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Abstract
Wereviewsomeclassical andmodern aspects of hypergeometric differential equations,
including A-hypergeometric systems of Gel′fand, Graev, Kapranov and Zelevinsky.
Some recent advances in this theory, such as Euler–Koszul homology, rank jump
phenomena, irregularity questions and Hodge theoretic aspects are discussed with
more details. We also give some applications of the theory of hypergeometric systems
to toric mirror symmetry.
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1 Introduction

Notational conventions We use Italic letters M for rings, variables and modules; cal-
ligraphic lettersD for sheaves; Roman letters FL for functors; Gothic letters for prime
ideals p and points x of spaces.

Lattice elements a are in Roman bold; coordinate sets t and other sets of functions
or operators ∂ in Italic bold. ♦

1.1 Hypergeometric functions

The study of hypergeometric functions startedmore than two centuries ago and formed
a important part of the work of Euler and Gauß. A power series

f (z) =
∞∑

i=0
ai z

i/i !

is hypergeometric if the quotient ai+1/ai of consecutive coefficients is a rational
function in i . Traditional convention dictates that the exponential function is regarded
as the standard hypergeometric function (to ai+1/ai constant); this “explains” the
choice of ai/i ! over ai as series coefficient. Further examples include Bessel, Airy,
trigonometric and (higher) logarithmic as well as all other special functions, and the
hypergeometric functions that express roots of algebraic equations (Sturmfels 1996).

The continuing interest in hypergeometric functions stems to some extent from
the fact that they are often solutions to very appealing linear differential equations
taken from physics. For example, the Bessel functions J±r (x) of the first kind arise
as solutions to a linear second order equation that shows up in heat and electromag-
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netic propagation in a cylinder, vibrations of circular membranes, and more generally
when solving the Helmholtz or Laplace equation. Indeed, such connections to physics
through differential equations prompted the first studies of (specific) hypergeomet-
ric functions. However, hypergeometric functions also appear in many other parts of
mathematics: as we will see soon, each time an action of an algebraic torus on a space
is observed, one can expect to find some differential equation of hypergeometric type
connected to this situation. The abundance of toric varieties in geometry explains why
there are so many different interesting hypergeometric functions.We discuss in Sect. 5
below one prominent case where hypergeometric differential equations prove to be
useful: the so-called mirror symmetry phenomenon for certain smooth toric varieties.
Other recent applications that are beyond the scope of this article include the holo-
nomic gradient method in algebraic statistics (Hibi et al. 2017) or Feynman integral
computations in quantum field theory (Nasrollahpoursamami 2016; Klausen 2019; de
la Cruz 2019; Feng et al. 2020).

As it turns out, it is exactly the type of differential equation satisfied by a function
that determines whether the function should be considered as hypergeometric, since
these force the right kind of recursions on the series. The most successful approach to
generalize hypergeometric differential equations to several variables was initiated by
Gel′fand, Graev, Kapranov and Zelevinsky in the 1980s, and some of the features of
this theory form the topic of this article. We start with some motivating examples.

Example 1.1 (The error function, part I) The (Gauß) error function erf(x) is defined
by

erf(z) = 2√
π

∫ z

0
exp(−t2) dt .

While this integral cannot be solved in closed form, it can be developed into a conver-
gent Taylor series

erf(z) = 2√
π
z
∞∑

i=0
ai

(−z2)i
i ! (1)

where ai = 1/(2i + 1), so that

erf(z) = 2z√
π

(
1− z2

3
+ (z2)2

10
− (z2)3

42
− (z2)4

216
+ (z2)5

1320
∓ · · ·

)

is hypergeometric. ♦

The univariate hypergeometric functions are classified by the rational function
ai+1/ai . More precisely, suppose that ai+1/ai = P(i)/Q(i) where P, Q ∈ C[i]
are monic with P = ∏p

j=1(i + α j ) and Q = ∏q
j=1(i + β j ). Then the univariate

hypergeometric function associated to P, Q is
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pFq(α1, . . . , αp;β1, . . . , βq ; z) =
∞∑

i=0

ai zi

i ! (2)

where a0 = 1 and

ai+1
ai

= (i + α1)(i + α2) . . . (i + αp)

(i + β1)(i + β2) . . . (i + βq)
.

Example 1.2 (The error function, part II) It follows from (1) that erf(z) is, up to the
factor 2z/

√
π , equal to 1F1(1/2; 3/2;−z2), where

1F1(1/2; 3/2; z) = 1+ z

3
+ z2

10
+ z3

42
+ z4

216
+ z5

1320
+ · · ·

is the Kummer confluent function which encodes all intrinsic analytic and combinato-
rial properties of erf(x) and, with θz = z d

dz , satisfies the differential equation

θz(θz + 1/2) • ( f )− z(θz − 1/2) • ( f ) = 0. (3)

The particular shape of this equation will be used in the next section for a conversion
process from univariate hypergeometric functions to A-hypergeometric ones. ♦

In the following example we document how hypergeometric functions arise natu-
rally fromdifferential formswith parameters. The computationwas apparently already
known to Kummer; compare (Brieskorn and Knörrer 1986) for details. In modern
terms, it represents the birth of the notion of a variation of Hodge structures.

Example 1.3 (Hypergeometry and Hodge filtrations) The equation fz = 0 with

fz(u, v) = v2 − u(u − 1)(u − z)

defines for each z ∈ C � {0, 1} a smooth curve Ez over C. Its projective closure Ez ⊆
P
2
C
meets the line at infinity in a single point and is smooth as long as z /∈ {0, 1,∞}.

The natural projection from Ez toC via “forgetting v” is generically 2 : 1 and branches
at 0, 1, z; the induced map Ez −→ P

1
C
also branches at infinity.

The differential 1-form ωz := du/v is everywhere holomorphic and nowhere zero
on Ez ; the existence of this “form of the first kind” in Riemann’s language makes the
elliptic curve Ez a Calabi–Yau manifold in modern terms. The “form of the second
kind” ω′z := ωz/(u − z) has a unique pole, at u = z, at which it is residue-free.
Considering v = v(u, z) as dependent variable and writing ωz, ω

′
z in terms of u and z,

one notes that ∂
∂z (ωz) = 1

2ω
′
z , and (compare especially (Brieskorn and Knörrer 1986,

Page 685))

∂

∂z
(ω′z) =

3du

4v(u − z)2
= 1

4z(1− z)︸ ︷︷ ︸
p(z)

ωz + −1+ 2z

z(1− z)︸ ︷︷ ︸
q(z)

ω′z + d

(
v

2(u − z)2z(1− z)

)
,
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the differential on the right being taken in u, v with z constant (and noting that on E
one has d(u(u − 1)(u − z)) = 2v dv).

Let λ ∈ H1(Ez;Z) 	 Z ⊕ Z and set I1(λ) = ∫
λ
ωz and I2(λ) = ∫

λ
ω′z , multi-

valued functions on Ez defined via elliptic integrals. The differential equations for
ωz, ω

′
z imply (compare (Brieskorn and Knörrer 1986, Lemma 12)) that I1(λ) and

I2(λ) are solutions to
f ′′ − q f ′ = p f , (4)

with singularities at 0, 1 and∞. It is the special case 1 = 2a = 2b = c of the general
Gauß hypergeometric differential equation

f ′′ + c − (a + b + 1)t

z(1− z)
f ′ = ab

z(1− z)
f

with solution space basis given by Gauß’ hypergeometric functions

F1 =
∞∑

n=0

[a]n[b]n
[c]n

zn

n! ,

F2 = −
√−1

∞∑

n=0

[a]n[b]n
[c]n

(1− z)n

n! ,

which have singularities at 0,∞ and 1,∞ respectively.
Suppose λz, λ

′
z are the standard basis (theminimal geodesics) for the first homology

group of the torus Ez . Then two elementary (but non-trivial) computations reveal:

(1) analytic continuation of the solution space basis F = (F1, F2)T around the

points z = 0 and z = 1 corresponds to multiplication of F by M0 =
(

1 0
−2 1

)

and M1 =
(
1 2
0 1

)
respectively;

(2) the map

π : P
2
C

� {(1, 0, 0), (1, 1, 0), (0, 0, 1)} −→ P
1
C
,

wu(u − w)← � z0,

wv2 − u3 − u2w ← � z1,

is a bundle with fiber Ez1/z0 that admits an Ehresmann connection. In particular,
the cohomology classes of the fibers allow parallel transport. The induced vector
bundle with fiber H1(Ez;Z) = Zλz + Zλ′z admits a monodromy action, lifting
the loops around z = (0, 1) and z = (1, 1). Analysis of the geometry of π shows
that this monodromy is given again by the actions of M1 and M2 respectively.

More abstractly, the D-module on the base of π corresponding to the (derived) direct
image (compare Notation 4.1) of the structure sheaf on the source of π , also known
as the Gauß –Manin system, has monodromy action via M1, M2.
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On the complement of the points 0, 1,∞ this Dz-module is a vector bundle
with a flat connection. The fibers of this vector bundle are the cohomology groups
H1(Ez1/z0;C). This vector bundle is actually a variation of pure Hodge structures of
weight 1 where the (1, 0)-part is generated by the differential form ωz , the variation
of this (1, 0)-subbundle being described by (4).

It follows that, up to scalars, I1(λz) = F1(z), I2(λz) = F2(z). In particular, the
ratio τ(z) = I1(λz)/I2(λz) is the modulus of the elliptic curve in the sense that the
fiber over z is isomorphic to the quotient of C by Z+√−1τ · Z.

We will take up the discussion of Hodge structures associated to more general
univariate hypergeometric operators (see Eq. (7) below) later in Sect. 4 (see page 33).

♦

1.2 From univariate to GKZ and back

In the 1980s, the Russian school around I.M. Gel′fand found a universal way of
encoding univariate hypergeometric functions by way of certain systems of PDEs that
arise from an integer matrix A and complex parameter vector β. We start with the
general definition and then explain how univariate hypergeometric functions arise as
solutions of these D-modules.

Notation 1.4 In the first three sections of this article,

A = (a1, . . . , an) ∈ Z
d×n

denotes an integer matrix with d rows and n columns. In the last two sections, A will
still be integer, but at least sometimes of size (d + 1)× (n + 1). ♦

For convenience, we place the following constraints on the matrix A; they make
concise statements possible, or at least easier to make.

Convention 1.5 (Standard assumptions on A) With A as above, A spans a semigroup

NA :=
n∑

j=1
Na j ⊆ ZA

inside Z
d . Throughout we assume that

• the group ZA generated by A agrees with Z
d (A is full);

• the semigroup NA contains no units besides 0 (A is pointed). We note that point-
edness of A is equivalent to the existence of a group homomorphism from Z

d to
Z that is positive on every a j .

♦
We now give the definition of the main character of our story.

Definition 1.6 (A-hypergeometric system, Gel’fand et al. (1987)) Fix A ∈ Z
d×n as in

Convention 1.5 and choose β ∈ C
d . Let

DA := C[x]〈∂〉
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be the n-th Weyl algebra over C. Here x = x1, . . . , xn, ∂ = ∂1, . . . , ∂n , and ∂ j is
identified with the partial differentiation operator ∂

∂x j
. We also let

RA := C[∂] ⊆ DA

denote the polynomial subring.
Letting θ j stand for x j∂ j , the Euler operator Ei is

Ei =
n∑

j=1
ai, jθ j .

For each u ∈ Z
n in the kernel of A its box operator is

�u = ∂u+ − ∂u− ,

where (u+) j = max{0,u j } and (u−) j = max{0,−u j }. The toric ideal IA is the
RA-ideal generated by all �u with u ∈ ker A. Finally, the hypergeometric ideal and
module to A, β are

HA(β) := DA(IA, {Ei − βi }d1), MA(β) := DA/HA(β).

♦

Before we embark on a general discussion of these modules we wish to distinguish
two special subclasses that will play a lead role.

Definition 1.7 The matrix A is homogeneous if the following equivalent properties
are satisfied:

• there is a group homomorphism from Z
d to Z that sends every a j to 1 ∈ Z;

• the vector (1, 1, . . . , 1) is in the row span of A;
• the ideal IA is standard graded and thus defines a projective variety inside projective

(n − 1)-space.

♦

Definition 1.8 The semigroup NA is saturated if NA agrees with the intersection
of ZA with the cone R≥0A spanned by the columns of A viewed as elements of
R
n = Z

n ⊗Z R. ♦

In a series of articles, including Gel’fand et al. (1987, 1989, 1990), the basic theory
of these linear PDEswas developedby theGel’fand school. The initialmotivation came
from Aomoto type integrals

Y (β; x) =
∫

C
tβ exp

(
n∑

i=1
xi t

ai

)
dt1
t1
· · · dtd

td
(5)
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depending on a complex parameter vector β ∈ C
d , It is not hard to verify that a

hypergeometric function defined by the integral (5) is annihilated by both the Euler
operators and the box operators (Gel’fand et al. 1990; Adolphson 1994) but it took a
decade to arrive at the general formulation given here.

It turns out that every univariate hypergeometric function arises as a solution of an
A-hypergeometric system; we sketch next the steps to construct the proper A, β. The
general hypergeometric univariate differential equation is

∏

v j>0

v j−1∏


=0
(v jθz + c j − l) = z ·

∏

v j<0

|v j |−1∏


=0
(v jθz + c j − l). (6)

It is elementary, but not always trivial, to bring a differential equation derived from
a series expansion of a hypergeometric function into this shape; it may require changes
of variables in z. Note that pFq(α;β; z) is a solution to the special form

θz

q∏

j=1
(θz + β j − 1) = z ·

p∏

j=1
(θz + α j ) (7)

as one can see from applying the two operators to the power series (2).
Let v and c be the vectors with entries v j and c j respectively. For 2F1 (equal to

the function F1 in Example 1.3), v = (1, 1,−1,−1) while for the Kummer confluent
function 1F1, v = (1, 1,−1).

Now, in order to manufacture A and β from Eq. (6), choose an integral matrix A
such thatZ ·v = ker A and set β = A ·c. Then the solutions of HA(β) (in other words,
the functions annihilated by every operator in this left ideal) “contain the solutions to
(6)” in the following sense.

Example 1.9 (The GKZ-system to the Kummer confluent function) Consider the sys-
tem of partial differential equations

(1θ1 + 1θ3) • (u) = (−1/2)u (8)

(1θ2 + 1θ3) • (u) = (0)u (9)

(∂1∂2 − ∂3) • (u) = 0 (10)

in x1, x2, x3. This is the A-hypergeometric system to

A =
(
1 0 1
0 1 1

)
, β =

(−1/2
0

)
, (11)

since v = (1, 1,−1) is the Z-kernel of A.
Equation (8) forces any solution u to be homogeneous (and of degree−1/2) under

the grading that attaches the weights (1, 0, 1) to (x1, x2, x3). Similarly, Eq. (9) asserts
that u is homogeneous of weight zero if (x1, x2, x3) �→ (0, 1, 1). It follows that one
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can write

u(x1, x2, x3) = xa1 x
b
2 x

c
3 g(x1x2/x3)

where the monomial xa1 x
b
2 x

c
3 is of bi-degree (−1/2, 0), and g is a univariate function.

Set z = x1x2/x3 and write

g(z) =
∞∑

i=0
gi z

i .

Enforcing the vanishing of ∂1∂2−∂3 on u(x1, x2, x3) as suggested by Eq. (10) implies
the recurrence relations

(c − i)gi = (a + i + 1)(b + i + 1)gi+1

for all i , and the starting condition

∂1∂2 • (xa1 x
b
2 ) = 0.

For a = 0, observing that xa1 x
b
2 x

c
3 is of bi-degree (−1/2, 0), we infer b = −c = 1/2

and thus the recurrence is

(−1/2− i)gi = (i + 1)(1/2+ i + 1)gi+1,

showing that g(z) essentially agrees with the Kummer confluent function. ♦

Example 1.10 (GKZ-system to 2F1) Take Eq. (7) with p = q = 2 and c = (1, c, a, b).
Then v = (1, 1,−1,−1) and the matrix A can be chosen as

A =
⎛

⎝
1 1 1 1
1 0 0 1
0 1 0 1

⎞

⎠ ,

so that β = A ·c = (c−1,−a,−b). The three Euler operators {∑4
j=1 ai, jθ j −βi }3i=1

annihilate each solution, so every monomial xu in the power series expansion of every
solution to the A-hypergeometric system must satisfy the three conditions

(u1 + u2 + u3 + u4) = β1;
(u1 + u4) = β2;
(u2 + u4) = β3.

For a monomial xu, we call A · u ∈ ZA the A-degree of xu. Then, every solution
u(x1, x2, x3, x4) can be written as a univariate function g in x1x4

x2x3
, multiplied by a

monomial of A-degree β. As in the previous example, one can use the fact that �v
kills u to show that g satisfies the Gauß hypergeometric differential equation. ♦
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Of course, the kernel of A being Z · v means that A ∈ Z
(n−1)×n and IA = (�v)

is principal. On the other hand, the A-hypergeometric paradigm also encodes multi-
variate hypergeometric series of higher rank (namely n − d) when d < n − 1. The
solutions to HA(β) use n variables and satisfy d homogeneities, so that effectively
they are functions in n − d independent quantities. Some aspects of the translation
between the two setups is discussed in Berkesch et al. (2019). The advantage of the A-
hypergeometric point of view is that it allows hypergeometric functions to be studied
with methods coming from algebraic geometry, commutative algebra, and the theory
of torus actions. We describe in the following sections some of the advances and some
of the new problems that have been created through these new techniques.

1.3 Solutions

While we do not focus very much on solutions of A-hypergeometric systems in this
survey, it is only fair to indicate to some extent the development of the understanding
of their solution space over time. We also refer the reader to Remark 3.14 below,
where we list and discuss some more references, after having explained issues like
irregularity and slopes of hypergeometric systems.

Classically, functionswere considered as hypergeometric if they could be developed
into a hypergeometric series. They typically arose from specific differential equations
and the hypergeometricity was a consequence of the recurrence relations that came out
of the differential equation. While introducing A-hypergeometric systems, Gel′fand
and his collaborators Graev, Kapranov and Zelevinsky developed a similar paradigm
for the multi-variable homogeneous case, see Definition 1.7. With setup as in Sect. 2,
so A · γ = β and LA the kernel of A, the series

∑

a∈L A

xγ+a/
∏

1≤ j≤n
�(γ j + a j + 1)

formally is a solution of HA(β). Assuming a certain amount of genericity for γ (such
as non-resonance, see Definition 2.7) the article (Gel’fand et al. 1989) also finds that
the regions of convergence of these series contain an open cone of the same shape as
(R≥0)n .

The series approach to solving differential equations of hypergeometric type was
then taken further by Sturmfels, Saito and Takayama in their book Saito et al. (2000)
through the technique of Gröbner bases. As part of this mechanism, triangulations
arise. The connection between certain special solution series on one side and and tri-
angulations on the other appears already in Gel’fand et al. (1989). In the homogeneous
normal case (see Definition 1.7) it can be used to count the number of solutions as the
simplicial volume of the convex hull of the columns of A; Saito et al. (2000) provides
various generalizations.

The first functions that were identified as hypergeometric were the �-type integrals∫
ta(1 − t)b(1 − zt)cdt of Euler for the Gauß hypergeometric function. In Gel’fand

et al. (1990), the authors consider integrals
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∫

σ

tβ
∏

Pi (t)αi dt1 . . . dtd

where Pi (t) are Laurent polynomials and the integrals are functions in the coefficients
of the polynomials Pi . Here, σ is a k-cycle; in the Euler integrals σ is a curve. Gel′fand,
Kapranov and Zelevinsky show that the above integrals are A-hypergeometric and
under suitable conditions span the solution space. This approach generalizes Aomoto’s
integrals on complements of generic hyperplane arrangements (Aomoto 1977), a
source of inspiration in the search for the right definition of A-hypergeometric systems.

There has always been a strong trend towards the study of “special” hypergeomet-
ric systems, namely those for which the solution space is spanned by special classes
of functions. This starts with Gauß’ observation (Gauß 1973, page 125, Formel I.-
V.) that some parameter choices in the Gauß hypergeometric differential equation
yield algebraic solutions. Kummer (1836), Riemann, and Gauß (Gauß 1973, page
207) developed tools to search for other such instances. Then Schwarz constructed his
famous list (Schwarz 1873) of the Euler–Gauß hypergeometric differential equations
whose solution space is spanned by algebraic functions. The case of all pFp−1 was
dealt withmuch later byBeukers andHeckman (1989) as part of their study of themon-
odromy. For irreducible such equationswith real parametersα1, . . . , αp, β1, . . . , βp−1
setβp = 1. Their exponentials on the unit circle are interlaced provided that the images
of αi and β j are encountered alternatingly on a trip around the unit circle. Then Beuk-
ers and Heckman (1989) shows that interlacing is equivalent to the solution space
of the differential equation being spanned by algebraic functions. Other cases were
characterized in Sasaki (1977), Cohen and Wolfart (1992) (Appell–Lauricella FD),
Kato (1997, 2000) (Appell F2, F4).

For saturated irreducible homogeneous A-hypergeometric systems MA(β) with
rational β, Beukers discovered the following fact about the number of algebraic
solutions. Let CA,β = (β + ZA) ∩ (R≥0A) and consider it as a module over the
semigroup NA. Let σA(β) be the number of generators ofCA,β over NA. Then, Beuk-
ers shows in Beukers (2010) that σA(β) never exceeds the volume of A, and equality
of σA(kβ) = vol(A) for all 1 ≤ k ≤ D coprime to the least common denominator D
of β1, . . . , βd happens precisely when the solution space is spanned by algebraic func-
tions. We remark that irreducibility is linked to non-resonance (compare Definition
2.7) by Beukers (2011), Saito (2011) and Schulze and Walther (2012).

The story for inhomogeneous (i.e., confluent) systems is more complicated, both
theoretically and algorithmically. Since the solutions do not need to lie in the Nilsson
ring, a systematic search in the sense of Saito et al. (2000) using Gröbner bases
is not possible. Nonetheless, in Esterov and Takeuchi (2015) an idea of Adolphson
(Adolphson 1994) is completed that casts solutions of non-resonant A-hypergeometric
systems as integrals

∫

γ z
exp

⎛

⎝
n∑

j=1
x j ta j

⎞

⎠tc1−11 . . . tcd−1d dt1 . . . dtd .
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Here, γ is a continuous family of real d-dimensional topological cycles in the torus,
on which the integrand decays rapidly at infinity in the sense of Hien (2009). This
was also already studied in the context of integrals from hyperplane arrangements by
Kimura et al. (1992).

2 Torus action and Euler–Koszul complex

In this section, we start exploring algebraic properties of the system HA(β) by intro-
ducing a homological tool from Matusevich et al. (2005) that has proved to be very
successful: the Euler–Koszul complex. It has been used to study the number of solu-
tions, their monodromy, and several other aspects. We refer to the start of Sect. 1.2 for
basic notations and assumptions regarding A.

2.1 Torus action and A-grading

Given a DA-module Q, its Fourier–Laplace transform Q̂ is equal to Q as a C-vector
space and carries a D̂A := C[ξ ]〈∂〉 structure given by

ξ j · m := ∂x j · m, ∂ξ j · m := −x j · m, (12)

for any m ∈ Q. See (19) for a functorial description, and compare Sect. 4.4 for a
related construct, the Fourier–Sato transform.

The polynomial ring RA is naturally identified with the coordinate ring C[ξ ] of the
Fourier–Laplace dual space Ĉ

n of C
n . The matrix A defines an algebraic action

T× Ĉ
n −→ Ĉ

n

of the d-torus

T := (C∗)d = Spec(C[t±11 , . . . , t±1d ])

with coordinates t = t1, . . . , td on Ĉ
n by

(η, ξ) �→ η · ξ := (ηa1ξ1, . . . , η
anξn). (13)

This action induces a grading

RA =
⊕

a∈ZA

(RA)a

on RA, where

deg(∂ j ) = a j ;

123



Beitr Algebra Geom

we refer to this as the A-grading. There is a natural extension to DA if one sets

deg(x j ) = −a j

that makes every Euler operator A-graded of degree zero.
The coordinate ring of the orbit closure through (1, . . . , 1) is the toric ring

SA := C[ta1 , · · · , tan ] = C[NA] = RA/IA.

Remark 2.1 The semigroup ring SA is normal (and hence Cohen–Macaulay by
Hochster’s Theorem 1 in Hochster (1972)) if and only if NA is saturated in the sense
of Definition 1.8. ♦

We shall identify subsets of columns of A with subsets of column indices or sub-
matrices. For such a subset τ ⊂ A, set

(1τ ) j :=
{
1 if a j ∈ τ,

0 if a j /∈ τ,

denote by Oτ
A the orbit of 1τ , and its Zariski closure by O

τ

A. Moreover, we write Sτ
A

for the coordinate ring of O
τ

A.
Let I τ

A be the RA-ideal generated by IA and all ∂u with A · u /∈ τ . It is A-graded
and prime and we have Sτ = RA/I τ

A. Note that

Oτ
A = Var(I τ

A) �

⋃

τ ′�τ

Var(I τ ′
A ),

with dim(τ ) = dim(Var(I τ
A)) = dim(Oτ

A).
The following sets are then in one-to-one correspondence:

{
faces τ of R≥0 · A

}↔ {
A − graded primes I τ

A ⊇ IA of RA
}↔ {

T− orbits Oτ
A

}
.

2.2 Toric category and Euler–Koszul technology

The following set of constructions and results is taken from Matusevich et al. (2005).
Note that Ei−βi ∈ DA can be viewed as a left D-linear endomorphismon A-graded

DA-modules M by sending a ZA-homogeneous y ∈ M to

(Ei − βi ) ◦ y := (Ei − βi − degi (y))y, (14)

and that these morphisms commute with one another.

Definition 2.2 (Degrees and Euler–Koszul complex) Let

N =
⊕

a∈ZA

Na
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be an A-graded RA-module and pick β ∈ C
d . Let tdegA(M) be the true A-degrees

of N , given as the set of points A · u in ZA for which the graded component Nu is
nonzero,

tdegA(N ) := {a ∈ Z
d |Na �= 0}.

Write qdegA(N ) for the Zariski closure of tdegA(N ) ⊆ ZA inside C
d .

The Euler–Koszul complex KA,•(N ;β) is the Koszul complex of the endomor-
phisms E −β on the left DA-module DA⊗R N equipped with the natural A-grading.
Its i-th homology

HA,i (N ;β) := Hi (KA,•(N ;β))

is the i-th Euler–Koszul homology of N . Note that HA,0(SA;β) = MA(β). ♦

Remark 2.3 A (commutative graded) precursor of the Euler–Koszul complex when
N = SA appears already in Gel’fand et al. (1989) for proving holonomicity of MA(β)

when SA is aCohen–Macaulay ring, and inAdolphson (1994, 1999) amodified version
of the complex is discussed. ♦

The properties of the Euler–Koszul complex are most pleasant when N is in the cat-
egory of toric modules. These are A-graded RA-modules that have a finite composition
series whose successive quotients are ZA-shifted quotients of SA.

Remark 2.4 There is a generalization in Schulze and Walther (2009) to quasi-toric
(i.e., certain non-Noetherian A-graded) modules that is useful for the interplay of
Euler–Koszul complexes on local cohomology modules or on localizations such as
C[ZA].

A different generalization (toral modules) is given and used in Dickenstein et al.
(2010). ♦

ByMatusevich et al. (2005), short exact sequences 0 −→ N ′ −→ N −→ N ′′ −→
0 of toric modules give rise to long exact sequences of Euler–Koszul homology mod-
ules that are all holonomic (see Definition 2.12). Moreover, vanishing of HA,0(N ;β)

implies vanishing of all HA,i (N ;β) and this vanishing is equivalent to −β not being
in the quasi-degrees of N .

Remark 2.5 While Euler–Koszul complexes were initially defined for the study of the
size of the solution space of A-hypergeometric systems (Matusevich et al. 2005), they
have turned out to be remarkably successful when investigating other issues such as
irregularity (see Sect. 3; Schulze and Walther (2008)), reducibility of the monodromy
(Walther 2007; Fernández-Fernández 2019), comparisons with direct image functors
(see the next subsection as well as (Schulze and Walther 2009; Steiner 2019a, b)),
more general classes of binomial D-modules (Dickenstein et al. 2010; Berkesch et al.
2019; Berkesch-Zamaere et al. 2015), the study of Horn hypergeometric systems
(Dickenstein et al. 2010; Berkesch et al. 2019), resonance (Schulze andWalther 2012),
or Hodge theoretic aspects (see sections 4 and 5 as well as Reichelt 2014; Reichelt
and Sevenheck 2015, 2017, 2020; Reichelt and Walther 2018). ♦

123



Beitr Algebra Geom

2.3 Fourier–Laplace transformed GKZ-systems

We noted in Sect. 2.1 that the torus T acts on the Fourier–Laplace dual space Ĉ
n .

The orbit closure through (1, . . . , 1) is an affine toric variety XA := Spec(SA). We
identify its dense open orbit OA with the torus T. This gives rise to inclusions

T
jA−→ XA

iA−→ Ĉ
n

where jA is an open embedding and i A is a closed embedding. We set

hA := i A ◦ jA. (15)

We denote the Fourier–Laplace transformofMA(β) by M̂A(β), and the correspond-
ing quasi-coherent sheaves by MA(β) and M̂A(β) respectively. Using the definition
of the Fourier–Laplace transform (12) one easily sees that M̂A(β) has support on the
toric variety XA. In Schulze and Walther (2009) the parameters β were identified for
which there is an isomorphism M̂A(β) 	 (hA)+Oβ

T
between the Fourier–Laplace

transform of MA(β) and the direct image under hA of the twisted structure sheaf

O
β

T
= DT/DT(∂t1 t1 + β1, . . . , ∂td td + βd).

The relevant definition is the following one.

Definition 2.6 (Schulze and Walther 2009) The elements of

sRes(A) :=
n⋃

j=1
sRes j (A)

where

sRes j (A) := {β ∈ C
d |β ∈ −(N+ 1)a j + qdegA(SA/(ta j ))}

are the strongly resonant parameters of A. ♦

Strong resonance, as the language suggests, is a strengthening of resonance, defined
next.

Definition 2.7 The parameter β is resonant for A if β + Z
d meets the complexified

boundary hyperplanes of the cone R≥0A. ♦

Remark 2.8 Strongly resonant parameters are resonant.
The resonant parameters containNA, but the strongly resonant ones usually do not.

For example, if the semigroup NA is saturated, then NA∩ sRes(A) = ∅. In particular,
0 is not an element of sRes(A) in this case, a fact that will become useful later. ♦
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Example 2.9 Consider the matrix

A =
(−1 0 1 2

1 1 1 1

)

the sets tdegA(SA) and sRes(A) and the cone R≥0A are sketched below. Since d = 2,
fullness of A implies that we have qdegA(SA) = C

2 (Fig. 1). ♦

Theorem 2.10 Let A ∈ Z
d×n be as above, then the following statements are equivalent

(1) β /∈ sRes(A)

(2) M̂A(β) 	 (hA)+Oβ

T

(3) Left multiplication with ξi is invertible on M̂A(β).

��
Remark 2.11 The idea of linking M̂A(β) to the direct image (hA)+Oβ

T
originates

with (Gel’fand et al. 1987) where it was shown that β non-resonant gives the desired
isomorphism. The precise computation in Theorem 2.10 comes from Schulze and
Walther (2009). These results were refined and extended to the strongly resonant case
in Steiner (2019a, b) where Steiner uses a combination of direct and proper direct
image functors. ♦

2.4 Holonomicity, Rank, and Singular Locus

Suppose M = DA/I is some left DA-module, and M = DCn/I the associated
sheaf of DCn -modules. Then its analytification M an = Dan

Cn/Dan
CnI is obtained by

replacing DCn by the sheaf Dan
Cn of analytic linear differential operators on C

n where
now I ⊆ DCn ⊆ Dan

Cn generates a left ideal of analytic linear differential operators.
Choose x ∈ C

n and denote stalks by subscripts. Consider the functor

Solx(−) = HomDan
Cn ,x

(−,Oan
Cn ,x)

Fig. 1 Cone, true, and strongly resonant degrees
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from germs of left Dan
A,x-modules to vector spaces.1 If M an = Dan

Cn/Dan
CnI then η ∈

Solx(M an) corresponds to the analytic solution η(1+Dan
CnI ) near x. The dimension

of the vector space of solutions to M at x is the rank of M at x. When we mean the
rank at a generic point x we speak of just the rank of M .

Typically, Solx(M an) is infinitely generated. But for the select class of holonomic
modules it is always finite.

Definition 2.12 Any principal DA-module (resp. Dan
Cn -module) M (resp. M ) with

generator m has a natural order filtration Ford• by RA-modules (resp. OCn -modules)
where Ford

k (M) (or, on the stalk, Ford
k (Mx)) is generated by the cosets of ∂u with

|u| ≤ k. The notion readily extends to any module with chosen set of generators and
behaves well under analytification.

If M = Dan
Cn is the sheaf of differential operators itself, the associated graded

object is on the stalk isomorphic to the regular ring Ox[ y] where y = y1, . . . , yn is
the set of symbols to ∂1, . . . , ∂n . For any M (resp. M ), the associated graded object
grF (−) becomes a module over grF (DA) (resp. grF (Dan

Cn )).
The module is holonomic if the associated graded module has Krull dimension n.

♦

It was shown in Gel’fand et al. (1987, 1989) that many, and then in Adolphson
(1994) that in fact all A-hypergeometric systems are holonomic; an elementary proof
is given in Berkesch-Zamaere et al. (2015). Holonomicity was then extended in Matu-
sevich et al. (2005) and Schulze and Walther (2009) to all Euler–Koszul homology
modules derived from quasi-toric input.

By Sato et al. (1973) and Gabber (1981), the characteristic variety is always invo-
lutive and has all components of dimension n or larger. This implies that holonomic
modules have finite length and satisfy a Krull–Remak–Schmidt theorem (have well-
defined sets of simple composition factors with multiplicity taken into account).
Moreover, the quantity

rk(M) := dimC(C(x)⊗C[x] M)

agrees with the rank of M in a generic point x ∈ C
n by the Cauchy–Kovalevskaya–

Kashiwara Theorem (Saito et al. 2000, p. 37).
For many important A-hypergeometric systems, a search of explicit natural power

series solutions leads to rank many independent solutions, compare (Gel’fand et al.
1987; Saito et al. 2000). It was claimed in Gel’fand et al. (1989) that the rank ofMA(β)

is

rk(MA(β)) = vol(A),

where vol(A) is the (simplicial) volume of A, a purely combinatorial quantity given
by the quotient of the measure of the convex hull of the origin and the columns of
A, divided by the measure of the standard n-simplex. Adolphson (Adolphson 1994)

1 Notice that we do not consider derived solutions here; so our use of the symbol Sol differs from many
other texts on D-modules.
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pointed at a possible flaw in the argument, and Sturmfels and Takayama (1998) even-
tually provided a counter-example that is worth looking at.

Example 2.13 (The 0134-curve, Sturmfels and Takayama 1998) Let A =
(
1 1 1 1
0 1 3 4

)
.

The volume of A is 4, equal to the volume of the interval (0, 4) inside R. (Since the
interval is 1-dimensional, usual volume—length—and simplicial volume agree).

The toric ideal IA is homogeneous here, defining the pinched rational normal space
curve. In Saito et al. (2000) it is shown that series solution methods based on weight
vectors and the computation of certain initial ideals of HA(β) always lead to volume
many independent series solutions, as long as A is homogeneous. This generalized the
naïve series written out in Gel’fand et al. (1987, 1989) to the case where logarithmic
terms can appear in the series solutions.

For almost all β, the rank of MA(β) in a generic point is 4, spanned by functions

x (4β1−β2)/4
1 xβ2/4

4 + · · · , x (4β1−β2−3)/4
1 x2x

(β2−1)/4
4 + · · · ,

x (4β1−β2−1)/4
1 x3x

(β2−3)/4
4 + · · · , x (4β1−β2−6)/4

1 x22 x
(β2−2)/4
4 + · · · ,

where the dots indicate a (usually infinite) series of terms ordered by the weight
vector (0, 1, 2, 0). (The particular weight is immaterial, but it needs to be sufficiently
generic; this one is so for this example). If one now deforms β into (1, 2) then the four
independent solutions above degenerate into a linearly dependent set of rank three.
On the other hand, the functions

x22
x1

,
x23
x4

are new, not-deforming (in β) solutions to MA((1, 2)). It follows that the “rank jumps
at β = (1, 2)”, from 4 to 5 = 4− 1+ 2. ♦

Shortly after the discovery of rank jumps, the case of homogeneous monomial
curveswas completely discussed inCattani et al. (1999): the “holes” ofNA (the finitely
many elements of (R≥0A∩ZA)� NA) are exactly the rank-jumping parameters, and
each rank jump is by 1. It was then shown in Matusevich et al. (2005) that as β

varies, the rank of MA(β) is upper-semicontinuous, so that it can only go up under
specialization (formation of a limit) of β. In fact, (Matusevich et al. 2005, Cor. 9.3)
shows that the exceptional set EA of points where rank exceeds volume is Zariski
closed and equals a certain subspace arrangement. To understand the origins of EA one
must view the local cohomology modules Hi

∂(SA) with i < d as quasi-toric modules;
their elements are then witnesses to the failure of SA to be Cohen–Macaulay, while
the union of their quasi-degrees forms the exceptional arrangement. The fact, also
observed in Matusevich et al. (2005), that this arrangement has codimension at least
two explains why finding rank-jumps at all turned out to be very hard and involved
extensive computer experiments in Sturmfels and Takayama (1998).

Example 2.14 (Continuation of Example 2.13) In Example 2.13, d = 2 and so EA can
be at most a finite set of isolated points. The local cohomology H0

∂ (SA) is zero and
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Fig. 2 The Čech complex to the 0134-curve

H1
∂ (SA) is a 1-dimensional vector space generated by the Čech cocycle (∂22 /∂1, ∂

2
3/∂4).

To see this, note that (∂1, ∂4) is primary to ∂ in SA. Thus, H1
∂ (SA) can be computed

A-degree by A-degree from the Čech complex on SA induced by ∂1, ∂4. Each degree
component in SA and its monomial localizations are 1-dimensional C-spaces; we use
this to depict these localizations in the Čech complex by dots as follows (Fig. 2):

In this picture, the blue area indicates the directions in which the semigroup in
question extends, black dots are the elements of A and the red dot indicates a “missing”
element in the semigroup. Taking cohomology “dot-by-dot” one identifies the local
cohomology groups H1

m(SA), H0
m(SA) as claimed.

It is remarkable that the components of the H1
m(SA)-cocycle are precisely the

“new” solutions that appear at β = (1, 2) that do not deform to other β. While
this is not always literally true, a weaker form is typical and an explanation of this
phenomenon involving Laurent polynomials is given in Berkesch et al. (2018) and
Berkesch-Zamaere et al. (2016), especially for d = 2. Compare also Remark 3.14. ♦

Remark 2.15 In Berkesch (2011) it is proved that there is a purely combinatorial recipe
(involving the relative positioning of β to the degrees of NA) that determines the rank
of MA(β). The procedure to arrive at the exact rank is very involved.

The only known closed rank formula is for non-jumping parameters, where the rank
is just the volume.2 The best known general bound is exponential (Saito et al. 2000),
in the sense that the rank of MA(β) is bounded above by 22d vol(A). It was shown in
Matusevich and Walther (2007) that for every d there are rank jump examples with
rk(MA(β)) = vol(A) + d − 1. This is improved in Fernández-Fernández (2013) to
the existence of a ∈ R greater than 1 and families of matrices A(d) of size d × nd and
with parameters β(d) such that the rank of MA(d)

(β(d)) exceeds ad vol(A). It would be
interesting to know how far the bound from Saito et al. (2000) is from the the worst
examples that exist. ♦

There is an open subset of C
n on which the solutions for MA(β) form a vector

bundle of rank rk(MA(β)). The complement (the singular locus of the module) of this
set is algebraic, cut out by the A-discriminant, a product of individual discriminants

2 This is not entirely true: if d = 2 and the columns of A lie in a hyperplane not containing the origin, then
all rank jumps are by 1, as shown in Cattani et al. (1999).
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to polynomial systems, one for each face of the cone over A. For a very detailed
discussion on this, see the books (Gel’fand et al. 1994) and Saito et al. (2000). If
one moves from general to special x, rank can go down due to singularities in the
solutions. In contrast to rank in generic points, rank at special x is not known to be
upper-semicontinuous. For the case of A as in Example 2.13, this is worked out in
Walther (2018), which discusses the more general question of stratifying C

n by the
restriction diagrams, which encode the behavior of the D-module theoretic (derived)
pull-back to x ∈ C

n ; the elementary pull-back just counts rank at x.

2.5 Better behaved systems and contiguity

For each β ′ = a j + β there is a natural contiguity morphism

cβ,β+a j : MA(β)
∂ j−→ MA(β ′)

of degree a j , induced by right multiplication with ∂ j on SA through the Euler–Koszul
functor. The existence of these morphisms is a consequence of the fact that (Ei −βi ) ·
∂ j = ∂ j (Ei−βi−ai, j ); this is a special case of Eq. (14) when y = ∂ j . Since elements
in IA act as zero on SA, any composition of contiguity morphisms of fixed total degree
γ ∈ NA acts the same way as morphism cβ,β+γ from MA(β) to MA(β + γ ).

Contiguity morphisms have turned out to be a very useful tool in the study of A-
hypergeometric systems since for k � 0, cβ+ka j ,β+(k+1)a j and cβ−(k+1)a j ,β−ka j are
isomorphisms (and one can determine explicit bounds in terms of A, β for k being
sufficiently big). Contiguity maps have been used in Saito (2001) to identify combina-
torially the isomorphism classes of A-hypergeometric systems, in Walther (2007) to
study irreducibility and holonomic duality of MA(β) as a DA-module, and in Reichelt
(2014), Reichelt and Sevenheck (2020) for investigating the Hodge module struc-
ture on certain MA(β). For a study of Gauß hypergeometric functions via contiguity
operators see (Beukers 2007).

On the level of solutions, amap in the reverse direction is induced that literally takes
the derivative by x j . For certain applications inmirror symmetry it is desirable to know
that every contiguity operator induces an isomorphism on (the solutions of) MA(β). In
case one has a generic β, this is automatic. But in practical situations it is more likely
that β is integer, or at least resonant. In the present context, resonance encapsulates
the lack of genericity of a parameter β to admit contiguity isomorphisms (in both
directions). Resonance and contiguity operators were refined and used in Adolph-
son (1994), Saito (2001, 2011), Okuyama (2006), Cattani et al. (2011), Schulze and
Walther (2012) and Beukers (2011, 2016) to study reducibility and general structure
of MA(β).

Now consider the quasi-toric module FA equal to the ring C[ZA]. It arises as the
localization of SA at all ∂ j , or alternatively at one monomial whose degree is in the
interior of R≥0A. By definition, multiplication by ∂ j on FA is an isomorphism, and
therefore the same applies to the generalized A-hypergeometric system that arises
as the Euler–Koszul homology HA,0(FA;β), for every β. Since FA is a maximal
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Cohen–Macaulay SA-module, there is no other Euler–Koszul homology (Matusevich
et al. 2005; Schulze and Walther 2009).

This module HA,0(FA;β) was studied in Borisov and Paul Horja (2006, 2013)
and termed better behaved GKZ-system. A variant of these systems, considered in
Mochizuki (2015a), can be described as the Euler–Koszul homology HA,0(C[R≥0A∩
Z
d ];β) of the normalization of SA. In Sect. 4 below we will discuss Hodge theoretic

ramifications of the main result of Mochizuki (2015a).

3 Irregularity

In this section we discuss regularity issues of hypergeometric D-modules; this is a
multi-variate form of essential singularities. We start with discussing more general fil-
trations than the one by order. A combinatorial object can be derived from this process
that governs the convergence behavior of solutions to A-hypergeometric systems near
coordinate hyperplanes. Via results of Laurent andMebkhout we discuss a generalized
classical Fuchs criterion this gives information on the irregular solutions.

3.1 The Fuchs criterion and regularity

A univariate function f (t), analytic on a small open disk around t = 0 but singular
at t = 0, can behave in two essentially different ways: the growth of f (t) as t → 0
could be bounded by a polynomial, or not. In the former case, f has a pole, in the
latter an essential singularity. If f arises as solution to a differential equation we say
0 is a regular singular point of the equation in the first, and an irregular singular point
in the second case.

For linear differential equations P • f (z) = 0 in the local parameter z, Fuchs
gave the following practical procedure for determining regularity of the origin. If
O0 := C{z} is the ring of convergent power series near z = 0, write P as a linear
combination

P =
m∑

k=0
pk(z) · ∂k

∂zk
,

m being the order of P , and pk = ∑∞
i=nk ck,i z

i ∈ O0 with ck,nk �= 0 indicating the
lowest order term of pk(z). Writing ∂z for differentiation by z, for a monomial zr∂sz
we use the two weights

V (zr∂sz ) := s − r V − filtration at 0;
F(zr∂sz ) := s order filtration.

Then plot for each k the weights of ck,nk∂
k
z in the (F, V )-plane (Fig. 3):

The shaded region (the Fuchs polygon of the operator) is the lower left convex
hull of the (finitely many) points so obtained. It is, by definition, stable under shifts
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Fig. 3 Two Fuchs polygons

in negative F- and V -direction, and hence unchanged under analytic automorphisms
that keep the origin fixed (this is a consequence of taking the lower left hull).

Two cases arise, indicated in the picture:

(1) The Fuchs polygon has one vertex, in the upper right corner (left).
(2) There are two or more corners. This is tantamount to the boundary of the shaded

region having one or more finite boundary segments with slopes different from 0
and −∞ (right).

Fuchs’ criterion (see Gray 1984; Ince 1944 for a detailed account) states that P has a
regular singularity at the origin if and only if the Fuchs polygon of P has no slopes.

Regular differential equations are much better behaved than irregular ones, both
theoretically and practically. On the theoretic side, they form an ingredient of the
Riemann–Hilbert correspondence that links regular holonomic D-modules to perverse
sheaves, which for irreducible modules restricts to a bijection with intersection coho-
mology complexes; on the practical side regular differential equations are amenable
to the Frobenius method since their solutions come from the Nilsson ring (Kashiwara
1984; Mebkhout 1980, 1984; Saito et al. 2000).

In higher dimensions, the concept of regularity ismore difficult.Onewayof defining
it proceeds via pullbacks: theD-moduleM on the analytic space C

n is regular if and
only if the pullback of M along any analytic morphism ι : �∗ −→ C

n , where �∗ is
a punctured disk, leads to a module with regular singularities at the origin on �∗. The
problem is that there are many such morphisms to be tested.

Laurent (1987) and later with Mebkhout (1999) found a way to translate regularity
in more than one variable into a condition that resembles the Fuchs criterion. For that,
we need to discuss filtrations and initial ideals on D-modules in more detail.

3.2 Initial ideals and triangulations

Ageneral technique to understand (non-commutative) algebraic structures is the reduc-
tion to a simpler (commutative) situation by applying a grading with respect to a
filtration. For D-modules, the filtration by the order of differential operators leads to
the characteristic variety which carries various bits of information on the D-module.
The process of grading is rather cumbersome but can be performed algorithmically in
various situations using Gröbner basis methods. The simplest case is that of a generic
weight vector because the resulting graded ideal will be monomial; this invites the use
of techniques developed in Saito et al. (2000) and Sturmfels et al. (1996).
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So, let L = (L1, . . . , Ln) ∈ Q
n be a generic weight vector on RA; genericity is

needed to assure that grL(IA) is a monomial ideal. (In R
n there are weights L that

are generic for all ideals of RA simultaneously. There is no rational weight with this
property, but for a finite number of ideals a Zariski open set of the rational weight
space consists of generic weights.)

Example 3.1 For the matrix A =
(
1 0 1
0 1 1

)
, with columns indicated with solid bullets,

the following picture sketches the possible initial ideals that arise from the weights
in the family Lt = (1 1 t

)
, t > 0. Note that a1 = a1/Lt

1 and a2 = a2/Lt
2 for all t .

Plotted with hollow bullets are the points a3/Lt
3 for the indicated choices of t .

Collinearity of {a1/Lt
1, a2/L

t
2, a3/L

t
3} is equivalent to Lt -homogeneity of IA. ♦

Definition 3.2 Associated to the generic weight L and the RA-ideal I is an initial
simplicial complex �L

I that arises as follows. A collection τ of indices contained in
[n] forms a face of �L

I if and only if there is no monomial in grL(I ) whose support
is precisely τ . Put another way, �L

I is the simplicial complex whose Stanley–Reisner
ideal is the radical of grL(I ).

If I = IA we write �L
A for �L

IA
. ♦

For example, suppose IA is the principal ideal generated by ∂1∂2∂3−∂4∂
2
5 . Then IA

admits two distinct monomial initial ideals whose corresponding simplicial complexes
are (Fig. 4).

The generic weight L also induces a triangulation of [n] as follows. Consider the
points Â = {(a j , L j ) ∈ R

d ×R}1≤ j≤n . The faces of the triangulation are those faces
of the cone R≥0 Â of Â that are visible from the point (0,−∞); these are exactly those
faces whose outer normal vectors have negative last component. A triangulation of
[n] is regular (or coherent) if it arises this way for some L . This property is strongly
tied to A, and not all triangulations of A have to be regular (Fig. 5).

(a) (b)

Fig. 4 The initial simplicial complexes �L
A for IA = (∂1∂2∂3 − ∂4∂

2
5 )
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Fig. 5 A non-regular
triangulation of a triangle

The collection of regular triangulations of A turns out to be in (the obvious) bijection
with the initial complexes of A. There is a third combinatorial object associated to L
and A, namely the collectionS (grL(IA)) of standard pairs of grL(IA), introduced in
Sturmfels et al. (1995). A standard pair (∂b, σ ) of the monomial ideal I is a monomial
and a subset of [n] such that

• supp(b) ∩ σ = ∅,
• ∂b mod I is not (

∏
j∈σ ∂ j )-torsion, but

• ∂b mod I is ∂k(
∏

j∈σ ∂ j )-torsion for all k /∈ σ .

For example, if the monomial ideal is (∂4∂
2
5 ) the standard pairs are (1, {1, 2, 3, 4}),

(∂5, {1, 2, 3, 4}), and (1, {1, 2, 3, 5}). The standard pairs yield immediately a decom-
position into irreducible ideals by

I =
⋂

(∂b,σ )∈S (I )

({∂b j+1
j | j /∈ σ }).

For I as above we obtain I = (∂5) ∩ (∂25 ) ∩ (∂14 ).
The standard pairs hence contain all information needed to recover I and its trian-

gulations. In particular, the facets of �L
A are precisely the subsets σ that are listed in

the standard pairs.

Example 3.3 We consider Example 3.1 from this new angle. We fix the weights L1 =
L2 = 1 and vary the weight t = L3. For L3 < 2, grL IA = 〈∂1∂2〉 and the facets of
�L

A are {1, 3}, {2, 3}. We could interpret this as the complex of faces, not containing
0, of the convex hull of 0 and the columns of A. Similarly we obtain �L

A = {1, 2}
for L3 > 2, which can be read as a convex hull as before, but with a3 not in the
picture. For L3 = 2, grL IA = IA is prime and �L

A should now equal {1, 2, 3}: we
would like to view a3 as “collinear with a1, a2” in this case. This is the topic of the
next section; the following is a teaser: in order to view the three cases from a unifying
angle, note that scaling a weight component Li by λ and “scaling the degree ai of ∂i”
by 1/λ have the same effect on the initial terms (and also on the face complex of �L

A).
One is thus led to replace a3 by a3/L3; then the resulting convex hull yields the face
complex generated by {1, 2, 3} if L3 = 2, by {1, 2} is L3 > 2, and by {1, 3} and {2, 3}
if L3 < 2. ♦

3.3 Slopes and the (A, L)-umbrella

In case of a DA-module M = DA/J , J an ideal in DA, we will want to grade
with respect to a filtration on DA defined by (and identified with) a weight vector
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L ∈ Q
d ×Q

d for the variables x1, . . . , xn, ∂1, . . . , ∂n . We denote the L-leading term
of P ∈ DA by σ L(P) and call it the L-symbol.

Convention 3.4 We assume that there is a positive real constant c such that

Lx j + L∂ j = c > 0

for all j simultaneously. ♦

This hypothesis has the effect that

WA := grL(DA) ∼= C[x, ∂]

is a (commutative) polynomial ring whose spectrum is naturally identified with the
total space of the cotangent bundle T ∗Cn ofC

n . Moreover, each Ei is L-homogeneous
of positive degree.

TheWA-ideal grL(J ) defines the L-characteristic variety ChVL(M) of the module
M ; for a holonomic module M it is purely n-dimensional by a result of Smith (2001).

We record the special case

ChVL(MA(β)) = Var(grL(HA(β))) ⊆ T ∗Cn

when M = MA(β). Our plan is to connect this construction to analytic information
as follows.

Suppose X ′ ⊆ X = C
n,an is an analytic subspace with a smooth point x ∈ X ′. Then

in suitable local coordinates at x one can write X ′ as the zero set of the first n−dim X ′
coordinates on X . In the stalk at x consider the grading of the D-module M by the
filtrations induced by the weights L p/q := pF + qV where as always F is the order
filtration and V is the V -filtration along X ′ (compare Sect. 3.1):

V (xi ) = V (∂i ) = 0 if i > n − dim(X ′); −V (xi ) = V (∂i ) = 1 if i ≤ n − dim(X ′).

(There is an obvious identification of graded objects for L p/q and L p′/q ′ when p/q =
p′/q ′).

Definition 3.5 With notation as just introduced, p/q ∈ Q is a slope of M along X ′ if
ChVL(M) = supp(grL(M)) jumps at p/q. This means that ChVLε

(M) is for small
ε ∈ R+ constant on (−ε + p

q ,
p
q ) and (

p
q ,

p
q + ε) but not on (−ε + p

q ,
p
q + ε). ♦

This definition is taken from Laurent (1987). By Laurent and Mebkhout (1999),
Laurent’s algebraic slopes constructed from filtrations agree with Mebkhout’s tran-
scendental slopes given as jumps of the Gevrey filtration on the irregularity sheaf and
hence provide a measure of growth for the solutions of M . The central question in this
section is to study the behavior of ChVL(MA(β)) under changes of L and β.

We illustrate the link of slopes of MA(β) with Fuchs’ criterion in an example.
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Example 3.6 It is clear from the series expansion (2) that the Kummer confluent series
1F1(a; b; z) is analytic at every finite z for all a, b. On the other hand, it follows from
the integral definition of the error function that at z = ∞ there is an essential singularity
(and algebraic changes of coordinates do not eradicate essential singularities). If we
denote−1/z by u, then the differential operator θz(θz + 1/2)− z(θz − 1/2) turns into
uθu(θu − 1/2)− (θu + 1/2) for the resulting inverse Kummer confluent series.

The Fuchs polygons are (Fig. 6).
So, the Kummer series has (of course) regular “singularities” at the origin, while the

inverseKummer series has a slope of−1. This reflects the fact that, up tomultiplication
by a function bounded by a polynomial, the Kummer series at 0 behaves like exp(z0),
while the inverse Kummer series behaves like exp(z−1): the Kummer series grows (up
to polynomially bounded factors) near∞ like exp(z).

For the translation to the A-hypergeometric setting we can use in both cases

A =
(
1 0 1
0 1 1

)
, with v being (1, 1,−1) or (−1,−1, 1). The toric ideal is then

IA = 〈∂1∂2 − ∂3〉.
We know from Example 3.1 that for the family Lt = (1, 1, t) there is a jump at

t = 2 in the Lt -graded ideal of IA since at that moment �v becomes L-homogeneous.
It turns out that the Lt -characteristic variety of HA(β) for any β also changes at t = 2,
so that MA(β) has a slope of 2 along the hyperplane x3 = 0.

The correspondence between these numbers is encapsulated by the equation 1
sF
=

1/sL
1/sL−1 , where sF is the slope of the Fuchs polygon (and indicates exponential growth
behavior with exponent sF ), and sL is the slope at which Laurent’s filtrations jump. ♦

We now discuss “regular triangulations to non-monomial graded toric ideals” com-
ing from non-generic weight vectors in greater generality, the details being taken
from Schulze and Walther (2008). For the transition, suppose J is generated by
elements inside RA ⊆ DA. Then one can restrict the weight to L∂ on RA and
compute grL∂ (J ∩ RA) in the commutative situation of Sect. 3.2. Note that then
grL(J ) = grL(DA) · grL∂ (J ∩ RA). Specifically, we write

I LA := grL(IA) ∩ RA, SLA := grL(SA) ∼= RA/I LA .

Let L = (L1, . . . , Ln) ∈ Q
n be any weight vector on RA. As L may have zero

components, possible division (as suggested in Example 3.3) by Li = 0 forces us into

Fig. 6 Fuchs polygon for Kummer (left) and inverse Kummer (right)
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work in a projective space:

a1, . . . , ad ∈ ZA ⊆ Q
d ⊆ P

d
Q
.

In P
d
Q
, any two distinct points a,b ∈ P

d
Q

are joined by two line segments. If the

hyperplane H in P
d
Q

contains neither a nor b, one may define the convex hull of
a,b as the line segment not intersecting H . Similarly one can define the convex hull
convH (S) of a subset S ⊆ P

d
Q
disjoint from H as the convex hull of S in the affine

space P
d
Q

� H .

Definition 3.7 (The (A, L)-umbrella �L
A) We set aLj := a j/L j ∈ P

d
Q
. Choose a

linear functional f : ZA −→ Z for which f (a j ) > 0 for all j and ε > 0 such that
| f (a j )| > ε · |L j |; such form exists since A is pointed. Let Hε := f −1(−ε) and call

�L
A := convHε ({0, aL1 , . . . , aLn }) ⊆ P

d
Q

the (A, L)-polyhedron. Let the (A, L)-umbrella be the set �L
A of faces of �L

A which

do not contain 0; write �
L,k
A for its k-skeleton.

The matrix A is called L-homogeneous if all aLj lie on a common hyperplane of

P
d
Q
. Every A is 0-homogeneous and we call �A := �0

A the A-umbrella. Note that �A

can be identified with the face lattice of the polyhedral cone R≥0A. ♦
Parts of this definition, taken from Schulze and Walther (2008) are foreshadowed

by Gel’fand et al. (1989, Prop. 4).

Example 3.8 Figure 7 shows the (A, L)-umbrella for the matrix A =
(
1 0 1 2
0 1 1 3

)
for

various filtrations in the family Lt = (1, 1, 1, t). While moving the parameter, �L
A

jumps exactly at t = 2 and t = 3. For the intervals t < 2, t = 2, 2 < t < 3,
t = 3, t > 3, the corresponding complexes �L

A are generated by {{1, 4}, {2, 4}},
{{1, 3, 4}, {2, 4}}, {{1, 4}, {2, 4}, {3, 4}}, {{1, 3}, {2, 3, 4}}, {{1, 3}, {2, 3}}. ♦

Remark 3.9 In order to see how�L
A generalizes�L

A for positive weights, embed P
d
Q
⊆

P
d+1
Q

as the hyperplane {ad+1 = a0}, and assume that L is positive and generic. A

Fig. 7 (A, L)-umbrellas for Example 3.8. (Blue �L
A with boundary �L

A .)
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subset of {aL1 , . . . , aLn } ⊆ A
d
Q
⊆ P

d
Q
maximizes a linear functional q(t1/t0, . . . , td/t0)

with value c if and only if the corresponding subcollection of {(a j , L(a j )}n1 ⊆ A
d+1
Q

⊆
P
d+1
Q

maximizes with value zero the linear functional q(t1/t0, . . . , td/t0) − td+1/t0.
So, the faces of �L

A × {1} ⊆ A
d+1
Q

are in bijection with those of the cone spanned by

it from the origin in A
d+1
Q

that have outer normal vector “pointing down”, and this is
the same cone as the one spanned by the appropriate collection inside {(a j , L(a j )}n1.
♦

Just like �L
A in the monomial case, �L

A corresponds to minimal prime ideals of
grL(IA). More precisely the following holds.

Theorem 3.10 (Schulze and Walther 2008, Thm. 2.14) The set of A-graded prime
ideals containing I LA equals {I τ

A|τ ∈ �L
A} and so

Spec(SLA) = Var(I LA ) =
⋃

τ∈�
L,d−1
A

O
τ

A =
⊔

τ∈�L
A

Oτ
A ⊂ Ĉ

n .

In particular, the (A, L)-umbrella encodes the geometry of SLA. ��

3.4 L-characteristic varieties

Equipped with the knowledge from the previous section, we can return to the question
of describing

ϒ L
A := ChVL(MA(β)).

For a weight L ∈ Q
n ×Q

n , the L-symbols σ L(Ei ) span the tangent spaces of every
torus orbit and hence impose the conormal condition to Oτ

A for all τ ∈ �L
A (compare

Gel’fand et al. 1989; Schulze and Walther 2008). The inclusion

grL(HA(β)) ⊇ 〈σ L(E)〉 + grL(DA · I LA ) (16)

appears already in Gel’fand et al. (1989) and Adolphson (1994) and shows that
ChVL(MA(β)) must be contained in the union of the closures of all these conormals.

One might hope that (16) is always an equality; this would simplify the problem
of describing ChVL(MA(β)). The right hand side is the fake initial ideal and equality
holds if I LA is Cohen–Macaulay (Saito et al. 2000, Thm. 4.3.8). Unfortunately, this
inclusion can be strict in general as the following example shows.

Example 3.11 For A =
(
1 1 1 1
0 1 3 4

)
and L = (0, 1) inducing the order filtration one has

grL(HA(β)) = grL(DA · IA)+〈σ L(E)〉 for β = (1, 2), but in fact for all parameters

grL(HA(β)) = grL(DA · IA)+ 〈σ L(E)〉 + 〈P〉
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where

P = (β2 − 2)x1∂
2
1 + (β2 − β1 − 1)x2∂1∂3

+(β2 − 3β1 + 1)x3∂2∂4 + (β2 − 4β1 + 2)x4∂
2
3 .

♦
Notwithstanding this example, the following is true.

Theorem 3.12 The L-characteristic variety of the A-hypergeometric system is

ϒ L
A = ChVL(MA(β)) =

⋃

τ∈�L
A

ϒ
τ

A =
⊔

τ∈�L
A

ϒτ
A,

where for τ ∈ �L
A, we denote by ϒτ

A ⊆ T ∗Ĉn the conormal to the orbit Oτ
A ⊆ C

n,
and where we use the identification T ∗Cn ∼= T ∗Ĉn.

By Theorem 3.12 the two ideals in (16) differ along minimal components only
by their multiplicities. Taking into account this information turns the L-characteristic
variety ChVL(MA(β)) into the L-characteristic cycle ChCL(MA(β)) of MA(β). Let
μ
L,τ
A,0(β) be the multiplicity of ϒτ

A in ChCL(HA(β)). This number is bounded from

below by the intersection multiplicity μ
L,τ
A between the Euler variety

Var(grL(E1, . . . , Ed)) ⊆ C
n

and the component of grL(IA) along ϒτ
A. Moreover, μL,τ

A,0(β) agrees with this lower
bound for a Zariski-open set of parameters β, but may exceed it for special values of
β; see Schulze and Walther (2008).

For τ ⊆ τ ′ ∈ �
L,d−1
A , denote

πτ,τ ′ : Zτ ′ −→ Zτ ′/(Zτ ′ ∩Qτ)

the natural projections, and define the polyhedra

Pτ,τ ′ := conv(πτ,τ ′(τ
′ ∪ {0})), Qτ,τ ′ := conv(πτ,τ ′(τ

′
� τ)).

Using this notation, with volume functions normalized such that they return unity on
the standard simplex,

μ
L,τ
A =

∑

τ⊆τ ′∈�
L,d−1
A

[ZA : Zτ ′] · [(Zτ ′ ∩Qτ) : Zτ ] · volτ,τ ′(Pτ,τ ′ � Qτ,τ ′) ≥ 1.

In particular, this formula proves that the slopes of the D-module MA(β) are deter-
mined entirely by combinatorics of AL , since this is true for their L-characteristic
varieties. (For the empty face τ , if NA is saturated, this simplifies to the formula
already in Gel’fand et al. (1989) that rank is then equal to the volume of A).
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Remark 3.13 If an A-hypergeometric system is homogeneous, it can have no slopes
since it is regular holonomic (Hotta 1998). On the other hand, an inhomogeneous
HA(β) has at least one slope along the subspace cut out by the variables corresponding
to any of the faces of the umbrella of A that do not touch the boundary of the umbrella,
as moving it will eventually change the shape of the umbrella (compare Schulze
and Walther 2008). By Laurent’s results, regularity of MA(β) is hence equivalent to
homogeneity and independent of β. ♦

Remark 3.14 Anatural question iswhether one canfind a stratification of the parameter
space such that rank is constant on each stratum and whether one can give a family
of parametric solutions that deform analytically to rank many solutions on the chosen
stratum. This is indeed so; the details are worked out in Berkesch et al. (2014, 2018)
and Berkesch-Zamaere et al. (2016).

For confluent systems, when the Nilsson ring does not contain all solutions, the
approach of Gevrey series can be used. Early focus was on the irregularity sheaves of
Mebkhout introduced inMebkhout (1990). In a series of papers, Fernández-Fernández
(2010) and Fernández-Fernández and Castro-Jiménez (2011a, b, 2012), study theory
and construction of solutions. Another point of interest is asymptotics. In Castro-
Jiménez and Granger (2015), it is worked out how this plays out in the d = 1 case (A
is a single row matrix): Gevrey series solution along the singular locus of the system
appear as asymptotes of holomorphic solutions along suitable paths of integration. A
similar result for modified systems is proved in Castro-Jiménez et al. (2015).

A related problem is that of determining the monodromy of A-hypergeometric
systems. This turns out to be an extraordinarily difficult problem, and only limited
information is available at this point. We mention the work of Ando et al. (2015) that
determines the monodromy at infinity for confluent (inhomogeneous) systems, build-
ing on Takeuchi (2010) for the homogeneous case. Hien’s rapid decay cycles (Hien
2009) make an entry here via Esterov and Takeuchi (2015), replacing the classical
integral representations of Gel’fand et al. ♦

4 Hodge theory of GKZ-systems

In this section we show that certain GKZ-systems carry a mixed Hodge module struc-
ture in the sense of Saito (1990) and investigate some consequences of this fact. Since
the definition of mixed Hodge modules (MHM) is rather involved, we give here a
simplified version which is enough for our purpose. Assuming the reader to be at
least somewhat acquainted with the Riemann–Hilbert correspondence, we start with
a brief outline of the cornerstones of the theory of mixed Hodge modules. We then
give (certain) A-hypergeometric systems an interpretation as Gauß–Manin systems
and use it to define an MHM structureon these A-hypergeometric systems. We then
discuss two induced filtrations on these GKZ-systems.
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4.1 Section setup, and basics onmixed Hodgemodules

An algebraic mixed Hodge module on a smooth algebraic variety X is an algebraic,
regular holonomic DX -module M together with an increasing filtration by coherent
OX -modules FHodge• M called the Hodge filtration and an increasing DX -module
filtration W•M called the weight filtration. The DX -module M and the filtrations
FHodge• M and W•M are required to satisfy rather subtle compatibility conditions; in
particular there are strong conditions concerning the boundary behavior along every
divisor of X . The category MHM(X) of algebraic mixed Hodge modules on X is
Abelian. Given a mixed Hodge M , its graded parts

GrWk (M ) := WkM /Wk−1M

are pureHodgemodules. The categoryHM(X) of pureHodgemodules is semi-simple;
i.e., each graded part is a sum a simple objects. The simple HM(X)-objects correspond
via the deRham functor to intersection complexes ICY (L ) supported on an irreducible
subvariety Y of X , whereL is an irreducible local system on an open, smooth subset
of Y . In particular, the restriction of a pure Hodge module to the Zariski open set
on which the underlying D-module is smooth turns it to a variation of pure Hodge
structures on that smooth locus.

The standard example of a (mixed) Hodge module on a smooth variety X is the
structure sheaf OX : it carries a canonical mixed Hodge module structure, which sat-
isfies

GrF
Hodge

p OX := FHodge
p OX/FHodge

p−1 OX = 0 if p �= 0,

GrWp OX = 0 for p �= dim X .

Notation 4.1 If f : X −→ Y is a morphism of smooth complex algebraic varieties,
four basic functors on D-modules are induced. The most immediate one is the (left
exact) naïve inverse image functor that arises from the chain rule (Hotta et al. 2008,
Sect. 1.3). Its left derived functor, shifted by dim(X)− dim(Y ), is the inverse image
functor f + that is denoted by f † in Hotta et al. (2008, Rmk. 1.5.10). Conjugating
f + by the holonomic duality functor from Hotta et al. (2008, Sect. 2.6) leads to the
exceptional inverse image f † that is denoted f � in Hotta et al. (2008, Dfn. 3.2.13).

There is a direct image functor as well, but its definition is more technical because
the chain rule cannot be reversed in general. Again, one proceeds by defining a naïve
version (neither left nor right exact) as in Hotta et al. (2008, Sect. 1.3), from which
a derived functor f+ can be defined; this functor is denoted

∫
f in Hotta et al. (2008,

p. 40). Conjugation by the duality functor leads to the exceptional direct image functor
f †, which is denoted

∫
f ! in Hotta et al. (2008, Sect. 3.2). ♦

Due to the groundbreaking work of Saito (1988, 1990), for each morphism f :
X −→ Y there are lifts of the functors f+, f†, f +, f † to the category of mixed
Hodge modules which we denote by

f∗, f! : Db MHM(X) −→ Db MHM(Y )
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f !, f ∗ : Db MHM(Y ) −→ Db MHM(X) .

The proof of the existence of these functors onMHMrequire various rather deep results
fromHodge theory (such as the existence of a Hodge structure on the cohomology of a
degeneratingVHSona curvewhichwas establishedbyZucker using L2-cohomology),
the theory of filteredD-modules, compatibility properties of V - and F-filtration (also
known as strict specializability), as well as a tricky formalism of induced modules.

Our starting point is Sect. 2.3, where we have seen that if β /∈ sRes(A) then
M̂A(β) 	 (hA)+Oβ

T
. So, in particular, if Oβ

T
is in MHM(X) then so is M̂A(β)

whenever β /∈ sRes(A). Now in order for its (inverse) Fourier–Laplace transform to
be a mixed Hodge module, the GKZ-system MA(β) should of course in particular
be regular holonomic. By Remark 3.13 and Definition 1.7, this property is equivalent
to IA being homogeneous. In other words, for the GKZ-system to have any hope
of being an MHM module we must require that the vector (1, 1, . . . , 1) is in the
row span of A. Fortuitously, this requirement on A provides also the solution to the
translation of MHM structures from M̂A(β) to MA(β). Indeed, while the (inverse)
Fourier–Laplace transform does in general not preserve mixed Hodge modules, we
shall employ a Radon transform (which makes only sense in the homogeneous case)
in order to construct a mixed Hodge module structure on the GKZ-system via M̂A(β).

In order to simplify the statement of some formulas in the remainder of the article,
we make now the following convention on A.

Convention 4.2 From now on, A is in Z
(d+1)×(n+1) and we assume that A is homo-

geneous, full, pointed, and generates a saturated semigroup. ♦
Since a GKZ-system derived from a pair (A, β) is unchanged under an invertible

Z-linear transformation of the rows we can moreover assume that the matrix A has
the following shape

A =

⎛

⎜⎜⎜⎝

1 1 . . . 1
0
... B
0

⎞

⎟⎟⎟⎠ (17)

where B ∈ Z
d×n is full but is not necessarily pointed or homogeneous. Notice also

that if NA is saturated, then so is NB; however, the converse implication is not true in
general.

4.2 Geometric interpretation of GKZ-systems

The aim of this section is to express certain GKZ systems as objects which are built
from consecutive applications of (possibly proper) direct image and (possibly excep-
tional) inverse image functors applied to a structure sheaf. From the discussion above
it follows then that these GKZ systems carry a mixed Hodge module structure. In
order to achieve this we have to introduce various integral transformations and their
relations.
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Define a pairing

〈−,−〉: Ĉ
n+1 × C

n+1 −→ C

(y, x) �→
n∑

j=0
y j x j , (18)

and a free rank one O
Ĉn+1×Cn+1 -module

L := O
Ĉn+1×Cn+1 · exp ((−1) · 〈−,−〉)

which acquires aD
Ĉn+1×Cn+1 -module structure via the product rule. We denote by p1

and p2 the projections from Ĉ
n+1 × C

n+1 to the first and second factor respectively.
The sheafified version of the Fourier–Laplace transform is given by

FL(N ) := p2+(p†1N
L⊗O L )[n + 1] (19)

and one has FL ◦FL = − id. Although defined at the level of derived categories, FL is
an exact functor, and an instructive exercise shows that on the level of global sections
it is given by formula (12). Theorem 2.10 now implies that, whenever β /∈ sRes(A),
we have

FL((hA)+Oβ

T
) 	 FL2(MA(β)) 	MA(β).

Here, the final identification holds due to the homogeneity of IA even though FL2 is
not the identity.

The second type of transformation we will need is the Radon transformation of
D-modules introduced by Brylinski (1986); some variations were later discussed by
D’Agnolo and Eastwood (2003).

Let

U :=
⎧
⎨

⎩

n∑

j=1
y j x j �= 0

⎫
⎬

⎭ ⊆ P(Ĉn+1)× C
n+1

be the complement of the universal hypersurface

Z :=
⎧
⎨

⎩

n∑

j=1
y j x j = 0

⎫
⎬

⎭ ⊆ P(Ĉn+1)× C
n+1
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defined by the vanishing of the pairing 〈−,−〉. For the sake of readability, we denote
P(Ĉn+1) form now on simply by P̂

n . Consider the following commutative diagram

U
πU
1

�����
���

���
��

jU
��

πU
2

����
���

���
��

P̂
n

P̂
n × C

n+1π1��
π2 �� C

n+1

Z
π Z
1

�������������
iZ

��

π Z
2

		������������

The Radon transformation is the functor RT : Db
rh(DP̂n ) −→ Db

rh(DCn+1) given by

RT(N ) := (π Z
2 )+(π Z

1 )†N 	 (π2)+(iZ )+i†Zπ
†
1N ,

and it permits variations RT◦c,RTcst : Db
rh(DP̂n ) −→ Db

rh(DCn+1) given by

RT◦c(N ) := (πU
2 )†(π

U
1 )†N 	 (π2)+(iZ )+i†Zπ

†
1N

RTcst(N ) := (π2)+π
†
1N

The adjunction triangle ( jU )† j
†
U −→ id −→ (iZ )+i†Z

+1−→ gives rise to a triangle

RT◦c −→ RTcst −→ RT
+1−→ (20)

Let

π : Ĉn+1\{0} −→ P̂
n

be the canonical projection and denote by

πV : V −→ P̂
n

the total space of the tautological bundleO
P̂n (−1). Recall thatV can be identified with

the blow-up of the point {0} of Ĉ
n+1 and P̂

n with the exceptional divisor E . We denote
by π ′

V,E : E −→ {0} −→ Ĉ
n+1 the restriction of the blow up map π ′

V
: V −→ Ĉ

n+1.
The following proposition relates the Fourier–Laplace and Radon transformations.

Proposition 4.3 (D’Agnolo and Eastwood 2003, Proposition 1) Let N ∈ Db
rh(DP̂n ).

There are the following isomorphisms

RT(N ) 	 FL((π ′
V
)+(πV)+N ),

RT◦c(N ) 	 FL( j+π+N ),

RTcst(N ) 	 FL((π ′
V,E )+N ),
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where j : Ĉn+1\{0} ↪→ Ĉ
n+1 is the canonical inclusion. ��

In particular, if N is a mixed Hodge module, then the above isomorphisms allow us
to equip the right hand sides with induced MHM structures.

To simplify the presentation, wewill focus now (and this until Definition 4.6 below)
primarily on the case β = 0. For β �= 0 a twisted variant of the Radon transformation
is needed: see Reichelt and Sevenheck (2020) for details. We start with the following
commutative diagram

T Ĉ
n+1\{0} Ĉ

n+1

T P̂
n

π0
h′A

hA

j
π

gB

(21)

where

π0 : (C∗)d+1 = T −→ (C∗)d =: T

is the projection to the last d variables and where

gB : T ↪→ P̂
n

(t1, . . . , td) = t �→ (1 : tb1 : . . . : tbn ). (22)

In particular,

hA : T −→ Ĉ
n+1

is as in (15) earlier (with the caveat that now A is as in Convention 4.2). We then
observe that (hA)+OT 	 (hA)+π+T O

T
	 j+π+(gB)+OT

, and with Proposition 4.3,
the isomorphisms

MA(0) 	 FL((hA)+OT) 	 RT◦c((gB)+OT
) (23)

endow the GKZ-system MA(0) with the structure of a mixed Hodge module.
We now consider a part of the long exact sequence of the adjunction triangle (20)

applied to (gB)+OT
. In order to identify the individuals terms we introduce a family of

Laurent polynomials defined on (C∗)d ×C
n = T×C

n using the columns b1, . . . ,bn
of the matrix B from (17). We define

ϕ : T× C
n −→ C

n+1 (24)

(t, x) �→
⎛

⎝−
n∑

j=1
x j t

bi , x1, . . . , xn

⎞

⎠ (25)
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Theorem 4.4 (Reichelt 2014, Cor. 2.3) There is the following commutative diagram
with exact rows where all vertical maps are all isomorphisms; just for this statement
we abbreviate for typesetting reasons gB by g and denote the Radon transform by just
R.

H n(Rcst(g+OT
)) H n(R(g+OT

)) H n+1(R◦c(g+OT
)) H n+1(Rcst(g+OT

))

Hd−1(T;C)⊗C OCn+1 H 0(ϕ+OT×Cn−1) MA(0) Hd(T;C)⊗C OCn+1

As a consequence, the lower exact sequence underlies a sequence of mixed Hodge
modules. ��

4.3 Hodge-filtration on GKZ-systems

Although the isomorphism (23) equips the GKZ system MA(0) with the structure
of a mixed Hodge module, it is far from clear what the Hodge and weight filtrations
look like. The first step in this direction was carried out by Stienstra (1998), relying
heavily on work of Batyrev (1993), who computed the Hodge and weight filtration on
the smooth part of the GKZ system.

Denote

� := conv(a0, . . . , an)

the convex hull of the points a0, . . . , an , and note that this is the decone of the A-
polyhedron from Definition 3.7. Let τ ⊆ � be a face of �, let x ∈ C

n , and set

Fτ
A,x :=

∑

j :a j∈τ

x j ta j .

The Laurent polynomial FA,x := F A
A,x is called non-degenerate (see, e.g., (Batyrev

1993, Definition 3.3)) if for every face τ of � the equations

Fτ
A,x = t0

∂

∂t0
(Fτ

A,x ) = · · · = td
∂

∂td
(Fτ

A,x ) = 0

have no common solutions in T. Then, for 0 ≤ i ≤ d, define the differential operators

Pi :=
n∑

j=0

(
ai, j x j ta j + t j∂t j

)

which are elements of the Weyl algebra DC[t±] on t0, . . . , td localized at t0 · · · td . One
checks that these operate on the semigroup ring SA ⊆ C[t±10 , . . . , t±1d ], Pi (SA) ⊆ SA,
so they are differential operators on the affine toric variety XA = Spec(SA).
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Before we can state Stienstra’s result mentioned in the introduction to this section,
we need some more terminology. Let

I (0)
� ⊆ I (1)

� ⊆ · · · ⊆ I (d+1)
� ⊆ I (d+2)

� = SA

be the ascending sequence of homogeneous ideals in SA where I (k)
� is generated by all

elements ta with a ∈ NA that are not contained in any codimension k face of R≥0A.
Define a decreasing sequence of C-vector spaces in SA

· · · ⊇ E −k ⊇ E −k+1 ⊇ · · · ⊇ E −1 ⊇ E 0 ⊇ E 1 = 0

where E −k is spanned by monomials tc such that c = (c0, . . . , cd) ∈ NA satisfies
c0 ≤ k.

Stienstra proved the following result

Theorem 4.5 (Batyrev 1993; Stienstra 1998; Reichelt and Sevenheck 2020) Let x ∈
C
n+1 be such that the Laurent polynomial FA,x is non-degenerate and consider the

canonical inclusion ix : {x} ↪→ C
n+1. Then, with ϕ denoting the family from (24),

Hd(T, ϕ−1(x);C) 	 i+x MA(0) 	 SA/

d∑

i=0
Pi SA.

Under this isomorphism, the Hodge filtration is given by

Fd−k Hd(T, ϕ−1(x);C) 	 im

(
E −k −→ SA/

d∑

i=0
Pi SA

)
. (26)

If thematrix B ∈ Z
d×n is homogeneous, then theweight filtrationon Hd (T, ϕ−1(x);C)

is given by

Wk+d−1Hd(T, ϕ−1(x);C) 	 im

(
I (k)
� −→ SB/

d∑

i=1
Pi SB

)
, (27)

where the semigroup ring SB, the ideals I
(k)
� and the differential operators Pi are now

derived from B. ��
Equation (26) is shown in Stienstra (1998) for homogeneous A; the general case is

treated in Reichelt and Sevenheck (2020).
The surjection DA −→ MA(β) induces from the order filtration Ford• on DA a

filtration on MA(β) which we denote by Ford• MA(β); we proceed similarly to define
a filtration Ford• on the sheaf MA(β). The following theorem gives a comparison

between this order filtration and the Hodge filtration FHodge• MA(β) (in the sense of
mixed Hodge modules), this extends the first part of the above Theorem 4.5. Since we
will formulate the result for certain parameter vectors β different from 0, we first need
to introduce the following definition.
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Definition 4.6 The set of admissible parameters β ∈ R
d+1 ⊆ C

d+1 is defined by

AA :=
⋂

τ :τ facet

{R · τ − [0, 1

eτ

) · εA}

where εA := a0+· · ·+an , eτ := 〈nτ , εA〉 ∈ Z>0 and nτ is the unit, inward pointing,
normal vector of τ . ♦

Example 4.7 For the matrix

A =
(
1 1 1 1
0 −1 1 2

)
,

the following picture

shows the sets sRes(A) (see Definition 2.6 above) and AA. ♦

We can now state a result, taken from (Reichelt and Sevenheck 2020, Theorem
5.35) which describes the Hodge filtration on the GKZ-systems in a rather precise
way.

Theorem 4.8 Let A ∈ Z
(d+1)×(n+1) be as in Convention 4.2, β ∈ AA and β0 ∈

(−1, 0]. Then the Hodge filtration on MA(β) is given by the shifted order filtration,
so that we have the following equality of filtered DCn+1-modules

(MA(β), FHodge• ) = (MA(β), Ford•+d)

It has been shown in Reichelt and Sevenheck (2020, Theorem 5.43) that the first part
of the above Theorem 4.5, and so Formula (26) is a rather direct consequence of the
comparison between the Hodge and the order filtration on MA(0).

Remark 4.9 As already noted in Sect. 2 above, a variant of Borisov–Horja’s better
behaved GKZ-systems has been considered in Mochizuki (2015a). If we suppose that
A is normal (aswedo throughout this section), then the definition inMochizuki (2015a)
coincides with the one for ordinary GKZ-systems as given in 1.6 above. However, the
matrix A is not supposed to be homogeneous in Mochizuki (2015a). The module
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MA(β) will have irregular singularities then, as discussed in Sect. 3 above. One may
ask what kind of Hodge theoretic information can be derived fromMA(β) in this case.
This is similar to the statements on the ordinary versus irregular Hodge filtration on
univariate hypergeometric systems that we will discuss below.

In Mochizuki (2015a, Prop. 1.4), Mochizuki proves the the following statement
which can be considered as an irregular variant of Theorem 4.8 above. Let B ∈ Z

d×n
be such that ZB = Z

d . Suppose for the simplicity of the exposition that NB =
R≥0B ∩ Z

d . Consider the non-commutative “Rees ring”

RC×Cn = C[z, x1, . . . , xn]〈z2∂z, z∂x1, . . . , z∂xn 〉 (28)

and the corresponding sheaf RC×Cn . Let H z
A (0) be the left RC×Cn -ideal generated

by

Ê0 := z2∂z +
n∑

j=1
zx j∂x j ;

Êi :=
n∑

j=1
ai, j zx j∂x j for k = 1, . . . , d;

�̂u :=
∏

j :u j>0

(z∂x j )
u j −

∏

j :u j<0

(z∂x j )
−u j for all u ∈ ker(B). (29)

Then the leftRC×Cn -moduleRC×Cn/H z
A (0) underlies amixed twistor module onC

n ,
a notion that in many respects is the correct replacement of a mixed Hodge module
in the irregular setup. In particular, any mixed Hodge module can be considered as
a special mixed twistor module, and therefore the case β = 0 of Theorem 4.8 can
be deduced from Mochizuki’s result. Using a filtered variant of the Fourier–Laplace
transformation (compare the discussion in Sect. 5 below), one can also obtain the latter
from Theorem 4.8, as has been demonstrated in Domínguez et al. (2019, Corollary
4.8). ♦

As another application of Theorem 4.8, we will describe some results about the
Hodge structure of univariate hypergeometric equations (see the discussion in Sect. 1.2
above). Consider again the operator

P =
m′∏

i=1
(θz − λi )− z ·

m∏

j=1
(θz − μ j ) ∈ C[z]〈∂z〉 (30)

(compare with Eq. 7, where m′ = q + 1, m = p and where λ1 = 0, λi = 1 − βi+1,
μ j = −α j ) for some real numbers λi , μ j . The corresponding cyclic module

H (λ;μ) := DA1/DA1 · P,

is irreducible if and only if for all i, j we have λi−μ j /∈ Z. The modulesH (λ;μ) are
the most basic examples of rigid D-modules (see Katz 1990; Arinkin 2010). A first
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consequence of this property is that if H (λ;μ) is irreducible, then it is isomorphic
to some H (λ′;μ′) whenever μ − μ′ and λ − λ′ are integer vectors. We can thus
assume that 0 ≤ λ1 ≤ · · · , λm′ < 1, 0 ≤ μ1 ≤ · · · ≤ μm < 1 and that λi �= μ j

for all i, j . It is obvious that H (λ;μ) is regular exactly when m′ = m and in that
case it has the three singular points {0, 1,∞}. On the other hand, if m′ �= m then
Sing(H (λ;μ) = {0,∞}.

In the regular case, that is, if m′ = m, the rigidity property can be stated at the
level of the the local systemL on P

1\{0, 1,∞} of solutions of P: it simply says that
the local monodromies around the singular points determine the (global) monodromy
representation defined by L . From there it follows by Simpson (1990, Cor. 8.1)
and also Deligne (1984, Prop. 1.13) that L underlies a complex variation of Hodge
structures. Then the following formula for its Hodge numbers has been shown in
Fedorov (2018, Thm. 1)

dim grF
Hodge

k L := dim(FHodge
k L /FHodge

k+1 L )

= #
{
s : 1 ≤ s ≤ m′, k = #{i : λi < μs} − s

}
. (31)

The Picard–Fuchs equation of the family of elliptic curves in Example 1.3 corre-
sponds, as we computed there, to the hypergeometric differential equation given by
the module H (0, 0; 1/2, 1/2). Applying Fedorov’s formula yields dim(grF0 L ) =
dim(grF1 L ) = 1, confirming our computation in Example 1.3. Notice also that in
this case the local system L underlies a real (and even rational) variation of Hodge
structures, which is consistent with Fedorov (2018, Theorem 2).

If m′ �= m (and, up to a change of the coordinate z �→ 1/z we can assume that
m′ > m), then H (λ;μ) is irregular and can no longer support a variation of Hodge
structures. In Sabbah (2018), a category of irregular Hodge modules is developed,
which can roughly be seen as lying between the category of mixed Hodge modules
and the category of mixed twistor modules. A possibly irregular DX -module M on
a complex manifold X underlying an irregular Hodge module comes equipped with
an irregular Hodge filtration, an increasing filtration F irr

α M by coherentOX -modules
indexed by the real numbers (contrarily to the regular case); we write F irr

<αM :=⋃
β<α F irr

β M . However, the indexing set is determined by a finite set I ⊆ [0, 1)
having the property that

grF
irr

α M := F irr
α M /F irr

<αM = 0 if α /∈ I + Z.

In Sabbah and Yu (2019), the following formula for the irregular Hodge numbers has
been found (see also Domínguez and Sevenheck 2019 and Domínguez et al. (2019),
where the Hodge filtration itself is determined in some cases, using Theorem 4.8 from
above):

dim grF
irr

α H (λ;μ) = #
{
s : 1 ≤ s ≤ m′, α = #{i : μi < λs} + (m′ − m)αs − s

}
.

(32)
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For m′ = m, this gives back the formula (31) up to the fact that the local system L
is in the regular case in Fedorov (2018) the one of the solutions ofH (λ;μ), whereas
formula (32) gives (for m′ = m) Hodge numbers of a filtration defined on the dual
local system of flat sections.

4.4 Weight filtration on GKZ systems

In the remainder of this section, we discuss results concerning the weight filtration on
GKZ-systems. Recall that we equipped the GKZ-system MA(0) in Sect. 4.2 with a
mixed Hodge module structure by rewriting it as certain Radon transform of a direct
image of a structure sheaf (cf. (23)). In this subsection we endow the GKZ systems
with an a priori different mixed Hodge module structure. If the matrix A is chosen
to be homogeneous then the GKZ-system MA(0) is a monodromic D-module. In
this case the Fourier–Laplace transformation can be replaced by the Fourier–Sato
transformation (or monodromic Fourier–Laplace transformation) (cf. Brylinski 1986,
Théorème 7.24) which happens to be a functor of mixed Hodge modules.

Denote by

θ : C∗ × Ĉ
n+1 −→ Ĉ

n+1

the standard C
∗-action on Ĉ

n+1. We refer to the push-forward θ∗(z∂z) as the Euler
vector field E, where z is a coordinate on C

∗. A regular holonomic D-module M is
called monodromic, if the Euler field E acts finitely on the global sections of M .

Consider the diagram

Ĉ
n+1 × C

n+1
p1



���
���

���
��

ω

����
���

���
���

�

Ĉ
n+1

Cz × C
n+1 {0} × C

n+1i0��

where p1 is the projections to the first factor, i0 is the canonical inclusion and the map
ω is given by

ω : Ĉn+1 × C
n+1 −→ Cz × C

n+1

(y, x) �→ (z =
∑

i

yi xi , x)

The Fourier–Sato transformation (or monodromic Fourier transformation) is defined
by

FS : MHM(Ĉn+1) −→ MHM(Cn+1)
M �→ φzω∗ p∗1M [n + 1]

where φz is the vanishing cycle functor along z = 0.
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It was shown in (Reichelt and Walther, Proposition 4.12) that the Fourier–Sato
transformation respects the weight filtration of monodromic D-modules which are
localized along {0} ∈ Ĉ

n+1 (up to a shift). Hence, a weight filtration on the GKZ-
system is induced by the following isomorphisms:

Wk+n+1MA(0) := Wk+n+1 FS((hA)+OT) 	 FS(Wk(hA)+OT)

Since the Fourier–Sato transform is an equivalence of categories it is therefore
enough to compute the weight filtration on M̂A(0) = (hA)+OT which will be done
below.

Recall that the graded parts GrWk M of amixedHodgemodule are pureHodgemod-
ules and as such are semi-simple, splitting as direct sums of intersection complexes
(which are simple D-modules). Because the number of simple objects (counted with
multiplicity) is independent on the chosen (weight) filtration this also gives us the
simple objects occurring in the weight filtration induced by the Radon transform (but
possibly in another order). However, we conjecture that the Fourier–Sato transfor-
mation and the Radon transformation are actually isomorphic on the level of mixed
Hodge modules.

Conjecture 4.10 For N ∈ MHM(Pn):

FS( j∗π !N ) 	 RT◦c(N )

♦

We will now proceed to state the result on the weight filtration of M̂A(0) =
(hA)+OT:

Let τ ⊆ γ ⊆ σ be faces of a cone σ ⊂ R
d+1. The quotient face of γ by τ is defined

as:

γ /τ := (γ + τR)/τR ⊆ R
d+1/τR

where τR is the linear span of the cone τ . Define

γ � := { f ∈ HomR(Rd+1, R)/γ⊥| f (x) ≥ 0 ∀x ∈ γ }

The cone γ � is the dual of γ in its own span, hence independent of σ . For cones
τ ⊆ γ denote by Xγ /τ the spectrum of the semigroup ring induced by the cone γ /τ

in its natural lattice. Set Yγ /τ := X(γ /τ)� .
In the following, we denote the coneR≥0A by σ . The Fourier–Laplace transformed

GKZ system M̂A(0) is isomorphic to (hA)+OT and has support on the affine toric
variety XA = Xσ . For a face τ of σ write dτ for its dimension. We have seen in Sect.
2.1 that the dτ -dimensional T-orbits Oτ

A in Xσ are in one-to-one correspondence with
the faces τ of σ . The closure of an orbit Oτ

A is Xτ .
It turns out that the varieties Xτ are exactly those which occur as support varieties

of the summands in the semisimple decompositions of the graded parts grW M̂A(0).

123



Beitr Algebra Geom

Let L(τ,d+e) be the constant local system of rank dim IHd+1−dτ−e(Yσ/τ ) on Oτ
A.

In order to simplify the notation, we use the symbol ICY (L ) for the intersection
cohomology D-module on some smooth variety X with support on the closed subset
Y ⊆ X , and where L is a local system on a Zariski open subset of Y .

Theorem 4.11 Let A ∈ Z
(d+1)×(n+1) be full, pointed, saturated, but not necessarily

homogeneous. The weight graded parts of the mixed Hodge module M̂A(0) are given
by

grWd+1+e M̂A(0) 	
⊕

τ⊆σ

ICXτ (L(τ,d+1+e)).

Corollary 4.12 Let A ∈ Z
(d+1)×(n+1) be as above. The length of the GKZ system

MA(0) is

∑

τ⊆σ

d+1−dτ∑

e=0
dim IHe(Yσ/τ ) =

∑

τ⊆σ

dim IH∗(Yσ/τ ).

5 Application to toric mirror symmetry

The aim of this final section is to discuss some results concerning the so-called mirror
symmetry phenomenon, which links enumerative geometry of projective algebraic,
and more generally symplectic varieties (called A-model) to complex geometry, in
particular, Hodge theory of their so-called B-models. The B-model is usually given
by a family of algebraic varieties which may have singularities and which need not be
projective (which forces one to consider compactifications, see below). Often these
families on the B-side are referred to as Landau–Ginzburg models.

The first example of mirror symmetry was given by Candelas et al. (1991) who
predicted a virtual number of rational curves on a quintic threefold (later referred to as
the genus 0 Gromov–Witten invariants) by period computations for the mirror partner
(the B-model). These predictions were verified and also generalized to numerically
effective smooth complete intersections in toric varieties by Givental (1996, 1998).
His celebrated mirror theorem shows that the J -function, a generating function for
the genus 0 GW-invariants of such varieties, is computable in terms of a cohomology-
valued hypergeometric function. Givental also conjectured that the components of this
function are given as oscillating integrals. This was much later proved in Iritani (2009)
(even treating the case where the toric variety in question is an orbifold), some details
of the construction described below are parallel to his paper. However, an algebraic
construction of the correct Hodge theoretic B-model was still missing. Our purpose
in this section is to give an overview of techniques and results (mainly referring to
Reichelt and Sevenheck (2015, 2017, 2020) as well as to Mochizuki (2015a)), where
the machinery of GKZ-systems as discussed in the previous sections is used to obtain
a purely algebraic Hodge theoretic (and D-module based) mirror correspondence for
certain smooth toric varieties resp. subvarieties of them.
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5.1 Gromov–Witten invariants and Dubrovin connection

Let X be a toric smooth projective variety. For the purpose of this exposition, we
assume further that X is Fano, so the anticanonical class [−KX ] is ample. A good
part of the results discussed below also applies if one considers weak Fanomanifolds,
meaning that [−KX ] is a numerically effective (nef) class. There are however a few
technicalmodifications needed in the nef case,which iswhywe refrain fromdiscussing
it here. Developing the mirror symmetry picture described below in the absence of
any positivity assumption on X remains a subject of active current research (see, e.g.,
Iritani 2008; Gross et al. 2017; Iritani 2017).

Let β ∈ H2(X , Z) and choose γ1, γ2, γ3 ∈ H∗(X , Q). The genus zero, three point
Gromov–Witten invariants

〈I0,3,β〉(−,−,−) : H∗(X , Q)⊗3 −→ Q

intuitively count the number of stable maps f from rational curves C with—in this
case—three marked points, satisfying f∗([C]) = β and f (C) ∩ PD(γi ) �= ∅ for
i = 1, 2, 3. (Here and elsewhere, PD(−) denotes the Poincaré dual). Technically, they
are obtained as follows: pull back the (three) arguments of 〈I0,3,β〉 to the moduli space
of such maps (along the three induced evaluation maps to X ), take their cup product
and evaluate against this product by integration over a certain virtual fundamental class
on the moduli space. Constructing this latter class is a major issue in Gromov–Witten
theory (see, e.g. Fulton and Pandharipande 1997; Behrend and Fantechi 1997).

We choose a homogeneous basis T0, T1, . . . , Tr , Tr+1, . . . , Ts of H∗(X;Z) such
that T0 ∈ H0(X;Z), the classes T1, . . . , Tr ∈ H2(X;Z) lie in the nef cone of X and
Tr+1, . . . , Ts ∈ H>2(X;Z). Let gi j := (Ti , Tj ) be the Poincaré pairing between the
elements Ti and Tj and define

T i :=
∑

j

gi j Tj .

With δ ∈ H2(X;C), the three point Gromov–Witten invariants can be used as
structure constants for a family of multiplications

γ1 ∗ γ2 :=
∑

β∈H2(X ,Z)

s∑

i=0
exp(δ(β)) · 〈I0,3,β〉(γ1, γ2, Ti )T i (33)

on H∗(X;C). This product structure is the small quantum product of X and parame-
terized by the cosets of δ in the complexified Kähler moduli space

K := H2(X;C)/2π
√−1 · H2(X , Z).
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Apriori it is far from clear that the sum in (33) is convergent. However, theGromov–
Witten invariants satisfy (among others) the following properties:

Effectivity: 〈I0,3,β〉 = 0 if β does not lie in the Mori cone

Degree: 〈I0,3,β〉(Ti , Tj , Tk) = 0 unless
3∑

i=1
deg(Ti ) = 2 dim X − 2c1(X)(β)

Point Mapping: 〈I0,3,0〉(Ti , Tj , Tk) = (Ti ∪ Tj ∪ Tk)([X ])

where we recall that the Mori cone is the cone in H2(X;R) of effective classes of
curves. It is dual to the cone of nef divisors in H2(X;R). The effectivity axiom together
with our assumption that X be Fano— so that the class c1(X) be ample—show that
〈I0,3,β〉 is zero unless c1(X)(β) ≥ 0. The degree axiom now tells us that for fixed
Ti , Tj , Tk there are only finitely many β in the Mori cone such that 〈I0,3,β〉(Ti , Tj , Tk)
is non-zero. Hence the product defined in (33) is finite and therefore defined on the
whole space K.

It can be seen from other axioms that the small quantum product is commutative,
associative and that T0 acts as identity. Let η1, . . . , ηr ∈ H2(X , Z) such that Ti (η j ) is
the Kronecker δi, j for 1 ≤ i, j ≤ r . If we write

δ = t1T1 + · · · + tr Tr ∈ H2(X;C),

β = β1η1 + · · · + βrηr ∈ H2(X;C),

and set qi := exp(ti ) for i = 1, . . . , r , we get

exp(δ(β)) = qβ1
1 . . . qβr

r .

Then, under the exponential map from H2(X;C) to K, q = {qi }i=1,...,r become
coordinates onK corresponding to t = {ti }i=1,...,r on H2(X;C) and induce an explicit
isomorphism K 	 (C∗)r . Since T1, . . . , Tr lie in the nef cone, the cone generated
by the dual basis (η j ) j=1,...,r contains the Mori cone and therefore all monomials

qβ1
1 . . . qβr

r have non-negative exponents. Hence the quantum product extends to the
partial compactification

K := C
r ←↩ (C∗)r = K. (34)

The point mapping property of the Gromov–Witten invariants shows that the small
quantum product degenerates to the ordinary cup product at q = 0.

Example 5.1 Consider the first Hirzebruch surface F1 which is induced by the follow-
ing fan (left); on the right is shown the space H2(F1;R) using the coordinate system
given by the classes of D1 and D2. (See the start of Sect. 5.2 for information on how
to view H2(X;Z)).
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We choose the homogeneous basis T0 = 1, T1 = [D1], T2 = [D2], T3 =
PD({pt}). The small quantum cohomology product of F1 is determined by

T1 ∗ T0 = T1, T1 ∗ T1 = −q1T1 + q1T2, T1 ∗ T2 = T3, T1 ∗ T3 = q1q2T0

T2 ∗ T0 = T2, T2 ∗ T1 = T3, T2 ∗ T2 = q2T0 + T3, T2 ∗ T3 = q2T1 + q1q2T0

since one can conclude that

T3 ∗ T3 = T3 ∗ (T1 ∗ T2) = (T3 ∗ T1) ∗ T2 = q1q2T0 ∗ T2 = q1q2T2.

The small quantum cohomology ring of F1 is therefore given by

C[q1, q2, T1, T2]/
(
T 2
1 + q1T1 − q2T2, T

2
2 − T1T2 − q2, T1T

2
2 − q2T1 − q1q2

)
.

Restricting this ring to q1 = q2 = 0 gives C[T1, T2]/(T 2
1 , T 2

2 − T1T2, T1T 2
2 ) which is

isomorphic to the cohomology ring (cf. Fulton 1993, Section 5.2),

H∗(F1;C) ≡ C[D1, D2, D3, D4]/(D1D3, D2D4, D1D2D4, D1 − D3, D2 − D3 − D4)

under the map T1 �→ D1, T2 �→ D2. ♦

We are going to give a reformulation of the quantum cohomology algebra in terms
of certain differential systems. The intrinsic reason of the appearance of differential
equations in this context is best understood when studying the big quantum product
instead of the small one as we have done above. It basically means to have a product
on H∗(X;C) which is parameterized by any class δ ∈ H∗(X;C) instead of a class
in H2(X;C) (more precisely, instead of a representative of a coset in K). One can
show that the structure constants of the big quantum product can be obtained as third
derivatives of a generating function, referred to as the Gromov-Witten potential. This
fact reveals an intrinsic integrability property of the (big) quantum product. Moreover,
the associativity then boils down to a famous third order non-linear partial differential
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equation satisfied by the GW-potential, abbreviated as WDVV-equation (after Witten,
Dijkgraaf, Verlinde, Verlinde, see, e.g. (Manin 1999)). It turns out that using the next
definition, this equation can be rewritten as a flatness property of a system of linear
differential equations, that is, a vector bundle with a connection.

Definition 5.2 The small Dubrovin connection (HA,∇A) of X is a flat meromorphic
connection ∇A on a trivial, holomorphic vector bundle HA over P

1 × K with fiber
H∗(X;C). The connection is given by

∇A
∂qi

(Tj ) := 1

z
Ti ∗ Tj (35)

∇A
∂z

(Tj ) := − 1

z2
c1(X) ∗ Tj + 1

z

deg(Tj )

2
Tj (36)

where we denote by z the coordinate centered at 0 ∈ C ⊆ P
1. ♦

Notice however that this convention from quantum cohomology literature leads to
some slight clash of notation. Namely, the variable z from above (a coordinate on P

1)
is different from the variable z used for univariate hypergeometric equations in Sect. 1
as well as in Formula (30). In order to be consistent with the literature, we stick to
these conventions and hope that it does not lead to confusion.

It is an easy but instructive exercise to check that the flatness of the connection ∇A
implies the associativity and commutativity of the small quantum product.

Example 5.3 The small Dubrovin connection of the first Hirzebruch surface is given
by

∇A = d +

⎛

⎜⎜⎝

0 0 0 q1q2
1 −q1 0 0
0 q1 0 0
0 0 1 0

⎞

⎟⎟⎠
dq1
zq1

+

⎛

⎜⎜⎝

0 0 q2 q1q2
0 0 0 q2
1 0 0 0
0 1 1 0

⎞

⎟⎟⎠
dq2
zq2

+

⎛

⎜⎜⎝

0 0 −2q2 −3q1q2
−1 q1 0 −2q2
−2 −q1 0 0
0 −2 −3 0

⎞

⎟⎟⎠
dz

z2
+

⎛

⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2

⎞

⎟⎟⎠
dz

z

♦

5.2 Landau–Ginzburgmodels

Let �X be the fan of the toric smooth projective Fano variety X defined on the d-
dimensional vector space N ⊗Z R (N ∼= Z

d being a lattice), with �X (1) the set of
one-dimensional cones whose primitive elements in N form the columns of the matrix
B ∈ Z

d×n . Denote by M = HomZ(N , Z) the dual of N which is identified with the
group of torus-invariant principal divisors and byDivT (X) the group of torus-invariant
Weil divisors. There is the following (split) exact sequence

0 −→ M −→ DivT (X) −→ H2(X , Z) −→ 0 (37)
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Applying (−)⊗Z C
∗ one obtains the (split) exact sequence

1 −→ M ⊗Z C
∗

︸ ︷︷ ︸
=T

b−→ DivT (X)⊗Z C
∗ c−→ H2(X , Z)⊗Z C

∗
︸ ︷︷ ︸

=K
−→ 1

of algebraic tori, where b is the monomial map encoded by the transpose of B, K is
as in Sect. 5.1, and T as in (22). Recall that the standard basis e1, . . . , ed of M gives
coordinates t = (t1, . . . , td) on T.

The canonical basis of torus-invariant divisors D1, . . . , Dn for DivT (X) corre-
sponding to the one-dimensional cones induces an isomorphism DivT (X) ⊗Z C

∗ 	
(C∗)n . Let W : DivT (X)⊗Z C

∗ = (C∗)n −→ C be the function given by summing
the coordinates.

Definition 5.4 The Landau–Ginzburg model associated to the smooth, toric, Fano
variety X is the map

(W , c) : DivT (X)⊗Z C
∗ −→ C×K.

♦
If we viewK as an abstract algebraic torus, defining the morphism (W , c) requires

only the matrix B (that is, the generators of �X (1)), but not the full data of the fan
�X . We shall later wish to (partially) compactify K, as we have done before (see
Formula (34)). For this, we need to equip K with the coordinate system {qi }i=1,...,r ,
corresponding to the basis {Ti }i=1,...,r on H2(X;C). The compactification is designed
to contain the point q1 = · · · = qr = 0, since there the quantum product collapses to
the cup product. This will be the case if the basis {Ti }i=1,...,r of H2(X;R) consists of
nef classes (this choice has already been made above at the beginning of Sect. 5.1).
Hence, fixing such a good coordinate system {qi }i=1,...,r onK depends on the geometry
of the toric variety X� and not just on the ray generators given by the matrix B (see
Reichelt and Sevenheck 2015, Section 3.1 for a more detailed discussion).

Since (37) splits, we can find a section of the map DivT (X) −→ H2(X , Z) which
then induces a section

s : K −→ DivT (X)⊗Z C
∗. (38)

Again, s, seen as a monomial map from (C∗)r to (C∗)n , will depend on the fan
structure of �X via the choice of coordinates on K. From now on, we will always
fix such coordinates and consider K as the concrete r -dimensional torus (C∗)r . The
isomorphism

(b, s) : T×K −→ DivT (X)⊗Z C
∗

gives a different presentation of the Landau–Ginzburg model, namely as a family of
Laurent polynomials

ψ := (F, pr2) : T×K −→ C×K
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(t1, . . . , td , q1, . . . , qr ) �→
⎛

⎝
n∑

j=1
qs j tb j , q1, . . . , qr

⎞

⎠ (39)

where S = (s1, . . . , sn) ∈ Z
r×n and B = (b1, . . . ,bn) ∈ Z

d×n represent the maps s
and b respectively.

Example 5.5 We continue Example 5.1. The exact sequence (37) is given by

0 −→ Z
2

Z
4

Z
2 −→ 0

( 1 0
0 1
−1 −1
0 −1

)
(
1 0 1 −1
0 1 0 1

)

where we have chosen the basis T1 = [D1], T2 = [D2] as a basis in H2(X;Z), as we
did in Example 5.1. The Landau–Ginzburg model is given on the level of coordinate
functions by

(W , c) : DivT (X)⊗Z C
∗ = (C∗)4 −→ C× (C∗)2 = C×K

(w1 + · · · +w4,
w1w3

w4
,w2w4) ← � (t, q1, q2).

The corresponding family of Laurent polynomials is

ψ : T×K = (C∗)2 × (C∗)2 −→ C× (C∗)2 = C×K
(t1, t2, q1, q2) �→ (q1t1 + q2t2 + 1

t1t2
+ 1

t2
, q1, q2),

where we have chosen the section s : K −→ DivT (X)⊗Z C
∗ as the one induced from

the map

H2(X;Z) ∼= Z
2

Z
4 ∼= DivT (X).

(1 0
0 1
0 0
0 0

)

♦

It was conjectured by Givental (see, e.g. Givental 1998) that oscillating integrals
over Lefschetz thimbles with respect to the Landau–Ginzburg model give flat sections
of the Dubrovin connection. An algebraic replacement of these oscillating integrals,
localized and partially Fourier–Laplace transformed Gauß–Manin systems of the
Landau–Ginzburg model.

We briefly explain this version of the ordinary Fourier–Laplace transformation
functor (see Formula (19) above). In the following, OCt×Cτ×Y · exp(−tτ) denotes a
free rank 1 module with twisted differential given by the product rule.
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Definition 5.6 Given a smooth variety Y and a holonomic DC×Y -module N , the
localized, partial Fourier–Laplace transform of N is the sheaf

FLloc
Y N := ( jz)+ j+τ (p2)+

(
p+1 N ⊗O OCt×Cτ×Y · exp(−tτ)

) [−1] (40)

where p1 : Ct × Cτ × Y −→ Ct × Y and p2 : Ct × Cτ × Y −→ Cτ × Y are the
indicated projections, and where jτ : C

∗
τ × Y −→ Cτ × Y and jz : C

∗
τ × Y −→

(P1
τ\{0})× Y = Cz × Y are the canonical open embeddings with the understanding

that z = 1/τ . ♦

The name “localized” comes from the fact that by using the direct image ( jz)+, the
action of z is invertible on the resulting module (and so is the action of τ ).

The localized, partially Fourier–Laplace transformed Gauß–Manin system of the
Landau–Ginzburg model ψ is then defined as

G ψ := FLloc
K H 0(ψ+OT×K).

It is an exercise (using the definition of the direct image functor, see, e.g. Hotta (2008,
Sections 1.3, 1.5)) to show that the module of global sections Gψ of G ψ has the
following presentation in terms of relative differential forms

Gψ 	 H0
(
�•+d

T×K/K[z
±], zd− dF∧

)
,

where d is the differential on the complex�•+d
T×K/K. Following an idea from singularity

theory (see Brieskorn 1970; Saito 1989; Sabbah 2006), one defines the Fourier–
Laplace transformed Brieskorn lattice by

Gψ
0 := H0

(
�•+d

T×K/K[z], zd− dF∧
)
⊆ Gψ. (41)

Wewill see below, using GKZ-systems, thatGψ
0 isOC×K-free. In order to connect G ψ

to a GKZ-system we observe that the family of Laurent polynomials ψ is a pullback
of a larger family

ϕ : T× C
n −→ C× C

n

((t1, . . . , td), (x1, . . . , xn)) �→
⎛

⎝−
n∑

j=1
x j t

b j , (x1, . . . , xn)

⎞

⎠

by the map

ι : C×K C× DivT (X)⊗Z C
∗

C× (C∗)n C× C
nid×(−s) 	 can (42)

where s : K ↪→ DivT (X) ⊗Z C
∗ ∼= (C∗)n is as in (38) and the middle map is the

identification induced from the standard basis on M .
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In Theorem 4.4 we have connected the Gauß–Manin system of ϕ to a GKZ system
via the 4-term sequence

0→ Hd−1(T;C)⊗O OCn+1 →H 0(ϕ+OT×Cn )

→MA(0) → Hd(T;C)⊗O OCn+1 → 0,

where A ∈ Z
(d+1)×(n+1) is the homogenization of the matrix B constructed from the

ray generators of the fan �X . Since the outer two terms are free OCn+1 -modules, they
are in the kernel of the localized partial Fourier–Laplace transform. Indeed, on the level
of global sections, FLloc

Y is the composition the localization at ∂t with the ordinary
Fourier–Laplace transformation FLY , and C[t] = Dt/Dt · ∂t naturally localizes to
zero. Thus, the localized partial Fourier–Laplace transform being the composition of
two exact functors, the previous display implies

G ϕ = FLloc
Cn H 0(ϕ+OT×Cn−1) 	 FLloc

Cn (MA(0)).

Themodule of global sections of FLloc
Cn (MA(0)) is the cyclic leftmodule DC×Cn [z±]/I

over the ring

DC×Cn [z±] := C[z±, x1, . . . , xn]〈∂z, ∂x1 , . . . , ∂xn 〉,

where I is generated by the operators Ê0, (Êi )i=1,...,d , (�̂u)u∈ker(B) fromEq. (29).We
like to compare this computation to a presentation for the Fourier–Laplace transformed
Brieskorn lattice G ϕ

0 ⊆ G ϕ for the map ϕ instead ofψ . For this, we use again the Rees
ring RC×Cn = C[z, x1, . . . , xn]〈z2∂z, z∂x1 , . . . , z∂xn 〉 from Eq. (28). The module of
global sections of the Fourier–Laplace transformed Brieskorn lattice Gϕ

0 can then be
described as RC×Cn/Hz

B(0), recalling from Sect. 4 that Hz
B(0) is the left RC×Cn -ideal

generated by the operators Ê0, (Êi )i=1,...,d , (�̂u)u∈ker(B).
Using techniques borrowed from Adolphson (1994) one can show:

Lemma 5.7 (Reichelt and Sevenheck 2015, Lemma 2.12) The restriction of the
Fourier–Laplace transformed Brieskorn lattice G ϕ

0 to the Zariski open subset C ×
(C∗)n ⊆ C× C

n is a free OC×(C∗)n -module. ��
One can prove by base change that the Fourier–Laplace transformed Brieskorn

lattice G ϕ
0 is the inverse image of G ψ

0 under the map ι in (42). We therefore arrive at
the following result where, for u ∈ ker(B), we read it as an element of H2(X;C) via
the dual of the sequence (37):

Parallel toRC×Cn from (28), we define

RC×K := C[z, q±1 , . . . , q±r ]〈z2∂z, z∂q1 , . . . , z∂qr 〉

and denote by RC×K the associated sheaf on C×K.

Proposition 5.8 The localized Fourier–Laplace transformed Brieskorn lattice G ψ
0 is

OC×K-free. As a sheaf over RC×K, it is isomorphic to the cyclic module RC×K/J
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where the left ideal J is generated by (here, u runs through ker(B) and {qa}a=1...,r
are coordinates on K as always)

Ẽ := z2∂z +
r∑

a=1
c1(X)azqa∂qa

�̃u :=
⎛

⎝
∏

a:Ta(u)>0

qTa(u)
a

⎞

⎠
∏

j :u j<0

−u j−1∏

ν=0

(
r∑

a=1
[Di ]azqa∂qa − νz

)

−
⎛

⎝
∏

a:Ta(u)<0

q−Ta(u)
a

⎞

⎠
∏

j :u j>0

u j−1∏

v=0

(
r∑

a=1
[Di ]azqa∂qa − νz

)

where [Di ] =∑r
a=1[Di ]aTa and c1(X) =∑r

a=1 c1(X)aTa.

Set

Rlog
C×K := C[z, q1, . . . , qr ]〈z2∂z, zq1∂q1, . . . , zqr∂qr 〉

and denote byRlog
C×K the associated sheaf onC×K. Then the following statements on

some cyclicRlog
C×K-modules are proved in Reichelt and Sevenheck (2015) using meth-

ods from toric geometry, including the notions of primitive collections and relations
(see, e.g., Cox and von Renesse 2009; Cox et al. 2011).

Proposition 5.9 Let J log ⊆ Rlog be the left ideal generated by Ẽ and �̃u from
Proposition 5.8. Then

• R
log
C×K/J log is O

C×K-free.
• (R

log
C×K/J log)|C×K 	 RC×K/J .

In order to construct an object which matches the small Dubrovin connection com-
ing from the Gromov–Witten invariants of X we have to go one step further. Recall
that the small Dubrovin connection (35) is a family of vector bundles on P

1, param-
eterized by K, equipped with a certain connection operator. As of yet, starting from
the Landau–Ginzburg model ψ from (39) of X , we have constructed a vector bundle
R

log
C×K/J log on C × K with a differential structure, and it is easily verified that the

behavior along the poles ({0} × K) ∪ (C × (K\K)) of the connection operators on
both bundles are of the same type. If we want to compare Rlog

C×K/J log to the small
Dubrovin connection, it thus remains to extend this bundle (togetherwith its connection
operator) over the divisor {∞}×K to all of P

1×K. This is of course always possible
if no other condition is imposed. However, if we want to reconstruct the Dubrovin
connection, this extension needs to satisfy two strong conditions simultaneously: the
resulting object must be a family of trivial P

1-bundles and the connection must have
a logarithmic pole at infinity. Fulfilling both requirements is not always possible, and
goes under the name (Riemann–Hilbert-)Birkhoff problem; for a modern account see
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(Sabbah 1998, Chapter IV). However, under the current circumstances, a solution to
the Birkhoff problem can be found locally near the boundary K\K, as the following
result shows.

Theorem 5.10 (Reichelt and Sevenheck 2015, Proposition 3.10) There exists a Zariski
open neighborhood U of 0 ∈ K and sections Q0, . . . , Qs of (R

log
C×K/J log)|C×U

which extend (R
log
C×K/J log)|C×U as a (trivial) holomorphic vector bundle over P

1×
U, called HB, such that the associated connection ∇B has a logarithmic pole along
the normal crossing divisor ({z = ∞} ×U ) ∪ (P1

z × (K\K)).

With all these preparations, we can state the following result, which can be consid-
ered as the Hodge theoretic mirror statement for smooth toric Fano varieties.

Theorem 5.11 (Reichelt and Sevenheck 2015, Proposition 4.10) Let, as before, X be
a smooth projective toric Fano variety, (HA,∇A) the small Dubrovin connection and
(HB,∇B) the solution to the Birkhoff problem from Theorem 5.10. Then there is an
isomorphism of holomorphic bundles over P

1 ×U with meromorphic connections

(HA,∇A)|P1×U 	 (HB,∇B).

We remark that in Reichelt and Sevenheck (2015, Proposition 4.10) a similar result
for the more general case of weak Fano toric manifolds is given, albeit with a weaker
conclusion: the extension HB there only exists on an analytic open subset of K (see
the remark after Reichelt and Sevenheck 2015, Proposition 3.10).

Example 5.12 When X is the Hirzebruch F1 surface, the Fourier–Laplace transformed
Brieskorn lattice of the Landau–Ginzburg model is given by

Gψ
0 	 C[z, q±1 , q±2 ]〈z2∂z, z∂q1 , z∂q2〉/J

where the left ideal J is generated by the operators

Ẽ = z2∂z + zq1∂q1 + 2zq2∂q2 , �̃u1 = (zq1∂q1)
2 + q1(zq1∂q1)− q1(zq2∂q2),

�̃u2 = (zq1∂q1)
2(zq2∂q2)− q1q2, �̃u3 = −(zq1∂q1)(zq2∂q2)+ (zq2∂q2)

2 − q2,

where u1 = (1, 0, 1,−1), u2 = (1, 1, 1, 0), u3 = (0, 1, 0, 1) generate the integer
kernel of B.

The logarithmic extension is equal toC[z, q1, q2]〈z2∂z, zq1∂q1 , zq2∂q2〉/J log where
J log is generated by the same operators as J .

The basis which solves the (Riemann–Hilbert)-Birkhoff problem is Q0 = 1, Q1 =
zq1∂q1, Q2 = zq2∂q2 , Q3 = (zq1∂q1)(zq2∂q2). These sections are identified with the
sections T0, T1, T2, T3 of HA under the mirror isomorphism from Theorem 5.11. ♦

5.3 Reduced quantumD -modules and intersection cohomology

In this section, we are going to discuss a mirror statement that concerns weak Fano
smooth complete intersections inside smooth projective toric, possibly non-Fano, vari-
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eties. From the point of view of physics, this is an even more important class of
examples than the one considered previously since it includes Calabi–Yau manifolds
that are subvarieties of toric manifolds, although they are not toric themselves. The
most prominent example, namely, the quintic in P

4 (where the first enumerative pre-
dictions using the mirror symmetry principle were made, see (Candelas et al. 1991))
is of this type. We will discuss a non-affine version of the Landau–Ginzburg models
introduced above. The mirror statement that we aim for will relate (part of) the quan-
tum cohomology of the complete intersection subvariety to the lowest weight filtration
step of a GKZ-system. It follows from the results in Sect. 4.3 that the lowest weight
filtration step is a single intersection cohomologyD-module which arises as the image
under a natural morphism from the holonomic dual of the GKZ system to the GKZ
system itself. In the cases we discuss here this holonomic dual is isomorphic to a GKZ
system with the same matrix A but different parameter vector β. Hence the intersec-
tion cohomology D-module can be described as the image of a morphism between
two GKZ-systems by a contiguity morphism. Our main reference in this section is
Reichelt and Sevenheck (2017). We start with setting the notation.

Notation 5.13 As before, X will be a smooth projective toric variety of Picard rank
r attached to the fan �X of dimension d, whose primitive rays form the columns of
the matrix B. In contrast to the previous case we do in this subsection not make any
positivity assumption on X here. Let O(L1), . . . ,O(Lc) be globally generated line
bundles; since X is toric, this amounts to asking that each Li be nef—their classes
should lie in the nef cone in H2(X , R). We shall assume also that

− KX − L1 − · · · − Lc is nef. (43)

If D1, . . . , Dn are the torus invariant divisors on X we can write

L j =
n∑

i=1
di j D j (44)

for suitable non-negative integers di j . Set

E := O(L1)⊕ · · · ⊕ O(Lc),

and consider a generic global section γ ∈ �(X ,E ). Our assumptions imply that

Y := γ−1(0) ⊂ X

is a smooth complete intersection subvariety for which −KY is nef; we call this
property weak Fano. ♦

In this paragraph we briefly review a variant of the above quantum product that is
designed to encode enumerative information about stable maps to Y . The first point is
that one can generalize the definition of Gromov–Witten invariants (5.1) to the twisted
(three-point) GW-invariants; these are also maps from H∗(X , Q)⊗3 → Q, but Chern
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classes of certain tautological bundles (on the moduli space of stable maps) derived
from E come into play.We denote by 〈I0,3,β〉(γ1, γ2, γ̃3) ∈ Q the value of such a three
point twisted GW-invariant for given cohomology classes γ1, γ2, γ3 ∈ H∗(X , Q)

(see, e.g. Reichelt and Sevenheck 2017, Section 4.1) for a more detailed discussion,
including an explanation for the process γ3 � γ̃3). Then one defines in complete
analogy to Formula (33) the twisted (small) quantum product by

γ1
tw∗ γ2 :=

s∑

a=0

∑

β∈H2(X ,Z)

qβ〈I0,3,β〉(γ1, γ2, T̃a)T a , (45)

where, as before, q are coordinates on K and qβ := exp(δ(β)) for β ∈ H2(X;C).
We now follow the definition of the small Dubrovin connection, Eq. (35), and

define the twisted quantum D-module, denoted by QDM(X ,E ), as the vector bundle
on P

1 ×K with fiber H∗(X;C) together with the connection given by

∇ tw
∂qi

Tj := 1

z
Ti

tw∗ Tj

∇ tw
z∂z Tj := −1

z
(t0T0 + c1(X)− c1(E ))

tw∗ Tj + deg(Tj )− dim(X)+ rk(E )

2
Tj

Notice that, unlike in the Fano case discussed in Sect. 5.2, the convergence of the
twisted quantum product is not automatic. We will therefore later restrict to some

analytic neighborhood U ⊂ K of the point q1 = · · · = qr = 0 in K, on which
tw∗ is

convergent.
As we are interested in enumerative information about maps to Y := γ−1(0), the

cohomology space H∗(X;C) is not a well suited object for a quantum cohomology
theory of Y . We therefore consider the Gysin morphism

mE : H∗(X) −→ H∗(X)

α −→ ctop(E ) ∪ α

and define the reduced cohomology of (X ,E ) to be

H∗(X) := H∗(X)/ ker(mE ).

One checks that the twisted quantum D-module QDM(X ,E ) has a quotient bun-
dle QDM(X ,E ) with fiber H∗(X), and that the connection ∇ tw on QDM(X ,E )

descends to QDM(X ,E ). We call this vector bundle on P
1 × K with connection

(QDM(X ,E ),∇ tw) the reduced quantum D-module (see Reichelt and Sevenheck
2017, Definition 4.3) for more details).

We proceed by describing the relevant Landau–Ginzburg models attached to the
given data (X ,E ). Denote by E ∨ the dual bundle of E , and by

V := V(E ∨)
π−→ X
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its total space. Then V is a (non-compact) toric variety, whose fan

�V ⊆ (N ⊕ Z
c)⊗Z R

is given as follows: The set of rays of �V are the columns of the matrix

B ′ = (b′1, . . . ,b′n+c) :=
(

B 0n,c

(d ji ) Idc

)
∈ Z

(d+c)×(n+c), (46)

where B is the d × n-matrix constructed from the primitive rays in �X and where d ji

are as in (44). Then the fan �V consists of all cones

R≥0b′i1 + · · · + R≥0b′ik + R≥0b′j1 + · · · + R≥0b′j


such that R≥0bi1 + · · · + R≥0bik ∈ �X and j1, . . . , j
 ∈ {n + 1, . . . , n + c}. Notice
that we have H2(V;Z) ∼= H2(X , Z) ∼= Z

r and that DivT (V) ∼= Z
n+c. Similarly to the

discussion in Sect. 5.2 we then consider a family of Laurent polynomials associated
to these toric data.

Definition 5.14 (Reichelt and Sevenheck 2017, Definition 6.3.) Let (X ,E ) be as in
Notation 5.13 and consider the complexified Kähler moduli spaceK ∼= H2(X;Z)⊗Z

C
∗ ∼= H2(V;Z) ⊗Z C

∗ of both X and V. Write TV := (C∗)d+c for the (d + c)-
dimensional torus. Then the affine Landau–Ginzburg model of (X ,E ) is themorphism

ψ = (F, pr2) : TV ×K◦ −→ C×K◦ (47)

(y, q) �−→
⎛

⎝−
n∑

j=1
q
s′j · yb′j +

n+c∑

j=n+1
qs
′
i · yb′i , q

⎞

⎠ , (48)

where

K◦ ⊆ K

is a Zariski open subset on which the Laurent polynomials ψ(−, q) satisfy a non-
degeneracy condition (see Reichelt and Sevenheck 2017, Section 3.2) and where
(s′1, . . . , s′n+c) ∈ Z

r×(n+c) is a section of the projection DivT (V) � H2(X , Z). ♦
One can establish a mirror symmetry theorem for the twisted quantum D-module

which involves the affine Landau–Ginzburg model, very much in the same spirit
(without looking at logarithmic extensions over the boundary K\K though, and also
neglecting the extension to families of bundles over P

1) as Theorem 5.11 above (see
Reichelt and Sevenheck 2017, Theorem 6.13, 6.16) and alsoMochizuki 2015a). How-
ever, in order to reconstruct the reduced quantum D-module QDM(X ,E ), we are
forced to look at a compactification of the morphism ψ . In order to define it, consider
the map gB′ : TV = (C∗)d+c ↪→ P

n+c (see Formula (22) above). Then define

Z◦ := �F (49)
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to be the closure in P
n+c × C× K◦ of the graph �F ⊆ TV × C× K of the function

F : TV × K◦ → C defined in (47). Notice that Z◦ is a partial compactification of
TV ×K◦, that is, quasi-projective but in general not smooth.

Definition 5.15 Let (X ,E ) be as above. Then we call the restriction

� : Z◦ −→ C×K◦

of the projection

pr : Pn+c × C×K◦ → C×K◦

the non-affine Landau–Ginzburg model of (X ,E ). ♦

Clearly, � is a projective morphism, and hence should be considered as a partial
compactification of the affine Landau–Ginzburg model ψ .

In a rather similar way to the case of Landau–Ginzburg models of projective toric
varieties, we obtain the following description of the relevant Gauß–Manin coho-
mologies by GKZ-type systems. As a matter of notation, consider the the matrix
A′ ∈ Z

1+d+c,1+n+c obtained by homogenizing the matrix B ′ defined in Eq. (46), that
is

A′ =
(

1 11,n+c
0d+c,1 B ′

)
=
⎛

⎝
1 11,n 11,c

0d,1 B 0n,c

0c,1 (d ji ) Idc

⎞

⎠ .

We choose the parameter vector

γ := (−c, 0, . . . , 0︸ ︷︷ ︸
d copies

,−1, . . . ,−1︸ ︷︷ ︸
c copies

) ∈ Z
1+d+c.

With these definitions, we have the contiguity morphism (see Sect. 2.5)

cγ,0 :MA′(γ ) MA′(0),
∂n+1·...·∂n+c

due to the special shape of the matrix A′. Notice that here we use the coordinates
(x0, x1, . . . , xn+c) on C× C

n+c and ∂0, ∂1, . . . , ∂n+c for the corresponding partials.
We can now formulate the following statement about the non-affine Landau-

Ginzburg.

Theorem 5.16 (Reichelt and Sevenheck 2017, Lemma 6.4 and Proposition 6.7) There
is an isomorphism of DC×K◦ -modules

FLloc
K◦ H

0ψ+OTV×K◦
∼= ι+ FLloc

Cn+c MA′(0)
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where we denote (with a slight abuse of notation) by ι : C × K◦ ↪→ C × C
n+c the

embedding already used above (see Eq. 42). Moreover, there is an isomorphism of
DC×K◦ -modules

FLloc
K◦ H

0 pr+ IC(C
TV×K◦)

∼= ι+ FLloc
Cm+c im

(
cγ,0 :MA′(γ ) −→MA′(0)

)
.

Notice that by definition, the intersection cohomology module IC(C
TV×K◦) to the

constant sheaf onTV×K◦ becomes aDPn+c×C×K◦ -module viaKashiwara equivalence
(using the locally closed embedding TV×K◦ ∼= �F ↪→ �F ↪→ P

n+c×C×K◦); this
is the reason for using the direct image by pr fromDefinition 5.15. Since it has support
on the subvariety Z◦, the corresponding perverse sheaf under the Riemann–Hilbert
correspondence is the (zeroth perverse cohomology of the) direct image under the
morphism � applied to the intersection complex of Z◦.

Finally, we want to state a mirror statement close in spirit to Theorem 5.11 which
concerns the reduced quantum D-module. For this, we first need an extension of the
localized partial Fourier–Laplace transformation functor FLloc

Y as defined in Formula
(40) to a functor acting on the category of filteredD-modules.Without giving the actual
details (see, e.g. (Sabbah and Jeng-Daw2015,AppendixA)or (Reichelt andSevenheck
2020,Definition 6.2)), let us just state that starting fromafilteredDY -module (M , F•),
this version of the Fourier–Laplace transformation yields an R-module, where again
R is the sheaf of Rees rings, as discussed in Sect. 4.3 (see Formula (28)). We denote
thisR-module by FLloc

C×Y (M , F•).
Moreover, in order to properly state the mirror theorem for nef complete intersec-

tions, we have to take into account the so-calledmirror map, which was not present in
Theorem 5.11 since we restricted our attention to the Fano case there. For a sufficiently
small ε ∈ R+, write �∗ε := {t ∈ (C∗)r | 0 < |t| < ε} ⊆ K◦. Then the mirror map is a
morphism

Mir : �∗ε −→ H0(X;C)×U

that has been defined in Givental (1998) and Coates andGivental (2007). Here,U ⊆ K
is the set on which the twisted quantum product ∗tw is defined (converges).

With these preparations, our final mirror theorem can be stated as follows.

Theorem 5.17 (Reichelt and Sevenheck 2017, Conjecture 6.15, Reichelt and Seven-
heck 2020, Theorem 6.5, Theorem 6.6)We have an isomorphism ofRC×�∗ε -modules

FLloc
K◦(H

0 pr+ IC(C
TV×K◦), F

Hodge• )|C×�∗ε
∼=−→ (idC×Mir)∗QDM(X ,E ). (50)

This result depends in an essential way on the computation of the Hodge filtration on
GKZ-systems, that is, on Theorem 4.8, since the expression of the Hodge filtration as
the shifted order filtration on the modulesMA′(β) for various parameters β allows us
to describe explicitly the left hand side of (50).

Notice that, by the very definition of the Dubrovin connection, the restriction of the
(reduced) quantum D-module to C × �∗ε has the structure of an RC×�∗ε -module. A
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consequence of Theorem 5.17 is the followingHodge theoretic property of the reduced
quantum D-module.

Corollary 5.18 (Reichelt andSevenheck2020,Theorem6.6)Suppose X ,E ,Y areas in
Notation 5.13. Then the reduced quantumD-moduleQDM(X ,E ) underlies a smooth
pure polarizable twistor D-module on K◦ (in the sense of Mochizuki (2015b)); that
is, a (pure) non-commutative Hodge structure in the sense of Hertling and Sevenheck
(2007, 2010) and Katzarkov et al. (2008).

Example 5.19 We discuss a concrete example taken from Reichelt and Sevenheck
(2017, Section 1): a (2, 3)-intersection in P

5 (so, Y ⊆ P
5 is the intersection of zero

loci of generic sections of L1 = OP5(2H) and L2 = OP5(3H), where H is the
hyperplane class). The adjunction formula shows that this is a Fano variety. The (fan
of the) total space of the bundle E = L1 ⊕L2 has ray generators corresponding to
the columns of the matrix

B ′ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 −1 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 −1 0 0
0 0 0 1 0 −1 0 0
0 0 0 0 1 −1 0 0
0 1 1 0 0 0 1 0
0 0 0 1 1 1 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Z
7×8.

ThenTV = (C∗)7,K◦ = C
∗ and the quasi-projective subvariety Z◦ of P

8×C×C
∗ =

Proj(C[w0, . . . , w8])× Spec(C[λ, q±]) is given by

Z◦ =
{

w0w
2
7w

3
8 − w1w2w3w4w5w6 = 0,

λw0 + w1 + · · · + w5 + qw6 + w7 + w8 = 0

}
⊆ P

8 × C× C
∗.

The affine and the non-affine Landau–Ginzburg models of (P5,E ) are given by

ψ : (C∗)7 × C
∗ −→ C× C

∗

(t1, . . . , t7, q) �−→
(
−t1 − t2t6 − t3t6 − t4t7 − t5t7 − q

t7

t1 · · · · · t5 − t6 − t7, q

)

and

� : Z◦ −→ C× C
∗

(w0 : . . . : w8, l, q) �−→ (l, q)

It follows from the calculations presented in Reichelt and Sevenheck (2017, Section
1) that we have the following explicit representations of the D-modules mentioned
above: first define the operators P1, P2 ∈ DC∗ :

P1 = q · (3q∂q + 1)(3q∂q + 2)(3q∂q + 3)(2q∂q + 1)(2q∂q + 2)+ (q∂q)
6
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= (q∂q)
2 ·
(
6q · (3q∂q + 1)(3q∂q + 2)(2q∂q + 1)+ (q∂q)

4
)

︸ ︷︷ ︸
Q(2,3)

=: (q∂q)
2 · Q(2,3)

P2 = q · (3q∂q)(3q∂q + 1)(3q∂q + 2)(2q∂q)(2q∂q + 1)+ (q∂q)
6

=
(
6q · (3q∂q + 1)(3q∂q + 2)(2q∂q + 1)+ (q∂q)

4
)

︸ ︷︷ ︸
Q(2,3)

·(q∂q)
2 =: Q(2,3) · (q∂q)

2

Then we have (we denote by τ the Fourier–Laplace dual variable of λ, and consider
the restriction to {τ = 1} for simplicity)

H0
(
C
∗, [FLloc

K◦ H
0ψ+OTV×K◦ ]|τ=1

) ∼= DC∗/(P2)

and

H0
(
C
∗, [FLloc

K◦ H
0 pr+ IC(C

TV×K◦)]|τ=1
) ∼= im(D),

where D is the left DC∗ -linear map

D : C[q±]〈∂q〉/(P1) −→ C[q±]〈∂q〉/(P2)
Q �−→ Q · (q∂q)

2. (51)

The map D is well defined, its kernel is generated by Q(2,3) and we see that

im(D) ∼= C[q±]〈∂q〉/(P1)
ker(D)

∼= C[q±]〈∂q〉/(Q(2,3)).

The operator Q(2,3) is confluent, univariate and hypergeometric (compare Sect. 1.2)
with a regular singularity at q = 0 and irregular singularity at q = ∞.

Notice that if instead we consider a (2, 4)-complete intersection Y ⊂ P
5, then Y is

a Calabi–Yau manifold, and we have

H0
(
[FLloc

K◦ H
0 pr+ IC(C

TV×K◦)]|τ=1
) ∼= DC∗/(Q

(2,4)),

where

Q(2,4) = 8q · (2q∂q + 1)(4q∂q + 1)(4q∂q + 2)(4q∂q + 3)− (q∂q)
4

is a homogeneous, hence, regular (non-confluent) hypergeometric operator, with sin-
gularities at q = 0, 2−10,∞. In this case, the Hodge theoretic result Corollary 5.18
simply states that DC∗q /DC∗q · Q(2,4) underlies a pure polarized variation of Hodge
structures; this is consistent with Simpson (1990, Corollary 8.1) and Deligne (1984,
Prop. 1.13) (see the discussion on page 33 above). ♦
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Finally, let us remark that unlike in the previous example(s), it is in general
not easy to give a cyclic description of the intersection cohomology D-module
FLloc

K◦ H
0 pr+ IC(C

TV×K◦). In other words, even thoughwe know that it has a descrip-
tion as an (Fourier–Laplace transform of an) image of a contiguity morphism, it is not
clear how to describe the kernel of this morphism and how to give a presentation of
the image as a quotient of D (see also (Mann and Mignon 2017, Section 6) for some
examples and conjectures).

Table of Symbols

Single letters (by alphabet):

• A ∈ Z
d×n , with columns a1, . . . , an that span ZA = Z

d and permit a linear
functional having positive values on them.1.5 but also 4.2 for notation in last two
sections

• B a d × n submatrix of A in final two sections, Convention 4.2
• D1, . . . , Dn torus invariant divisors on X , Sect. 5.2
• j counts columns (and hence x j , ∂ j , a j ), i counts rows (hence Ei ).
• K the complexified Kähler moduli space, the image of H2(X;C) under the expo-
nential map, hence the quotient by the integer cohomology lattice scaled by
2π
√−1, Sect. 5.1

• K partial compactification of K, Sect. 5.1
• [n] = {1, 2, . . . , n}
• q coordinates on K inherited from chosen nef basis on H2(X;C), 5.1
• r = dimC H2(X;C)

• T the d-torus, Sect. 2.1, but see Convention 4.2 and (21) for the final sections
• T the quotient torus modulo 0-th component of T in final two sections
• U complement of Z
• V total space of tautological bundle OPn (−1)
• X smooth projective toric variety to fan �X , often but not always Fano, Sect. 5.1,
• Y complete intersection in X of codimension c,
• Z tautological hypersurface in P

n × C
n+1

• Z◦ the closure in P
n+c ×C×K◦ of the graph of the function defined in (47), see

(49)

Compounds (by alphabet of first occurring letter):]

• AA the admissible parameters, Definition 4.6
• conv(S) the convex hull of S, before Definition 3.7
• cβ,β ′ : MA(β) −→ MA(β ′) contiguity operators, Sect. 2.5
• DivT (X) equivariant divisor group of toric variety X , isomorphic to actual divisor
group, generated by rays of fan �X , (37)

• Ei Euler operators, Definition 1.6
• FHodge the Hodge filtration on the mixed Hodge moduleM , Sects. 4.1, 4.3, (31),
(32)

• FL(M ) the Fourier–Laplace transform, (18)
• Ford the order filtration on rings of differential operators

123



Beitr Algebra Geom

• Gψ , G ψ , Gψ
0 Fourier–Laplace transformed Brieskorn lattice and variations, (41)

and following page
• hA : T −→ C

n the monomial map induced by A, Sect. 2.3
• (HA,∇A) small Dubrovin connection, (35)
• HA,i (N ;β) the i-th Euler–Koszul homology of the toric module N for the param-
eter β

• HA(β) the hypergeometric ideal, 1.6
• M̂ the Fourier–Laplace transform of the module M
• MA(β) the hypergeometric module, 1.6
• qdegA(N ) the quasi-degrees of an A-graded module, Definition 2.2
• R,R the twisted Rees ring/sheaf of differential operators on various spaces, Def-
inition 28, Proposition 5.8

• RT(M ) the Radon transform, Proposition 4.3
• SA the semigroup ring C[NA], Sect. 2.1
• SLA the L-graded ring of SA, Theorem 3.10
• sRes(A) the strongly resonant parameters for A, Definition 2.6
• tdegA(N ) the true degrees of an A-graded module, Definition 2.2
• TV the (n + c)-torus, Definition 5.14
• (W , c) Landau–Ginzburg model on K, Definition 5.4, (39)
• WkM the weight filtration on the mixed Hodge module M , Sects. 4.1 and 4.4
• XA affine toric variety and spectrum of SA, closure of T-orbit through (1, . . . , 1),
Sect. 2.3

Greek letters and other symbols:

• �u = ∂u+ − ∂u− for u ∈ ker A,.
• ∗tw twisted quantum product, (45)
• �L

A the (A, L)-polyhedron, the convex hull of the origin and all aLj , �A special
case to L = 0, Definition 3.7 and Sect. 4.3

• �∗ε small ball around origin in K◦
• �L

A initial complex of ideal for generic weight L , Definition 3.2
• �X fan of X
• ϕ : T −→ C

n family of Laurent polynomials, Theorem 4.4
• �L

A the (A, L)-umbrella, Definition 3.7
• ψ affine Landau–Ginzburg model on TV ×K, Definition 5.14
• � non-affine Landau–Ginzburg model on C×K◦, Definition 5.15
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