
A CONNECTEDNESS RESULT IN POSITIVE CHARACTERISTIC

ANURAG K. SINGH AND ULI WALTHER

1. Introdu
tion

All rings 
onsidered in this note are 
ommutative and Noetherian. We give a

simple proof of the following result due to Lyubeznik:

Theorem 1.1. [Ly, Corollary 4.6℄ Let (R;m) be a 
omplete lo
al ring of positive

dimension with a separably 
losed 
oeÆ
ient �eld of positive 
hara
teristi
. Then

the e-th iteration of the Frobenius map

F : H

1

m

(R) �! H

1

m

(R)

is zero for e � 0 if and only if dimR � 2 and Spe
R n fmg is 
onne
ted in the

Zariski topology.

We also obtain, by similar methods, the following theorem:

Theorem 1.2. Let (R;m) be a 
omplete lo
al ring of positive dimension with an

algebrai
ally 
losed 
oeÆ
ient �eld of positive 
hara
teristi
. Then the number of


onne
ted 
omponents of Spe
R n fmg is

1 + dim

K

\

e2N

F

e

(H

1

m

(R)):

Theorem 1.1 is obtained in [Ly℄ as a 
orollary of the following theorems of

Lyubeznik and Peskine-Szpiro:

Theorem 1.3. [Ly, Theorem 1.1℄ Let (A;M) be a regular lo
al ring 
ontaining a

�eld of positive 
hara
teristi
, and let A be an ideal of A. Then H

i

A

(A) = 0 if and

only if there exists an integer e � 1 su
h that the e-th Frobenius iteration

F

e

: H

dimA�i

M

(A=A) �! H

dimA�i

M

(A=A)

is the zero map.

Theorem 1.4. [PS, Chapter III, Theorem 5.5℄ Let (A;M) be a 
omplete regular

lo
al ring with a separably 
losed 
oeÆ
ient �eld of positive 
hara
teristi
, and let

A be an ideal of A. Then H

i

A

(A) = 0 for i � dimA�1 if and only if dim(A=A) � 2

and Spe
(A=A) n fMg is 
onne
ted.

Our proof of Theorem 1.1 is \simple" in the sense that it does not rely on

vanishing theorems su
h as those of [PS℄|indeed the only ingredient, aside from

elementary 
onsiderations, is the lo
al duality theorem.

We would like to mention that results analogous to Theorem 1.4 were dis
ov-

ered by Hartshorne in the proje
tive 
ase [HaR, Theorem 7.5℄, and by Ogus in

equi
hara
teristi
 zero via de Rham 
ohomology [Og, Corollary 2.11℄.
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Theorem 1.5. Let (A;M) be a regular lo
al ring 
ontaining a �eld, and let A be

an ideal of A. Then H

i

A

(A) = 0 for i � dimA� 1 if and only if

(1) dim(A=A) � 2, and

(2) Spe
(A=A) n fMg is formally geometri
ally 
onne
ted (see De�nition 2.1).

Huneke and Lyubeznik gave a 
hara
teristi
 free proof of this in [HL, Theo-

rem 2.9℄ using a generalization of a result of Faltings, [Fa, Satz 1℄. We do not know

a 
riterion to dete
t 
onne
tedness of the pun
tured spe
trum of A=A in terms of

H

i

M

(A=A), ex
ept when A has positive 
hara
teristi
.

2. Preliminary remarks

Notation: When R is the homomorphi
 image of a ringA, we use upper-
ase letters

P;Q;M;A;B for ideals of A, and 
orresponding lower-
ase letters p; q;m; a; b for

their images in R.

De�nition 2.1. Let (R;m) be a lo
al ring. A �eld K � R is a 
oeÆ
ient �eld for

R if the 
omposition K ,! R� R=m is an isomorphism. Every 
omplete lo
al ring


ontaining a �eld 
ontains a 
oeÆ
ient �eld.

We re
all some notions from [Ra, Chapitre VIII℄. Let (R;m;K) be a lo
al ring

and let f(T ) 2 K[T ℄ denote the image of a polynomial f(T ) 2 R[T ℄. Then R is

Henselian if for every moni
 polynomial f(T ) 2 R[T ℄, every fa
torization of f(T )

as a produ
t of relatively prime moni
 polynomials in K[T ℄ lifts to a fa
torization

of f(T ) as a produ
t of moni
 polynomials in R[T ℄. Hensel's Lemma is pre
isely the

statement that every 
omplete lo
al ring is Henselian. The Henselization of a lo
al

ring R is a lo
al ring R

h

, with the property that every lo
al homomorphism from R

to a Henselian lo
al ring fa
tors uniquely through R

h

. The ring R

h

is obtained by

taking the dire
t limit of all lo
al �etale extensions S of R for whi
h (R;m) �! (S; n)

indu
es an isomorphism of residue �elds R=m

�

=

�! S=n.

A lo
al ring (R;m;K) is said to be stri
tly Henselian if it is Henselian and its

residue �eld K is separably 
losed. It is easily seen that R is stri
tly Henselian if

and only if every moni
 polynomial f(T ) 2 R[T ℄ for whi
h f(T ) 2 K[T ℄ is separable

splits into linear fa
tors in R[T ℄. Every lo
al ring has a stri
t Henselization R

sh

,

su
h that every lo
al homomorphism from R to a stri
tly Henselian ring fa
tors

through R

sh

. The stri
t Henselization of a �eld K is its separable 
losure K

sep

.

In general, the stri
t Henselization of a lo
al ring (R;m;K) is obtained by �xing

an embedding � : K �! K

sep

, and taking the dire
t limit of lo
al �etale extensions

(S; n; L) of (R;m;K) su
h that there is an indu
ed map K �! L �! K

sep

whi
h

agrees with � : K �! K

sep

.

The pun
tured spe
trum of a lo
al ring (R;m) is the set Spe
R n fmg with the

Zariski topology. We say that the pun
tured spe
trum of R is formally geomet-

ri
ally 
onne
ted if the pun
tured spe
trum of

d

b

R

sh

, the 
ompletion of the stri
t

Henselization of the 
ompletion of R, is 
onne
ted.

De�nition 2.2. Let a be an ideal of a ring R. A ring homomorphism ' : R �! S

indu
es a map of lo
al 
ohomology modules H

i

a

(R)

'

�! H

i

aS

(S). In parti
ular,

if R 
ontains a �eld of 
hara
teristi
 p > 0, then the Frobenius homomorphism

F : R �! R indu
es an additive map

H

i

a

(R)

F

�! H

i

a

[p℄

(R) = H

i

a

(R);
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alled the Frobenius a
tion on H

i

a

(R). An element � 2 H

i

a

(R) is F -torsion if there

exists e 2 N su
h that F

e

(�) = 0. The module H

i

a

(R) is F -torsion if every element

of H

i

a

(R) is F -torsion. The image of F

e

is not, in general, an R-module. However,

it is a K-ve
tor spa
e when K is perfe
t, and in this 
ase the F -stable part

H

i

a

(R)

st

=

\

e2N

F

e

(H

i

a

(R))

ofH

i

a

(R) is aK-ve
tor spa
e as well. Results about F -torsion modules and F -stable

subspa
es are summarized in x5.

Remark 2.3. Consider a lo
al ring (R;m) of positive dimension. The pun
tured

spe
trum of R is dis
onne
ted if and only if the minimal primes of R 
an be par-

titioned into two sets p

1

; : : : ; p

m

and q

1

; : : : ; q

n

su
h that rad(p

i

+ q

j

) = m for all

pairs p

i

; q

j

. Consider the graph � whose verti
es are the minimal primes of R, and

there is an edge between minimal primes p and p

0

if and only if rad(p+ p

0

) 6= m. It

follows that the pun
tured spe
trum of R is 
onne
ted if and only if the graph �

is 
onne
ted. If the graph � is 
onne
ted, take a spanning tree. The spanning tree

must 
ontain a vertex p

i

with only one edge, so � n fp

i

g is 
onne
ted as well.

Let P

1

; : : : ;P

n

be in
omparable prime ideals of a lo
al domain A. Their images

p

1

; : : : ; p

n

are pre
isely the minimal primes of the ring R = A=(P

1

\ � � � \ P

n

).

From the above dis
ussion, we 
on
lude that if the pun
tured spe
trum of R is


onne
ted, then there exists i su
h that the pun
tured spe
trum of the ring

A=(P

1

\ � � � \

b

P

i

\ � � � \P

n

)

is 
onne
ted as well.

Theorems 1.1 and 1.2 state that 
onne
tedness issues for Spe
R n fmg are de-

termined by the Frobenius a
tion on H

1

m

(R). We next re
ord an observation about

the length of H

1

m

(R).

Proposition 2.4. Let (R;m) be a lo
al ring whi
h is a homomorphi
 image of a

Gorenstein domain. Then H

1

m

(R) has �nite length if and only if ann p = 0 for every

prime ideal p of R with dimR=p = 1.

Proof. If dimR = 0 then H

1

m

(R) = 0 and R has no primes with dimR=p = 1. If

dimR = 1 then H

1

m

(R) has in�nite length and dimR=p = 1 for some minimal,

hen
e asso
iated, prime p of R. For the rest of the proof we hen
e assume that

dimR � 2.

Let R = A=Q where A is a Gorenstein domain. Lo
alizing A at the inverse

image of m, we may assume that (A;M) is a lo
al ring. Using lo
al duality over A,

the module H

1

m

(R) = H

1

M

(A=Q) has �nite length if and only if Ext

dimA�1

A

(A=Q; A)

has �nite length as an A-module. Sin
e Ext

dimA�1

A

(A=Q; A) is �nitely generated,

this is equivalent to the vanishing of

Ext

dimA�1

A

(A=Q; A)

P

= Ext

dimA�1

A

P

(A

P

=QA

P

; A

P

)

for all P 2 Spe
A n fMg. Using lo
al duality over the Gorenstein lo
al ring

(A

P

;PA

P

), this is equivalent to the vanishing of

H

dimA

P

�dimA+1

PA

P

(A

P

=QA

P

) = H

dimA

P

�dimA+1

pR

p

(R

p

)

for all P 2 Spe
A n fMg. This lo
al 
ohomology module vanishes for P =2 V (Q).

Sin
e dimA

P

� dimA+1 � 0 for P 2 Spe
A n fMg, we need only 
onsider primes
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P 2 V (Q) with dimA

P

= dimA� 1. Sin
e A is a 
atenary lo
al domain, dimA

P

equals dimA� 1 pre
isely when dimA=P = 1, whi
h is equivalent to dimR=p = 1.

Hen
e H

1

m

(R) has �nite length if and only if H

0

pR

p

(R

p

) = H

0

p

(R) vanishes for all

p 2 Spe
R with dimR=p = 1, i.e., if and only if ann p = 0 for all p 2 Spe
R with

dimR=p = 1. �

3. Main results

Theorem 3.1. Let (R;m) be a stri
tly Henselian lo
al domain 
ontaining a �eld of

positive 
hara
teristi
. If dimR � 2 and R is a homomorphi
 image of a Gorenstein

domain, then H

1

m

(R) is F -torsion.

Proof. Suppose there exists � 2 H

1

m

(R) whi
h is not F -torsion. Sin
e R is a domain,

Proposition 2.4 implies that H

1

m

(A) has �nite length. Hen
e for all integers e� 0,

the element F

e

(�) belongs to the R-module spanned by �; F (�); F

2

(�); : : : ; F

e�1

(�).

Amongst all equations of the form

F

e+k

(�) + r

1

F

e+k�1

(�) + � � �+ r

e

F

k

(�) = 0(1)

with r

i

2 R for all i, 
hoose one where the number of nonzero 
oeÆ
ients r

i

that

o

ur is minimal. We 
laim that r

e

must be a unit. Note that H

1

m

(A) is killed by

m

q

0

for some q

0

= p

e

0

. If r

e

2 m, then applying F

e

0

to equation (1), we get

F

e

0

+e+k

(�) + r

q

0

1

F

e

0

+e+k�1

(�) + � � �+ r

q

0

e

F

e

0

+k

(�) = 0:

But r

q

0

e

F

e

0

+k

(�) 2 m

q

0

H

1

m

(R) = 0, so this is an equation with fewer nonzero 
oeÆ-


ients, 
ontradi
ting the minimality assumption. This shows that r

e

2 R is a unit.

Sin
e � is not F -torsion neither is F

k

(�), so after a 
hange of notation we have an

equation

F

e

(�) + r

1

F

e�1

(�) + � � �+ r

e

� = 0(2)

where r

e

is a unit and � 2 H

1

m

(R) is not F -torsion. Let � = [(y

1

=x

1

; : : : ; y

d

=x

d

)℄

where H

1

m

(R) is regarded as the 
ohomology of a

�

Ce
h 
omplex on a system of

parameters x

1

; : : : ; x

d

for R. Then (2) implies that there exists r

e+1

2 R su
h that

ea
h y

i

=x

i

2 R

x

i

is a root of the polynomial

f(T ) = T

p

e

+ r

1

T

p

e�1

+ � � �+ r

e

T + r

e+1

2 R[T ℄:

Now f

0

(T ) = r

e

is a unit, so f(T ) 2 R=m[T ℄ is a separable polynomial. Sin
e R is

stri
tly Henselian, the polynomial f(T ) splits in R[T ℄, and hen
e any root of f(T )

in the fra
tion �eld of R must be an element of R. In parti
ular, y

1

=x

1

= � � � =

y

d

=x

d

2 R, and so � = 0. �

We next prove the 
onne
tedness 
riterion. Proposition 5.1 states that H

1

m

(R)

is F -torsion if and only if there exists e su
h that F

e

(H

1

m

(R)) = 0. Hen
e the

following theorem is equivalent to Theorem 1.1.

Theorem 3.2. Let (R;m) be a lo
al ring with dimR > 0, whi
h 
ontains a �eld of

positive 
hara
teristi
. Then H

1

m

(R) is F -torsion if and only if dimR � 2 and the

pun
tured spe
trum of R is formally geometri
ally 
onne
ted.

Proof. Quite generally, for a lo
al ring (R;m) we have H

i

m

(

b

R) = H

i

m

(R). Moreover,

S =

d

b

R

sh

is a faithfully 
at extension of R and soH

i

m

(R)


R

S

�

=

H

i

mS

(S) is F -torsion
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if and only if H

1

m

(R) is F -torsion. Hen
e we may assume that R is a 
omplete lo
al

ring with a separably 
losed 
oeÆ
ient �eld.

Suppose that H

1

m

(R) is F -torsion. The lo
al 
ohomology module H

dimR

m

(R) is

not F -torsion by Lemma 5.2, so dimR � 2. Let a and b be ideals of R su
h that

a+ b is m-primary and a \ b = 0. Let

x

1

= y

1

+ z

1

; : : : ; x

d

= y

d

+ z

d

be a system of parameters for R where y

i

2 a and z

i

2 b. Sin
e ab � a \ b = 0, we

have y

i

z

j

= 0 for all i; j, and hen
e

y

i

(y

j

+ z

j

) = y

j

(y

i

+ z

i

):

These relations give an element of H

1

m

(R) regarded as the 
ohomology of a

�

Ce
h


omplex on x

1

; : : : ; x

d

, namely

� =

��

y

1

x

1

; : : : ;

y

d

x

d

��

2 H

1

m

(R):

The hypothesis implies that F

e

(�) = 0 for some e, so there exists q = p

e

and r 2 R

su
h that (y

i

=x

i

)

q

= r in R

x

i

for all 1 � i � d. Hen
e there exists t 2 N su
h that

x

t

i

y

q

i

= rx

q+t

i

, i.e.,

(y

i

+ z

i

)

t

y

q

i

= r(y

i

+ z

i

)

q+t

:

But y

i

z

i

= 0, so these equations simplify to give (1� r)y

q+t

i

= rz

q+t

i

. Sin
e R is a

lo
al ring, either r or 1 � r must be a unit. If r is a unit, then z

q+t

i

2 a for all i,

and so a is m-primary. Similarly if 1� r is a unit, then b is m-primary. This proves

that the pun
tured spe
trum of R is 
onne
ted.

For the 
onverse, assume that dimR � 2 and that the pun
tured spe
trum of R

is 
onne
ted. Let n denote the nilradi
al of R. Note that Spe
R is homeomorphi


to Spe
R=n. Moreover, n supports a Frobenius a
tion and is F -torsion. The long

exa
t sequen
e of lo
al 
ohomology relating H

1

m

(R) and H

1

m

(R=n) implies that if

H

1

m

(R=n) is F -torsion then so is H

1

m

(R), and hen
e there is no loss of generality

in assuming that R is redu
ed. Let R = A=(P

1

\ � � � \ P

n

) where P

1

; : : : ;P

n

are in
omparable prime ideals of a power series ring A = K[[x

1

; : : : ; x

m

℄℄ over a

separably 
losed �eld K. We use indu
tion on n to prove that H

1

m

(R) is F -torsion;

the 
ase n = 1 follows from Theorem 3.1, so we assume n > 1 below.

If dimR=p

i

= 1 for some i, then Spe
Rnfmg is the disjoint union of V (p

i

)nfmg

and V (p

1

\ � � � \

b

p

i

\ � � � \ p

n

) n fmg, 
ontradi
ting the 
onne
tedness assumption.

Hen
e dimR=p

i

� 2 for all i. By Remark 2.3, after relabeling the minimal primes if

ne
essary, we may assume that the pun
tured spe
trum of A=Q is 
onne
ted where

Q = P

2

\ � � � \P

n

. The short exa
t sequen
e

0 �! A=(P

1

\Q) �! A=P

1

�A=Q �! A=(P

1

+Q) �! 0

indu
es a long exa
t sequen
e of lo
al 
ohomology modules 
ontaining the pie
e

H

0

M

(A=(P

1

+Q)) �! H

1

M

(A=(P

1

\Q)) �! H

1

M

(A=P

1

)�H

1

M

(A=Q):(3)

Sin
e rad(P

1

+ P

i

) 6= M for some i > 1, it follows that dimA=(P

1

+ Q) � 1.

Proposition 5.2 (1) now implies thatH

0

M

(A=(P

1

+Q)) is F -torsion. By the indu
tive

hypothesis, H

1

M

(A=P

1

) and H

1

M

(A=Q) are F -torsion as well. The exa
t sequen
e

(3) implies that H

1

M

(A=(P

1

\Q)) = H

1

m

(R) is F -torsion. �

The following lemma will be used in the proof of Theorem 1.2.
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Lemma 3.3. Let (R;m) be a 
omplete lo
al domain with an algebrai
ally 
losed 
o-

eÆ
ient �eld of positive 
hara
teristi
. Then H

1

m

(R)

st

, the F -stable part of H

1

m

(R),

is zero.

Proof. If dimR = 0 then H

1

m

(R) = 0; if dimR � 2 then the assertion follows from

Theorem 3.1. The remaining 
ase is dimR = 1. Theorem 5.3 implies that H

1

m

(R)

st

has a ve
tor spa
e basis �

1

; : : : ; �

r

su
h that F (�

i

) = �

i

.

Let � 2 H

1

m

(R)

st

be an element with F (�) = �. Considering H

1

m

(R) as the


ohomology of a suitable

�

Ce
h 
omplex, let � be the 
lass of y=x in R

x

=R = H

1

m

(R)

where y 2 R and x 2 m. Sin
e F (�) = �, there exists r 2 R su
h that

�

y

x

�

p

�

y

x

� r = 0;

and so y=x 2 R

x

is a root of the polynomial f(T ) = T

p

� T � r 2 R[T ℄. The

polynomial f(T ) 2 K[T ℄ is separable and R is stri
tly Henselian, so f(T ) splits in

R[T ℄. Sin
e y=x is a root of f(T ) in the fra
tion �eld of R, it must then be an

element of R, and hen
e � = 0. �

Proof of Theorem 1.2. We may assume R to be redu
ed by Lemma 5.5. First 
on-

sider the 
ase where the pun
tured spe
trum of R is 
onne
ted. If dimR � 2 then

H

1

m

(R) is F -torsion by Theorem 3.2, so H

1

m

(R)

st

= 0. If dimR = 1 then R is a

domain, and Lemma 3.3 implies that H

1

m

(R)

st

= 0.

We 
ontinue by indu
tion on the number of 
onne
ted 
omponents of the pun
-

tured spe
trum of R. If the pun
tured spe
trum of R is dis
onne
ted, then R =

A=(A \B) where (A;M) is a power series ring over the �eld K, and A and B are

radi
al ideals of A whi
h are not M-primary, but A+B is M-primary. There is a

short exa
t sequen
e

0 �! A=(A \B) �! A=A�A=B �! A=(A+B) �! 0:

Sin
e H

0

M

(A=A) = H

0

M

(A=B) = H

1

M

(A=(A + B)) = 0, the resulting long exa
t

sequen
e of lo
al 
ohomology modules gives a short exa
t sequen
e

0 �! H

0

M

(A=(A+B)) �! H

1

M

(A=(A \B)) �! H

1

M

(A=A)�H

1

M

(A=B) �! 0:

By Theorem 5.4, we have a K-ve
tor spa
e isomorphism

H

1

m

(R)

st

= H

1

M

(A=(A \B))

st

�

=

H

0

M

(A=(A+B))

st

�H

1

M

(A=A)

st

�H

1

M

(A=B)

st

:

Sin
e H

0

M

(A=(A + B))

st

= K by Proposition 5.2 (3), the indu
tive hypothesis


ompletes the proof. �

We re
ord the graded analogues of the result proved in this se
tion:

Theorem 3.4. Let R be an N-graded ring of positive dimension whi
h is �nitely

generated over a �eld R

0

= K of 
hara
teristi
 p > 0.

(1) If K is separably 
losed and R is a domain with dimR � 2, then H

1

m

(R) is

F -torsion.

(2) Let K

sep

denote the separable 
losure of K. Then H

1

m

(R) is F -torsion if

and only if dimR � 2 and Proj(R 


K

K

sep

) is 
onne
ted.

(3) If K is algebrai
ally 
losed, then the number of 
onne
ted 
omponents of

ProjR is

1 + dim

K

\

e2N

F

e

(H

1

m

(R)) = 1 + dim

K

\

e2N

F

e

([H

1

m

(R)℄

0

):
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Proof. The proofs are similar to those in the 
omplete 
ase, so we only sket
h a

proof of (1). Note that H

1

m

(R) is a Z-graded R-module, and that

F : [H

1

m

(R)℄

n

�! [H

1

m

(R)℄

np

for all n 2 Z:

The module H

1

m

(R) has �nite length, so all elements of H

1

m

(R) of positive or neg-

ative degree are F -torsion; it remains to show that elements � 2 [H

1

m

(R)℄

0

are

F -torsion as well. Let � be a element of [H

1

m

(R)℄

0

whi
h is not F -torsion. As in

the proof of Theorem 3.1, after a 
hange of notation we may assume that

F

e

(�) + r

1

F

e�1

(�) + � � �+ r

e

� = 0

where all r

i

are in [R℄

0

= K, and r

e

is nonzero. Let � = [(y

1

=x

1

; : : : ; y

d

=x

d

)℄ where

H

1

m

(R) is regarded as the 
ohomology of a homogeneous

�

Ce
h 
omplex. Then there

exists r

e+1

2 K su
h that y

i

=x

i

2 R

x

i

is a root of the polynomial

f(T ) = T

p

e

+ r

1

T

p

e�1

+ � � �+ r

e

T + r

e+1

2 K[T ℄:

But f(T ) is a separable polynomial, so it splits in K[T ℄. The element y

i

=x

i

= y

j

=x

j

is a root of f(T ) in the fra
tion �eld of R, so it must be one of the roots of f(T ) in

K. It follows that � = 0. �

4. F -purity

A ring homomorphism ' : R �! S is pure if ' 
 1 : R 


R

M �! S 


R

M is

inje
tive for every R-module M . If R is a ring 
ontaining a �eld of 
hara
teristi


p > 0, then R is F -pure if the Frobenius homomorphism F : R �! R is pure. The

notion was introdu
ed by Ho
hster and Roberts in the 
ourse of their study of rings

of invariants in [HR1, HR2℄.

Examples of F -pure rings in
lude regular rings of positive 
hara
teristi
 and their

pure subrings. If a is generated by square-free monomials in the variables x

1

; : : : ; x

n

and K is a �eld of positive 
hara
teristi
, then K[x

1

; : : : ; x

n

℄=a is F -pure.

Goto and Watanabe 
lassi�ed one-dimensional F -pure rings in [GW℄: let (R;m)

be a lo
al ring 
ontaining a �eld of positive 
hara
teristi
 su
h that R=m = K is

algebrai
ally 
losed, F : R �! R is �nite, and dimR = 1. Then R is F -pure if and

only if

b

R

�

=

K[[x

1

; � � � ; x

n

℄℄=(x

i

x

j

: i < j):

Two-dimensional F -pure rings have attra
ted a lot of attention: in [Wa1℄ Watan-

abe proved that F -pure normal Gorenstein lo
al rings of dimension two are either

rational double points, simple ellipti
 singularities, or 
usp singularities. Watanabe

also obtained a 
lassi�
ation of two-dimensional normal N-graded ringsR over an al-

gebrai
ally 
losed �eld R

0

, in terms of the asso
iated Q-divisor on the 
urve ProjR,

[Wa2℄. In [MS℄ Mehta and Srinivas obtained a 
lassi�
ation of two-dimensional

F -pure normal singularities in terms of the resolution of the singularity. Hara 
om-

pleted the 
lassi�
ation of two-dimensional normal F -pure singularities in terms of

the dual graph of the minimal resolution of the singularity, [HaN℄.

The results of x3 imply that over separably 
losed �elds, F -pure domains of

dimension two are Cohen-Ma
aulay. The point is that if R is an F -pure ring, then

the Frobenius a
tion F : H

i

m

(R) �! H

i

m

(R) is an inje
tive map.

Corollary 4.1. Let R be a lo
al ring with dimR � 2 whi
h 
ontains a �eld of

positive 
hara
teristi
. If R is F -pure and the pun
tured spe
trum of R is formally

geometri
ally 
onne
ted, then depthR � 2.
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In parti
ular, if R is a 
omplete lo
al F -pure domain of dimension two, with a

separably 
losed 
oeÆ
ient �eld, then R is Cohen-Ma
aulay.

Proof. An F -pure ring is redu
ed, so H

0

m

(R) = 0. By Theorem 3.1, H

1

m

(R) is

F -torsion. Sin
e R is F -pure, it follows that H

1

m

(R) = 0. �

In the graded 
ase, we similarly have:

Corollary 4.2. Let R be an N-graded ring with dimR � 2 whi
h is �nitely

generated over a �eld R

0

= K of positive 
hara
teristi
. If R is F -pure and

Proj(R 


K

K

sep

) is 
onne
ted, then depthR � 2.

In the following example, R is a graded F -pure domain of dimension 2, but

depthR = 1. The issue is that ProjR is 
onne
ted though Proj(R


K

K

sep

) is not.

Example 4.3. Let K be a �eld of 
hara
teristi
 p > 2, and a 2 K an element su
h

that

p

a =2 K. Let R = K[x; y; x

p

a; y

p

a℄. The domain R has a presentation

R = K[x; y; u; v℄=(u

2

� ax

2

; v

2

� ay

2

; uv � axy; vx� uy);

and if K

sep

denotes the separable 
losure of K, then

R


K

K

sep

�

=

K

sep

[x; y; u; v℄=(u� x

p

a; v � y

p

a)(u+ x

p

a; v + y

p

a):

Using a 
hange of variables, R 


K

K

sep

�

=

K

sep

[x

0

; y

0

; u

0

; v

0

℄=(x

0

; y

0

)(u

0

; v

0

). Sin
e

(x

0

; y

0

)(u

0

; v

0

) is a square-free monomial ideal, R 


K

K

sep

is F -pure and it follows

that R is F -pure. However, R is not Cohen-Ma
aulay sin
e x; y is a homogeneous

system of parameters with a non-trivial relation

(x

p

a)y = (y

p

a)x:

Using the

�

Ce
h 
omplex on x; y to 
ompute H

1

m

(R), we see that it is a 1-dimensional

K-ve
tor spa
e generated by the element

� =

��

x

p

a

x

;

y

p

a

y

��

2 H

1

m

(R)


orresponding to the relation above. Given e 2 N, let p

e

= 2k + 1. Then

F

e

(�) = a

k

�;

whi
h is a nonzero element of H

1

m

(R). Consequently H

1

m

(R) is not F -torsion, 
or-

responding to that fa
t that Spe
R

m

is not formally geometri
ally 
onne
ted.

The 
orollaries obtained in this se
tion imply that over a separably 
losed �eld,

a graded or 
omplete lo
al F -pure domain of dimension two is Cohen-Ma
aulay.

We in
lude an example to show that this is not true for rings of higher dimension.

Example 4.4. Let K be a �eld of 
hara
teristi
 p > 0, and take

A = K[x

1

; : : : ; x

d

℄=(x

d

1

+ � � �+ x

d

d

)

where d � 3. Let R be the Segre produ
t of A and the polynomial ring B = K[s; t℄.

Then dimR = d and the K�unneth formula for lo
al 
ohomology implies that

H

d�1

m

R

(R)

�

=

[H

d�1

m

A

(A)℄

0




K

[B℄

0

�

=

K;

so R is not Cohen-Ma
aulay. If p � 1 mod d then A is F -pure by [HR2, Proposi-

tion 5.21℄, hen
e A


K

B and its dire
t summand R are F -pure as well.



A CONNECTEDNESS RESULT IN POSITIVE CHARACTERISTIC 9

5. Appendix: F -torsion modules and F -stable ve
tor spa
es

Let R be a 
ommutative ring 
ontaining a �eld K of 
hara
teristi
 p > 0. A

Frobenius a
tion on an R-module M is an additive map F : M �! M su
h that

F (rm) = r

p

F (m) for all r 2 R and m 2 M . In this 
ase kerF is a submodule of

M , and we have an as
ending sequen
e of submodules of M ,

kerF � kerF

2

� kerF

3

� � � � :

The union of these is the F -nilpotent submodule ofM , denotedM

nil

=

S

e2N

kerF

e

.

We say M is F -torsion if M

nil

=M .

The following proposition is proved in [HS℄ under the hypothesis that (R;m) has

a perfe
t 
oeÆ
ient �eld, but the general 
ase follows from this as we re
ord below.

Proposition 5.1. Let (R;m) be a lo
al ring 
ontaining a �eld of positive 
hara
-

teristi
, and let M be an Artinian R-module with a Frobenius a
tion. Then there

exists e 2 N su
h that F

e

(M

nil

) = 0.

In parti
ular, an Artinian module M is F -torsion if and only if F

e

(M) = 0 for

some e 2 N.

Proof. Sin
e M is Artinian, it is also a module over

b

R, so we may assume that

(R;m) is a 
omplete lo
al ring. Now M is also a module over a power series ring

mapping onto R, so there is no loss of generality in taking R to be the power series

ring R = K[[x

1

; : : : ; x

d

℄℄. IfK is perfe
t, the desired result is [HS, Proposition 1.11℄,

and we shall derive the general 
ase from this. Note that we may repla
e M by

M

nil

and assume that M is F -torsion.

Let L = lim

�!

K

i

be the perfe
t 
losure of K, where ea
h K

i

is a �nite �eld

extension of K in L. For ea
h index i, the ring L[[x

1

; : : : ; x

d

℄℄ is a faithfully 
at

module over K

i

[[x

1

; : : : ; x

d

℄℄, and hen
e L[[x

1

; : : : ; x

d

℄℄ is a faithfully 
at module

over lim

�!

K

i

[[x

1

; : : : ; x

d

℄℄

�

=

L 


K

R. Sin
e L[[x

1

; : : : ; x

d

℄℄ is Noetherian, it follows

that L


K

R is Noetherian as well. Every element of L


K

M is killed by a power

of the maximal ideal of L 


K

R, and so
(L 


K

M) = L 


K

(so
M) is a �nite

dimensional L-ve
tor spa
e, so L 


K

M is an Artinian module over L 


K

R and

hen
e also over its 
ompletion L

b




K

R

�

=

L[[x

1

; : : : ; x

d

℄℄. Sin
e L


K

M is F -torsion,

[HS, Proposition 1.11℄ implies that there exists e su
h that F

e

(L


K

M) = 0, but

then F

e

(M) = 0 as well. �

If R is a ring 
ontaining a perfe
t �eld K of positive 
hara
teristi
 and M is an

R-module with a Frobenius a
tion, then F (M) is a K-ve
tor spa
e, and we have a

des
ending sequen
e of K-ve
tor spa
es

F (M) � F

2

(M) � F

3

(M) � � � � :

The F -stable part of M is the ve
tor spa
e M

st

=

T

e2N

F

e

(M).

Proposition 5.2. Let (R;m;K) be a lo
al ring of dimension d whi
h 
ontains a

�eld of positive 
hara
teristi
.

(1) H

0

m

(R) is F -torsion if and only if d > 0.

(2) H

d

m

(R) is not F -torsion.

(3) If d = 0 and K is perfe
t, then H

0

m

(R)

st

= R

st

= K.

Proof. (1) If d = 0 thenH

0

m

(R) = R, whi
h is not F -torsion. If d > 0 then H

0

m

(R) �

m and every element of H

0

m

(R) is nilpotent. (See also [Ly, Corollary 4.6(a)℄.)
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(2) View H

d

m

(R) as the 
ohomology of a

�

Ce
h 
omplex on a system of parameters

x

1

; : : : ; x

d

for R, and let � = [1 + (x

1

; : : : ; x

d

)℄ 2 H

d

m

(R). For all e

0

2 N, the


olle
tion of elements F

e

(�) with e > e

0

generates H

d

m

(R) as an R-module. Hen
e

F

e

0

(�) 
annot be zero by Grothendie
k's nonvanishing theorem.

(3) Sin
e m is nilpotent in this 
ase, for integers e� 0 we have

F

e

(H

0

m

(R)) = F

e

(R) = fx

p

e

: x 2 Rg = f(y + z)

p

e

: y 2 K; z 2 mg = K:

�

Theorem 5.3. Let (R;m) be a lo
al ring with a perfe
t 
oeÆ
ient �eld K of positive


hara
teristi
. Let M be an Artinian R-module with a Frobenius a
tion. Then M

st

is a �nite dimensional K-ve
tor spa
e, and F : M

st

�! M

st

is an automorphism

of the Abelian group M

st

.

If K is algebrai
ally 
losed, then there exists a K-basis e

1

; : : : ; e

n

for M

st

su
h

that F (e

i

) = e

i

for all 1 � i � n.

Proof. The �niteness result is [HS, Theorem 1.12℄, and the existen
e of the spe
ial

basis when K is algebrai
ally 
losed follows from [Di, Proposition 5, page 233℄. �

Theorem 5.4. [HS, Theorem 1.13℄ Let (R;m) be a 
omplete lo
al ring with an

algebrai
ally 
losed 
oeÆ
ient �eld of positive 
hara
teristi
. Let L;M;N be R-

modules with Frobenius a
tions, su
h that we have a 
ommutative diagram

0 ����! L

�

����! M

�

����! N ����! 0

F

?

?

y

F

?

?

y

F

?

?

y

0 ����! L

�

����! M

�

����! N ����! 0

with exa
t rows. If L is Noetherian and N is Artinian, then the F -stable parts form

a short exa
t sequen
e

0 �! L

st

�!M

st

�! N

st

�! 0:

Proposition 5.5. Let (R;m;K) be a 
omplete lo
al ring with an algebrai
ally 
losed


oeÆ
ient �eld of positive 
hara
teristi
. Let n denote the nilradi
al of R. Then

for all i � 0, the natural map H

i

m

(R) �! H

i

m

(R=n), when restri
ted to F -stable

subspa
es, gives an isomorphism

H

i

m

(R)

st

�

=

�! H

i

m

(R=n)

st

:

Proof. Let k an integer su
h that n

p

k

= 0. The short exa
t sequen
e

0 �! n �! R �! R=n �! 0

indu
es a long exa
t sequen
e of lo
al 
ohomology modules

�! H

i

m

(n)

�

�! H

i

m

(R)

�

�! H

i

m

(R=n)




�! H

i+1

m

(n) �! :

Consider an element � 2 ker(�) \ H

i

m

(R=n)

st

. Then � 2 image(�), so F

k

(�) = 0.

The Frobenius a
tion on H

i

m

(R=n)

st

is an automorphism so � = 0, and hen
e

H

i

m

(R)

st

�! H

i

m

(R=n)

st

is inje
tive.

To 
omplete the proof, by Theorem 5.3 it suÆ
es to 
onsider � 2 H

i

m

(R=n)

st

with F (�) = � and prove that it lies in the image of H

i

m

(R)

st

. Now 
(�) 2 H

i+1

m

(n)

so F

k

(
(�)) = 0, and therefore F

k

(�) = � 2 ker(
).
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Let � = �(�) for some element � 2 H

i

m

(R). Then �(F (�)��) = 0 whi
h implies

that F (�) � � 2 image(�). Consequently F

k

(F (�) � �) = 0, whi
h shows that

F

k+1

(�) = F

k

(�) 2 H

i

m

(R)

st

. Sin
e

�(F

k

(�)) = F

k

(�(�)) = F

k

(�) = �;

we are done. �
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