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ABSTRACT. We analyze the behavior of the holonomic rank in families of holonomic sys-

tems over complex algebraic varieties by providing homological criteria for rank-jumps

in this general setting. Then we investigate rank-jump behavior for hypergeometric sys-

tems H
A

(�) arising from a d � n integer matrix A and a parameter � 2 C

d . To do so we

introduce an Euler–Koszul functor for hypergeometric families over C d , whose homology

generalizes the notion of a hypergeometric system, and we prove a homology isomorphism

with our general homological construction above. We show that a parameter � 2 C

d is

rank-jumping for H
A

(�) if and only if � lies in the Zariski closure of the set of Zd-graded

degrees � where the local cohomology
L

i<d

H

i

m

(C [NA℄)

�

of the semigroup ring C [NA℄

supported at its maximal graded ideal m is nonzero. Consequently, H
A

(�) has no rank-

jumps over C d if and only if C [NA℄ is Cohen–Macaulay of dimension d.
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1. INTRODUCTION

In the late 1980s, Gelfand, Graev and Zelevinsky introduced a class of systems of lin-

ear partial differential equations closely related to toric varieties [GGZ87]. These systems,

now called GKZ systems, or A-hypergeometric systems, are constructed from a d� n inte-

ger matrix A of rank d and a complex parameter vector � 2 C d , and are denoted by H
A

(�).

Although A-hypergeometric systems were originally introduced with a view toward rep-

resentation theory, they are well suited to algebraic geometry in various applications. For

example, solutions of A-hypergeometric systems appear as toric residues and as the gener-

ating functions for intersection numbers on moduli spaces of curves. In another instance,
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the Picard–Fuchs equations governing the variation of Hodge structures for Calabi–Yau

toric hypersurfaces are very special cases of A-hypergeometric systems.

The first fundamental results about the systems H
A

(�) were proved by Gelfand, Graev,

Kapranov, and Zelevinsky. These results concerned the case where the semigroup NA gen-

erated by the columns of A gives rise to a semigroup ring C [NA℄ that is Cohen–Macaulay

and graded in the standard Z-grading [GGZ87, GKZ89]. In geometric terms, the associ-

ated toric variety X
A

is projective and arithmetically Cohen–Macaulay. The above authors

showed that in this case, the system H

A

(�) gives a holonomic module over the ring D of

polynomial C -linear differential operators in n variables, and hence H
A

(�) has finite rank;

that is, the dimension of its space of holomorphic solutions is finite. Furthermore, they

showed that this dimension can be expressed combinatorially, as the integer vol(A) that is

d! times the Euclidean volume of the convex hull of the columns ofA and the origin 0 2 Z

d.

The remarkable fact is that their rank formula held independently of the parameter �.

Even if C [NA℄ is not Cohen–Macaulay or Z-graded, Adolphson showed in [Ado94] that

H

A

(�) is always a holonomic ideal. He further proved that, for all parameters outside of

a closed locally finite arrangement of countably many ‘semi-resonant’ affine hyperplanes,

the characterization of rank through volume is still correct.

It came as quite a surprise when in [ST98] an example was given showing that if C [NA℄

is not Cohen–Macaulay then not all parameters � have to give the same rank. One is

hence prompted to introduce E
A

, the collection of those exceptional parameters � 2 C

d

for which the rank does not take the expected value. Nearly at the same time the case of

projective toric curves was discussed completely in [CDD99]: the set E
A

of exceptional

parameters is finite in this case, and empty precisely when C [NA℄ is Cohen–Macaulay;

moreover, at each � 2 E

A

the rank exceeds the volume by exactly 1. It was shown soon

after in [SST00] that the rank can never be smaller than the volume as long as C [NA℄ is Z-

graded, and it was established in the same book that E
A

is in fact contained in a finite affine

subspace arrangement. More recently the much stronger fact emerged that E
A

is a finite

union of Zariski locally closed sets by means of Gröbner basis techniques [Mat03]. While

rank-jumps can be arbitrarily large [MW04], the absence of rank-jumping parameters is

equivalent to the Cohen–Macaulay property for Z-graded C [NA℄ when either C [NA℄ has

codimension two [Mat01], or if the convex hull of A is a simplex [Sai02], or if C [NA℄ is a

polynomial ring modulo a generic toric ideal [Mat03].

Encouraged by these results, which suggest an algebraic structure on the set of ex-

ceptional parameters, it was conjectured in [MM04] that the obstructions to the Cohen–

Macaulayness of C [NA℄ and the set of exceptional parameters are identified in an explicit

manner. To be precise, let H<d

m

(C [NA℄) be the direct sum of all the local cohomology mod-

ules supported at the maximal homogeneous ideal m of C [NA℄ in cohomological degrees

less than d. Then define the set E
A

of exceptional quasi-degrees to be the Zariski closure

in C d of the set of Zd-graded degrees � such that H<d

m

(C [NA℄) has a nonzero element in

degree ��. With this notation, the motivating result in this article is the following.

Theorem 1.1. For any rank d matrix A 2 Z

d�n the set E
A

of exceptional (that is, rank-

jumping) parameters is identical to the set E
A

of exceptional quasi-degrees.

We note that there is no assumption on C [NA℄ being Z-graded. The Z-graded simplicial

case of this result was proved in [MM04] using results of [Sai02].
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Methods and results. The first step in our proof of Theorem 1.1 is to construct a homolog-

ical theory to systematically detect rank-jumps. In Sections 2 and 3 we study rank variation

in any family of holonomic modules over any base B, and not just A-hypergeometric fam-

ilies over B = C

d . The idea is that under a suitable coherence assumption (Definition 2.1),

holonomic ranks behave like fiber dimensions in families of algebraic varieties. In par-

ticular, rank is constant almost everywhere and can only increase on closed subsets of B

(Theorem 2.6). We develop a computational tool to check for rank-jumps at a smooth point

� 2 B: since the rank-jump occurs through a failure of flatness at �, ordinary Koszul

homology detects it (Theorem 3.1 and Corollary 3.3).

The second step toward Theorem 1.1 is to construct a homological theory for D-modules

that reproduces the set E
A

of exceptional quasi-degrees, which a priori arises from the

commutative notion of local cohomology. Our main observation along these lines is that

the Euler–Koszul complex, which was already known to Gelfand, Kapranov, and Zelevin-

sky for Cohen–Macaulay Z-graded semigroup rings [GKZ89], generalizes to fill this need.

Adolphson [Ado99] recognized that when the semigroup is not Cohen–Macaulay, certain

conditions guarantee that this complex has zero homology. Here, we develop Euler–Koszul

homology (Definition 4.2) for the class of toric modules (Definition 4.5), which are slight

generalizations of Zd-graded modules over the semigroup ring C [NA℄. For any toric mod-

ule M , we show in Theorem 6.6 that the set of parameters � for which the Euler–Koszul

complex has nonzero higher homology is precisely the analogue for M of the exceptional

quasi-degree set E
A

defined above for M = C [NA℄.

Having now two cohomology theories, one to recover the local cohomology quasi-

degrees for hypergeometric families, and another to detect rank-jumping parameters for

general holonomic families, we link them in a central result of this article, Theorem 8.2:

for toric modules, these two theories coincide. Consequently, we obtain Theorem 1.1 as

the special case M = C [NA℄ of Theorem 9.1, which holds for arbitrary toric modules M .

We deduce in Corollary 9.2 the equivalence of the Cohen–Macaulay condition on C [NA℄

with the absence of rank-jumps in the GKZ hypergeometric system H

A

(�).

As a final comment, let us note that we avoid the explicit computation of solutions to hy-

pergeometric systems. This contrasts with the previously cited constructions of exceptional

parameters, which rely on combinatorial techniques to produce solutions. It is for this rea-

son that these constructions contained the assumption that the semigroup ring C [NA℄ is

graded in the usual Z-grading, for this implies that the corresponding hypergeometric sys-

tems are regular holonomic and thus have solutions expressible as power series with loga-

rithms, with all the combinatorial control this provides. Our use of homological techniques

makes the results in this article valid in both the regular and non-regular cases.

Acknowledgments. The equivalence of hypergeometric rank constancy and toric Cohen–

Macaulayness was first conjectured by Bernd Sturmfels, who divulged it in talks and open-

problem sessions. He was also the first to mention local cohomology in connection with
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and advice have been invaluable to us throughout this project.
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organizers of the Joint International Meeting of the AMS and RSME in Sevilla, Spain, for
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providing us with one such opportunity in the Summer of 2003. LFM and UW are espe-

cially grateful to Francisco Castro-Jiménez, Jose Marı́a Ucha, and Marı́a Isabel Hartillo

Hermoso, who were our gracious hosts when we stayed in Sevilla for a week after that con-

ference. All three authors also intersected at MSRI. We thank this institute for the friendly

and stimulating research atmosphere it provides.

2. UPPER SEMI-CONTINUITY OF RANK IN HOLONOMIC FAMILIES

The results in the first part of this article (Sections 2 and 3) deal with general modules

over the Weyl algebra, without restricting to the hypergeometric realm. In this section we

define the notion of a holonomic family of D-modules, and show that the holonomic rank

constitutes an upper semi-continuous function on such a family.

Throughout this article, � = �

1

; : : : ; �

n

refers to the partial derivation operators with

respect to the variables x = x

1

; : : : ; x

n

. Writing Æ
ij

for the Kronecker delta, so that Æ
ij

= 1

if i = j and Æ
ij

= 0 otherwise, the Weyl algebra D is the quotient of the free associative C -

algebra on fx
i

; �

i

g

n

i=1

by the two-sided ideal hx
i

x

j

�x

j

x

i

; �

i

�

j

��

j

�

i

; �

i

x

j

�x

j

�

i

�Æ

ij

i

n

i;j=1

.

Every left D-module is also a module over the commutative subalgebra C [x℄ of D. If N

is any C [x℄-module or sheaf of C [x℄-modules on some space, let N(x) = C (x) 


C [x℄

N

denote the localization by inverting all polynomials in the x-variables. We shall also have

occasion to consider modules, sheaves of modules, and schemes defined over C , and if N is

such an object then N(x) denotes its base extension to the field C (x) of rational functions.

Our focus is on holonomic D-modules, which are by definition finitely generated left

D-modules N such that Ext
j

D

(N;D) = 0 whenever j 6= n. The holonomic modules form

a full subcategory of the category of D-modules that is closed under taking extensions,

submodules, and quotient modules. When N is a holonomic module, the C (x)-vector

space N(x) has finite dimension, and this dimension equals the holonomic rank rank(N)

by a celebrated theorem of Kashiwara, see [SST00, Thm. 1.4.19, Cor. 1.4.14]. We note that

rank is hence additive in short exact sequences of holonomic modules.

We are interested in families of D-modules parameterized by a Noetherian complex

algebraic variety B with structure sheaf O
B

. If � 2 B we denote by p
�

the prime ideal

(sheaf) of �, and by �
�

the residue field of the stalk O
B;�

, so �
�

= O

B;�

=p

�

O

B;�

.

Consider the sheaf D

C

O

B

of noncommutativeO
B

-algebras on B. By a coherent sheaf

of left (D 

C

O

B

)-modules we mean a quasi-coherent sheaf of O
B

-modules on B whose

sections over each open affine subset U � B are finitely generated over the ring of global

sections of D 

C

O

U

. The sheaf D 

C

O

B

contains the subsheaf O
B

[x℄ = C [x℄ 


C

O

B

of commutative polynomials over O
B

, whose localization at h0i 2 Spe
(C [x℄) is by our

conventions O
B

(x). The sheaf-spectrum of O
B

(x) is the base-extended scheme B(x) =

Spe
 C (x)�

Spe
 C

B, which can be considered as a scheme over C (x) or as fibered over B.

Definition 2.1. A holonomic family over a complex scheme B is a coherent sheaf ~

M of

left (D

C

O

B

)-modules whose fibersM
�

=

~

M


O

B

�

�

are holonomic D-modules for all

� 2 B, and whose rank sheaf ~

M(x) is coherent on the scheme B(x).

Note that every holonomic family overB is generated by its global sections if B is affine.

Example 2.2. When B equals the complex vector space C

d of dimension d, the struc-

ture sheaf O
B

has global sections C [b℄, the commutative polynomial ring in variables
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b = b

1

; : : : ; b

d

. A holonomic family ~

M over C d can be represented by its global sec-

tions, a left D[b℄-moduleM with finitely many generators and relations. In order to be a

holonomic family in our sense,M
�

=M


O

B

�

�

has to be a holonomic D-module for all

� 2 C

d while the global section moduleM(x) = C (x) 


C [x℄

M of the rank sheaf has to

be a finitely generated C [b℄(x)-module.

The rank sheaf ~

M(x) is a sheaf of O
B

(x)-modules on B(x), but ignoring the process of

pushing ~

M(x) down to B we abuse notation and speak of the fiber of ~

M(x) over � 2 B.

Let B
C

� B be the C -valued closed points of B (that is, points with residue field C ).

Proposition 2.3. For a holonomic family ~

M over a scheme B, the fiber of ~

M(x) over each

point � 2 B isM
�

(x), which is a C (x)-vector space of dimension rank(M

�

) if � 2 B
C

.

Proof. Tensoring with the rational functions C (x) over C [x℄ commutes with the passage

from ~

M toM
�

=

~

M


O

B

�

�

. �

The next lemma says that Zariski closed subsets of the base-extended scheme B(x)

descend to Zariski closed subsets of the original scheme B. We use the term prime ideal

to refer to the kernel of the morphism of structure sheaves associated to any map from the

spectrum of a field to B.

Lemma 2.4. For a scheme B defined over C , the map taking each prime ideal p � O
B

to

its extension pO
B

(x) constitutes a continuous injection B ! B(x) of topological spaces.

Proof. Note first that if p � O
B

is prime, then the extension pO
B

(x) is prime. The lemma

is equivalent to saying that, for every subset Y � B(x) that is Zariski closed, the set of

points � 2 B whose prime ideal sheaves p
�

in O
B

extend to prime ideals p
�

O

B

(x) 2 Y is

Zariski closed in B. This statement is local on B, so we may assume that B is affine.

Suppose that Y is the variety of a set F of global sections of O
B

(x). Any free C -basis

for C (x) is also a free O
B

-basis for O
B

(x); choose such a basis. For each global section

f 2 F , let G
f

� O

B

be its set of nonzero coefficients in the chosen basis. Then a prime

p � O

B

satisfies pO
B

(x) 2 Y if and only if p contains the sets G
f

for all f 2 F . �

Example 2.5. Lemma 2.4 does not say that B is closed in B(x); indeed, the closure of

the image is all of B(x), whereas there are always points in B(x)rB. Neither does

Lemma 2.4 say that the morphism B(x)! B takes closed sets to closed sets. For example,

if n = d = 1 in Example 2.2, then the variety of the ideal hb � xi � C [b℄(x) is a Zariski

closed point in B(x), whereas the image of this point in B = C

1 is the generic point. Note

that the set of prime ideals p � C [b℄ whose extensions pC [b℄(x) contain hb � xi is empty,

and therefore Zariski closed.

We now come to the main result of this section. To state it, we call � 2 B rank-jumping

if (i) � 2 B
C

is a C -valued point, and (ii) for all open sets U containing �, the rank ofM
�

is strictly greater than the minimal holonomic rank attained by any fiberM
�

0 for � 0 2 U
C

.

Theorem 2.6. If M is a holonomic family over a scheme B, then the function � 7!

rank(M

�

) is upper semi-continuous on both B and on B

C

(endowed with the subspace

topology). In particular, the locus of rank-jumping points � 2 B
C

is closed in B
C

.



6 LAURA FELICIA MATUSEVICH, EZRA MILLER, AND ULI WALTHER

Proof. The function sending each point �(x) 2 B(x) to the C (x)-dimension of the fiber
~

M(x) 
 �

�(x)

is upper-semicontinuous on B(x) because ~

M(x) is coherent on B(x); see

[Har77, III.12.7.2]. Therefore, given an integer i, the subset of points in B(x) on which

this fiber dimension is at least i is Zariski closed. Lemma 2.4 shows that the corresponding

subset of points in B is Zariski closed in B. Proposition 2.3, which says that the fiber

dimensions over � 2 B
C

are holonomic ranks, completes the proof. �

Remark 2.7. Without the coherence hypothesis on ~

M(x) over B(x), the conclusion of

Theorem 2.6 can be false, even if B is of finite type over C and all of the fibers M
�

for � 2 B

C

are holonomic. For an example, consider the setup in Example 2.2 with

n = d = 1, and take M = D[b℄=hb� � 1i. When � 6= hb � 0i, the fiber over � is

the rank 1 holonomic module corresponding to the solution x

1=� . But when � = hb � 0i

the fiber of ~

M is zero. Hence the rank actually drops on the closed subset f0g � C

1 .

See Example 3.5 for further details.

Remark 2.8. Fix a holonomic family ~

M. The semicontinuity of holonomic rank in The-

orem 2.6 suggests that a “solution sheaf” Sol( ~

M), constructed as below, might be an al-

gebraic coherent sheaf on B; a priori, it can only be expected to be an analytic sheaf. See

Remark 9.5 for further comments on this issue, as it relates to hypergeometric systems.

For the construction, suppose there is a vector v 2 C n such that the singular locus ofM
�

does not contain v for any � 2 B
C

(this is certainly possible locally on B). Let the point v

have maximal ideal hx
1

�v

1

; : : : ; x

n

�v

n

i in C [x℄. The D-module restriction of ~

M

�

to v is

the derived tensor product over D with the right module D=hx
1

� v

1

; : : : ; x

n

� v

n

iD. This

restriction is naturally dual to the space of formal power series solutions of ~

M

�

at v. But

as v is a regular point, formal and convergent solutions of ~

M

�

are identical. Since tensor

products commute in x and b, restricting the family ~

M gives rise to an O
B

-module whose

fiber over each point � 2 B

C

is naturally dual to the solution space of ~

M

�

. Taking duals

therefore yields the analytic O
B

-module Sol( ~

M).

3. RANK-JUMPS AS FAILURES OF FLATNESS

For applications to hypergeometric systems, we need some concrete criteria to help us

apply the results of the previous section. First we characterize rank-jumps in holonomic

families over reduced schemes using Koszul homology in a commutative setting (Corol-

lary 3.3). Then we provide a criterion for a family of D-modules to satisfy the coherence

property required of a holonomic family (Proposition 3.4); we will appeal to it in Section 7.

In the following statement, we use the standard notion of reduced for a scheme to mean

that the coordinate rings of its affine open subschemes have no nilpotent elements.

Theorem 3.1. Let ~

M be a holonomic family over a reduced scheme B of finite type over C ,

and fix a C -valued closed point � 2 B

C

. The parameter � is rank-jumping if and only if

Tor

O

B

i

(

~

M(x); �

�

) is nonzero for some homological degree i > 0.

Proof. Since B is of finite type, the set B
C

is dense in B via the inclusion of Lemma 2.4.

As B is always dense in B(x), we deduce that B
C

is also dense in B(x). Therefore

min

�2B

C

frank(M

�

)g = min

�2B(x)

fdim

C (x)

~

M

�

(x)g(�)
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by Proposition 2.3 and the upper-semicontinuity of fiber dimension [Har77, III.12.7.2]. By

[Har77, Exercise II.5.8], the points �(x) 2 B(x) over which the fiber dimension equals

the quantity given in (�) coincide with the points �(x) near which ~

M(x) is locally free.

But local freeness and flatness agree for coherent sheaves by [Har77, Proposition III.9.2].

Flatness in turn is characterized by the vanishing of Tor
i

O

B(x)

(

~

M(x); �

�(x)

) for all i > 0

[Eis95, Theorem 6.8], and for � 2 B
C

, Tor
i

O

B(x)

(

~

M(x); �

�(x)

)

�

=

Tor

O

B

i

(

~

M(x); �

�

). �

Remark 3.2. The result of Theorem 3.1 is false if B is not reduced. Consider for example

B = Spe
(C [b℄=hb

2

i), and let ~

M be the sheaf induced by the module D[b℄=h�; bi. Since

there is only one point in B, there is no possibility of a rank-jump. On the other hand,

Tor

O

B

i

(

~

M(x); �

�

) = D(x)=h�i for all i.

Theorem 3.1 has an interpretation via Koszul homology. For notation, suppose T is a

commutative ring. For a sequence y = y

1

; : : : ; y

d

of elements in T , we write the Koszul

complex K.(y) [BH93, Chapter 1.6] with lowered indices decreasing from d to 0. For any

T -moduleN set K.(y;N) = K.(y)

T

N , and abbreviate the ith Koszul homology of N as

H

i

(y;N) = H

i

(K.(y;N)). Call y a regular sequence in T if T=hyi is a nonzero module

and y

i

is a non-zerodivisor on T=hy

1

; : : : ; y

i�1

i for i = 1; : : : ; d. Koszul cohomology for

regular sequences gives Tor groups [Eis95, Exercise 17.10], so we get the following.

Corollary 3.3. LetM be the global sections of a holonomic family over a reduced affine

variety B with finitely generated coordinate ring C [B℄. If a regular sequence y in C [B℄

generates the ideal of a C -valued closed point � 2 B
C

, then � is rank-jumping if and only if

the Koszul complex K.(y;M(x)) has nonzero homology H
i

(y;M(x)) for some i > 0. �

Note thatK.(y;M(x)) can be obtained either by tensoringK.(y) withM(x) over C [B℄,

or by viewing y as a sequence in C [B℄(x) and tensoring over C [B℄(x).

We now turn to the coherence criterion. We refer to [Bjö79, SST00] for more information

about filtrations on D-modules and their associated graded objects. On D define the order

filtration by taking its kth level to be the vector space of all expressions
P

�

p

�

(x)�

� in

which the monomials �� for � 2 N

n have total degree j�j � k. Note that each filtration

level is a finitely generated C [x℄-module. The associated graded object is the commutative

polynomial ring gr(D) = C [x; �℄ in the variables x = x

1

; : : : ; x

n

and � = �

1

; : : : ; �

n

.

The order filtration extends to any free module Dr with a fixed basis, and to left sub-

modules K � D

r, by letting the kth level be spanned by elements whose coefficients in the

given basis have total degree at most k in �. Given a presentationN = D

r

=K, the left mod-

ule N has an induced filtration with associated graded module gr(N) = gr(D

r

)= gr(K).

This naturally graded gr(D)-module depends on the choice of presentation.

Note that since C (x) is flat over C [x℄, the module gr(N)(x) is isomorphic to gr(N(x))

if we extend the filtration above in the obvious way to N(x) = (D

r

=K) 


C [x℄

C (x). It

is a fundamental fact of D-module theory, going back to Kashiwara, that for a holonomic

D-module N , the number dim
C (x)

(gr(N)(x)) is independent of the presentation of N and

equals the holonomic rank of N [SST00, Theorem 1.4.19 and Definition 1.4.8].

Our primary use of order filtrations will be on families of D-modules over an affine

scheme B—that is, on left modules over the ring D[B℄ = D 


C

C [B℄. The order filtration

generalizes naturally to a filtration on D[B℄ with the property that each level is a finitely
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generated C [B℄[x℄-module. The associated graded ring of D[B℄ is the polynomial ring

C [B℄[x; �℄ in 2n variables over the coordinate ring C [B℄. A choice of presentation for a

D[B℄-moduleM determines an associated graded C [B℄[x; �℄-module gr(M). The forma-

tion of such associated graded structures commutes with the tensor product with the flat

C [x℄-module C (x).

Proposition 3.4. For an affine scheme B and a finitely generated D[B℄-module M, the

moduleM(x) is finitely generated over C [B℄(x) provided that (gr(M))(x) is.

Proof. As B is affine, the modulesM,M(x) and gr(M(x)) are generated by global sec-

tions. Any lift of set of generators for the C [B℄(x)-module (grM)(x) is a set of generators

forM(x), because the order filtration ofM(x) does not descend infinitely. �

We will apply the above result when all fibersM
�

for � 2 B
C

are holonomicD-modules

to conclude thatM constitutes (the global sections of) a holonomic family overB. It should

be pointed out that the finiteness condition onM is necessary: even if the fibersM
�

are

holonomic, the fiber (grM)(x)

�

of the associated graded module (grM)(x) over � 2 B
C

is a C (x)-vector space whose dimension need not be equal to rank(M

�

).

Example 3.5. Continue with M = D[b℄=hb� � 1i as in Remark 2.7. Let M(x)

0

�

M(x)

1

� � � � denote the order filtration of M(x). Then M(x)

1

= M(x) locally near

every parameter � 2 C except for � = 0. At � = 0, in contrast,M(x)

k

=M(x)

k�1

is min-

imally generated by �

k, even though rank(M

0

) = 0. In fact, (grM)(x) is the direct sum

of the rank 1 free module C [b℄(x) with
L

k�1

C [b℄(x)=hbi.

4. EULER–KOSZUL HOMOLOGY OF TORIC MODULES

In this section we introduce generalizedA-hypergeometric systems in the sense indicated

in the introduction. After reviewing some basic facts of GKZ hypergeometric systems, we

provide foundations for Euler–Koszul homology of what we call toric Zd-graded modules.

For the rest of this paper, fix a d � n integer matrix A = (a

ij

) of rank d. We empha-

size that we do not assume that the columns a
1

; : : : ; a

n

of A lie in an affine hyperplane.

However, we do assume that A is pointed, meaning that a
1

; : : : ; a

n

lie in a single open

half-space of Rd . This guarantees that the semigroup

NA =

n

n

X

i=1




i

a

i

j 


1

; : : : ; 


n

2 N

o

has no units. (Pointedness will come into play in the proof of Theorem 6.6, where it is used

to ensure that local duality holds.) The semigroup ring associated to the d� n matrix A is

S

A

= C [NA℄

�

=

R=I

A

, where R = C [�

1

; : : : ; �

n

℄ and

I

A

= h�

�

� �

�

j �; � 2 Z

n

; A � � = A � �i

is the toric ideal of A. Notice that S
A

and R are naturally graded by Z

d if we define

deg(�

j

) = �a

j

, the negative of the jth column of A.

Our choice of signs in the Zd-grading of R is compatible with a Zd-grading on the Weyl

algebra D in which deg(x

j

) = a

j

and deg(�

j

) = �a

j

. Under this Zd-grading, the ith Euler

operator E
i

=

P

n

j=1

a

ij

x

j

�

j

2 D is homogeneous of degree 0 for i = 1; : : : ; d. Given a

vector � 2 C d , we write E � � for the sequence E
1

� �

1

; : : : ; E

d

� �

d

.
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Definition 4.1. The A-hypergeometric GKZ system with parameter � is the left ideal

H

A

(�) = D � hI

A

; E � �i

in the Weyl algebra D. The A-hypergeometric D-module with parameter � is

M

A

�

= D=H

A

(�):

Results of [GKZ89, Ado94, Hot98, SST00] imply that the moduleMA

�

is holonomic of

nonzero rank. A-hypergeometric systems constitute an important class ofD-modules, play-

ing a role similar to that of toric varieties in algebraic geometry, since they possess enough

combinatorial underpinning to make calculations feasible, and enough diversity of behavior

to make them interesting as a test class for conjectures and computer experimentation.

If y 2 N
�

is homogeneous of degree � in a Zd-graded D-module N , write deg
i

(y) = �

i

.

In particular, for any homogeneous element P 2 D,

E

i

P � PE

i

= deg

i

(P )P:

The displayed equation shows that if N is any Z

d-graded left D-module, then the map

E

i

� �

i

: N ! N sending the homogeneous element y 2 N to

(E

i

� �

i

) Æ y = (E

i

� �

i

� deg

i

(y))y

determines aD-linear endomorphism ofN when extended C -linearly to inhomogeneous el-

ements of N . This endomorphism is functorial, in the sense that it commutes with degree 0

homomorphisms N ! N

0 of Zd-graded left D-modules. Moreover, the endomorphisms

for the various Euler operators commute: [E
i

� �

i

; E

j

� �

j

℄ is the zero endomorphism on

any Zd-graded left D-module for all i; j = 1; : : : ; d and all complex numbers �
i

; �

j

.

Definition 4.2. Fix � 2 C

d and a Zd-graded R-module N . The Euler–Koszul complex

K.(E � �;N) is the Koszul complex of left D-modules defined by the sequence E � �

of commuting endomorphisms on the left D-module D

R

N concentrated in homological

degrees d to 0. The ith Euler–Koszul homology of N isH
i

(E��;N) = H

i

(K.(E��;N)).

This complex was used before in the special case N = S

A

in [GKZ89, Ado94, Ado99]

in order to study the solutions to H

A

(�) for special parameters �. We use the script ‘K’

for Euler–Koszul complexes instead of the usual ‘K’ for ordinary Koszul complexes to

emphasize that the maps inK.(E��;N) are homomorphisms ofD-modules. The action of

an endomorphism in the sequence E�� on a homogeneous element depends on the degree

of that element, in contrast to maps in Koszul complexes over commutative graded rings.

Nonetheless, Euler–Koszul complexes behave much like ordinary Koszul complexes. To

see why, let �
i

= x

i

�

i

2 D. In the Zd-graded commutative subalgebra � = C [�

1

; : : : ; �

n

℄

of D every element has degree 0 2 Z

d. Consequently, N
�

is a left �-module whenever N

is a Zd-graded D-module. We hence obtain the following.

Lemma 4.3. Let N be a Z

d-graded R-module and � 2 Z

d. The Z

d-graded degree �

part K.(E� �;N)

�

of the Euler–Koszul complex agrees with the ordinary Koszul complex

K.(E � � � �; (D


R

N)

�

) constructed over the polynomial subalgebra � � D. That is,

K.(E � �;N) =

M

�2Z

d

K.(E � � � �; (D 


R

N)

�

);

the right hand side being a direct sum of ordinary Koszul complexes of �-modules. �
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Since D is a free R-module, the Euler–Koszul complex constitutes an exact functor

from the category of Zd-graded R-modules with Zd-graded morphisms of degree 0 to the

category of bounded complexes of Zn-graded left D-modules with Zd-graded morphisms

of degree 0. Consequently, short exact sequences of Zd-graded modules over R give rise to

long exact sequences of Euler–Koszul homology.

We now specify a subcategory of the category of R-modules that is central to what fol-

lows. This subcategory will contain the semigroup ring S
A

as well as its monomial (that is,

Z

d-graded) ideals, and it will be closed under taking Zd-graded submodules, quotient mod-

ules, and extensions. In the following section we then study the Euler–Koszul homology

of objects in this category and establish strong (non)vanishing conditions.

Notation 4.4. By a face of A we mean a set F of columns of A minimizing some linear

functional on NA. We interpret F as a submatrix of A. The dimension dim(F ) of a face F

equals the rank of the subgroup ZF � Z

d it generates. Let S
F

be the semigroup ring gener-

ated by F . Thus S
F

�

=

R=I

F

, where I
F

= I

F

A

+ h�

j

j a

j

62 F i is the prime ideal obtained by

starting with the toric ideal IF
A

(defined as the kernel of the surjection C [�
j

j a

j

2 F ℄! S

F

)

and adding the variables corresponding to the columns of A outside of F .

Definition 4.5. A Z

d-graded R-module M is toric if it has a toric filtration

0 = M

0

� M

1

� � � � �M

`�1

�M

`

= M;

meaning that M
k

=M

k�1

is, for each k, a Zd-graded translate of S
F

k

for some face F
k

of NA.

We say that M has toric length ` if the minimal length of a toric filtration for M is `.

Remark 4.6. Most toric modules have many different toric filtrations, and usually more

than one of these has minimal length. A toric module of toric length 1 is simply a Zd-

graded translate S
F

(��) of S
F

generated in degree � 2 Zd, for some face F of A.

Example 4.7. If N is a finitely generated Zd-graded S
F

-module for some face F of A, then

N is toric. To see this, argue by induction on dim(N), the Artinian case dim(N) = 0 being

trivial. If dim(N) > 0, then N has a submodule of the form S

F

0

(��) with F

0

� F being

some face of A of dimension dim(N). If we replace N by N=S
F

0

(�) then a finite number

of such steps will reduce the dimension of N by at least one.

Example 4.7 implies that Zd-graded submodules, quotients, and extensions of toric mod-

ules are toric, since they have a composition chain by shifts of modules of the form S

F

.

If F is a face of A, then we write E

F

i

for the Euler operator obtained by erasing all

terms a
ij

x

j

�

j

from E

i

such that a
j

62 F . We will now consider the actions of Euler endo-

morphisms E
i

� �

i

on D 


R

M for an S

F

-module M . To describe such actions, let D
F

and D
F

be the Weyl algebras on the variables fx
F

; �

F

g and fx
F

; �

F

g corresponding to the

columns a
j

2 F and a
j

62 F , respectively. Then for each S
F

-module M we have

D 


R

M

�

=

C [x

F

℄


C

(D

F




C [�

F

℄

M)(y)

as left modules overD = D

F




C

D

F

, identifying x
�

F

x

�

F

�

�

F

�

�

F


m with x
�

F


(x

�

F

�

�

F


�

�

F

m),

where of course both sides are zero if j�j > 0.

Suppose that M is a Zd-graded S

F

-module and interpret it as a C [�
F

℄-module (rather

than as a module over a quotient of R). Note that EF

i

induces an Euler endomorphism on
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D

F




C [�

F

℄

M by setting E

F

i

Æ (P 
m) =

P

j2F

(a

ij

x

j

�

j

� deg

i

(P 
 m))P 
 m for all

homogeneous elements P 2 D
F

and m 2M .

Lemma 4.8. If M is a finitely generated Z

d-graded S

F

-module, then under the isomor-

phism (y) above, the action of the endomorphism E

i

� �

i

on D 


R

M coincides with the

action of the endomorphism E

F

i

��

i

on the right hand factor of C [x
F

℄


C

(D

F




C [�

F

℄

M):

(E

i

� �

i

) Æ (x

�

F

x

�

F

�

�

F

�

�

F


m) = x

�

F


 (E

F

i

� �

i

) Æ (x

�

F

�

�

F


 �

�

F

m):

Proof. Let P = x

�

F

x

�

F

�

�

F

�

�

F

and P

0

= x

�

F

�

�

F

�

�

F

. Note that [EF

i

; x

�

F

℄ = 0 and therefore

[E

i

� E

F

i

; x

�

F

℄ = deg

i

(x

�

F

)x

�

F

. We then compute

(E

i

� �

i

) Æ (P 
m) = (E

i

� �

i

� deg

i

(P 
m)) � P 
m

=

�

(E

i

� E

F

i

)� deg

i

(x

�

F

)

�

P 
m

+

�

E

F

i

� �

i

� deg

i

(P

0


m)

�

P 
m

= 0 + x

�

F

�

E

F

i

� �

i

� deg

i

(P

0


m)

�

P

0


m

which is identified with x
�

F


 (E

F

i

� �

i

� deg

i

(P

0


m))P

0


m. �

In analogy with the construction of the A-hypergeometric systemMA

�

from A, the faces

of A give rise to holonomic D-modules, but sometimes these modules can be zero.

Lemma 4.9. Fix a vector � 2 C d and a face F of A. The following are equivalent for the

quotientMF

�

= D=hI

F

; E � �i.

1. The moduleMF

�

is nonzero.

2. MF

�

is a holonomic D-module of nonzero rank.

3. The parameter � (or, equivalently,��) lies in the span (over C ) of the columns of F .

Proof. If � lies outside the column-span of F , then the C -linear span of E � � and the

products fx
j

�

j

j a

j

62 Fg � D � I

F

contains a nonzero scalar, soMF

�

is zero, as is its rank.

Suppose now that � lies in the column-span of F . Let A0
F

be a submatrix of A composed

of dim(F ) many linearly independent rows of A
F

. ThenM
�

A

F

= D

F

=hI

F

A

; E

F

��i equals

M

�

A

0

F . Hence M
�

A

F is a holonomic D

F

-module of nonzero rank, by [GKZ89, SST00].

Since C [x
F

℄


C

M

�

A

F �

=

M

F

�

by Lemma 4.8,MF

�

is holonomic over D = D

F




C

D

F

and

has nonzero rank. �

We close this section by defining the main object of study of the remainder of the paper.

Definition 4.10. Let M be a toric R-module and � 2 C d . The generalized hypergeometric

system associated to M and � is the zeroth Euler–Koszul homologyH
0

(E � �;M).

If M = S

A

thenH
0

(E��;M) is the holonomic GKZ-moduleMA

�

from Definition 4.1.

5. RIGIDITY AND HOLONOMICITY OF EULER–KOSZUL HOMOLOGY

We begin our treatment of generalized hypergeometric systems by showing that they are

holonomic, as are all of the higher Euler–Koszul homology modules of toric modules.
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Proposition 5.1. The generalized hypergeometric systemH
0

(E � �;M) is holonomic for

every toric module M and every parameter � 2 C

d . Consequently, H
i

(E � �;M) is

holonomic for all i > 0 as well.

Proof. Consider first the case of H
0

(E � �;M). The proof is by induction on the toric

length ` of M . When M = S

F

for some face F , use Lemma 4.9. The general ` = 1 case

follows becauseH
0

(E��;S

F

(�))

�

=

H

0

(E��+�;S

F

)(�). For ` > 1, the Euler–Koszul

functor applied to a toric short exact sequence M
1

,!M �M=M

1

induces a sequence

H

0

(E � �;M

1

)!H

0

(E � �;M)! H

0

(E � �;M=M

1

)

that is exact and has holonomic modules at both ends by induction.

Now consider i > 0. Let m 2 ker(K

i

(E � �;M) ! K

i�1

(E � �;M)), so its coset �m

is an element of H
i

(E � �;M). Since the Euler–Koszul complex is Zd-graded, we may

assume that m is homogeneous of degree � 2 Z

d. Note that H
i

(E � �;M) is generated

by finitely many such �m, since K
i

(E � �;M) is a direct sum of
�

d

i

�

copies of (D 

R

M),

which is a Noetherian D-module. It is hence sufficient to prove that D � �m is holonomic.

Consider the Koszul complex K.(E � � � �; (D 


R

M)

�

) on the (left) �-module

(D 


R

M)

�

. Within this complex, m descends to an element �m of the ith homology mod-

uleH
i

(E����; (D


R

M)

�

). We remark that the two usages of �m agree in the sense of the

isomorphism in Lemma 4.3. Since � is commutative, left multiplication byE
j

��

j

��

j

an-

nihilates �m by [BH93, Proposition 1.6.5]. On the other hand, m lies in the direct sum of
�

d

i

�

copies of (D

R

M). Since I
A

�M = 0, there is some integer k 2 N such that (I
A

)

k

m = 0.

It follows that the D-module D � �m is a Zd-graded quotient of D=hE � � � �; (I

A

)

k

i.

In particular, D � �m has a finite composition series such that each composition factor is a

quotient of D=hE � � � �; I

A

i

�

=

H

0

(E � � � �;S

A

) and hence is holonomic by the first

sentence of the proposition. �

Definition 5.2. Let N be any Zd-graded R-module. A vector � 2 Zd is a true degree of N ,

written � 2 tdeg(N), if the graded piece N
�

is nonzero. A vector � 2 C d is a quasi-degree

of N , written � 2 qdeg(N), if � lies in the complex Zariski closure qdeg(N) of the true

degrees of N via the natural embedding Zd

,! C

d .

We now prove a rigidity property of the Euler–Koszul complex.

Proposition 5.3. For a toric R-module M and � 2 C d the following are equivalent.

1. H
0

(E � �;M) has holonomic rank 0.

2. H
0

(E � �;M) = 0.

3. H
i

(E � �;M) = 0 for all i � 0.

4. �� 62 qdeg(M).

Proof. 2, 3: The failure of the last condition in Lemma 4.9 is equivalent to the C -span

of E � � containing an endomorphism whose action on D=D � I

F

is multiplication by

a nonzero scalar. This observation, together with the isomorphism H
0

(E � �;S

F

(�))

�

=

H

0

(E � � + �;S

F

)(�), shows that 2, 3 when M has toric length 1. Now suppose that

M has toric length ` > 1, and assume the result for modules of smaller toric length. For

any toric filtration of M , the long exact sequence of Euler–Koszul homology for M
1

,!

M � M=M

1

shows that H
0

(E � �;M) surjects ontoH
0

(E � �;M=M

1

). Assuming that
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the former is zero, so is the latter. By induction, we find that H
i

(E � �;M=M

1

) vanishes

for all i � 0, and hence thatH
i

(E��;M)

�

=

H

i

(E��;M

1

) for all i � 0. The result now

holds for M because it holds by induction for M
1

.

1 , 2: We need that H
0

(E � �;M) 6= 0 implies that its rank is nonzero. Again

use induction on the toric length `. For ` = 1 this is Lemma 4.9 plus the isomorphism

H

0

(E � �;S

F

(�))

�

=

H

0

(E � � + �;S

F

)(�), so assume ` > 1. Make again the observa-

tion thatH
0

(E � �;M) surjects ontoH
0

(E � �;M=M

1

). If this latter module is nonzero,

then it has nonzero rank by the ` = 1 case, soH
0

(E��;M) has nonzero rank, too. Hence

we assume that H
0

(E � �;M=M

1

) = 0. Now, using the equivalence 2, 3, we find that

H

0

(E � �;M)

�

=

H

0

(E � �;M

1

), so again we are done by induction.

2 , 4: For the semigroup ring S

F

of a face, H
0

(E � �;S

F

) = M

F

�

is the D-module

from Lemma 4.9. Therefore 2, 4 for M = S

F

. For Zd-graded translates of S
F

,

[H

0

(E � �;S

F

) 6= 0℄ , [�� 2 qdeg(S

F

)℄ , [�� � � 2 qdeg(S

F

(�))℄

for � 2 Z

d, but also [H

0

(E � �;S

F

) 6= 0℄ , [H

0

(E � � � �;S

F

(�)) 6= 0℄ by definition

of the endomorphisms E
i

� �

i

. This proves 2 , 4 when M has toric length 1. To treat

modules of toric length ` > 1, consider a toric sequence M

1

,! M � M=M

1

. Since

qdeg(M) = qdeg(M

1

) [ qdeg(M=M

1

), we find that �� 2 qdeg(M) if and only if

[�� 2 qdeg(M

1

)℄ or [�� 2 qdeg(M=M

1

)℄ :

This condition is equivalent by induction on ` to

[H

0

(E � �;M

1

) 6= 0℄ or [H

0

(E � �;M=M

1

) 6= 0℄ :

Now H
0

(E � �;M) always surjects onto H
0

(E � �;M=M

1

), and if H
0

(E � �;M=M

1

)

vanishes then by the equivalence 2, 3,H
0

(E��;M

1

)

�

=

H

0

(E��;M). Therefore, this

last displayed condition is equivalent toH
0

(E � �;M) 6= 0. �

6. EULER–KOSZUL HOMOLOGY DETECTS LOCAL COHOMOLOGY

In this section we describe the set of parameters � 2 C

d for which the Euler–Koszul

complex K.(E � �;N) has nonzero higher homology. Namely, we identify this set with

the quasi-degrees of the local cohomology of the toric module N . Our proof of this result

in Theorem 6.6 uses a spectral sequence, constructed in Theorem 6.3, that arises from the

holonomic duality functor. For background on holonomic duality we refer to [Bjö79].

Duality D for (complexes of) D-modules is the combination of the derived functor

RHom

D

( ; D) of homomorphisms to D followed by the involution � taking x��� to

�(x

�

�

�

) = (��)

�

x

�

:

Hence, in order to compute the dual D (N) of the module N placed in homological degree

zero, let F. be a D-free resolution of N and apply � to Hom

D

(F.; D). Holonomicity of N

is equivalent to D (N) being exact in all cohomological degrees but n. If N is a module

in homological degree k, then the cohomology H

i

D (N) is nonzero only for i = k + n.

Therefore D constitutes an exact functor from the category of complexes of D-modules

with holonomic homology to itself, and D (D (N)) = N for all N .

The rank of a holonomic module N equals that of its dual: rank(N) = rank(D (N)). To

be more precise, locally near a nonsingular point of the complex analytic manifold C n

an

, N
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is a connection: N
an

= D

an

r

=h�

j

�C

j

j j = 1; : : : ; niwhereC
j

2 O

an

r;r are r�r matrices

of holomorphic functions and one has vanishing commutators [�

i

� C

i

; �

j

� C

j

℄. Hence

the right Koszul complexK.(��C;D
an

) on the operators �
i

�C

i

is a free resolution ofN
an

and the holonomic dual is computed from this Koszul complex. In particular, D (N
an

) =

D

an

r

=h�

j

+ C

j

j j = 1; : : : ; ni and so rank(N) = rank(D (N)) = r.

The automorphism x 7! �x on C n induces, via � 7! ��, auto-equivalences N 7! N

�

on the categories of R-modules and of D-modules (but not of the category of Zn-graded

S

A

-modules, since I
A

is not preserved under ( )

� unless it is projective). The formation of

Euler–Koszul complexes is equivariant under this sign change since E
i

� �

i

= (E

i

� �

i

)

�.

Moreover, for Zn-graded R-modules N we have D 

R

N

�

=

�(N 


R

D)

� as D-modules,

where the tensor products exploit the two different R-structures on D.

The ordinary Koszul complex K.(y;T ) on a sequence y = y

1

; : : : ; y

d

in a commutative

ring T is isomorphic to its dual K
.
(y;T ) = Hom

T

(K.(y;T ); T ). In fact, K.(y;T ) equals

K

.
(y;T ) after replacing each lowered homological index i by the raised cohomological

index d� i and a suitable sign change in the differentials. Administering this sign- and

index-change to K.(E � �;N) in Definition 4.2 yields K
.
(E � �;N), whose cohomology

we call the Euler–Koszul cohomology of N ; we haveHi

(E � �;N)

�

=

H

d�i

(E � �;N).

We shall apply K.(E � �; ) and K
.
(E � �; ) to Zd-graded complexes of R-modules.

Our conventions for indexing the resulting double complexes are set up as follows, so that

all homological and cohomological indices are positive. If F. : F
0

 F

1

 � � �  F

n

is a

complex of R-modules with decreasing lowered indices, then we write the differentials of

the double complex K.(E � �;F.) pointing downward (the K. direction) and to the left

(the F. direction). On the other hand, if F
.
: F

0

! F

1

! � � � ! F

n has increasing raised

indices, then we write the double complexK
.
(E��;F

.
) with differentials pointing upward

and to the right. Applying Hom

T

( ; T ) to a complex of free T -modules with decreasing

lowered indices (with T = R or T = D) yields a complex with increasing raised indices.

Our theory of toric modules applies to the modules Exti
R

(M;R) whenever M is toric.

Lemma 6.1. If M is a toric R-module then Ext

i

R

(M;R) is toric for all i.

Proof. The module M has a composition chain by Zd-graded S
A

-modules. If M is of toric

length 1 then the finitely generated S
A

-module Ext

i

R

(M;R) is toric by Example 4.7.

In the general case, argue by induction on the toric length of M . The Zd-graded long

exact sequence of Ext

R

( ; R) arising from M

1

,! M � M=M

1

places Ext

i

R

(M;R)

between two modules both of which are toric by induction. �

Definition 6.2. Let "
A

be the sum
P

n

j=1

a

j

of the columns of A. Using our convention that

deg(�

j

) = �a

j

, the canonical module of R is !
R

= R("

A

).

Theorem 6.3. If M is a toric R-module, then there is a spectral sequence

E

p;q

2

= H

q

�

E + �; Ext

p

R

(M;!

R

)

�

(�"

A

) =) H

p+q

D

�

H

p+q�n

(E � �;M)

�

�

:

Proof. Let F. be a minimal Zd-graded R-free resolution of M . Consider the double com-

plex �Hom
D

(K.(E � �;F.); D)

�. With F
.
= Hom

R

(F.; R), we claim that

�Hom

D

�

K.(E � �;F.); D
�

�

�

=

K

.
(�E � � � "

A

;F

.
):
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To see why, begin by noting that �( )

� is an isomorphism when D-modules are regarded

as R-modules, but identifies (for example) the left D-module D 

R

S

A

with the right D-

module S

A




R

D. Hence each row of �Hom
D

(K.(E � �;F.); D)

� is a direct sum of

complexes of the form �(F

.



R

D)

� with cohomology D 

R

Ext

i

R

(M;R).

On the other hand, note that �(E
i

��

i

)

�

= �E

i

��

i

� ("

A

)

i

. Therefore each column of

�Hom

D

(K.(E � �;F.); D)

� is an Euler–Koszul cocomplex induced by �E � � � "

A

on

�(F

i




R

D)

�. We consider the spectral sequences associated to this double complex.

Taking first the horizontal and then the vertical cohomology of the double complex, we

obtainHq

(�E��� "

A

; Ext

p

R

(M;R))

�

=

H

q

�

�E��; Ext

p

R

(M;!

R

)

�

(�"

A

). We now de-

termine the abutment by reversing the order of taking horizontal and vertical cohomology.

The natural projection from the total complex TotK.(E � �;F.) to the Euler–Koszul

complex K.(E � �;M) is a quasi-isomorphism because the rows of K.(E � �;F.) are

resolutions for M positioned in homological degree 0. Since H
k

(E � �;M) is holonomic

for all k by Proposition 5.1, the complex Hom

D

(TotK.(E � �;F.); D) has cohomology

H

p+q

Hom

D

�

TotK.(E � �;F.); D
�

= Ext

n

D

�

H

p+q�n

(E � �;M); D

�

:

Applying the standard involution � and the auto-equivalence ( )

� yields

H

p+q

D

�

TotK.(E � �;F.)
�

�

= H

p+q

D

�

H

p+q�n

(E � �;M)

�

�

:

�

Remark 6.4. It follows from this spectral sequence that if M is a Cohen–Macaulay toric

module of dimension d, thenH
i

(E��;M) = 0 for all i > 0 since then Ext

n�d+i

R

(M;!

R

) =

0 for all i > 0. In the sequel we link the failure of M to be Cohen–Macaulay to the appear-

ance of non-vanishingH
i

(E � �;M) for suitable � and i > 0.

Let m = h�

1

; : : : �

n

i be the Z

d-graded maximal ideal of R. Given a Z

d-graded R-

module N , its local cohomology modules

H

i

m

(N) = lim

�!

t

Ext

i

R

(R=m

t

; N)

supported at m are Zd-graded. We refer to [MS04] for details on the Zd-graded aspects of

local cohomology. By [BH93, Section 3.5] there is a natural vector space isomorphism

Ext

i

R

(N;R)

�

�

=

Hom

C

(H

d�i

m

(N)

��+"

A

; C )

called Zd-graded local duality (see also [Mil02]).

Definition 6.5. Fix a toric module M . A degree � 2 Zd such that H i

m

(M)

��

6= 0 (note the

minus sign in the subscript) for some i � d� 1 is called a true exceptional degree of M . If

� 2 C

d lies in the Zariski closure of the set of true exceptional degrees of M , then � is an

exceptional quasi-degree of M .

Exactness of the Euler–Koszul complex can be expressed in terms of local cohomology.

Theorem 6.6. The Euler–Koszul homologyH
i

(E � �;M) of a toric module M over R is

nonzero for some i � 1 if and only if � 2 C

d is an exceptional quasi-degree of M . More

precisely, if k equals the smallest homological degree i for which�� 2 qdeg(H

i

m

(M)) then

H

d�k

(E � �;M) is holonomic of nonzero rank whileH
i

(E � �;M) = 0 for i > d� k.
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Proof. The module M has dimension at most d, because this is true of every successive

quotient in any toric filtration. Therefore, using notation as in Theorem 6.3, the modules

Ext

p

R

(M;!

R

)) can only be nonzero when p � n� d.

First suppose that � is not an exceptional quasi-degree. This means precisely that � lies

outside of qdeg(Ext
p

R

(M;!

R

)) for all p 6= n�d by local duality. Proposition 5.3 therefore

implies that the only column of the spectral sequence page E

p;q

2

in Proposition 6.3 that

can possibly be nonzero is column p = n� d. Furthermore, the highest possible row of a

nonzero entry in this column is row q = d. Since the cohomology of the abutment is only

nonzero when p+q � n, it follows that Hp+q

D (H

p+q�n

(E��;M))

� can only be nonzero

when p+ q = n. Applying the auto-equivalence ( )

� and taking holonomic duals, we find

thatH
i

(E � �;M) can only be nonzero when i = 0.

Now suppose that � is an exceptional quasi-degree. Let k be the smallest cohomological

degree i such that � 2 � qdeg(H

i

m

(M)) = qdeg(Ext

n�i

R

(M;!

R

)). By Proposition 5.3

and Lemma 6.1, Hd

(E + �; Ext

n�k

R

(M;!

R

))(�"

A

) is nonzero. Moreover, all columns to

the right of column n� k and all rows above row d in the spectral sequence page E
p;q

2

of

Theorem 6.3 are zero. Hence

H

d

(E + �; Ext

n�k

R

(M;!

R

))(�"

A

) = H

d�k+n

D

�

H

d�k

(E � �;M)

�

�

is by Proposition 5.1 a holonomic module of nonzero rank. After applying the auto-equi-

valence ( )

� and taking holonomic duals, we find that H
d�k

(E � �;M) is a holonomic

module of nonzero rank, and the highest nonzero Euler–Koszul homology of M . �

7. GLOBAL EULER–KOSZUL HOMOLOGY AS A HOLONOMIC FAMILY

In this section we explore the interactions of the Euler–Koszul functor with our no-

tion of holonomic family. The main result, Theorem 7.5, is that the family of D-modules

H

0

(E � �;M) for varying � 2 C d constitutes a holonomic family over C d .

Resume the notation from Example 2.2 and Definition 4.2. If we give all of the variables

b = b

1

; : : : ; b

d

degree zero, then the polynomial ring D[b℄ over the Weyl algebra D is

Z

d-graded, as is its commutative subalgebra R[b℄.

Definition 7.1. Let M be a Zd-graded D[b℄-module. The global Euler endomorphisms

ofM are the commuting endomorphisms E
1

� b

1

; : : : ; E

d

� b

d

, the ith of which acts by

E

i

� b

i

: m 7! (E

i

� b

i

� �

i

)m whenever m 2 M

�

:

Each Zd-graded R-module N yields a global Euler–Koszul complex of left D[b℄-modules,

K.(E � b;N) = K.(E � b;D[b℄


R

N);

withD[b℄-linear homomorphisms. Write the homology asH
i

(E�b;N) = H

i

K.(E�b;N).

For any fixed � 2 C

d , the zeroth Euler–Koszul homology H
0

(E � �;N) of N can be

recovered as a fiber (in the sense of Section 2) of the zeroth global Euler–Koszul homology

H

0

(E � b;N) of N . The precise statement, as follows, is immediate from the definitions.

Lemma 7.2. Suppose that N is a Z

d-graded R-module, and that � 2 C

d . The fiber of

M = H

0

(E � b;N) over � isM
�

= H

0

(E � �;N). �
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In view of Lemma 7.2, to prove holonomicity for the family H
0

(E � b;M) determined

by a toric R-module M we need to establish the coherence condition in Definition 2.1.

For this, we shall use the criterion in Proposition 3.4. But before we can do so, we need

to know that Euler operators form sequences of parameters on the quotients of polyno-

mial rings by certain initial ideals of toric ideals. We will get a handle on these initial

ideals via their minimal primes. For notation, consider the polynomial ring C [�℄(x) with

its usual Z-grading, so that each variable in the list � = �

1

; : : : ; �

n

has degree 1. By

a minimal prime of a C [�℄(x)-module N , we mean a prime minimal among all of those

containing the annihilator of N .

Lemma 7.3. Let N be a finitely generated Z-graded C [�℄(x)-module, and let y be a se-

quence of Z-graded elements in C [�℄(x). If C [�℄(x)=(hyi + p) is finite-dimensional as a

vector space over C (x) for every minimal prime p of N , then so is N=yN .

Proof. Let I � C [�℄(x) be the annihilator of N . As N is finitely generated over C [�℄(x)=I ,

it is enough to show that hyi+ I contains a power of the Z-graded maximal ideal m = h�i.

Suppose that I has radical J . Then if ms

� hyi + J then mrs

� (hyi + J)

r, and so

m

rs

� (hyi+ J)

r

� hyi+ J

r

� hyi+ I for some r. Since the minimal primes of I and J

are identical it is sufficient to consider J instead of I .

Now let J = p

1

\� � �\p

m

be a primary decomposition where of course each p
j

is prime.

Then y + J = y + (p

1

\ p

2

� � � \ p

m

) contains the product (y + p

1

) � � � (y + p

m

). Each of

the factors (y+ p

j

) contains a power of m by the hypothesis, so J +y contains the product

of these powers of m. �

We now return to the order filtration on the Weyl algebra D, and the associated graded

ring C [x; �℄ (see Section 3). This filtration, when restricted to the subring R of D, gives an

associated graded ring C [�℄. It induces on R the partial ordering by total degree in which

the initial form of a polynomial f 2 R is the sum in(f) 2 C [�℄ of all terms of highest total

degree, with the variables �
i

changed to �
i

. The initial ideal of any ideal J � R is the ideal

in(J) = hin(f) j f 2 Ji generated by the initial forms of all polynomials in J .

In the coming statement, we consider the ideal I
F

from Notation 4.4. Let Ax� � C [�℄(x)

be the sequence in(E

1

); : : : ; in(E

d

) obtained from E

1

; : : : ; E

d

by replacing each �
i

with �
i

.

Proposition 7.4. If in(I

F

) � C [�℄ is the initial ideal of I
F

in the above sense, then the

C (x)-vector space C [�℄(x)=hin(I
F

); Ax�i is finite-dimensional over C (x).

Proof. This statement immediately reduces to the case where I
F

= I

A

, after first replac-

ing C [�℄(x) with C [�
j

j a

j

2 F ℄(x

j

j a

j

2 F ), and then using any matrix A

0

F

composed

of dim(F ) many linearly independent rows of F to play the role of A. We wish to apply

Lemma 7.3, so we need to describe the minimal primes of C [�℄= in(I

A

).

Define the (d + 1) � (n + 1) matrix ^

A by placing a row (1; : : : ; 1) across the top of A,

and subsequently adding a leftmost column (1; 0; 0; : : : ; 0). If �
0

is a new variable and
^

� = f�

0

g [ �, then C [�℄= in(I

A

)

�

=

C [

^

� ℄=hI

^

A

; �

0

i. Since hI
^

A

; �

0

i is Z ^

A-graded, every

minimal prime of C [�℄= in(I

A

) is the image in C [�℄ = C [

^

� ℄=h�

0

i of a prime ideal I
^

F

� C [

^

� ℄

for some face ^

F of N ^

A with �
0

2 I

^

F

.

Thus we only need that for all faces ^

F of N ^

A with �
0

2 I

^

F

, the ring C [^� ℄(x̂)=hI
^

F

; Ax�i

has finite dimension as a C (x̂)-vector space. Pick one such ^

F . Then �
0

62

^

F , since �
0

2 I

^

F

.
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Hence the column indices of ^

F form a face F of A whose C -linear span does not contain

the origin; indeed, there is a bijection between the faces of ^

A not containing the column â
0

and the faces of A not containing the origin in their span.

We infer that the columns of A constituting F lie on a hyperplane in C d off the origin.

Therefore the vector (1; : : : ; 1) 2 C jF j lies in the rowspan of F . This implies that

C [

^

� ℄(x̂)=hI

^

F

; Ax�i = C [

^

� ℄(x̂)=hI

^

F

; Fx�i

= C [

^

� ℄(x̂)=hI

^

F

;

^

Fx�i

= C [

^

� ℄(x̂)=hI

^

F

;

^

Ax̂

^

�i;

where we writeFx� = fin(E

F

1

); : : : ; in(E

F

d

)g, ^

Fx� = f

P

j2F

x

j

�

j

; in(E

F

1

); : : : ; in(E

F

d

)g,

and ^

Ax̂

^

� = f

P

n

j=0

x

j

�

j

; in(E

1

); : : : ; in(E

d

)g.

We have thus reduced to the projective situation. This case of the proposition follows

from the proof of [Ado94, Theorem 3.9], which proceeds by showing precisely that in the

projective situation the Krull dimension of C [x; �℄=(in(I
A

) + hAx�i) equals n. �

Theorem 7.5. For any toricR-moduleM , the sheaf ~

M on C d whose global section module

is M = H

0

(E � b;M) constitutes a holonomic family over C d ; in other words, M
�

=

H

0

(E � �;M) is holonomic for all � 2 C d , andM(x) is finitely generated over C [b℄(x).

Proof. That the fibersM
�

= H

0

(E � �;M) are holonomic modules is a consequence of

Lemma 7.2 and Proposition 5.1.

For the coherence condition, suppose first that M = S

F

for some face F . Using order

filtrations as above, the graded C [b℄(x)-module associated toM(x) is a quotient of N =

C [�℄[b℄(x)=hin(I

F

); Ax�i, since in(I

F

) + hAx�i = in(I

F

) + in(E � b) � in(hI

F

; E � bi).

As the generators for in(I

F

) and Ax� do not involve b, Proposition 7.4 implies that N

is finitely generated over C [b℄(x). HenceM(x) is finitely generated by Proposition 3.4.

Now let M be any toric R-module. For � 2 Zd and with b0
i

= b

i

� �

i

the isomorphism

H

0

(E � b

0

;S

F

)(�) = H

0

(E � b + �;S

F

)(�) = H

0

(E � b;S

F

(�))

together with the independence of in(I

F

) and Ax� of b proves the theorem if M has toric

length ` = 1. For ` > 1, use the short exact sequence M
1

,!M �M=M

1

from a toric

filtration. The resulting long exact sequence of global Euler–Koszul homologyH.(E�b; )

tensored with the flat module C (x) places the module H
0

(E � b;M)(x) between the two

modulesH
0

(E�b;M

1

)(x) andH
0

(E � b;M=M

1

)(x), both of which are finitely generated

by induction on `. �

8. ISOMORPHISM OF THE TWO HOMOLOGY THEORIES

Let B be a reduced parameter scheme and suppose � 2 B

C

is determined by a regular

sequence y in �(O

B

; B). In Corollary 3.3 we found that the commutative Koszul complex

K.(y;M(x)) detects rank-jumps in holonomic families M of D-modules at �. In the

special case of generalized hypergeometric systems associated to toric modules, where in

particular B = C

d , we also found in Theorem 6.6 that the noncommutative Euler–Koszul

complex K.(E � �;M) detects the quasi-degrees where local cohomology of the toric R-

module M is non-vanishing in cohomological degree less than d. In this section we prove
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that ifM = H

0

(E�b;M) is defined through the toric moduleM then these two complexes

are isomorphic in the derived category, and in particular have the same homology.

We begin by noting that the global Euler–Koszul complex can be interpreted as a collec-

tion of commutative Koszul complexes, similarly to Lemma 4.3.

Lemma 8.1. Let N be a Zd-graded R-module and � 2 Z

d. The Zd-graded degree � part

K.(E�b;N)

�

of the global Euler–Koszul complex agrees with the ordinary Koszul complex

K.(E � b� �; (D[b℄


R

N)

�

) constructed over the polynomial ring �[b℄ � D[b℄. That is,

K.(E � �;N) =

M

�2Z

d

K.(E � � � �; (D[b℄


R

N)

�

);

the right hand side being a direct sum of ordinary Koszul complexes of �[b℄-modules. �

Recall from Theorem 7.5 that H
0

(E � b;M) represents a holonomic family whenever

M is a toric R-module. The following statement links the two homological theories that

we have studied: Euler–Koszul homology and Koszul homology of holonomic families.

Theorem 8.2. Let M be a toric R-module, and consider the holonomic family on C d with

sections M = H

0

(E � b;M). For each parameter vector � 2 C

d , the Euler–Koszul

homology of M and the ordinary Koszul homology ofM over C [b℄ are isomorphic:

H

i

(E � �;M)

�

=

H

i

(b� �;M):

Proof. Write KE. = K.(E � b;M) for the global Euler–Koszul complex, thought of as a

column pointing downward with its bottom at row 0, and let Kb. = K.(b � �; C [b℄) be the

ordinary Koszul complex on b� �, thought of as a row pointing leftward toward its end at

column 0. Consider the double complex Kb. 

C [b℄

K

E. .

Taking horizontal (Kb. )-homology first leaves only one column, namely the leftmost

column, and that column is the Euler–Koszul complex K.(E � �;M). It follows that

H.Tot(Kb. 
 KE. ) �= H.(E � �;M).

Now we need to check that H.Tot(Kb. 
 KE. ) �= H.(b� �;M). For this it is enough to

show that taking the vertical (KE. )-homology of the double complex leaves only one row

(i.e., the bottom row), for then that row is the Koszul complex Kb. tensored over C [b℄ with

the global Euler–Koszul homologyM = H

0

(E � b;M).

All the homomorphisms in Kb. 
KE. are Zd-graded, so it suffices to check the acyclicity

of the vertical differential separately on each Zd-graded component. But (D[b℄


R

M)

�

=

(D


R

M)

�




C

C [b℄, so
�

b

1

� (E

1

��

1

); : : : ; b

d

� (E

d

��

d

)

�

= �(E� b��) is a regular

sequence in �[b℄ on the �[b℄-module (D[b℄


R

M)

�

. Now use Lemma 8.1. �

9. COMBINATORICS OF HYPERGEOMETRIC RANKS

This section contains our results on our motivating problem: a geometric description of

the rank-jumping locus for generalized hypergeometric systems (Theorem 9.1 and Corol-

lary 9.3), and a characterization of Cohen–Macaulayness for semigroup rings through the

absence of rank-jumps (Corollary 9.2).

Theorem 9.1. The rank-jumping parameters � 2 C

d for the hypergeometric holonomic

familyH
0

(E � b;M) of a toric module M are the exceptional quasi-degrees of M .
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Proof. By Theorem 6.6, a parameter � is an exceptional quasi-degree of M if and only

if the Euler–Koszul homology H
i

(E � �;M) is of nonzero rank for some i > 0. This

occurs if and only if the homology H
i

(b� �;M) of the hypergeometric holonomic family

M = H

0

(E � b;M) is holonomic of nonzero rank for some i > 0, by Theorem 8.2. The

nonzero rank condition ensures that the non-vanishing of H
i

(b � �;M) is equivalent to

its non-vanishing after tensoring with C (x) over C [x℄. But C (x) 

C [x℄

H

i

(b � �;M) =

H

i

(b� �;M(x)) by exactness of localization, and this Koszul homology is nonzero if and

only if � is rank-jumping by Corollary 3.3. �

For a finitely generated R-module, the vanishing of H i

m

(M) for all i < d is equivalent to

M having depth d. This immediately implies the following.

Corollary 9.2. The holonomic familyMA

�

= H

0

(E � �;S

A

) has a nonempty set of rank-

jumping parameters � 2 C d if and only if S
A

= R=I

A

fails to be Cohen–Macaulay. �

Not only is the rank-jump locus closed in C d but it has a nice geometric structure.

Corollary 9.3. The set of rank-jumping parameters is a finite union of translates of linear

subspaces C F generated by faces F of A. A translate of C F appears if and only if the

prime ideal I
F

lies in the support of Extn�i
R

(M;R) for some i � d� 1.

Proof. The graded Matlis dual of the local cohomology moduleH i

m

(M) is, by local duality,

a Zd-graded translate of Extn�i
R

(M;R). Hence the rank-jumping parameters form a Zd-

graded translate of the negative of the set qdeg(
L

d�1

i=0

Ext

n�i

R

(M;R)). �

Porism 9.4. The set of exceptional parameters for a GKZ hypergeometric systemMA

�

=

H

0

(E � �;S

A

) has codimension at least 2 in C d .

Proof. Set S = S

A

. By Corollary 9.3, we need Ext

n�i

R

(S;R)

p

= 0 for all primes p of

dimension d� 1 and all i � d� 1. For such primes, R
p

is regular and local of dimension

n�d+1, so Ext

n�i

R

(S;R)

p

= Ext

n�i

R

p

(S

p

; R

p

) = 0 unless i � d�1. As Extn�d+1

R

(S;R)

p

is

Matlis dual over R
p

to H0

pR

p

(S

p

), which vanishes because S is a domain, we are done. �

Remark 9.5. Corollary 9.3, and more generally Theorem 2.6, indicates that the dimensions

of the holomorphic solution spaces of hypergeometric systemsMA

�

behave quite tamely as

functions of �. However, the methods in this article do not directly involve a study of the

variation of the holomorphic solutions themselves (cf. Remark 2.8), which could in princi-

ple be much worse. In fact, work of Saito [Sai01] implies that the isomorphism classes of

A-hypergeometric systemsMA

�

do not vary at all algebraically with �. The question there-

fore remains whether the holomorphic solution space of a hypergeometric system MA

�

varies as a function of � more like the rank of MA

�

or more like the isomorphism class

of MA

�

. This problem is particularly important for research toward constructing explicit

solutions to A-hypergeometric systems.
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bases and applications (Linz, 1998), London Math. Soc. Lecture Note Ser., vol. 251, Cambridge

Univ. Press, Cambridge, 1998, pp. 246–258. MR 2001
:33026

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE MA

E-mail address: laura@math.harvard.edu

SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS MN

E-mail address: ezra@math.umn.edu

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE IN

E-mail address: walther@math.purdue.edu


