ON THE LYUBEZNIK NUMBERS OF A LOCAL RING
ULI WALTHER

ABSTRACT. We collect some information about the invariants Ap ;(A)
of a commutative local ring A containing a field introduced by G.
Lyubeznik in [4]. We treat the cases dim(A) equal to zero, one and
two, thereby answering in the negative a question raised in [4]. In
fact, we will show that A, ;(A) has in the two-dimensional case a
topological interpretation.

1. INTRODUCTION

Throughout let k£ be a field and A be a local k-algebra. It is shown
in [4], that if A is the quotient of a regular local ring (R, m,k) of
dimension n containing k, ¢ : R — A, ker¢ = I, then the Bass
number \,;(4) = p,(m, Hy *(R)) = dimy Ext},(k, H} *(R)) is finite
and a function of A, 7, p alone but not of R or ¢.

Only little is known about the A, ; so far, but they carry interesting

~

information. For example, if R = Clzy,...,z,|, R = [z, ...,z,]]
and I C R is the defining ideal of a smooth variety V' C P{ then, for
i < n— codim(V), \s(R/I - R) = dime (H;(V,C)) where H(V,C)

stands for the i-th singular cohomology group of the affine cone V' over
V' with support in the vertex  of V and with coefficients in C.

Since completion does not change A, ;(A) ([4], Lemma 4.2) one may
assume that R = k[[z1,...,2,]]. As H}(=) = H) (=), \pi(4) =
Api(Areq). Hence we assume that I is radical. One has H} (R) = 0
for i > dim(A) and A, ;(A) = 0 for p > i by [4], (4.4i) and (4.4ii).

We define the type of the ring A = R/I to be the matrix A(A) where
A(A)i,j = )\%](A) for 0 S Z,] S n.

Recall the Hartshorne-Lichtenbaum vanishing theorem ([2], Theorem
3.1) which we denote by HLVT and in essence states that HF(R) = 0
if and only if I is not m-primary. As is well known, H(R) = Eg(k),
the R-injective hull of .
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Note that by virtue of the spectral sequence
(1.1) E}* = HL(H{(R)) = EX = H{™(R)

and HLVT we have A(A) = (1) if A is Artinian, and A(A) = ( 00 )

0 1
if dim(A) = 1.
G. Lyubeznik asked in [4] whether \;4(A) =1 for any A and proved
it to be true for A normal. We shall show that this is not the case in
general.

2. EQUIDIMENSION TWO

We shall assume that £ is separably closed. This means that in R
we can use the second vanishing theorem, due to Ogus, Hartshorne-
Speiser and Huneke-Lyubeznik (see [3], Theorem 1.1.): for vI C m,
we have Hy' '(R) = 0 if and only if the punctured spectrum of R/I is
connected.

2.1. The Puredimensional Case.

Lemma 2.1. Let I = (] P; such that V(I)\{m} is connected and all
P; are prime ideals of dimension 2. Then H} '(R) = 0 and I is of
0 00

type | 0 0 O
001
Proof. The second vanishing theorem shows that Hy '(R) = 0. The

lemma follows from the spectral sequence (1.1). O

Proposition 2.2. Let I be radical of pure dimension 2. Let a be the
number of connected components of the punctured spectrum of R/I.

0 a—1 0
Then I is of type | 0 0 0 | and HY '(R) = Ex(k)* L.

0 0 a
Proof. If a = 1, the claim follows from the previous lemma. If a > 1,
write I = ﬂ‘f Jir where each J; is radical and defines a connected
component of Spec(R/I)\ {m}. Set J = ¢ 'J;. By induction,

A2(R/J) =a—1and \yo(R/J,) = 1. Since m is minimal to J + J,,
HY .5 (R) = H} 5 (R) = 0. Hence by the Mayer-Vietoris sequence to
Jand J,, H}7?(R) = H}(R)®H}*(R) so that Ay »(R/I) = a—1+1.
Moreover, the Mayer-Vietoris sequence to J and .J, also contains a piece

0— H} " (R)y® H} ' (R) — H} " (R) — HY},, (R) — 0
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where the last zero comes from HLVT. By induction, the term on the
left is isomorphic to Ex(k)*" and in particular injective. The sequence
splits and the proposition follows. O

3. THE MIXED CASE

Let I = J; N .Jy, where each J; is radical and of pure dimension ¢,
and let a be the number of connected components of Spec(R/J2)\ {m}.
Let © € Jo \ |J{P|P € ass(I),dim(P) = 1}. Then rad(I + R - z) = Jo.
Consider the long exact sequence of Proposition 8.1.2 in [1]:

0 — Hj} *(R)— Hp *(R)— (H} *(R)), —
H}7Y(R) = H} 7' (R) — (H}™'(R)), — H},(R) =0

where the zero on the right comes from HLVT. By [4] (4.4iii), the
inclusion H}"*(R) — H}~*(R) is an isomorphism. Hence A\y2(R/I) =
A22(J2) and we have a four piece exact sequence

0— (H} *(R)), — H} '(R) — H} '(R) — (H} '(R))_ —0.

T

Note that if M is an R-module and z € m then Ext%(k, M,) = 0 for
alli. Let F' be the kernel of the map Hy '(R) — (H!'"*(R)), and split
the sequence into two short exact sequences. Since a is the number of
connected components of the punctured spectrum of R/.J,, application
of Ext},(k, —) to the first sequence yields

0 — 0— k"' — Exty(k,F) —
0—0— Exth(k, F)— -

according to Proposition 2.2. Hence Ext% (k, F) = k* ! and Ext’,(k, F') =
0 for s > 0. Application of Ext}(k, —) to the second sequence yields
then

0 — k%= oD 50
0— KB 50 .o,

This proves that A ;(R/I) =0, Ag1(R/I) = a — 1 and the type of [
equals the type of Js.
We present our conclusions in form of the following

Proposition 3.1. Let I be a radical two-dimensional mized ideal of
the complete regular ring (R, m, k) where k is separably closed. Write
1 = Jy N Jy where each J; is radical of pure dimension 1. Let a be the
number of connected components of Spec(R/Jy) \ {m}. Then I is of
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0 a—1 0
type | O 0 0 |. In particular, the type is independent of the
0 0 a

one-dimensional components of 1.

Remark 3.2. We are not aware of results computing the type of A for
general [ if dim(A) > 2. However, there are some results that relate
to the invariants A, ;(A). Known to us are the following.

In [5], the author gives a combinatorial algorithm to calculate the
Api(A) from a primary decomposition of I assuming that I is a mono-
mial ideal.

In [8] the A, ;(A) for monomial I are investigated in relation to certain
Ext-modules. Related results have been obtained in [6], where certain
combinatorial properties of Hi(R) are studied in the monomial case.

In [7] an algorithm is explained that computes the local cohomology
modules H%(S) if S is a ring of polynomials over a field of characteristic
zero, and an algorithm to compute their Bass numbers with respect
to a maximal ideal. In particular, the A,;(A) are computable if A
is a quotient of S. However, these algorithms do not shed light on
structural information about local cohomology in general.
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