ON THE LYUBEZNIK NUMBERS OF A LOCAL RING

ULI WALTHER

ABSTRACT. We collect some information about the invariants $\lambda_{p,i}(A)$ of a commutative local ring A containing a field introduced by G. Lyubeznik in [4]. We treat the cases $\dim(A)$ equal to zero, one and two, thereby answering in the negative a question raised in [4]. In fact, we will show that $\lambda_{p,i}(A)$ has in the two-dimensional case a topological interpretation.

1. Introduction

Throughout let k be a field and A be a local k-algebra. It is shown in [4], that if A is the quotient of a regular local ring (R, \mathfrak{m}, k) of dimension n containing k, $\phi : R \to A$, $\ker \phi = I$, then the Bass number $\lambda_{p,i}(A) = \mu_p(\mathfrak{m}, H_I^{n-i}(R)) = \dim_k \operatorname{Ext}_R^p(k, H_I^{n-i}(R))$ is finite and a function of A, i, p alone but not of R or ϕ .

Only little is known about the $\lambda_{p,i}$ so far, but they carry interesting information. For example, if $R = \mathbb{C}[x_0, \ldots, x_n]$, $\hat{R} = \mathbb{C}[[x_0, \ldots, x_n]]$ and $I \subseteq R$ is the defining ideal of a smooth variety $V \subseteq \mathbb{P}^n_{\mathbb{C}}$ then, for $i < n - \operatorname{codim}(V)$, $\lambda_{0,i}(\hat{R}/I \cdot \hat{R}) = \dim_{\mathbb{C}}\left(H_x^i(\tilde{V}, \mathbb{C})\right)$ where $H_x^i(\tilde{V}, \mathbb{C})$ stands for the *i*-th singular cohomology group of the affine cone \tilde{V} over V with support in the vertex x of \tilde{V} and with coefficients in \mathbb{C} .

Since completion does not change $\lambda_{p,i}(A)$ ([4], Lemma 4.2) one may assume that $R = k[[x_1, \ldots, x_n]]$. As $H_I^0(-) = H_{\sqrt{I}}^0(-)$, $\lambda_{p,i}(A) = \lambda_{p,i}(A_{red})$. Hence we assume that I is radical. One has $H_I^{n-i}(R) = 0$ for $i > \dim(A)$ and $\lambda_{p,i}(A) = 0$ for p > i by [4], (4.4i) and (4.4ii).

We define the type of the ring A = R/I to be the matrix $\Lambda(A)$ where $\Lambda(A)_{i,j} = \lambda_{i,j}(A)$ for $0 \le i, j \le n$.

Recall the Hartshorne-Lichtenbaum vanishing theorem ([2], Theorem 3.1) which we denote by HLVT and in essence states that $H_I^n(R) = 0$ if and only if I is not \mathfrak{m} -primary. As is well known, $H_{\mathfrak{m}}^n(R) = E_R(k)$, the R-injective hull of k.

 $^{1991\} Mathematics\ Subject\ Classification.$ Primary 13D45, 14B15; Secondary 14F40.

Key words and phrases. Local cohomology, Lyubeznik numbers.

¹Supported by the A.P. Sloan Foundation.

Note that by virtue of the spectral sequence

(1.1)
$$E_2^{pq} = H_{\mathfrak{m}}^p(H_I^q(R)) \Rightarrow E_{\infty}^{pq} = H_{\mathfrak{m}}^{p+q}(R)$$

and HLVT we have $\Lambda(A)=(1)$ if A is Artinian, and $\Lambda(A)=\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ if $\dim(A)=1$.

G. Lyubeznik asked in [4] whether $\lambda_{d,d}(A) = 1$ for any A and proved it to be true for A normal. We shall show that this is not the case in general.

2. Equidimension two

We shall assume that k is separably closed. This means that in R we can use the second vanishing theorem, due to Ogus, Hartshorne-Speiser and Huneke-Lyubeznik (see [3], Theorem 1.1.): for $\sqrt{I} \subseteq \mathfrak{m}$, we have $H_I^{n-1}(R) = 0$ if and only if the punctured spectrum of R/I is connected.

2.1. The Puredimensional Case.

Lemma 2.1. Let $I = \bigcap_{1}^{s} P_{i}$ such that $V(I) \setminus \{\mathfrak{m}\}$ is connected and all P_{i} are prime ideals of dimension 2. Then $H_{I}^{n-1}(R) = 0$ and I is of

$$type \left(egin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right).$$

Proof. The second vanishing theorem shows that $H_I^{n-1}(R) = 0$. The lemma follows from the spectral sequence (1.1).

Proposition 2.2. Let I be radical of pure dimension 2. Let a be the number of connected components of the punctured spectrum of R/I.

Then I is of type
$$\begin{pmatrix} 0 & a-1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & a \end{pmatrix}$$
 and $H_I^{n-1}(R) = E_R(k)^{a-1}$.

Proof. If a=1, the claim follows from the previous lemma. If a>1, write $I=\bigcap_1^a J_k$ where each J_k is radical and defines a connected component of $\operatorname{Spec}(R/I)\setminus\{\mathfrak{m}\}$. Set $J=\bigcap_1^{a-1}J_k$. By induction, $\lambda_{2,2}(R/J)=a-1$ and $\lambda_{2,2}(R/J_a)=1$. Since \mathfrak{m} is minimal to $J+J_a$, $H_{J+J_a}^{n-1}(R)=H_{J+J_a}^{n-2}(R)=0$. Hence by the Mayer-Vietoris sequence to J and J_a , $H_{JJ_a}^{n-2}(R)=H_J^{n-2}(R)\oplus H_{J_a}^{n-2}(R)$ so that $\lambda_{2,2}(R/I)=a-1+1$. Moreover, the Mayer-Vietoris sequence to J and J_a also contains a piece

$$0 \to H_{J}^{n-1}(R) \oplus H_{J_a}^{n-1}(R) \to H_{JJ_a}^{n-1}(R) \to H_{J+J_a}^n(R) \to 0$$

where the last zero comes from HLVT. By induction, the term on the left is isomorphic to $E_R(k)^{a-1}$ and in particular injective. The sequence splits and the proposition follows.

3. The mixed case

Let $I = J_1 \cap J_2$ where each J_i is radical and of pure dimension i, and let a be the number of connected components of $\operatorname{Spec}(R/J_2) \setminus \{\mathfrak{m}\}$. Let $x \in J_2 \setminus \bigcup \{P | P \in \operatorname{ass}(I), \dim(P) = 1\}$. Then $\operatorname{rad}(I + R \cdot x) = J_2$. Consider the long exact sequence of Proposition 8.1.2 in [1]:

$$0 \to H_{J_2}^{n-2}(R) \to H_I^{n-2}(R) \to (H_I^{n-2}(R))_x \to H_{J_2}^{n-1}(R) \to H_I^{n-1}(R) \to (H_I^{n-1}(R))_x \to H_{J_2}^n(R) = 0$$

where the zero on the right comes from HLVT. By [4] (4.4iii), the inclusion $H_{J_2}^{n-2}(R) \to H_I^{n-2}(R)$ is an isomorphism. Hence $\lambda_{2,2}(R/I) = \lambda_{2,2}(J_2)$ and we have a four piece exact sequence

$$0 \to \left(H_I^{n-2}(R)\right)_x \to H_{J_2}^{n-1}(R) \to H_I^{n-1}(R) \to \left(H_I^{n-1}(R)\right)_x \to 0.$$

Note that if M is an R-module and $x \in \mathfrak{m}$ then $\operatorname{Ext}_R^i(k, M_x) = 0$ for all i. Let F be the kernel of the map $H_I^{n-1}(R) \to (H_I^{n-1}(R))_x$ and split the sequence into two short exact sequences. Since a is the number of connected components of the punctured spectrum of R/J_2 , application of $\operatorname{Ext}_R^{\bullet}(k, -)$ to the first sequence yields

$$0 \to 0 \to k^{a-1} \to \operatorname{Ext}_R^0(k, F) \to 0 \to 0 \to \operatorname{Ext}_R^1(k, F) \to \cdots$$

according to Proposition 2.2. Hence $\operatorname{Ext}_R^0(k,F) = k^{a-1}$ and $\operatorname{Ext}_R^i(k,F) = 0$ for i > 0. Application of $\operatorname{Ext}_R^\bullet(k,-)$ to the second sequence yields then

$$0 \rightarrow k^{a-1} \rightarrow k^{\lambda_{0,1}(R/I)} \rightarrow 0 \rightarrow 0$$
$$0 \rightarrow k^{\lambda_{1,1}(R/I)} \rightarrow 0 \rightarrow \cdots$$

This proves that $\lambda_{1,1}(R/I) = 0$, $\lambda_{0,1}(R/I) = a - 1$ and the type of I equals the type of J_2 .

We present our conclusions in form of the following

Proposition 3.1. Let I be a radical two-dimensional mixed ideal of the complete regular ring (R, \mathfrak{m}, k) where k is separably closed. Write $I = J_1 \cap J_2$ where each J_i is radical of pure dimension i. Let a be the number of connected components of $\operatorname{Spec}(R/J_2) \setminus \{\mathfrak{m}\}$. Then I is of

 $type \begin{pmatrix} 0 & a-1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & a \end{pmatrix}. In particular, the type is independent of the one-dimensional components of <math>I$.

Remark 3.2. We are not aware of results computing the type of A for general I if $\dim(A) > 2$. However, there are some results that relate to the invariants $\lambda_{p,i}(A)$. Known to us are the following.

In [5], the author gives a combinatorial algorithm to calculate the $\lambda_{p,i}(A)$ from a primary decomposition of I assuming that I is a monomial ideal.

In [8] the $\lambda_{p,i}(A)$ for monomial I are investigated in relation to certain Ext-modules. Related results have been obtained in [6], where certain combinatorial properties of $H_I^i(R)$ are studied in the monomial case.

In [7] an algorithm is explained that computes the local cohomology modules $H_J^i(S)$ if S is a ring of polynomials over a field of characteristic zero, and an algorithm to compute their Bass numbers with respect to a maximal ideal. In particular, the $\lambda_{p,i}(A)$ are computable if A is a quotient of S. However, these algorithms do not shed light on structural information about local cohomology in general.

References

- [1] M. Brodmann and R. Sharp. Local Cohomology, an algebraic introduction with geometric applications. Cambridge studies in advanced mathematics, 60. Cambridge University Press, 1998.
- [2] R. Hartshorne. Cohomological dimension of algebraic varieties. *Ann. Math.*, 88:403–450, 1968.
- [3] C. Huneke and G. Lyubeznik. On the vanishing of local cohomology modules. *Invent. Math.*, 102:73–93, 1990.
- [4] G. Lyubeznik. Finiteness properties of local cohomology modules. *Invent. Math.*, 113:41–55, 1993.
- [5] J. Montaner. Characteristic cycles of local cohomology modules. Preprint, 1997.
- [6] M. Mustață. Local cohomology at monomial ideals. Preprint, 1998.
- [7] U. Walther. Algorithmic Computation of Local Cohomology Modules and the Cohomological Dimension of Algebraic Varieties. J. Pure Appl. Alg., 139:303– 321, 1999.
- [8] K. Yanagawa. Bass numbers of local cohomology modules with supports in monomial ideals. *Preprint*, 1999.

MATHEMATICAL SCIENCES RESEARCH INSTITUTE, 1000 CENTENNIAL DRIVE, BERKELEY, CA 94720

E-mail address: walther@@msri.org