non-trivial relation

(zva)y = (yva)z.

Using the Cech complex on z,y to compute HL(R), we see that it is a 1-dimensional
K-vector space generated by the element

1[5 e

corresponding to the relation above. Given e € N, let p® = 2k + 1. Then
F©(n) = a*n,

which is a nonzero element of H} (R). Consequently H} (R) is not F-torsion, cor-
responding to that fact that Spec R, is not formally geometrically connected.

The corollaries obtained in this section imply that over a separably closed field,
a graded or complete local F-pure domain of dimension two is Cohen-Macaulay.
We include an example to show that this is not true for rings of higher dimension.

Example 4.4. Let K be a field of characteristic p > 0, and take
A=Kz, .., zq)/ (@l + - + a2

where d > 3. Let R be the Segre product of A and the polynomial ring B = K]s, t].
Then dim R = d and the Kiinneth formula for local cohomology implies that

HZH(R) = [H '(A))o @k [Blo 2 K,

so R is not Cohen-Macaulay. If p =1 mod d then A is F-pure by [HR2, Proposi-
tion 5.21], hence A ® ¢ B and its direct summand R are F-pure as well.
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5. APPENDIX: F-TORSION MODULES AND F-STABLE VECTOR SPACES

Let R be a commutative ring containing a field K of characteristic p > 0. A
Frobenius action on an R-module M is an additive map F' : M — M such that
F(rm) = rPF(m) for all r € R and m € M. In this case ker F' is a submodule of
M, and we have an ascending sequence of submodules of M,

ker F Cker F2 Cker F? C --- .

The union of these is the F'-nilpotent submodule of M, denoted M,; = UeEN ker F°.
We say M is F'-torsion if My, = M.

The following proposition is proved in [HS] under the hypothesis that (R, m) has
a perfect coefficient field, but the general case follows from this as we record below.

Proposition 5.1. Let (R,m) be a local ring containing a field of positive charac-
teristic, and let M be an Artinian R-module with a Frobenius action. Then there
exists e € N such that F¢(My) = 0.

In particular, an Artinian module M is F-torsion if and only if F¢(M) =0 for
some e € N.

Proof. Since M is Artinian, it is also a module over ]/%, so we may assume that
(R,m) is a complete local ring. Now M is also a module over a power series ring
mapping onto R, so there is no loss of generality in taking R to be the power series
ring R = K[[z1,...,x4]]. If K is perfect, the desired result is [HS, Proposition 1.11],
and we shall derive the general case from this. Note that we may replace M by
M, and assume that M is F-torsion.

Let L = h_rL}Kz be the perfect closure of K, where each K; is a finite field
extension of K in L. For each index i, the ring L[[z1,...,z4]] is a faithfully flat
module over K;[[z1,...,z4]], and hence L[[x1,...,z4]] is a faithfully flat module
over lim Ki[[z1, ..., 2q]] = L ®k R. Since L[z1,...,zq]] is Noetherian, it follows
that L ® g R is Noetherian as well. Every element of L ® M is killed by a power
of the maximal ideal of L ® ¢ R, and soc(L ®x M) = L ®k (soc M) is a finite
dimensional L-vector space, so L @ M is an Artinian module over L ® x R and

hence also over its completion L& R = L[[z1, .. .,z4]]. Since L®x M is F-torsion,
[HS, Proposition 1.11] implies that there exists e such that F¢(L @ x M) = 0, but
then F¢(M) =0 as well. O

If R is a ring containing a perfect field K of positive characteristic and M is an
R-module with a Frobenius action, then F (M) is a K-vector space, and we have a
descending sequence of K-vector spaces

F(M) 2 F*(M) 2 F¥(M) 2 -

The F-stable part of M is the vector space My, = [, cn £°(M).

Proposition 5.2. Let (R,m,K) be a local ring of dimension d which contains a
field of positive characteristic.

(1) HQ2(R) is F-torsion if and only if d > 0.

(2) HZ(R) is not F-torsion.

(3) If d =0 and K is perfect, then HY (R)s, = Ry, = K.

Proof. (1) If d = 0 then H2 (R) = R, which is not F-torsion. If d > 0 then H)(R) C
m and every element of HY,(R) is nilpotent. (See also [Ly, Corollary 4.6(a)].)
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(2) View H%(R) as the cohomology of a Cech complex on a system of parameters
T1,...,xq for R, and let 5 = [1 + (x1,...,24)] € HE(R). For all ey € N, the
collection of elements F¢(n) with e > ey generates HZ(R) as an R-module. Hence
Feo(n) cannot be zero by Grothendieck’s nonvanishing theorem.

(3) Since m is nilpotent in this case, for integers e 3> 0 we have

Fe(HY(R) =F¢(R)={a® :x € R} ={(y+2) :y€ K,zc€m} =K.
g

Theorem 5.3. Let (R, m) be a local ring with a perfect coefficient field K of positive
characteristic. Let M be an Artinian R-module with a Frobenius action. Then Mg
is a finite dimensional K -vector space, and F : My, — My, is an automorphism
of the Abelian group My .

If K is algebraically closed, then there exists a K-basis eq,...,e, for My such
that F(e;) = e; for all 1 <i < n.

Proof. The finiteness result is [HS, Theorem 1.12], and the existence of the special
basis when K is algebraically closed follows from [Di, Proposition 5, page 233]. O

Theorem 5.4. [HS, Theorem 1.13] Let (R,m) be a complete local ring with an
algebraically closed coefficient field of positive characteristic. Let L,M, N be R-
modules with Frobenius actions, such that we have a commutative diagram

0 s L — s M 5 N sy 0
R A
0 v L2y M 24N y 0

with exact rows. If L is Noetherian and N is Artinian, then the F-stable parts form
a short exact sequence

0— Ly — Mg, — Ngy — O.

Proposition 5.5. Let (R, m, K) be a complete local ring with an algebraically closed
coefficient field of positive characteristic. Let n denote the nilradical of R. Then
for all i > 0, the natural map H.(R) — H!(R/n), when restricted to F-stable
subspaces, gives an isomorphism

HE(R)y — HE(R/n)s.
Proof. Let k an integer such that n?" = 0. The short exact sequence
0—n—>R—R/n—0
induces a long exact sequence of local cohomology modules
— Hi(n) = HL(R) 2 HL(R/n) = B (n) — .

Consider an element p € ker(8) N H: (R/n)s. Then p € image(a), so F*(u) = 0.
The Frobenius action on H:(R/n)s is an automorphism so g = 0, and hence
H&(R)st — H&(R/n)st is injective.

To complete the proof, by Theorem 5.3 it suffices to consider n € HE (R/n)g
with F(n) = n and prove that it lies in the image of H. (R)s;. Now v(n) € Hi(n)
so F'*(y(n)) = 0, and therefore F*(n) = n € ker(7).
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Let n = B(u) for some element p € HY (R). Then 8(F (1) —p) = 0 which implies
that F'(u) — p € image(a). Consequently F¥(F(u) — p) = 0, which shows that
F¥(u) = F¥(u) € HE (R)s. Since

BIE*(u)) = F*(B(w) = F*(n) = n,

we are done. O
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