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Abstract
Let K C C be a subfield of the complex numbers, and let D be the
ring of K-linear differential operators on R = K[z1,...,z,]. If M and

N are holonomic left D-modules we present an algorithm that computes
explicit generators for the finite dimensional vector space Homp (M, N).
This enables us to answer algorithmically whether two given holonomic
modules are isomorphic. More generally, our algorithm can be used to get
explicit generators for Ext, (M, N) for any 4 in the sense of Yoneda.

1. Introduction

Let D = D, = K{(x1,...,2,,01,...,0,) denote the n-th Weyl algebra over a
computable subfield K C C, i.e. elements of K can be represented with a finite
set of data, their sums, products and quotients can be calculated in a finite
number of steps, and there is a finite procedure that determines whether a given
expression of elements of K is zero or not. Let Homp (M, N) denote the set of
left D-module maps between two left D-modules M and N. Then Hom (M, N)
is a K-vector space and can also be regarded as the solutions of M inside N in
the following way: given a presentation M ~ D™ /D -{Ly,..., L, }, let S denote
the system of vector-valued linear partial differential equations,

S={Lief=---=1L, e f=0},

and let Sol(S; N) denote the N-valued solutions f € N™ to S. Then the ho-
momorphism space Hom (D™ /D -{Ly,..., L, }, N) is isomorphic to the solu-
tion space Sol(S; N) a homomorphism ¢ in Homp(D™/D - {Ly,..., L, },N)

corresponds to the solution [p(ey),...,o(e,)]F € N™ of S, while a solution
f=1fi, - fro)' € N™ of S corresponds to the homomorphism which sends e;
to fz

If M and N are holonomic, then the set Homp (M, N) as well as the higher
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derived functors Ext) (M, N) are finite-dimensional K-vector spaces. In this
paper, we give algorithms that compute explicit bases for Homp (M, N) and
Ext},(M, N) in this situation. Our algorithms are a refinement of algorithms
given in (Oaku, Takayama, and Tsai, 2000), which were designed to compute the
dimensions of Homp(M, N) and Ext’, (M, N) over K. Algebraically, our prob-
lem of computing a basis of homomorphisms is easy to describe. Namely, since
a map of left D-modules from M to N is uniquely determined by the images of
a set of generators of M, we must simply determine which sets of elements of
N constitute legal choices for the images of a homomorphism (of a fixed set of
generators of M). It is perhaps surprising that this is not a straightforward com-
putation. One of the reasons is that Homp (M, N) lacks any D-module structure
in general and is just a K-vector space.

In recent years, one of the fundamental advances in computational D-modules
has been the development of algorithms by (Oaku, 1997; Oaku and Takayama,
1998) to compute the derived restriction modules Tor? (D /{xy, ..., x4} - D, M)
and derived integration modules Tor?(D/{0,...,0,4} - D, M) of a holonomic
D-module M to a linear subspace 1 = --- = x4 = 0. These algorithms have
been the basis for local cohomology and de Rham cohomology algorithms (Oaku
and Takayama, 1999; Walther, 1999) and have been extended to algorithms
for derived restriction and integration of complexes with holonomic cohomology
in (Walther, 2000).

Similarly, the algorithm of (Oaku, Takayama, and Tsai, 2000) to compute the
dimensions of Homp (M, N) and Ext’,(M, N) is also based on restriction by using
isomorphisms of (Kashiwara, 1978) and (Bjork, 1979). These isomorphisms are,

EXtiD(Ma N) = Torr?fi(EXt%(Ma D)aN)a (1)
which turns an Ext computation for holonomic M into a Tor computation and
Tor? (M', N) ~ Tor?**(Dyn /{x: — ys, 0i + 6;}i—y - Do, T(M') R N),  (2)

which turns any Tor computation into a twisted restriction computation in twice
as many variables (an explanation of the notation used above can be found in
Section 4).

In this paper, we will obtain an algorithm for computing an explicit basis
of Ext}, (M, N) by analyzing the isomorphisms (1) and (2) and making them
compatible with the restriction algorithm. In Section 2, we present a proof of
isomorphism (1) adapted from (Bjork, 1979). In Section 3, we give an algorithm
for computing Homp (M, N) in the case N = K[xy,...,z,]|, which is used to
compute polynomial solutions of a system S. In Section 4, we give our main
result, which is an algorithm to compute Homp (M, N) and Ext’, (M, N) for
general holonomic modules M, N. In Section 5, we give an algorithm to deter-
mine whether M and N are isomorphic and if so to find an isomorphism. Finally,
the algorithms described in this paper have been implemented in the computer
algebra system (Macaulay 2, 1999).
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1.1. Notation

Throughout we shall denote the ring of polynomials K[z, ..., z,| by K[|, the
ring of polynomials K[0i,...,0,] by K[8], and the ring K[z](d) of K-linear
differential operators on K[x] by D.

Let us also explain the notation we will use to write maps of left or right D-
modules. As usual, maps between finitely generated modules will be represented
by matrices, but some attention has to be given to the order in which elements
are multiplied due to the noncommutativity of D. Let us denote the identity
matrix of size r by id,, and similarly the identity map on the module M by id,,.

Let A be an r x s matrix A = [a;;] with entries in D. We get a map of free
left D-modules,

D 5D [l 0] e [ 0] A,

where D" and D? are regarded as modules of row vectors, and the map is matrix
multiplication. Under this convention, the composition of maps D" ~A D and

D* “Z5 Dt is the map D" AR Dt where AB is usual matrix multiplication.
In general, suppose M and N are left D-modules with presentations D" /M,

and D*/Ny. A induces a left D-module map (D" /M) 4, (D?/Ny) from M to N
precisely when L - A € Ny for all row vectors L € M,. This condition need only
be checked for a generating set of Mj,. Conversely, any map of left D-modules
between M and N can be represented by some matrix A in the manner above.

Now let us discuss maps of right D-modules. The r x s matrix A also defines
a map of right D-modules in the opposite direction,

(D) 25 (DN 2 [, LT e AL, )T
where the superscript-7' means to regard the free modules (D*)” and (D)
as consisting of column vectors. (D*)" may alternatively be regarded as the
dual module Homp(D?*, D). The map (D*)T N (D" is equivalent to the
map obtained by applying Hom,(—, D) to D" 4 D5 We will suppress the
superscript-1" when the context is clear. As before, A induces a right D-module
map between right D-modules N = (D*)T/N} and M’ = (D")* /M] whenever

A-L € M for all column vectors L € Nj. We denote the map by (D*)" /N LN
(D7) /Mg,

1.2. Left-right correspondence

The category of left D-modules is equivalent to the category of right D-modules,
and for convenience, we will sometimes prefer to work in one category rather than
the other — for instance, we will phrase all algorithms in terms of left D-modules.
In the Weyl algebra, the correspondence is given by the algebra involution

DD : %0 (—0)’2".
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The map 7 is called the standard transposition or adjoint operator. Given a left
D-module D" /My, the corresponding right D-module is

Dr Dr
T <ﬁ0> = m, T(MO) = {T(L)|L € Mo}
Similarly, given a homomorphism of left D-modules ¢ : D"/ My—D?*/Ny de-
fined by right multiplication by the r X s matrix A = [a;;], the corresponding
homomorphism of right D-modules 7(¢) : D" /7(My)—D?*/7(Np) is defined by
right multiplication by the s x r matrix 7(A) := [7(a;;)]*. The map 7 is used sim-
ilarly to go from right to left D-modules. For more details, see (Oaku, Takayama,
and Tsai, 2000).

2. Basic Isomorphism

The following identification, taken with its proof from (Bjork, 1979), is our main

theoretical tool to explicitly compute homomorphisms of holonomic D-modules.

THEOREM 2.1: (Bjork, 1979) Let M and N be holonomic left D-modules. Then
Exth (M, N) = Tor? ,(Ext},(M, D), N). (3)

Proof: Since it will be useful to us later, we give the main steps of the proof
here. The interesting bit of the construction is the transformation of a Hom into
a tensor product. Let X* be a free resolution of M,

X0 Do Mt o s prr M pro s 4

We may assume it is of finite length by virtue of Hilbert’s syzygy theorem —
namely, Schreyer’s proof and method carries over to D (see e.g. (Cox, Little,
and O’Shea, 1998)). The dual of X* is the complex of right D-modules,

Homp(X*, D) : 0 (D)7 &= o (pr-n)T 28 (proy?
~—— ——
degree a degree 0
Since Homp (D", D)®p N >~ Homp (D", N), we see that Homp (X*®, D)®@p N ~
Homp(X*®, N), whose cohomology groups are by definition Ext’, (M, N). Now
replace N by a free resolution Y* of finite length,

Y0 D0 2 ps M pro N 0 (4)
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We get the double complex Homp(X*®, D) ®p Y,

0

N

0+ (D"-a)T@pD%0 <

(—idr_g)%®(-Ng)

0+ (D'=a)l'@pD*~1

"

(—idr_)*®(N_p11)

0+ (D"-a)T®pD°-0b

0 0
T

(M_g41-)®idsg (Mp-)®ids

.. - (D"-1)T'®p D%0 (D7) ®p D% <0

—idr_; ®(-Np) idrg ®(-Ng)
(M_g41-)®ids_ (Mg-)®ids _;
(D"-1)T'®@pD*~1 «——— (D"0)T®pD*=140

T T
—idr_y ®(N_py1)

idrg ®CN_p11)

(M_q41-)®ids_,, (Mp-)®ids _,

(D"-1)T@pD*~b «——— (D"0)T@pD*~b40

(5)
Since the columns of the double complex are exact except for at positions in
the top row, it follows that the cohomology of the total complex equals the coho-

mology of the complex induced on the table of E; terms (vertical cohomologies),

Homp((M-a+1-),N)  Homp((Mo-),N)

0 < Homp (D", N)

~

Homp (D™, N) < 0

o

degree a degree 0

(6)
As stated earlier, these cohomology groups are Ext’, (M, N).

On the other hand, since M is holonomic, the complex Homp (X*®, D) is exact
except in degree n, where its cohomology is by definition Ext},(M, D). Hence the
rows of the double complex are also exact except at positions in the n-th column,
i.e. the column containing terms (D" ®p (—)). It follows that the cohomology
of the total complex also equals the cohomology of the complex induced on the
other table of E; terms (horizontal cohomologies), which in this case is

idgxn (a1,0) @(-No)

0 — Ext},(M,D) ®p D*~* — --- Ext}, (M, D) ®p D*® — 0 (7)

By definition, the above complex has cohomology groups Torf(Ext’})(M, D), N),
which establishes the identification. O

Our goal will be to compute an explicit basis of cohomology classes of the
complex (6). In particular, the cohomology in degree 0 corresponds explicitly
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to Homp (M, N) because any map » € Homp(D™, N) which is in the degree 0
kernel, i.e. in

H(Homp (D', N) ~omeodN) g (D, N « 0), (8)
deg?ge 1 deg?ge 0

factors through M ~ D" /My, hence defines a homomorphism v : M — N.
The reason why it is hard to compute these cohomology classes is that the
modules Homp (D™, N) in the complex (6) are left D-modules while the maps
Hom, ((M;-), N) are not maps of left D-modules. In the next few sections, we will
explain how the ingredients of the proof of Theorem 2.1 can be combined with
the restriction algorithm to compute the desired representatives of cohomology
classes.

3. Polynomial solutions

In this section, we give an algorithm to compute Homp (M, K|[x]) for holonomic
M. This vector space is more efficiently computed by Grobner deformations as
described in (Oaku, Takayama, and Tsai, 2000), but we wish to discuss this
special case in order to introduce the general methodology.

For N = K|[x], the isomorphism (3) of Theorem 2.1 specializes to

Extl, (M, K[z]) ~ Tor?_.(Ext’},(M, D), K[z]). (9)

In this case, the proof of Theorem 2.1 also leads directly to an algorithm. As a
D-module, the polynomial ring has the presentation K[x| ~ D/D -{0,,...,0,}
and can be resolved by the Koszul complex,
01
R

'[(_l)nilanz"' 781}

K*:0— D » D" — ... D"—% D —0.
N~ N~~~
degree n degree 0

The complex (7) whose cohomology computes Tor?  (Ext?, (M, D), K[z]) then
specializes to Ext?, (M, D)®pK*® and is equivalently the derived integration com-
plex of Ext?,(M, D) in the category of right D-modules. The integration algo-
rithm of (Oaku and Takayama, 1999) can now be applied to obtain a basis of ex-
plicit cohomology classes in H" (Ext’, (M, D)®pK*) ~ Tor? (Ext}, (M, D), K[z]).
These classes can then be transferred via the double complex (5) to coho-
mology classes in the complex (8), where they represent homomorphisms in
Homp (M, K[z]). The method and details are probably best illustrated through
an example.

ExamMPLE 3.1: Consider the Gelfand-Kapranov-Zelevinsky hypergeometric sys-
tem M4 (/) associated to the matrix A = {1,2} and parameter vector § = {5},
i.e. the D-module associated to the equations,

u:91+202—5 U:a%—ag
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Here, 0; stands for the operator z;0;.
A resolution for M4 () is

X0 pr e e bl g

while a resolution for K[z, xs] is the Koszul complex,

[01,02] ’ [—851]‘

K*:0—=D -~ D? D=0

The augmented double complex Hom, (X*®, D) ®p K*® is

—v u+2|e 111; b
Klxy,25] < e Kz, 2] ‘L Klxy, x9]
Ext2 (MA(5), D) D! 7o w2 pr bl
[ 02 02 . 602 5(?)2 02
[—31] [—31] —-01 0 [—31]
-0 1’: 8
[fv ut+2 0 0 |:0 u:|
EXt2D (]\414(/8)7 D)2 . D2 . —v u+2 D4 » 0 w D2
81 82 [0y 9] .[%1 591602 802] 101 8]
Ext} (Ma(8), D) ~—— ST .t

Here, we interpret an element of a module in the above diagram as a column
vector for purposes of the horizontal maps and as a row vector for purposes
of the vertical maps. The induced complex at the left-hand wall is the derived
integration to the origin of Ext?,(M4(3), D) in the category of right D-modules.
Applying the integration algorithm, we find that the cohomology at the module
m in the bottom left-hand corner is 1-dimensional and spanned by the residue
class of

Lio = — (20329 — 402323 + 1202,25)0) — (2§ — 3072, + 1807323 — 12023).

We lift this class to a cohomology class of the complex induced at the top row
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via a “transfer” sequence in the total complex given schematically by

D? bl D'5 Ly,

[01 0]

l)1 = LI,O

In other words, L, ; is obtained by taking the image of L; under the vertical

map and then a pre-image under the horizontal map, and similarly for L; . We
find that,

22319 — 402323 4+ 1202, 23
— (2} — 202322 + 60x,23)

b = — (28 — 2021wy + 602%23) ’
(29 — 20232y + 60x123)0; + (10z] — 1202279 + 12023)
Lip = [ o} —2023z, + 60x,23 | .

The space of polynomial solutions is spanned by the residue class of L;9 in
K|xy, 1], which is 25 — 202325 + 602,23.

Remark: The elements Ly, L1; and L;» are, as opposed to the cohomology
classes of L, o in Ext},(M4(8), D) and of Ly, in K[z, 23], not unique.

Remark: The transfer sequence above is used to show that Tor is a balanced
functor in (Weibel, 1994). A generalization of the transfer sequence is also used by
the second author to compute the cup product structure for de Rham cohomology
of the complement of an affine variety in (Walther, 1999).

From a practical standpoint, the method outlined above is not quite the final
story. The detail we have left out is how the integration algorithm of (Oaku and
Takayama, 1999) actually computes the cohomology classes of a Koszul complex
such as Ext}, (M, D) ®p K*. Their algorithm does not compute these classes
directly. Rather, their method (phrased in terms of right D-modules) is to first
compute a V-strict resolution Z* of Ext” (M, D) (cf. (Walther, 1999)). Then they
give a technique to compute explicitly the cohomology classes of Z°* @p K|z].
This complex is quasi-isomorphic to Ext?,(M, D)®p K*®, and cohomology classes
can be transferred to Ext?,(M, D) ®p K* by setting up another double complex
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Z*®pK*. Thus, our method as described to compute polynomial solutions would
require two transfers via two double complexes.

Given the true nature of the integration algorithm, the two transfers can be
collapsed into a single step. Namely, we start with Hom (X*, D),

M_,-

Homp(X*, D) : 0 ¢ --- = (D)7 Montr Mo- (D) <0
~— SN——
degree n degree 0

which is exact except in cohomological degree n because M is holonomic. We
are interested in explicit cohomology classes for H(Homp(X*®, D) ®p K[z]). To
obtain them, we replace Homp(X*, D) with a quasi-isomorphic V—adapted reso-
lution E* along with an explicit quasi-isomorphism 7, from E* to Homp(X*, D).
That is, we make a map 7, from a free module (D*-*) onto some choice of gen-
erators of ker(M_,,-), take the pre-image P of im(M_,, ;1) under m,, and compute
a V—adapted resolution E* of D*-/P. Schematically,

N_p41- .
0 LT e (DT L (pon) T S (D)T (DT
| |
| |
| |
n | |
| |
M . \ . \
0¢rrt (DT —n—1)I «—" (DT—n)T -t (D"—n+1)L . < (Dro)T 0
—— ——
degree n degree 0

Using the integration algorithm, the cohomology classes of the top row can now
be computed. In order to transfer them to Homp(X*, D) ®p K[x], a chain map
lifting 7,, is computed and utilized as suggested by the dashed arrows.

4. Holonomic solutions

In this section, we give an algorithm to compute a basis of Homp(M, N) for
holonomic left D-modules M and N. We will use the following notation. As
before, D will denote the ring of differential operators in the variables x1, ..., x,
with derivations 0y, ..., 0,. Occasionally we will also write D,, or D, for D. In a
similar fashion, D, will stand for the ring of differential operators in the variables
Y1, .., Yp with derivations 01, ..., d,.

If X is a D,-module and Y a D,-module then we denote by X XY the external
product of X and Y over K. It equals the tensor product of X and Y over the field
K, equipped with its natural structure as a module over D, = D, XD, the ring
of differential operators in z1,...,2pn, y1,...,y, With derivations {0;, 0, }1<;j<n-
In addition, let  denote the algebra isomorphism,

n

?
j=1

0 Dy, — Dy {xiH%fEi_éi; aiH%yH‘ai;}

Yi = —5Ti — 0, i 5y — O
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and let A and A denote the right D,,-modules,

A — Doy, A-:A:
o {ri— Y, 0+ 6 1 <i<n} Dy, "~ xDyp +yDsy,

n(A).

As mentioned in the introduction, an algorithm to compute the dimensions
of Ext}) (M, N) was given in (Oaku, Takayama, and Tsai, 2000) based upon the
K-isomorphisms (1) and (2):

Ext’,(M,N) = Tor? (Ext},(M,D),N)
Torf(M’, N) = Tor?2"(D2n/{37i — Yi, 0 + 0}y - Dop, T(M') K N).

Combining these isomorphisms where M’ = Ext’, (M, D) produces
Ext}, (M, N) ~ Tor}*" (Dyn /{m: — yi, 0; + i }i=y - Dan, T(Ext},(M, D)) KN) (10)

In order to compute Hom (M, N) explicitly, we will trace the isomorphism (10).
We explain how to do this step by step in the following algorithm. The motivation
behind the algorithm is discussed in the proof.

ALGORITHM 4.1: (Holonomic solutions by duality)
INPUT: Presentations M = D" /M, and N = D% /N, of holonomic left D-
modules.
OutpuT: A basis for Homp (M, N).
1. Compute finite free resolutions X*® and Y* of M and N,

X0 pre Mo prr M proo 0
<~ <~

degree —a degree 0

Y 0o D o psa Mopo N
N~ ~~
degree —b degree 0
Also, dualize X* and apply the standard transposition to obtain,

T(M—q+1) -7(Mo)

7(Homp(X*, D)) : 0« D' s DT D™ <« 0.
degree a degree 0

2. Form the double complex 7(Homp(X*, D)) XY™ of left Dy,-modules and
its total complex

Z° 04 Dople < oot Doy < oo t= Dyt 0
SN—~— SN—~—
degree a degree 0

where
Dy, = @ D KD,
i—j=k
Let the part of Z°® in cohomological degree n be denoted,

T, -1
D2ntn+1 — D2ntn — D2ntn71
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3. Compute a surjection 7, : Dy, ""— ker(-n(1},)), and find the preimage P :=
mt (m(n(Tn-1)))-

4. Compute the derived restriction module H°((A ®}, Ds,""/P)[n]) using
the restriction algorithm of (Oaku and Takayama, 1998). In particular, this
algorithm produces,

(i.) A V-strict free resolution E* of D**/P of length n + 1,

E®:0 < Dy, < Dyt ¢— oo 4= Dy ™ < Dy %0 ¢ D, "1,

degree n degree 0

(ii.) Elements {g1,...,9r} C D9,"° whose images in A®p, FE* form a basis
for

ker(A®p,, D2n"1 <A®p, D2,"0)

HY (A @, 2) [n]) = HY(A ®p,, B*) =

P im(A®p,, Dan "0 A®p,, D2n" 1)

5. Lift the map m, to a chain map m, : E* — n(Z*). Denote these maps by
mr D% — D"

6. Compute the image of each g; under the composition of chain maps,

E* A ®p, Z* —» Tot*(Homp(X*, D) ®pY"*)
o pP1
n(z%) .z Homp(X*, N)

Here p, is the projection onto Homp(X*® D) ® Y followed by factoriza-
tion through Ny. These are all chain maps of complexes of vector spaces.
Step by step, we do the following. Evaluate {L, = n~'(m(g1)), ..., Lr =
n~ (mo(gr))}, and write each L; in terms of the decomposition,

Li=®;Li; e @D~ RD=  (=Dy").
J

Now re-express L; o modulo {z;—y;, 0;+0; : 1 <i < n}-Dy,®p,, (DXRD**)
so that x; and d; do not appear in any component. Using the identification
Do D% ~ Di%e; @ --- @ D3%e,, where {e;} forms the canonical D-basis
for D™, we then get an expression

Lig="tliper + -+ lipger, € (Dy)0e1 @--- D (Dy)*ey,.

Let {l;1,...,0is} be the images in (D*/Ny) ~ N. Finally, set ¢; €
Hom (M, N) to be the map induced by

{61 — éi,l; €9 61,2, vy g gi,ro}-
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7. Return {¢y,..., ¢}, a basis for Homp (M, N).

Proof: The main idea behind the algorithm is to adapt the proof of Theorem
2.1. In that proof, we saw that Tot®(Hom(X*®, D) ®p Y*) £ Homp(X*®, N) is
a quasi-isomorphism. Thus it suffices to compute explicit generating classes for

H°(Tot®(Homp(X*, D) ®p Y*)) — H’(Homp(X*, N)) ~ Homp (M, N).

Here, the double complex Hom,(X* D) ®) Y* is in some sense easier to
digest because it consists entirely of free D-modules. However, it too only car-
ries the structure of a complex of infinite-dimensional vector spaces, making its
cohomology no easier to compute than the cohomology of Homp(X*, N).

Instead we consider the double complex 7(Hom (X *®, D))XY* of Step 2, whose
total complex T® does carry the structure of a complex of left Ds,-modules.
Moreover, we claim that as a double complex of vector spaces, Homp(X*®, D)®p
Y® can be naturally identified with the double complex,

A ®D (T(HOIIID(X., D)) X Y.),

the “restriction to the diagonal”. To make the identification, first note that the
natural map

D2n
D, — =A
Y {wi =y, 0; +6; : 1 <i < n}- Dy,
is an isomorphism of left D,-modules. Let {ey, ..., e, } denote the canonical basis

of a free module D". Then an arbitrary element of A ®p,, (D, X D,*) can be
expressed uniquely as »_, e, X my, where m; € D,°. Similarly, an element of
D" ®p D? can be expressed uniquely as >, e, ® my where my, € D*. Hence
we get an isomorphic identification as D,-modules of A ®p,, (D," ¥ D,*) and
D" ®@p D?. In particular, this shows that the modules appearing in the double
complexes are the same.

It remains to show that the maps in the double complexes can also be iden-
tified. An arbitrary vertical map of A ®p, (7(Homp(X*®, D))XY*) acts on an
arbitrary element ), 1 ® e, X my, according to,

A ®p,, (D" K Dy™)  Si(=1)exB8(-N;)(ms)
ida ®(—idy; )*®(-N;)

A ®D2n (DCETZ & Dy5j+l) Zk 1®ek&mk

This is exactly the way the corresponding vertical map in Homp(X*®, D) ®p Y*
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works on the corresponding element:

D," ®p D% (=1 ex®(-N;)(my)
(—idr,) ®(-N;)

T Sq
D:c " ®p Dy It 2ok ex@my

Likewise, an arbitrary horizontal map of A ®p, (7(Homp(X*®, D))XY?*) acts
on an arbitrary element according to,

) ida ®(-7(M;))X1

A ®@py, (D:cri+1 Dysj A ®p,, (D:cri Dysj)

5, 19exEmy S5 160 (7 (M) (ex ) Em.

Here, we would like to re-express the image Y, 1® (-7(M;))(ex) ®my, in the form
> r 1®erXny. To help us, note the following computation in A®p,, (D,"XD,*):

(1®2°0%¢;®m) =10 0°¢; My m =12 ¢ X (=0) y*m =1 ®¢; K 7(y*6%)m

Using it, we get that

Zl@ ))(ex) Xmy, = ZZI@T i) k€ X my
= 221@)69&7 M;) i)
= 221@)6] kak

This is exactly the way the corresponding horizontal map in Homp(X*®, D)®pY™®
works on an arbitrary element:

(M, )®1ds

DT‘;‘+1 ®D DS]‘ Dﬁ ® DS]

Dok er®@my ok 2o € ®(M;)jkmy

Thus, we have given an explicit identification of A ® (7(Homp(X*®, D)) K Y*)
and HOH]D(X., D) XRp Ye*.

The task now becomes to compute explicit cohomology classes which are a
basis for H°(A ®p,. Z*). To do this, we note that Z* is exact except in coho-
mological degree n, where its cohomology is 7(Ext?, (M, D)) X N. This follows
because 7(Homp(X*®, D)) is exact by holonomicity except in degree n, where
its cohomology is 7(Ext}, (M, D)), and Y* is exact except in degree 0, where its



Tsai and Walther: Computing homomorphisms 14

cohomology is V. In other words, the complex A ®p, Z° is in some sense a re-
striction complex. Namely, after applying the algebra isomorphism 7, we get an
honest restriction complex A®n(Z*) for the restriction of n(7(Ext’, (M, D))XN)
to the origin (the restriction complex of a left Dy,-module M’ is by definition
A®p, M').

We can thus compute the cohomology groups of A ®p, n(Z*) by applying
the restriction algorithm. However, since we are after explicit representatives for
the cohomology classes, we need to use a presentation of n(7(Ext}, (M, D)) X N)
which is compatible with 7(Z*®). This is the content of Step 3. Once equipped with
a compatible presentation, we apply the restriction algorithm to it, which is the
content of Step 4. This step produces explicit cohomology classes of A ®p, E*®,
where E* is a V-strict resolution of n(7(Ext}, (M, D)) X N). To then get explicit
cohomology classes of A ®p, n(Z°), we construct a chain map between E°
and 7(Z*), which is the content of Step 5. The cohomology classes can now
be transported to A ®p, 1(Z°) using the chain map, then to A ®p, Z° using
n~!, then to Tot*(Homp(X®, D)®pY*) using the natural identification described
earlier, and finally to the complex Homp (X, V) using the natural augmentation
map. These steps are all grouped together in Step 6. This completes the proof
of the algorithm. a

EXAMPLE 4.2: Let M = D/D-(0—1) and N = D/D- (9 —1)?, where D is the
first Weyl algebra. Then for Step 1, we have the resolutions,

X 0D YUp 0 ye.0— D! D' 50

For Step 2, we form the complex Z* = Tot(7(Homp(X*®, D)) X Y*),
{(8z+1)}

(0-1)2

[(9y=1)%,—(9=+1)]

8y —1)2 -
700« Dyt UV pe Dyt 0

~— ~— ~—

degree 1 degree —1 degree 0
For Steps 3-5, we get the output,

| Sy+oe+1

(2y—08,—1)2 J(Ey—6,-1)2,—Ly—8,—1
0(Z°): 0 Dyt 2 PO IS U s U Sy Y V)

m=l m:{%yf%?rl (1)}
L] 2 ~2y—0,-1]
E*: 0+ D,'[0] v Dy?*[—1,2] L D,'[1] + 0

The complex E*® is a V-strict resolution of the cohomology of 1(Z°®) at degree
1, and the restriction b-function is b(s) = (s + 1)(s + 2). Hence A ®p E° is
quasi-isomorphic to its sub-complex F~'(A @, E*)
) _
|2y tOatl 01 .
- — | w-ty-0.—1
[ y? Spany { 0@ % [v*,— 3y ]
0® 09,

0«0

Span {1} < 0
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Hence the cohomology H°(A ®p E*®) is spanned by {0 & 1,0 & 9,}. Applying
mo, H°(A ®@p n(Z*)) is spanned by the images of {(3y — 9, — 1) ® 1,9,(3y —
0y — 1) ® 9,}. Next applying n !, H(A ®p Z°*) is spanned by the images of
{Li = (0,+20,—1)®1, Ly = —5 (20, +2y0y + y0p + 220y, —x —y) d—3 (v +y) }.
Modulo the right ideal generated by {z — y, 0, + 0,}, we can re-express these
cohomology classes by {(0, — 1) ® 1, (y0, —y — 1) ® —y}. Applying p; we get
{L1p=0,—1, Lyy =y0d,—y— 1}, which corresponds to a basis of Homp (M, N)
given by,

b D fo-1] D
""D-(0-1) D-(0—1)?
by D (xd—z—1] D
*"D-(0-1) D-(0—1)2

Remark: Algorithm 4.1 for the computation of Homp (M, N) can also be modi-
fied to compute explicitly the higher derived functors Ext’, (M, N) for holonomic
M and N. A useful way to represent Ext’, (M, N) is as the i-th Yoneda Ext group,
which consists of equivalence classes of exact sequences,

£:0— N Q X, X0

M —0,

for any list of (not necessarily free) D-modules @, X2 ... X% Two exact
sequences ¢ and & are considered equivalent when there is a chain map of the
form,

£:0— N - Q - X7 X0 M —0
idy idps
£:0— N Q' X XM —0.

In our modified algorithm we follow the same steps as in Algorithm 4.1, except
that in Step 4 we compute H "*/(A ®@% (Dy,""/P)) instead of H ™(A ®%,
(D3, /P)). The output is a basis {¢1,..., ¢} of the finite-dimensional K-
vector space H*(Homp(X®, N)), where X* is a free resolution of M,

'M7a+1
_—

X*:0— D' cees Dt MY pro o o,
~~ <~

degree —a degree 0
To obtain the i-th Yoneda Ext group from our output for Ext’, (M, N), we fol-

low the presentation of (Weibel, 1994, Section 3.4) and associate to a cohomology
class ¢ € H'(Homp(X®, N)) the exact sequence,

00— N—Q—D""* — ... D" M—=0.
)

Here, @ is the cokernel of (-M _;;1,¢): D™= — D™=+t @ N, and the maps are
all the natural ones. Notice that the only difference between any &(¢) and £(¢')
are their corresponding ()’s and the maps to and from them.
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5. Isomorphism Classes of D-modules

In this section, we give an algorithm to determine if two holonomic D-modules
M and N are isomorphic and if so to produce an explicit isomorphism. Here,
End (M) denotes the space of endomorphisms of a D-module M, where endo-
morphism means D-linear maps from M to M. Similarly, Isop (M) denotes the
units of the ring Endp, (M).

If holonomic M and N are isomorphic, then Homp(M, N) ~ Endp(M) is a
finite-dimensional K-algebra. In the theory of finite dimensional K-algebras, the
Jacobson radical J is the intersection of all maximal left ideals of £/, and it has the
property that the quotient £//.J is a semi-simple K-algebra. By the Wedderburn-
Artin theorem, a semi-simple algebra is isomorphic to a direct product of matrix
rings over division algebras, and hence by taking the algebraic closure, we find
that F/J ®k K is isomorphic to a direct product of matrix rings over the field
K

E/Jac(E) @k K = []Endg(E*). (11)

One consequence of this decomposition is that the non-units of E/J®g K form a
determinantal hypersurface. In particular, the units of E/.J ®y K form a Zariski
open set, and hence the units of E/J also form a Zariski open set. Moreover,
units and non-units respect the Jacobson radical in the sense that if j is in the
Jacobson radical of E and if u is a unit of E then w + j is also a unit, and
similarly, if n is not a unit of E then n + j is not a unit. We can thus conclude
the following lemma.

LEMMA 5.1: Let M be a holonomic D-module. Then the space of D-linear iso-
morphisms Isop(M) from M to itself is open in Endp(M) under the Zariski
topology. a

The lemma says that if holonomic M and N are isomorphic then most maps
from M to N are isomorphisms. We now give an algorithm to determine whether
M and N are isomorphic based on Algorithm 4.1 and Lemma 5.1.

ALGORITHM 5.1: (Is M isomorphic to N?)

INPUT: presentations M ~ D™ /D-{P;,...,P,} and N >~ D" /D-{Q1,...,Qy}
of left holonomic D-modules.

Output: “No” if M % N; and “Yes” together with an isomorphism ¢ : M — N
if M ~N.

1. Compute bases {si,...,5,} and {t1,...,t;} for the vector spaces V =
Homp(M,N) and W = Homp (N, M) using Algorithm 4.1, where s; and
tj are respectively mps X my; and my X my matrices with entries in D
representing homomorphisms by right multiplication. Recall that we view
D™ and D™~ as consisting of row vectors. If o # 7, return “No” and exit.
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2. Introduce new indeterminates {x;}] and {v}7, and form the “generic ho-
momorphisms” 3, u;s; € Homp (M, N) and }_; v;t; € Homp (N, M). Then
the compositions Z” pivsi - t; : M — N — M and Z” piviti - s; : N —
M — N are respectively my; X my; and my X my-matrices with entries in
D1y ooy fomggy Vis - - oy Ving -

3. Reduce the rows of the matrix Z” pivis; - t; — idy,,, modulo a Grobner
basis for D-{P,..., P,} C D™ Force this reduction to be zero by setting
the coefficients (which are inhomogeneous bilinear polynomials in y;, v;) of
every standard monomial in every entry to be zero. Collect these relations
in the ideal Ipy C K[y, ..., fhnass Viy -+ s Viny |

4. Similarly, reduce the rows of the matrix Z” pivity -+ s; — idy,,, modulo a
Grobner basis for D - {Q1,...,Q,} C D™~. Force this reduction to be zero
by setting the coefficients of every standard monomial in every entry to be
zero, and collect these relations in the ideal Iy C Ku, v].

5. Put I(V,W) =1y + Iy C K[p,v]. If I(V,W) contains a unit, return “No”
and exit.

6. Otherwise compute an isomorphism Y|, k;s; in Homp (M, N) by finding
the first 7 coordinates of any point in the zero locus of I(V, W). For instance,
we can do this by inductively finding k; € K for each ¢ from 1 to 7 such that
I(V,W) + (puy — k1, ..., — k;) is a proper ideal. At each step i, this can
be accomplished by trying different numbers for k; until a suitable choice
is found.

7. Return “Yes” and the isomorphism (> | k;s;) : M — N.

Remark: Algorithm 5.1 can also be modified to detect whether M is a direct
summand of N. Namely M is a direct summand of N if and only if the ideal
Iy, of Step 3 is not the unit ideal. Similarly N is a direct summand of M if and
only if the ideal Iy of Step 4 is not the unit ideal.

Remark: Algorithm 5.1 can be further modified to compute an ideal in K]
defining the closed set of non-isomorphisms, Endp (M) \ Isop(M). Namely, we
first perform Steps 1 through 4 with M = N to obtain the ideal I(V,V) C
K[p, v]. Then we regard each of the ¢ generators of I(V, V) as a linear inhomo-
geneous equation in the variables p; with coefficients involving v; as parameters,
and collect all these equations in a single matrix equation Ay = b, A € K[v]**".
An ideal defining the non-isomorphisms is generated by all 7 x 7 minors of A.
We leave the proof of this fact as an exercise.

Proof (of the correctness of Algorithm 5.1): Reducing ), ; ;v;s;t;—idy,, mod-
ulo D - {Py,...,P,} in Step 3 leads to a generic remainder which depends
on the parameters p;, v;. Moreover, since a Grébner basis of D - {Py,..., P,}
is parameter-free, this generic remainder has the property that its specializa-
tion to a fixed choice of parameters u; = a;,v; = b; gives the remainder of
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Zi’j aibjs; - t; — idy,,, modulo D - {P,,..., FP,}. Thus setting the remainder to
zero in Step 3 corresponds to deriving conditions on the parameters p;, v; which
makes the endomorphism given by Z” wiv;s;-t; equal to the identity on M. This
is possible if and only if M is a direct summand of N. The analogous statement
holds for reduction of 3, ; pu;vjt; - s; — idpy modulo D-{Qy,. .., Qs} and setting
its resulting remainder to zero. Here, setting a remainder to zero is equivalent to
the vanishing of the coefficients of its standard monomials, and we collect these
vanishing conditions in the ideal I(V, W) of Ku,v].

Now a linear combination ), a;s; : M — N is an isomorphism with inverse
>_bjt; : N — M if and only if the composition ZZ] a;b;s;-t; is congruent to id,,,,
modulo D-{P,,..., P,} and the opposite composition Z” a;b;t; - s; is congruent
to id,,, modulo D-{Q,...,Q,}. Thus the common zeroes (ay,...,as,by,...,b;)
of I(V,W) correspond to isomorphisms »_; a;s; and their inverses >, b;t;. In
particular, if I(V, W) is the entire ring, which we detect by searching for 1 in a
Grobner basis of I(V, W), then there are no isomorphisms.

On the other hand if I(V, W) is proper, then M and N are isomorphic and we
obtain an explicit isomorphism from finding any common solution of I(V, W).
By Lemma 5.1, the invertible homomorphisms from M to N are Zariski dense
in the vector space Homp (M, N). Hence, a common solution can be explicitly
found by by intersecting the zero locus of I(V, W) with a suitable number of
generic hyperplanes {u = k;}. Because of denseness, each of these hyperplanes
can be found in a finite number of steps. In other words, if I(V,W) + (u; —
ki,...,p — k;_1) is proper, then there are only finitely many k; for which the
sum I(V,W) + (p1 — ki, ..., u— k;) is the unit ideal. O

Remark: Once we have specialized the y; in a common solution of I(V, W), then
the v; are determined because of the bilinear nature of the relations (which gives
linear relations for the v; once all y; are chosen). This also means that if there
is any solution, then the p; are rational functions in the v; and vice versa. In
particular, if ¢ € Homp(M, N) is defined over the field K then ¢! is defined
over K as well and no field extensions are required. We now give two simple
examples, one where M and N are isomorphic, and one where they are not.

EXAMPLE 5.2: Let n =1and M = N = D/D - 9*. One checks that V =W =
Homp (M, N) is generated by the 4 morphisms s; = -(0), s2 = -(20), s3 = (1),
and s, = (2?0 — x). We obtain the generic morphism

4 4

ZZMiVjtj s =1 = (uzvz — puvy — 1)

i=1 j=1
+ (—pavs — povy — pi3vs)T
+ (psv1 + pave + pvs)0
+ (—pavy + povs + psvy + povs + i) x0
+(

[aV3 + pigVs + pavy) 20
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plus 9 other terms which are in D - §? independently of the parameters.
Hence in order for 2?21 1;s; to be an isomorphism, the p; need to be part of
a solution to the ideal

I(V,W) = (usv3 — pavy — 1,
THaV3 — HalVy — [3Vy,
p3v1 + Vo + pi Vs,
—HalV1 + HoV2 + H3Va + Hol3 + [1Vy,
Hals + loly + H3Vy).

This ideal is not the unit ideal and has degree 8. Hence there are isomorphisms
between M and N. Pick “at random” py = 1, py = 2, and ps3 = 0. Then the
ideal I(V,W) + (11 — 1, p2 — 2, u3 — 0) equals the ideal (pg — 1, o — 2, a3, vg +
Lvo+uvs, v+ %Vg,, pavs — 2). We see that we have to avoid g = 0 but otherwise
have complete choice.

EXAMPLE 5.3: Let n = 1, M = D/D - 9% and N = D/D - 9. One checks
that V' = Homp(N, M) is generated by ¢, = -(0) and t, = -(z0 — 1) while
W = Homp(M, N) is generated by s; = -(1) and s = -(x). The sum ) p;v;s;-t;
takes the form

[0 + (v + pov1 )20 + pa1n 0 — (pavs + piatsa).
Modulo D - 0 we want this to be 1, so we get the relation
Klp,v] - (pgvy — e — 1) = Iy.

We note that this equation has plenty of solutions, which means that M can be
realized as a summand of N. On the other hand, the sum ) p;v;t; - s; takes the
form

10 + (pve + povy) 20 — it — potal + pialex?0.
Modulo D - §? we want this to be 1, so we get

Klp,v] (—pve — 1,

pivy — 0,

pive + pgvy — 0,
pave —0) = Iy

Iy + Iy is the unit ideal, and hence M and N are not isomorphic.

Remark: Methods of computational algebraic geometry can also be used to get
structural information about Endp (M), namely the invariants d; in the decom-
position (11). One proceeds to compute the de Rham cohomology groups of
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the complement of the non-isomorphisms in Endp (M) = C7 = Spec(C[v]) us-
ing the algorithm in (Walther, 2000). This algorithm allows us to pretend that
K is already algebraically closed since although it can be used on input de-
fined over any computable subfield of the complex numbers, it always computes
dim¢(HJ,(C" \ Y, C)). The output that we obtain is also the cohomology of the
units of £/ Jac(F) ® C since this space is homotopy equivalent to the units of
E ®k C. Finally, we note that the cohomology of the units Gl(n,C) of a matrix
algebra is well known, behaves well under products, and hence can be used to
determine the d;.

To be explicit, in Example 5.2, the non-isomorphisms are defined by the van-
ishing of the polynomial v3v: + 2w,vs + vy + 211130y + 2011304 + ViVE in
(K)*. With (Macaulay 2, 1999) one obtains that the de Rham cohomology of
Isop(M, N) is one-dimensional in degrees 0, 1, 3 and 4 and zero otherwise. From
(Weyl, 1939), Theorems 7.11.A and 8.16.B one concludes that in the decompo-
sition (11) d equals 1 and d; = 2.

Let us end by mentioning a well-known application of the endomorphism ring
E = Endp(M) towards decompositions of M (see e.g. (Lam, 1991) for these
basic facts). Namely, there is a bijective correspondence between (1) the decom-
positions of M into a direct sum of submodules and (2) the decompositions of
the identity element 1 = e; + --+ 4+ e; of E into pairwise orthogonal idempo-
tents. The correspondence is gotten by taking a set of orthogonal idempotents
{e1,...,es} and producing the decomposition M =e,- M & --- B e, - M. More-
over by the Krull-Schmidt-Azumaya theorem, a D-module M has a (unique up
to re-ordering) decomposition into a direct sum of indecomposable submodules
(meaning that they cannot be further decomposed into a direct sum of nonzero
submodules). Thus, an algorithm which produces a full set of orthogonal idem-
potents for the K-algebra Endp(M) combined with Algorithm 4.1 would give a
method to decompose holonomic D-modules into indecomposables. We remark
that algorithms for computing idempotents as well as for computating many
other properties of finite-dimensional K-algebras is a field of active research (see
for example work of (Friedl and Ronyai, 1985) and of (Eberly, 1991)). Many
algorithms have been developed although there are restrictions on the field K.
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