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Abstra
t

Let K � C be a sub�eld of the 
omplex numbers, and let D be the

ring of K-linear di�erential operators on R = K[x

1

; : : : ; x

n

℄. If M and

N are holonomi
 left D-modules we present an algorithm that 
omputes

expli
it generators for the �nite dimensional ve
tor spa
e Hom

D

(M;N).

This enables us to answer algorithmi
ally whether two given holonomi


modules are isomorphi
. More generally, our algorithm 
an be used to get

expli
it generators for Ext

i

D

(M;N) for any i in the sense of Yoneda.

1. Introdu
tion

Let D = D

n

= Khx

1

; : : : ; x

n

; �

1

; : : : ; �

n

i denote the n-th Weyl algebra over a


omputable sub�eld K � C , i.e. elements of K 
an be represented with a �nite

set of data, their sums, produ
ts and quotients 
an be 
al
ulated in a �nite

number of steps, and there is a �nite pro
edure that determines whether a given

expression of elements of K is zero or not. Let Hom

D

(M;N) denote the set of

left D-module maps between two left D-modulesM and N . Then Hom

D

(M;N)

is a K-ve
tor spa
e and 
an also be regarded as the solutions of M inside N in

the following way: given a presentationM ' D

r

0

=D � fL

1

; : : : ; L

r

1

g, let S denote

the system of ve
tor-valued linear partial di�erential equations,

S = fL

1

� f = � � � = L

r

1

� f = 0g;

and let Sol(S;N) denote the N -valued solutions f 2 N

r

0

to S. Then the ho-

momorphism spa
e Hom

D

(D

r

0

=D � fL

1

; : : : ; L

r

1

g; N) is isomorphi
 to the solu-

tion spa
e Sol(S;N) a homomorphism ' in Hom

D

(D

r

0

=D � fL

1

; : : : ; L

r

1

g; N)


orresponds to the solution ['(e

1

); : : : ; '(e

r

0

)℄

T

2 N

r

0

of S, while a solution

f = [f

1

; : : : ; f

r

0

℄

T

2 N

r

0

of S 
orresponds to the homomorphism whi
h sends e

i

to f

i

.

If M and N are holonomi
, then the set Hom

D

(M;N) as well as the higher

1
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derived fun
tors Ext

i

D

(M;N) are �nite-dimensional K-ve
tor spa
es. In this

paper, we give algorithms that 
ompute expli
it bases for Hom

D

(M;N) and

Ext

i

D

(M;N) in this situation. Our algorithms are a re�nement of algorithms

given in (Oaku, Takayama, and Tsai, 2000), whi
h were designed to 
ompute the

dimensions of Hom

D

(M;N) and Ext

i

D

(M;N) over K. Algebrai
ally, our prob-

lem of 
omputing a basis of homomorphisms is easy to des
ribe. Namely, sin
e

a map of left D-modules from M to N is uniquely determined by the images of

a set of generators of M , we must simply determine whi
h sets of elements of

N 
onstitute legal 
hoi
es for the images of a homomorphism (of a �xed set of

generators ofM). It is perhaps surprising that this is not a straightforward 
om-

putation. One of the reasons is that Hom

D

(M;N) la
ks any D-module stru
ture

in general and is just a K-ve
tor spa
e.

In re
ent years, one of the fundamental advan
es in 
omputational D-modules

has been the development of algorithms by (Oaku, 1997; Oaku and Takayama,

1998) to 
ompute the derived restri
tion modules Tor

D

i

(D=fx

1

; : : : ; x

d

g �D;M)

and derived integration modules Tor

D

i

(D=f�

1

; : : : ; �

d

g � D;M) of a holonomi


D-module M to a linear subspa
e x

1

= � � � = x

d

= 0. These algorithms have

been the basis for lo
al 
ohomology and de Rham 
ohomology algorithms (Oaku

and Takayama, 1999; Walther, 1999) and have been extended to algorithms

for derived restri
tion and integration of 
omplexes with holonomi
 
ohomology

in (Walther, 2000).

Similarly, the algorithm of (Oaku, Takayama, and Tsai, 2000) to 
ompute the

dimensions of Hom

D

(M;N) and Ext

i

D

(M;N) is also based on restri
tion by using

isomorphisms of (Kashiwara, 1978) and (Bj�ork, 1979). These isomorphisms are,

Ext

i

D

(M;N)

�

=

Tor

D

n�i

(Ext

n

D

(M;D); N); (1)

whi
h turns an Ext 
omputation for holonomi
 M into a Tor 
omputation and

Tor

D

j

(M

0

; N) ' Tor

D

2n

j

(D

2n

=fx

i

� y

i

; �

i

+ Æ

i

g

n

i=1

�D

2n

; �(M

0

)�N); (2)

whi
h turns any Tor 
omputation into a twisted restri
tion 
omputation in twi
e

as many variables (an explanation of the notation used above 
an be found in

Se
tion 4).

In this paper, we will obtain an algorithm for 
omputing an expli
it basis

of Ext

i

D

(M;N) by analyzing the isomorphisms (1) and (2) and making them


ompatible with the restri
tion algorithm. In Se
tion 2, we present a proof of

isomorphism (1) adapted from (Bj�ork, 1979). In Se
tion 3, we give an algorithm

for 
omputing Hom

D

(M;N) in the 
ase N = K[x

1

; : : : ; x

n

℄, whi
h is used to


ompute polynomial solutions of a system S. In Se
tion 4, we give our main

result, whi
h is an algorithm to 
ompute Hom

D

(M;N) and Ext

i

D

(M;N) for

general holonomi
 modules M , N . In Se
tion 5, we give an algorithm to deter-

mine whetherM and N are isomorphi
 and if so to �nd an isomorphism. Finally,

the algorithms des
ribed in this paper have been implemented in the 
omputer

algebra system (Ma
aulay 2, 1999).
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1.1. Notation

Throughout we shall denote the ring of polynomials K[x

1

; : : : ; x

n

℄ by K[x℄, the

ring of polynomials K[�

1

; : : : ; �

n

℄ by K[�℄, and the ring K[x℄h�i of K-linear

di�erential operators on K[x℄ by D.

Let us also explain the notation we will use to write maps of left or right D-

modules. As usual, maps between �nitely generated modules will be represented

by matri
es, but some attention has to be given to the order in whi
h elements

are multiplied due to the non
ommutativity of D. Let us denote the identity

matrix of size r by id

r

, and similarly the identity map on the moduleM by id

M

.

Let A be an r � s matrix A = [a

ij

℄ with entries in D. We get a map of free

left D-modules,

D

r

�A

�! D

s

: [`

1

; : : : ; `

r

℄ 7! [`

1

; : : : ; `

r

℄ � A;

where D

r

and D

s

are regarded as modules of row ve
tors, and the map is matrix

multipli
ation. Under this 
onvention, the 
omposition of maps D

r

�A

�! D

s

and

D

s

�B

�! D

t

is the map D

r

�AB

�! D

t

where AB is usual matrix multipli
ation.

In general, suppose M and N are left D-modules with presentations D

r

=M

0

and D

s

=N

0

. A indu
es a left D-module map (D

r

=M

0

)

�A

�! (D

s

=N

0

) fromM to N

pre
isely when L � A 2 N

0

for all row ve
tors L 2M

0

. This 
ondition need only

be 
he
ked for a generating set of M

0

. Conversely, any map of left D-modules

between M and N 
an be represented by some matrix A in the manner above.

Now let us dis
uss maps of right D-modules. The r � s matrix A also de�nes

a map of right D-modules in the opposite dire
tion,

(D

s

)

T

A�

�! (D

r

)

T

: [`

0

1

; : : : ; `

0

s

℄

T

7! A � [`

0

1

; : : : ; `

0

s

℄

T

;

where the supers
ript-T means to regard the free modules (D

s

)

T

and (D

r

)

T

as 
onsisting of 
olumn ve
tors. (D

s

)

T

may alternatively be regarded as the

dual module Hom

D

(D

s

; D). The map (D

s

)

T

A�

�! (D

r

)

T

is equivalent to the

map obtained by applying Hom

D

(�; D) to D

r

�A

�! D

s

. We will suppress the

supers
ript-T when the 
ontext is 
lear. As before, A indu
es a right D-module

map between right D-modules N

0

= (D

s

)

T

=N

0

0

and M

0

= (D

r

)

T

=M

0

0

whenever

A �L 2M

0

0

for all 
olumn ve
tors L 2 N

0

0

. We denote the map by (D

s

)

T

=N

0

0

A�

�!

(D

r

)

T

=M

0

0

.

1.2. Left-right 
orresponden
e

The 
ategory of left D-modules is equivalent to the 
ategory of right D-modules,

and for 
onvenien
e, we will sometimes prefer to work in one 
ategory rather than

the other { for instan
e, we will phrase all algorithms in terms of left D-modules.

In the Weyl algebra, the 
orresponden
e is given by the algebra involution

D

�

�! D : x

�

�

�

7! (��)

�

x

�

:
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The map � is 
alled the standard transposition or adjoint operator. Given a left

D-module D

r

=M

0

, the 
orresponding right D-module is

�

�

D

r

M

0

�

:=

D

r

�(M

0

)

; �(M

0

) = f�(L)jL 2M

0

g:

Similarly, given a homomorphism of left D-modules � : D

r

=M

0

�!D

s

=N

0

de-

�ned by right multipli
ation by the r � s matrix A = [a

ij

℄, the 
orresponding

homomorphism of right D-modules �(�) : D

r

=�(M

0

)�!D

s

=�(N

0

) is de�ned by

right multipli
ation by the s�r matrix �(A) := [�(a

ij

)℄

T

. The map � is used sim-

ilarly to go from right to leftD-modules. For more details, see (Oaku, Takayama,

and Tsai, 2000).

2. Basi
 Isomorphism

The following identi�
ation, taken with its proof from (Bj�ork, 1979), is our main

theoreti
al tool to expli
itly 
ompute homomorphisms of holonomi
 D-modules.

Theorem 2.1: (Bj�ork, 1979) Let M and N be holonomi
 left D-modules. Then

Ext

i

D

(M;N)

�

=

Tor

D

n�i

(Ext

n

D

(M;D); N): (3)

Proof: Sin
e it will be useful to us later, we give the main steps of the proof

here. The interesting bit of the 
onstru
tion is the transformation of a Hom into

a tensor produ
t. Let X

�

be a free resolution of M ,

X

�

: 0! D

r

�a

�M

�a+1

-

� � � ! D

r

�1

�M

0

-

D

r

0

!M ! 0

We may assume it is of �nite length by virtue of Hilbert's syzygy theorem {

namely, S
hreyer's proof and method 
arries over to D (see e.g. (Cox, Little,

and O'Shea, 1998)). The dual of X

�

is the 
omplex of right D-modules,

Hom

D

(X

�

; D) : 0 (D

r

�a

)

T

| {z }

degree a

�

M

�a+1

�

� � �  (D

r

�1

)

T

�

M

0

�

(D

r

0

)

T

| {z }

degree 0

 0

Sin
e Hom

D

(D

r

; D)


D

N ' Hom

D

(D

r

; N), we see that Hom

D

(X

�

; D)


D

N '

Hom

D

(X

�

; N), whose 
ohomology groups are by de�nition Ext

i

D

(M;N). Now

repla
e N by a free resolution Y

�

of �nite length,

Y

�

: 0! D

s

�b

�N

�b+1

-

� � � ! D

s

�1

�N

0

-

D

s

0

! N ! 0 (4)
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We get the double 
omplex Hom

D

(X

�

; D)


D

Y

�

,

0

"

0

"

0

"

0 (D

r

�a

)

T




D

D

s

0

�

(M

�a+1

�)
id

s

0

���

�

(D

r

�1

)

T




D

D

s

0

�

(M

0

�)
id

s

0

(D

r

0

)

T




D

D

s

0

 0

0 (D

r

�a

)

T




D

D

s

�1

(� id

r

�a

)

a


(�N

0

)

6

�

(M

�a+1

�)
id

s

�1

���

�

(D

r

�1

)

T




D

D

s

�1

� id

r

�1


(�N

0

)

6

�

(M

0

�)
id

s

�1

(D

r

0

)

T




D

D

s

�1

id

r

0


(�N

0

)

6

 0

"

.

.

.

"

.

.

.

"

.

.

.

0 (D

r

�a

)

T




D

D

s

�b

(� id

r

�a

)

a


(�N

�b+1

)

6

�

(M

�a+1

�)
id

s

�b

���

�

(D

r

�1

)

T




D

D

s

�b

� id

r

�1


(�N

�b+1

)

6

�

(M

0

�)
id

s

�b

(D

r

0

)

T




D

D

s

�b

id

r

0


(�N

�b+1

)

6

 0

"

0

"

0

"

0

(5)

Sin
e the 
olumns of the double 
omplex are exa
t ex
ept for at positions in

the top row, it follows that the 
ohomology of the total 
omplex equals the 
oho-

mology of the 
omplex indu
ed on the table of E

1

terms (verti
al 
ohomologies),

0 Hom

D

(D

r

�a

; N)

| {z }

degree a

�

Hom

D

((M

�a+1

�);N)

� � �

�

Hom

D

((M

0

�);N)

Hom

D

(D

r

0

; N)

| {z }

degree 0

 0

(6)

As stated earlier, these 
ohomology groups are Ext

i

D

(M;N).

On the other hand, sin
e M is holonomi
, the 
omplex Hom

D

(X

�

; D) is exa
t

ex
ept in degree n, where its 
ohomology is by de�nition Ext

n

D

(M;D). Hen
e the

rows of the double 
omplex are also exa
t ex
ept at positions in the n-th 
olumn,

i.e. the 
olumn 
ontaining terms (D

r

�n




D

(�)). It follows that the 
ohomology

of the total 
omplex also equals the 
ohomology of the 
omplex indu
ed on the

other table of E

1

terms (horizontal 
ohomologies), whi
h in this 
ase is

0! Ext

n

D

(M;D)


D

D

s

�b

! � � �

id

Ext

n

D

(M;D)


(�N

0

)

-

Ext

n

D

(M;D)


D

D

s

0

! 0 (7)

By de�nition, the above 
omplex has 
ohomology groups Tor

D

j

(Ext

n

D

(M;D); N),

whi
h establishes the identi�
ation. 2

Our goal will be to 
ompute an expli
it basis of 
ohomology 
lasses of the


omplex (6). In parti
ular, the 
ohomology in degree 0 
orresponds expli
itly
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to Hom

D

(M;N) be
ause any map  2 Hom

D

(D

r

0

; N) whi
h is in the degree 0

kernel, i.e. in

H

0

(Hom

D

(D

r

�1

; N)

| {z }

degree 1

�

Hom

D

((M

0

�);N)

Hom

D

(D

r

0

; N)

| {z }

degree 0

 0); (8)

fa
tors through M ' D

r

0

=M

0

, hen
e de�nes a homomorphism  : M ! N .

The reason why it is hard to 
ompute these 
ohomology 
lasses is that the

modules Hom

D

(D

r

i

; N) in the 
omplex (6) are left D-modules while the maps

Hom

D

((M

i

�); N) are not maps of leftD-modules. In the next few se
tions, we will

explain how the ingredients of the proof of Theorem 2.1 
an be 
ombined with

the restri
tion algorithm to 
ompute the desired representatives of 
ohomology


lasses.

3. Polynomial solutions

In this se
tion, we give an algorithm to 
ompute Hom

D

(M;K[x℄) for holonomi


M . This ve
tor spa
e is more eÆ
iently 
omputed by Gr�obner deformations as

des
ribed in (Oaku, Takayama, and Tsai, 2000), but we wish to dis
uss this

spe
ial 
ase in order to introdu
e the general methodology.

For N = K[x℄, the isomorphism (3) of Theorem 2.1 spe
ializes to

Ext

i

D

(M;K[x℄) ' Tor

D

n�i

(Ext

n

D

(M;D); K[x℄): (9)

In this 
ase, the proof of Theorem 2.1 also leads dire
tly to an algorithm. As a

D-module, the polynomial ring has the presentation K[x℄ ' D=D � f�

1

; : : : ; �

n

g

and 
an be resolved by the Koszul 
omplex,

K

�

: 0! D

|{z}

degree n

�[(�1)

n�1

�

n

;��� ;�

1

℄

-

D

n

! � � � ! D

n

�

2

4

�

1

.

.

.

�

n

3

5

-

D

|{z}

degree 0

! 0:

The 
omplex (7) whose 
ohomology 
omputes Tor

D

n�i

(Ext

n

D

(M;D); K[x℄) then

spe
ializes to Ext

n

D

(M;D)


D

K

�

and is equivalently the derived integration 
om-

plex of Ext

n

D

(M;D) in the 
ategory of right D-modules. The integration algo-

rithm of (Oaku and Takayama, 1999) 
an now be applied to obtain a basis of ex-

pli
it 
ohomology 
lasses inH

n

(Ext

n

D

(M;D)


D

K

�

) ' Tor

D

n

(Ext

n

D

(M;D); K[x℄).

These 
lasses 
an then be transferred via the double 
omplex (5) to 
oho-

mology 
lasses in the 
omplex (8), where they represent homomorphisms in

Hom

D

(M;K[x℄). The method and details are probably best illustrated through

an example.

Example 3.1: Consider the Gelfand-Kapranov-Zelevinsky hypergeometri
 sys-

tem M

A

(�) asso
iated to the matrix A = f1; 2g and parameter ve
tor � = f5g,

i.e. the D-module asso
iated to the equations,

u = �

1

+ 2�

2

� 5 v = �

2

1

� �

2
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Here, �

i

stands for the operator x

i

�

i

.

A resolution for M

A

(�) is

X

�

: 0! D

1

�[�v u+2℄

-

D

2

�

[

u

v

℄

-

D

1

! 0

while a resolution for K[x

1

; x

2

℄ is the Koszul 
omplex,

K

�

: 0! D

�[�

1

;�

2

℄

-

D

2

�

h

�

2

��

1

i

-

D ! 0

The augmented double 
omplex Hom

D

(X

�

; D)


D

K

�

is

K[x

1

; x

2

℄

�

[�v u+2℄�

K[x

1

; x

2

℄

2

�

[

u

v

℄

�

K[x

1

; x

2

℄

Ext

2

D

(M

A

(�); D)

�

D

1

6

�

[�v u+2℄�

D

2

6

�

[

u

v

℄

�

D

1

6

Ext

2

D

(M

A

(�); D)

2

�

h

�

2

��

1

i

6

�

D

2

�

h

�

2

��

1

i

6

�

[

�v

0

u+2

0

0

�v

0

u+2

℄

�

D

4

�

2

4

�

2

0

��

1

0

0

�

2

0

��

1

3

5

6

�

"

u

v

0

0

0

0

u

v

#

�

D

2

�

h

�

2

��

1

i

6

Ext

2

D

(M

A

(�); D)

�[�

1

�

2

℄

6

�

D

1

�[�

1

�

2

℄

6

�

[�v u+2℄�

D

2

�

[

�

1

0

0

�

1

�

2

0

0

�

2

℄

6

�

[

u

v

℄

�

D

1

�[�

1

�

2

℄

6

Here, we interpret an element of a module in the above diagram as a 
olumn

ve
tor for purposes of the horizontal maps and as a row ve
tor for purposes

of the verti
al maps. The indu
ed 
omplex at the left-hand wall is the derived

integration to the origin of Ext

2

D

(M

A

(�); D) in the 
ategory of right D-modules.

Applying the integration algorithm, we �nd that the 
ohomology at the module

D

1

in the bottom left-hand 
orner is 1-dimensional and spanned by the residue


lass of

L

1;0

= �(2x

5

1

x

2

� 40x

3

1

x

2

2

+ 120x

1

x

3

2

)�

1

� (x

6

1

� 30x

4

1

x

2

+ 180x

2

1

x

2

2

� 120x

3

2

):

We lift this 
lass to a 
ohomology 
lass of the 
omplex indu
ed at the top row
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via a \transfer" sequen
e in the total 
omplex given s
hemati
ally by

D

2

�

[

u

v

℄

�

D

1

3 L

1;2

D

2

�

[

�v

0

u+2

0

0

�v

0

u+2

℄

�

D

4

3 L

1;1

�

2

4

�

2

0

��

1

0

0

�

2

0

��

1

3

5

6

D

1

3 L

1;0

�[�

1

�

2

℄

6

In other words, L

1;1

is obtained by taking the image of L

1;0

under the verti
al

map and then a pre-image under the horizontal map, and similarly for L

1;2

. We

�nd that,

L

1;1

=

2

6

6

4

2x

5

1

x

2

� 40x

3

1

x

2

2

+ 120x

1

x

3

2

�(x

5

1

� 20x

3

1

x

2

+ 60x

1

x

2

2

)

�(x

6

1

� 20x

4

1

x

2

+ 60x

2

1

x

2

2

)

(x

5

1

� 20x

3

1

x

2

+ 60x

1

x

2

2

)�

1

+ (10x

4

1

� 120x

2

1

x

2

+ 120x

2

2

)

3

7

7

5

;

L

1;2

=

�

x

5

1

� 20x

3

1

x

2

+ 60x

1

x

2

2

�

:

The spa
e of polynomial solutions is spanned by the residue 
lass of L

1;2

in

K[x

1

; x

2

℄, whi
h is x

5

1

� 20x

3

1

x

2

+ 60x

1

x

2

2

.

Remark: The elements L

1;0

, L

1;1

and L

1;2

are, as opposed to the 
ohomology


lasses of L

1;0

in Ext

2

D

(M

A

(�); D) and of L

2;1

in K[x

1

; x

2

℄, not unique.

Remark: The transfer sequen
e above is used to show that Tor is a balan
ed

fun
tor in (Weibel, 1994). A generalization of the transfer sequen
e is also used by

the se
ond author to 
ompute the 
up produ
t stru
ture for de Rham 
ohomology

of the 
omplement of an aÆne variety in (Walther, 1999).

From a pra
ti
al standpoint, the method outlined above is not quite the �nal

story. The detail we have left out is how the integration algorithm of (Oaku and

Takayama, 1999) a
tually 
omputes the 
ohomology 
lasses of a Koszul 
omplex

su
h as Ext

n

D

(M;D) 


D

K

�

. Their algorithm does not 
ompute these 
lasses

dire
tly. Rather, their method (phrased in terms of right D-modules) is to �rst


ompute a

~

V -stri
t resolution Z

�

of Ext

n

D

(M;D) (
f. (Walther, 1999)). Then they

give a te
hnique to 
ompute expli
itly the 
ohomology 
lasses of Z

�




D

K[x℄.

This 
omplex is quasi-isomorphi
 to Ext

n

D

(M;D)


D

K

�

, and 
ohomology 
lasses


an be transferred to Ext

n

D

(M;D)


D

K

�

by setting up another double 
omplex
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Z

�




D

K

�

. Thus, our method as des
ribed to 
ompute polynomial solutions would

require two transfers via two double 
omplexes.

Given the true nature of the integration algorithm, the two transfers 
an be


ollapsed into a single step. Namely, we start with Hom

D

(X

�

; D),

Hom

D

(X

�

; D) : 0 � � �

�

M

�n

�

(D

r

�n

)

T

| {z }

degree n

�

M

�n+1

�

� � �

�

M

0

�

(D

r

0

)

T

| {z }

degree 0

 0

whi
h is exa
t ex
ept in 
ohomologi
al degree n be
ause M is holonomi
. We

are interested in expli
it 
ohomology 
lasses for H

0

(Hom

D

(X

�

; D)


D

K[x℄). To

obtain them, we repla
e Hom

D

(X

�

; D) with a quasi-isomorphi


e

V -adapted reso-

lution E

�

along with an expli
it quasi-isomorphism �

�

from E

�

to Hom

D

(X

�

; D).

That is, we make a map �

n

from a free module (D

s

�n

)

T

onto some 
hoi
e of gen-

erators of ker(M

�n

�), take the pre-image P of im(M

�n+1

�) under �

n

, and 
ompute

a

e

V -adapted resolution E

�

of D

s

�n

=P . S
hemati
ally,

0 

(D

s

�n

)

T

P

�

(D

s

�n

)

T

�

N

�n+1

�

(D

s

�n+1

)

T

���

�

N

0

�

(D

s

0

)

T

 (D

s

1

)

T

 ���

0 ��� (D

r

�n�1

)

T
�

M

�n

�

(D

r

�n

)

T

| {z }

degree n

�

n

?

�

M

�n+1

�

(D

r

�n+1

)

T

?

���

�

M

0

�

(D

r

0

)

T

| {z }

degree 0

?

 0

Using the integration algorithm, the 
ohomology 
lasses of the top row 
an now

be 
omputed. In order to transfer them to Hom

D

(X

�

; D)


D

K[x℄, a 
hain map

lifting �

n

is 
omputed and utilized as suggested by the dashed arrows.

4. Holonomi
 solutions

In this se
tion, we give an algorithm to 
ompute a basis of Hom

D

(M;N) for

holonomi
 left D-modules M and N . We will use the following notation. As

before, D will denote the ring of di�erential operators in the variables x

1

; : : : ; x

n

with derivations �

1

; : : : ; �

n

. O

asionally we will also write D

n

or D

x

for D. In a

similar fashion,D

y

will stand for the ring of di�erential operators in the variables

y

1

; : : : ; y

n

with derivations Æ

1

; : : : ; Æ

n

.

If X is a D

x

-module and Y a D

y

-module then we denote by X�Y the external

produ
t ofX and Y overK. It equals the tensor produ
t ofX and Y over the �eld

K, equipped with its natural stru
ture as a module over D

2n

= D

x

�D

y

, the ring

of di�erential operators in x

1

; : : : ; x

n

; y

1

; : : : ; y

n

with derivations f�

i

; Æ

j

g

1�i;j�n

.

In addition, let � denote the algebra isomorphism,

� : D

2n

�! D

2n

�

x

i

7!

1

2

x

i

� Æ

i

; �

i

7!

1

2

y

i

+ �

i

;

y

i

7! �

1

2

x

i

� Æ

i

; Æ

i

7!

1

2

y

i

� �

i

�

n

j=1

;
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and let � and � denote the right D

2n

-modules,

� :=

D

2n

fx

i

� y

i

; �

i

+ Æ

i

: 1 � i � ng �D

2n

� :=

D

2n

xD

2n

+ yD

2n

= �(�):

As mentioned in the introdu
tion, an algorithm to 
ompute the dimensions

of Ext

i

D

(M;N) was given in (Oaku, Takayama, and Tsai, 2000) based upon the

K-isomorphisms (1) and (2):

Ext

i

D

(M;N)

�

=

Tor

D

n�i

(Ext

n

D

(M;D); N)

Tor

D

j

(M

0

; N)

�

=

Tor

D

2n

j

(D

2n

=fx

i

� y

i

; �

i

+ Æ

i

g

n

i=1

�D

2n

; �(M

0

)�N):

Combining these isomorphisms where M

0

= Ext

n

D

(M;D) produ
es

Ext

i

D

(M;N) ' Tor

D

2n

j

(D

2n

=fx

i

�y

i

; �

i

+ Æ

i

g

n

i=1

�D

2n

; �(Ext

n

D

(M;D))�N) (10)

In order to 
ompute Hom

D

(M;N) expli
itly, we will tra
e the isomorphism (10).

We explain how to do this step by step in the following algorithm. The motivation

behind the algorithm is dis
ussed in the proof.

Algorithm 4.1: (Holonomi
 solutions by duality)

Input: Presentations M = D

r

0

=M

0

and N = D

s

0

=N

0

of holonomi
 left D-

modules.

Output: A basis for Hom

D

(M;N).

1. Compute �nite free resolutions X

�

and Y

�

of M and N ,

X

�

: 0! D

r

�a

| {z }

degree �a

�M

�a+1

-

� � � ! D

r

�1

�M

0

-

D

r

0

|{z}

degree 0

!M ! 0

Y

�

: 0! D

s

�b

|{z}

degree �b

�N

�b+1

-

� � � ! D

s

�1

�N

0

-

D

s

0

|{z}

degree 0

! N ! 0

Also, dualize X

�

and apply the standard transposition to obtain,

�(Hom

D

(X

�

; D)) : 0 D

r

�a

| {z }

degree a

�

��(M

�a+1

)

� � �  D

r

�1

�

��(M

0

)

D

r

0

|{z}

degree 0

 0:

2. Form the double 
omplex �(Hom

D

(X

�

; D)) � Y

�

of left D

2n

-modules and

its total 
omplex

Z

�

: 0 D

2n

t

a

| {z }

degree a

 � � �  D

2n

t

0

| {z }

degree 0

 � � �  D

2n

t

�b

 0

where

D

2n

t

k

=

M

i�j=k

D

r

�i

�D

s

�j

:

Let the part of Z

�

in 
ohomologi
al degree n be denoted,

D

2n

t

n+1

�

�T

n

D

2n

t

n

�

�T

n�1

D

2n

t

n�1



Tsai and Walther: Computing homomorphisms 11

3. Compute a surje
tion �

n

: D

2n

u

n

� ker(��(T

n

)), and �nd the preimage P :=

�

�1

n

(im(��(T

n�1

))).

4. Compute the derived restri
tion module H

0

((� 


L

D

2n

D

2n

u

n

=P )[n℄) using

the restri
tion algorithm of (Oaku and Takayama, 1998). In parti
ular, this

algorithm produ
es,

(i.) A V -stri
t free resolution E

�

of D

s

n

=P of length n+ 1,

E

�

: 0 D

2n

u

n

| {z }

degree n

 D

2n

u

n�1

 � � �  D

2n

u

1

 D

2n

u

0

| {z }

degree 0

 D

2n

u

�1

:

(ii.) Elements fg

1

; : : : ; g

k

g � D

2n

u

0

whose images in �


D

2n

E

�

form a basis

for

H

0

��

�


L

D

2n

D

2n

u

n

P

�

[n℄

�

' H

0

(�


D

2n

E

�

) '

ker

(

�


D

2n

D

2n

u

1

 �


D

2n

D

2n

u

0

)

im

(

�


D

2n

D

2n

u

0

 �


D

2n

D

2n

u

�1

)

5. Lift the map �

n

to a 
hain map �

�

: E

�

! �(Z

�

). Denote these maps by

�

i

: D

u

i

! D

r

i

.

6. Compute the image of ea
h g

i

under the 
omposition of 
hain maps,

E

�

�


D

2n

Z

�

'

-

Tot

�

(Hom

D

(X

�

; D)


D

Y

�

)

�(Z

�

)

�

�

?

�

�1

-

Z

�

6

Hom

D

(X

�

; N)

p

1

?

Here p

1

is the proje
tion onto Hom

D

(X

�

; D) 
 Y

0

followed by fa
toriza-

tion through N

0

. These are all 
hain maps of 
omplexes of ve
tor spa
es.

Step by step, we do the following. Evaluate fL

1

= �

�1

(�

0

(g

1

)); : : : ; L

k

=

�

�1

(�

0

(g

k

))g, and write ea
h L

i

in terms of the de
omposition,

L

i

= �

j

L

i;j

2

M

j

D

r

�j

�D

s

�j

�

= D

2n

t

0

�

:

Now re-express L

i;0

modulo fx

i

�y

i

; �

i

+Æ

i

: 1 � i � ng�D

2n




D

2n

(D

r

0

�D

s

0

)

so that x

i

and �

j

do not appear in any 
omponent. Using the identi�
ation

D

r

0

�D

s

0

' D

s

0

2n

e

1

� � � � �D

s

0

2n

e

r

; where fe

i

g forms the 
anoni
al D-basis

for D

r

0

, we then get an expression

L

i;0

= `

i;1

e

1

+ � � �+ `

i;r

0

e

r

0

2 (D

y

)

s

0

e

1

� � � � � (D

y

)

s

0

e

r

0

:

Let f`

i;1

; : : : ; `

i;r

0

g be the images in (D

s

0

=N

0

) ' N . Finally, set �

i

2

Hom

D

(M;N) to be the map indu
ed by

fe

1

7!

�

`

i;1

; e

2

7!

�

`

i;2

; : : : ; e

r

0

7!

�

`

i;r

0

g:
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7. Return f�

1

; : : : ; �

k

g, a basis for Hom

D

(M;N).

Proof: The main idea behind the algorithm is to adapt the proof of Theorem

2.1. In that proof, we saw that Tot

�

(Hom(X

�

; D)


D

Y

�

)

p

1

�! Hom

D

(X

�

; N) is

a quasi-isomorphism. Thus it suÆ
es to 
ompute expli
it generating 
lasses for

H

0

(Tot

�

(Hom

D

(X

�

; D)


D

Y

�

))

'

�! H

0

(Hom

D

(X

�

; N)) ' Hom

D

(M;N):

Here, the double 
omplex Hom

D

(X

�

; D) 


D

Y

�

is in some sense easier to

digest be
ause it 
onsists entirely of free D-modules. However, it too only 
ar-

ries the stru
ture of a 
omplex of in�nite-dimensional ve
tor spa
es, making its


ohomology no easier to 
ompute than the 
ohomology of Hom

D

(X

�

; N).

Instead we 
onsider the double 
omplex �(Hom

D

(X

�

; D))�Y

�

of Step 2, whose

total 
omplex T

�

does 
arry the stru
ture of a 
omplex of left D

2n

-modules.

Moreover, we 
laim that as a double 
omplex of ve
tor spa
es, Hom

D

(X

�

; D)


D

Y

�


an be naturally identi�ed with the double 
omplex,

�


D

(�(Hom

D

(X

�

; D))� Y

�

);

the \restri
tion to the diagonal". To make the identi�
ation, �rst note that the

natural map

D

y

�!

D

2n

fx

i

� y

i

; �

i

+ Æ

i

: 1 � i � ng �D

2n

= �

is an isomorphism of left D

y

-modules. Let fe

1

; : : : ; e

r

g denote the 
anoni
al basis

of a free module D

r

. Then an arbitrary element of � 


D

2n

(D

x

r

�D

y

s

) 
an be

expressed uniquely as

P

k

e

k

� m

k

, where m

k

2 D

y

s

. Similarly, an element of

D

r




D

D

s


an be expressed uniquely as

P

k

e

k


 m

k

where m

k

2 D

s

. Hen
e

we get an isomorphi
 identi�
ation as D

n

-modules of � 


D

2n

(D

x

r

� D

y

s

) and

D

r




D

D

s

. In parti
ular, this shows that the modules appearing in the double


omplexes are the same.

It remains to show that the maps in the double 
omplexes 
an also be iden-

ti�ed. An arbitrary verti
al map of �


D

2n

(�(Hom

D

(X

�

; D))� Y

�

) a
ts on an

arbitrary element

P

k

1
 e

k

�m

k

a

ording to,

�


D

2n

(D

x

r

i

�D

y

s

j

)

P

i

(�1)

i

e

k

�(�N

j

)(m

k

)

�


D

2n

(D

x

r

i

�D

y

s

j+1

)

id

�


(� id

r

i

)

i

�(�N

j

)

6

P

k

1
e

k

�m

k

6

This is exa
tly the way the 
orresponding verti
al map in Hom

D

(X

�

; D)


D

Y

�
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works on the 
orresponding element:

D

x

r

i




D

D

y

s

j

P

k

(�1)

i

e

k


(�N

j

)(m

k

)

D

x

r

i




D

D

y

s

j+1

(� id

r

i

)

i


(�N

j

)

6

P

k

e

k


m

k

6

Likewise, an arbitrary horizontal map of �


D

2n

(�(Hom

D

(X

�

; D))�Y

�

) a
ts

on an arbitrary element a

ording to,

�


D

2n

(D

x

r

i+1

�D

y

s

j

)

id

�


(��(M

i

))�1

-

�


D

2n

(D

x

r

i

�D

y

s

j

)

P

k

1
e

k

�m

k

-

P

k

1
(��(M

i

))(e

k

)�m

k

:

Here, we would like to re-express the image

P

k

1
(��(M

i

))(e

k

)�m

k

in the form

P

k

1
e

k

�n

k

. To help us, note the following 
omputation in �


D

2n

(D

x

r

�D

y

s

):

(1
 x

�

�

�

e

i

�m) = 1
 �

�

e

i

� y

�

m = 1
 e

i

� (�Æ)

�

y

�

m = 1
 e

i

� �(y

�

Æ

�

)m:

Using it, we get that

X

k

1
 (��(M

i

))(e

k

)�m

k

=

X

k

X

j

1
 �(M

i

)

jk

e

j

�m

k

=

X

k

X

j

1
 e

j

� �(�(M

i

)

jk

)m

k

=

X

k

X

j

1
 e

j

� (M

i

)

jk

m

k

This is exa
tly the way the 
orresponding horizontal map in Hom

D

(X

�

; D)


D

Y

�

works on an arbitrary element:

D

r

i+1




D

D

s

j

(M

i

�)
id

s

j

-

D

r

i




D

D

s

j

P

k

e

k


m

k

-

P

k

P

j

e

j


(M

i

)

jk

m

k

Thus, we have given an expli
it identi�
ation of �


D

(�(Hom

D

(X

�

; D))� Y

�

)

and Hom

D

(X

�

; D)


D

Y

�

.

The task now be
omes to 
ompute expli
it 
ohomology 
lasses whi
h are a

basis for H

0

(� 


D

2n

Z

�

). To do this, we note that Z

�

is exa
t ex
ept in 
oho-

mologi
al degree n, where its 
ohomology is �(Ext

n

D

(M;D)) � N . This follows

be
ause �(Hom

D

(X

�

; D)) is exa
t by holonomi
ity ex
ept in degree n, where

its 
ohomology is �(Ext

n

D

(M;D)), and Y

�

is exa
t ex
ept in degree 0, where its
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ohomology is N . In other words, the 
omplex �


D

2n

Z

�

is in some sense a re-

stri
tion 
omplex. Namely, after applying the algebra isomorphism �, we get an

honest restri
tion 
omplex �
�(Z

�

) for the restri
tion of �(�(Ext

n

D

(M;D))�N)

to the origin (the restri
tion 
omplex of a left D

2n

-module M

0

is by de�nition

�


L

D

2n

M

0

).

We 
an thus 
ompute the 
ohomology groups of � 


D

2n

�(Z

�

) by applying

the restri
tion algorithm. However, sin
e we are after expli
it representatives for

the 
ohomology 
lasses, we need to use a presentation of �(�(Ext

n

D

(M;D))�N)

whi
h is 
ompatible with �(Z

�

). This is the 
ontent of Step 3. On
e equipped with

a 
ompatible presentation, we apply the restri
tion algorithm to it, whi
h is the


ontent of Step 4. This step produ
es expli
it 
ohomology 
lasses of �


D

2n

E

�

,

where E

�

is a V -stri
t resolution of �(�(Ext

n

D

(M;D))�N). To then get expli
it


ohomology 
lasses of � 


D

2n

�(Z

�

), we 
onstru
t a 
hain map between E

�

and �(Z

�

), whi
h is the 
ontent of Step 5. The 
ohomology 
lasses 
an now

be transported to � 


D

2n

�(Z

�

) using the 
hain map, then to � 


D

2n

Z

�

using

�

�1

, then to Tot

�

(Hom

D

(X

�

; D)


D

Y

�

) using the natural identi�
ation des
ribed

earlier, and �nally to the 
omplex Hom

D

(X

�

; N) using the natural augmentation

map. These steps are all grouped together in Step 6. This 
ompletes the proof

of the algorithm. 2

Example 4.2: Let M = D=D � (�� 1) and N = D=D � (�� 1)

2

, where D is the

�rst Weyl algebra. Then for Step 1, we have the resolutions,

X

�

: 0! D

1

�(��1)

-

D

1

! 0 Y

�

: 0! D

1

�(��1)

2

-

D

1

! 0

For Step 2, we form the 
omplex Z

�

= Tot(�(Hom

D

(X

�

; D))� Y

�

),

Z

�

: 0 D

2

1

|{z}

degree 1

�

�

�

(�

x

+1)

(�

y

�1)

2

�

D

2

2

|{z}

degree �1

�

�[(�

y

�1)

2

;�(�

x

+1)℄

D

2

1

|{z}

degree 0

 0

For Steps 3-5, we get the output,

�(Z

�

) : 0 D

2

1

�

�

"

1

2

y+�

x

+1

(

1

2

y��

x

�1)

2

#

D

2

2

�

�[(

1

2

y��

x

�1)

2

;�

1

2

y��

x

�1℄

D

2

1

 0

E

�

: 0 D

2

1

[0℄

�

1

=�[1℄

6

�

�

�

1

2

y+�

x

+1

y

2

�

D

2

2

[�1; 2℄

�

0

=�

�

1

3

2

y��

x

�1

0

1

�

6

�

�[y

2

;�

1

2

y��

x

�1℄

D

2

1

[1℄ 0

The 
omplex E

�

is a V -stri
t resolution of the 
ohomology of �(Z

�

) at degree

1, and the restri
tion b-fun
tion is b(s) = (s + 1)(s + 2). Hen
e � 


D

E

�

is

quasi-isomorphi
 to its sub-
omplex F

�1

(�


D

E

�

)

0 0

�

�

�

1

2

y+�

x

+1

y

2

�

Span

K

8

<

:

0� 1

0� �

x

0� �

y

9

=

;

�

�[y

2

;�

1

2

y��

x

�1℄

Span

K

f1g  0
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Hen
e the 
ohomology H

0

(� 


D

E

�

) is spanned by f0 � 1; 0 � �

y

g. Applying

�

0

, H

0

(� 


D

�(Z

�

)) is spanned by the images of f(

3

2

y � �

x

� 1) � 1; �

y

(

3

2

y �

�

x

� 1) � �

y

g. Next applying �

�1

, H

0

(� 


D

Z

�

) is spanned by the images of

fL

1

= (�

x

+2�

y

�1)�1; L

2

= �

1

2

(x�

x

+2y�

y

+y�

x

+2x�

y

�x�y)��

1

2

(x+y)g.

Modulo the right ideal generated by fx � y; �

x

+ �

y

g, we 
an re-express these


ohomology 
lasses by f(�

y

� 1) � 1; (y�

y

� y � 1) � �yg. Applying p

1

we get

fL

1;0

= �

y

�1; L

2;0

= y�

y

�y�1g, whi
h 
orresponds to a basis of Hom

D

(M;N)

given by,

�

1

:

D

D � (� � 1)

�[��1℄

-

D

D � (� � 1)

2

�

2

:

D

D � (� � 1)

�[(x��x�1℄

-

D

D � (� � 1)

2

:

Remark: Algorithm 4.1 for the 
omputation of Hom

D

(M;N) 
an also be modi-

�ed to 
ompute expli
itly the higher derived fun
tors Ext

i

D

(M;N) for holonomi


M andN . A useful way to represent Ext

i

D

(M;N) is as the i-th Yoneda Ext group,

whi
h 
onsists of equivalen
e 
lasses of exa
t sequen
es,

� : 0! N

-

Q

-

X

�i+2

�! � � � �!X

0

-

M �! 0;

for any list of (not ne
essarily free) D-modules Q;X

�i+2

; : : : ; X

0

. Two exa
t

sequen
es � and �

0

are 
onsidered equivalent when there is a 
hain map of the

form,

� : 0 �! N

-

Q

-

X

�i+2

�! � � � �!X

0

-

M �! 0

� � �

�

0

: 0 �! N

id

N

?

-

Q

0

?

-

X

0

�i+2

?

�! � � � �!X

0

0

?

-

M

id

M

?

�! 0:

In our modi�ed algorithm we follow the same steps as in Algorithm 4.1, ex
ept

that in Step 4 we 
ompute H

�n+i

(� 


L

D

2n

(D

2n

u

n

=P )) instead of H

�n

(� 


L

D

2n

(D

2n

u

n

=P )). The output is a basis f'

1

; : : : ; '

k

g of the �nite-dimensional K-

ve
tor spa
e H

i

(Hom

D

(X

�

; N)), where X

�

is a free resolution of M ,

X

�

: 0! D

r

�a

| {z }

degree �a

�M

�a+1

-

� � � ! D

r

�1

�M

0

-

D

r

0

|{z}

degree 0

!M ! 0:

To obtain the i-th Yoneda Ext group from our output for Ext

i

D

(M;N), we fol-

low the presentation of (Weibel, 1994, Se
tion 3.4) and asso
iate to a 
ohomology


lass ' 2 H

i

(Hom

D

(X

�

; N)) the exa
t sequen
e,

�(') : 0 �! N �! Q �! D

r

�i+2

�! � � � �! D

r

0

!M ! 0:

Here, Q is the 
okernel of (�M

�i+1

; ') : D

r

�i

�! D

r

�i+1

�N , and the maps are

all the natural ones. Noti
e that the only di�eren
e between any �(') and �('

0

)

are their 
orresponding Q's and the maps to and from them.
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5. Isomorphism Classes of D-modules

In this se
tion, we give an algorithm to determine if two holonomi
 D-modules

M and N are isomorphi
 and if so to produ
e an expli
it isomorphism. Here,

End

D

(M) denotes the spa
e of endomorphisms of a D-module M , where endo-

morphism means D-linear maps from M to M . Similarly, Iso

D

(M) denotes the

units of the ring End

D

(M).

If holonomi
 M and N are isomorphi
, then Hom

D

(M;N) ' End

D

(M) is a

�nite-dimensionalK-algebra. In the theory of �nite dimensionalK-algebras, the

Ja
obson radi
al J is the interse
tion of all maximal left ideals of E, and it has the

property that the quotient E=J is a semi-simpleK-algebra. By the Wedderburn-

Artin theorem, a semi-simple algebra is isomorphi
 to a dire
t produ
t of matrix

rings over division algebras, and hen
e by taking the algebrai
 
losure, we �nd

that E=J 


K

K is isomorphi
 to a dire
t produ
t of matrix rings over the �eld

K,

E= Ja
(E)


K

�

K

�

=

d

Y

i=1

End

�

K

(

�

K

d

i

): (11)

One 
onsequen
e of this de
omposition is that the non-units of E=J


K

K form a

determinantal hypersurfa
e. In parti
ular, the units of E=J


K

K form a Zariski

open set, and hen
e the units of E=J also form a Zariski open set. Moreover,

units and non-units respe
t the Ja
obson radi
al in the sense that if j is in the

Ja
obson radi
al of E and if u is a unit of E then u + j is also a unit, and

similarly, if n is not a unit of E then n+ j is not a unit. We 
an thus 
on
lude

the following lemma.

Lemma 5.1: Let M be a holonomi
 D-module. Then the spa
e of D-linear iso-

morphisms Iso

D

(M) from M to itself is open in End

D

(M) under the Zariski

topology. 2

The lemma says that if holonomi
 M and N are isomorphi
 then most maps

fromM to N are isomorphisms. We now give an algorithm to determine whether

M and N are isomorphi
 based on Algorithm 4.1 and Lemma 5.1.

Algorithm 5.1: (Is M isomorphi
 to N?)

Input: presentationsM ' D

m

M

=D�fP

1

; : : : ; P

a

g andN ' D

m

N

=D�fQ

1

; : : : ; Q

b

g

of left holonomi
 D-modules.

Output: \No" if M 6' N ; and \Yes" together with an isomorphism � :M ! N

if M ' N .

1. Compute bases fs

1

; : : : ; s

�

g and ft

1

; : : : ; t

�

g for the ve
tor spa
es V =

Hom

D

(M;N) and W = Hom

D

(N;M) using Algorithm 4.1, where s

i

and

t

j

are respe
tively m

M

� m

M

and m

N

� m

N

matri
es with entries in D

representing homomorphisms by right multipli
ation. Re
all that we view

D

m

M

and D

m

N

as 
onsisting of row ve
tors. If � 6= � , return \No" and exit.
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2. Introdu
e new indeterminates f�

i

g

�

1

and f�g

�

1

, and form the \generi
 ho-

momorphisms"

P

i

�

i

s

i

2 Hom

D

(M;N) and

P

j

�

j

t

j

2 Hom

D

(N;M). Then

the 
ompositions

P

i;j

�

i

�

j

s

i

� t

j

: M ! N ! M and

P

i;j

�

i

�

j

t

j

� s

i

: N !

M ! N are respe
tively m

M

�m

M

and m

N

�m

N

-matri
es with entries in

D[�

1

; : : : ; �

m

M

; �

1

; : : : ; �

m

N

℄.

3. Redu
e the rows of the matrix

P

i;j

�

i

�

j

s

i

� t

j

� id

m

M

modulo a Gr�obner

basis for D � fP

1

; : : : ; P

a

g � D

m

M

. For
e this redu
tion to be zero by setting

the 
oeÆ
ients (whi
h are inhomogeneous bilinear polynomials in �

i

, �

j

) of

every standard monomial in every entry to be zero. Colle
t these relations

in the ideal I

M

� K[�

1

; : : : ; �

m

M

; �

1

; : : : ; �

m

N

℄

4. Similarly, redu
e the rows of the matrix

P

i;j

�

i

�

j

t

j

� s

i

� id

m

N

modulo a

Gr�obner basis for D � fQ

1

; : : : ; Q

b

g � D

m

N

. For
e this redu
tion to be zero

by setting the 
oeÆ
ients of every standard monomial in every entry to be

zero, and 
olle
t these relations in the ideal I

N

� K[�;�℄.

5. Put I(V;W ) = I

M

+ I

N

� K[�;�℄. If I(V;W ) 
ontains a unit, return \No"

and exit.

6. Otherwise 
ompute an isomorphism

P

�

i=1

k

i

s

i

in Hom

D

(M;N) by �nding

the �rst � 
oordinates of any point in the zero lo
us of I(V;W ). For instan
e,

we 
an do this by indu
tively �nding k

i

2 K for ea
h i from 1 to � su
h that

I(V;W ) + (�

1

� k

1

; : : : ; �

i

� k

i

) is a proper ideal. At ea
h step i, this 
an

be a

omplished by trying di�erent numbers for k

i

until a suitable 
hoi
e

is found.

7. Return \Yes" and the isomorphism (

P

�

i=1

k

i

s

i

) :M ! N .

Remark: Algorithm 5.1 
an also be modi�ed to dete
t whether M is a dire
t

summand of N . Namely M is a dire
t summand of N if and only if the ideal

I

M

of Step 3 is not the unit ideal. Similarly N is a dire
t summand of M if and

only if the ideal I

N

of Step 4 is not the unit ideal.

Remark: Algorithm 5.1 
an be further modi�ed to 
ompute an ideal in K[�℄

de�ning the 
losed set of non-isomorphisms, End

D

(M) n Iso

D

(M). Namely, we

�rst perform Steps 1 through 4 with M = N to obtain the ideal I(V; V ) �

K[�; �℄. Then we regard ea
h of the � generators of I(V; V ) as a linear inhomo-

geneous equation in the variables �

i

with 
oeÆ
ients involving �

j

as parameters,

and 
olle
t all these equations in a single matrix equation A �� = b, A 2 K[�℄

���

.

An ideal de�ning the non-isomorphisms is generated by all � � � minors of A.

We leave the proof of this fa
t as an exer
ise.

Proof (of the 
orre
tness of Algorithm 5.1): Redu
ing

P

i;j

�

i

�

j

s

i

�t

j

�id

m

M

mod-

ulo D � fP

1

; : : : ; P

a

g in Step 3 leads to a generi
 remainder whi
h depends

on the parameters �

i

; �

j

. Moreover, sin
e a Gr�obner basis of D � fP

1

; : : : ; P

a

g

is parameter-free, this generi
 remainder has the property that its spe
ializa-

tion to a �xed 
hoi
e of parameters �

i

= a

i

; �

j

= b

j

gives the remainder of
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P

i;j

a

i

b

j

s

i

� t

j

� id

m

M

modulo D � fP

1

; : : : ; P

a

g. Thus setting the remainder to

zero in Step 3 
orresponds to deriving 
onditions on the parameters �

i

; �

j

whi
h

makes the endomorphism given by

P

i;j

�

i

�

j

s

i

�t

j

equal to the identity onM . This

is possible if and only if M is a dire
t summand of N . The analogous statement

holds for redu
tion of

P

i;j

�

i

�

j

t

j

� s

i

� id

m

N

modulo D � fQ

1

; : : : ; Q

b

g and setting

its resulting remainder to zero. Here, setting a remainder to zero is equivalent to

the vanishing of the 
oeÆ
ients of its standard monomials, and we 
olle
t these

vanishing 
onditions in the ideal I(V;W ) of K[�;�℄.

Now a linear 
ombination

P

i

a

i

s

i

: M ! N is an isomorphism with inverse

P

b

j

t

j

: N !M if and only if the 
omposition

P

i;j

a

i

b

j

s

i

�t

j

is 
ongruent to id

m

M

moduloD �fP

1

; : : : ; P

a

g and the opposite 
omposition

P

i;j

a

i

b

j

t

j

�s

i

is 
ongruent

to id

m

N

moduloD �fQ

1

; : : : ; Q

b

g. Thus the 
ommon zeroes (a

1

; : : : ; a

�

; b

1

; : : : ; b

�

)

of I(V;W ) 
orrespond to isomorphisms

P

i

a

i

s

i

and their inverses

P

j

b

j

t

j

. In

parti
ular, if I(V;W ) is the entire ring, whi
h we dete
t by sear
hing for 1 in a

Gr�obner basis of I(V;W ), then there are no isomorphisms.

On the other hand if I(V;W ) is proper, then M and N are isomorphi
 and we

obtain an expli
it isomorphism from �nding any 
ommon solution of I(V;W ).

By Lemma 5.1, the invertible homomorphisms from M to N are Zariski dense

in the ve
tor spa
e Hom

D

(M;N). Hen
e, a 
ommon solution 
an be expli
itly

found by by interse
ting the zero lo
us of I(V;W ) with a suitable number of

generi
 hyperplanes f� = k

i

g. Be
ause of denseness, ea
h of these hyperplanes


an be found in a �nite number of steps. In other words, if I(V;W ) + h�

1

�

k

1

; : : : ; � � k

i�1

i is proper, then there are only �nitely many k

i

for whi
h the

sum I(V;W ) + h�

1

� k

1

; : : : ; �� k

i

i is the unit ideal. 2

Remark: On
e we have spe
ialized the �

i

in a 
ommon solution of I(V;W ), then

the �

j

are determined be
ause of the bilinear nature of the relations (whi
h gives

linear relations for the �

j

on
e all �

i

are 
hosen). This also means that if there

is any solution, then the �

i

are rational fun
tions in the �

j

and vi
e versa. In

parti
ular, if � 2 Hom

D

(M;N) is de�ned over the �eld K then �

�1

is de�ned

over K as well and no �eld extensions are required. We now give two simple

examples, one where M and N are isomorphi
, and one where they are not.

Example 5.2: Let n = 1 and M = N = D=D � �

2

. One 
he
ks that V = W =

Hom

D

(M;N) is generated by the 4 morphisms s

1

= �(�), s

2

= �(x�), s

3

= �(1),

and s

4

= �(x

2

� � x). We obtain the generi
 morphism

4

X

i=1

4

X

j=1

�

i

�

j

t

j

� s

i

� 1 = (�

3

�

3

� �

1

�

4

� 1)

+ (��

4

�

3

� �

2

�

4

� �

3

�

4

)x

+(�

3

�

1

+ �

1

�

2

+ �

1

�

3

)�

+(��

4

�

1

+ �

2

�

2

+ �

3

�

2

+ �

2

�

3

+ �

1

�

4

)x�

+(�

4

�

3

+ �

2

�

4

+ �

3

�

4

)x

2

�
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plus 9 other terms whi
h are in D � �

2

independently of the parameters.

Hen
e in order for

P

4

i=1

�

i

s

i

to be an isomorphism, the �

i

need to be part of

a solution to the ideal

I(V;W ) = (�

3

�

3

� �

1

�

4

� 1;

��

4

�

3

� �

2

�

4

� �

3

�

4

;

�

3

�

1

+ �

1

�

2

+ �

1

�

3

;

��

4

�

1

+ �

2

�

2

+ �

3

�

2

+ �

2

�

3

+ �

1

�

4

;

�

4

�

3

+ �

2

�

4

+ �

3

�

4

):

This ideal is not the unit ideal and has degree 8. Hen
e there are isomorphisms

between M and N . Pi
k \at random" �

1

= 1, �

2

= 2, and �

3

= 0. Then the

ideal I(V;W ) + (�

1

� 1; �

2

� 2; �

3

� 0) equals the ideal (�

1

� 1; �

2

� 2; �

3

; �

4

+

1; �

2

+ �

3

; �

1

+

1

2

�

3

; �

4

�

3

� 2). We see that we have to avoid �

4

= 0 but otherwise

have 
omplete 
hoi
e.

Example 5.3: Let n = 1, M = D=D � �

2

, and N = D=D � �. One 
he
ks

that V = Hom

D

(N;M) is generated by t

1

= �(�) and t

2

= �(x� � 1) while

W = Hom

D

(M;N) is generated by s

1

= �(1) and s

2

= �(x). The sum

P

�

i

�

j

s

i

�t

j

takes the form

�

2

�

2

x

2

� + (�

1

�

2

+ �

2

�

1

)x� + �

1

�

1

� � (�

1

�

2

+ �

2

�

2

):

Modulo D � � we want this to be 1, so we get the relation

K[�;�℄ � (�

2

�

1

� �

1

�

2

� 1) = I

N

:

We note that this equation has plenty of solutions, whi
h means that M 
an be

realized as a summand of N . On the other hand, the sum

P

�

i

�

j

t

j

� s

i

takes the

form

�

1

�

1

� + (�

1

�

2

+ �

2

�

1

)x� � �

1

�

2

� �

2

�

2

x + �

2

�

2

x

2

�:

Modulo D � �

2

we want this to be 1, so we get

K[�;�℄ � (��

1

�

2

� 1;

�

1

�

1

� 0;

�

1

�

2

+ �

2

�

1

� 0;

�

2

�

2

� 0) = I

M

:

I

M

+ I

N

is the unit ideal, and hen
e M and N are not isomorphi
.

Remark: Methods of 
omputational algebrai
 geometry 
an also be used to get

stru
tural information about End

D

(M), namely the invariants d

i

in the de
om-

position (11). One pro
eeds to 
ompute the de Rham 
ohomology groups of
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the 
omplement of the non-isomorphisms in End

D

(M) = C

�

= Spe
(C [� ℄) us-

ing the algorithm in (Walther, 2000). This algorithm allows us to pretend that

K is already algebrai
ally 
losed sin
e although it 
an be used on input de-

�ned over any 
omputable sub�eld of the 
omplex numbers, it always 
omputes

dim

C

(H

�

dR

(C

n

n Y; C )). The output that we obtain is also the 
ohomology of the

units of E= Ja
(E)


K

C sin
e this spa
e is homotopy equivalent to the units of

E 


K

C . Finally, we note that the 
ohomology of the units Gl(n; C ) of a matrix

algebra is well known, behaves well under produ
ts, and hen
e 
an be used to

determine the d

i

.

To be expli
it, in Example 5.2, the non-isomorphisms are de�ned by the van-

ishing of the polynomial �

2

2

�

2

3

+ 2�

2

�

3

3

+ �

4

3

+ 2�

1

�

2

�

3

�

4

+ 2�

1

�

2

3

�

4

+ �

2

1

�

2

4

in

(

�

K)

4

. With (Ma
aulay 2, 1999) one obtains that the de Rham 
ohomology of

Iso

D

(M;N) is one-dimensional in degrees 0, 1, 3 and 4 and zero otherwise. From

(Weyl, 1939), Theorems 7.11.A and 8.16.B one 
on
ludes that in the de
ompo-

sition (11) d equals 1 and d

1

= 2.

Let us end by mentioning a well-known appli
ation of the endomorphism ring

E = End

D

(M) towards de
ompositions of M (see e.g. (Lam, 1991) for these

basi
 fa
ts). Namely, there is a bije
tive 
orresponden
e between (1) the de
om-

positions of M into a dire
t sum of submodules and (2) the de
ompositions of

the identity element 1 = e

1

+ � � � + e

s

of E into pairwise orthogonal idempo-

tents. The 
orresponden
e is gotten by taking a set of orthogonal idempotents

fe

1

; : : : ; e

s

g and produ
ing the de
omposition M = e

1

�M � � � � � e

s

�M . More-

over by the Krull-S
hmidt-Azumaya theorem, a D-module M has a (unique up

to re-ordering) de
omposition into a dire
t sum of inde
omposable submodules

(meaning that they 
annot be further de
omposed into a dire
t sum of nonzero

submodules). Thus, an algorithm whi
h produ
es a full set of orthogonal idem-

potents for the K-algebra End

D

(M) 
ombined with Algorithm 4.1 would give a

method to de
ompose holonomi
 D-modules into inde
omposables. We remark

that algorithms for 
omputing idempotents as well as for 
omputating many

other properties of �nite-dimensional K-algebras is a �eld of a
tive resear
h (see

for example work of (Friedl and Ronyai, 1985) and of (Eberly, 1991)). Many

algorithms have been developed although there are restri
tions on the �eld K.
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