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Abstract. In this paper we present algorithms that compute cer-

tain local cohomology modules associated to ideals in a ring of

polynomials containing the rational numbers. In particular we are

able to compute the local cohomological dimension of algebraic va-

rieties in characteristic zero. Our approach is based on the theory

of D-modules.

1. Introduction

1.1. Let R be a commutative Noetherian ring, I an ideal in R and

M an R-module. The i-th local cohomology functor with respect to I

is the i-th right derived functor of the functor H

0

I

(�) which sends M

to the I-torsion

S

1

k=1

(0 :

M

I

k

) of M and is denoted by H

i

I

(�). Local

cohomology was introduced by A. Grothendieck as an algebraic analog

of (classical) relative cohomology. An introduction to local cohomology

may be found in [2].

The cohomological dimension of I in R, denoted by cd(R; I), is the

smallest integer c such that H

q

I

(M) = 0 for all q > c and all R-modules

M . If R is the coordinate ring of an a�ne variety X and I � R is

the de�ning ideal of the Zariski closed subset V � X then the local

cohomological dimension of V in X is de�ned as cd(R; I). It is not

hard to show that if X is smooth, then the integer dim(X)� cd(R; I)

depends only on V but neither on X nor on the embedding V ,! X.

1.2. Knowledge of local cohomology modules provides interesting in-

formation, illustrated by the following three situations. Let I � R and

c = cd(R; I). Then I cannot be generated by fewer than c elements. In

fact, no ideal J with the same radical as I will be generated by fewer

than c elements.

Let H

i

dR

stand for the i-th de Rham cohomology group. A second

application is a family of results commonly known as Barth theorems

which are a generalization of the classical Lefschetz theorem that states

1
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that if Y � P

n

C

is a hypersurface then H

i

dR

(P

n

C

)! H

i

dR

(Y ) is an isomor-

phism for i < dim(Y )�1 and injective for i = dim(Y ). For example, let

Y � P

n

C

be a closed subset and I � R = C [x

0

; : : : ; x

n

] the de�ning ideal

of Y . Then H

i

dR

(P

n

C

)! H

i

dR

(Y ) is an isomorphism for i < n� cd(R; I)

and injective if i = n� cd(R; I) ([9], theorem III.7.1).

Another consequence of the work of Ogus and Hartshorne ([22], 2.2,

2.3 and [9], IV.3.1) is the following. If I � R = C [x

0

; : : : ; x

n

] is

the de�ning ideal of a complex smooth variety V � P

n

C

then, for i <

n � codim(V ), dim

C

soc

R

(H

0

m

(H

n�i

I

(R))) equals dim

C

H

i

x

(

~

V ; C ) where

H

i

x

(

~

V ; C ) stands for the i-th singular cohomology group of the a�ne

cone

~

V over V with support in the vertex x of

~

V and with coe�cients

in C (soc

R

(M) denotes the socle (0 :

M

m) �M for any R-module M).

1.3. The cohomological dimension has been studied by many au-

thors, for example R. Hartshorne [8], A. Ogus [22], R. Hartshorne and

R. Speiser [10], C. Peskine and L. Szpiro [23], G. Faltings [6], C. Huneke

and G. Lyubeznik [11], C. Huneke and R. Y. Sharp [12]. Yet despite

this extensive e�ort, the problem of �nding an algorithm for the com-

putation of cohomological dimension remained open in general. For the

determination of cd(R; I) it is in fact enough to �nd an algorithm to de-

cide whether or not the local cohomology module H

i

I

(R) = 0 for given

i; R; I. This is because H

q

I

(R) = 0 for all q > c implies cd(R; I) � c (see

[8], section 1). In [17], G. Lyubeznik gave an algorithm for deciding

whether or not H

i

I

(R) = 0 for all I � R = K[x

1

; : : : ; x

n

] where K is a

�eld of positive characteristic. One of the main purposes of this work

is to produce such an algorithm in the case where K is a computable

�eld containing the rational numbers and R = K[x

1

; : : : ; x

n

]. (By a

computable �eld we mean a sub�eld K of C such that K is described

by a �nite set of data and for which addition, subtraction, multiplica-

tion and division as well as the test whether the result of any of these

operations is zero in the �eld can be executed by the Turing machine.)

Since in such a situation the local cohomology modules H

i

I

(R) have

a natural structure of �nitely generated left D(R;K)-modules ([15],

and in the algebraic context [16]), D(R;K) being the ring of K-linear

di�erential operators of R, explicit computations may be performed.

Using this �niteness we employ the theory of Gr�obner bases to develop

algorithms that give a representation of H

i

I

(R) and H

i

m

(H

j

I

(R)) for all

triples i; j 2 N ; I � R in terms of generators and relations overD(R;K)

(where m = (x

1

; : : : ; x

n

)). This also leads to an algorithm for the com-

putation of the invariants �

i;j

(R=I) = dim

K

soc

R

(H

i

m

(H

n�j

I

(R))) intro-

duced in [16]. Our algorithms are in part modelled after algorithms
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due to T. Oaku. In [19], [20], [21] he develops a method that computes

explicitly H

i

I

(R) if I is a complete intersection and i = depth(I).

We remark that if R is an arbitrary �nitely generated K-algebra and

I is an ideal in R then, if R is regular, our algorithms can be used to

determine cd(R; I) for all ideals I of R, but if R is not regular, then

the problem of algorithmic determination of cd(R; I) remains open (see

subsection 5.4).

1.4. The outline of the paper is as follows. The next section is devoted

to a short survey of results on local cohomology and D-modules as they

apply to our work.

In section 3 we review the theory of Gr�obner bases for modules over

the Weyl algebra. Readers interested in proofs and more details are

encouraged to look at the book by D. Eisenbud ([5], chapter 15 for the

commutative case) or [7], [4], [24], [13] (for the more general situation).

In section 4 we �rst present generalizations of some results due to

B. Malgrange and M. Kashiwara on D-modules and their localizations.

The purpose of that section is to �nd a representation of R

f


 N as

a cyclic A

n

-module if N is a given holonomic D-module (for a de�-

nition and some properties of holonomic modules, see subsection 2.3

below). Most of the algorithmic ideas in this section appear already in

T. Oaku's work [19], [20], [21].

In section 5 we describe our main results, namely algorithms that for

arbitrary i; j; k; I determine the structure of H

k

I

(R); H

i

m

(H

j

I

(R)) and

�nd �

i;j

(R=I). Some of these algorithms have been implemented in the

programming language C. The �nal section is devoted to comments on

implementations, e�ectivity and examples.

2. Preliminaries

2.1. Notation. Throughout we shall use the following notation: K

will denote a �eld of characteristic zero, R = K[x

1

; : : : ; x

n

] the ring

of polynomials over K in n variables, A

n

= Khx

1

; @

1

; : : : ; x

n

; @

n

i the

Weyl algebra over K in n variables, or, equivalently, the ring of K-

linear di�erential operators on R, m will stand for the maximal ideal

(x

1

; : : : ; x

n

) of R, � will denote the maximal left ideal A

n

�(@

1

; : : : ; @

n

)

of A

n

and I will stand for the ideal (f

1

; : : : ; f

r

) in R. Every A

n

-module

becomes an R-module via the embedding R ,! A

n

.

All tensor products in this work will be over R and all A

n

-modules

(resp. ideals) will be left modules (resp. left ideals).

2.2. Local cohomology. It turns out that H

k

I

(M) may be computed

as follows. Let C

�

(f

i

) be the complex 0 ! R

1!

1

1

�! R

f

i

! 0. Then
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H

k

I

(M) is the k-th cohomology group of the

�

Cech complex de�ned by

C

�

(M ; f

1

; : : : ; f

r

) =

N

r

1

C

�

(f

i

) 
M . Unfortunately, explicit calcula-

tions are complicated by the fact that H

k

I

(M) is rarely �nitely gener-

ated as R-module. This di�culty disappears for H

k

I

(R) if we enlarge

the ring to A

n

, in essence because R

f

is �nitely generated over A

n

for

all f 2 R.

2.3. D-modules. A good introduction to D-modules is the book by

Bj�ork, [1].

Let f 2 R. Then the R-moduleR

f

has a structure as left A

n

-module:

x

i

(

g

f

k

) =

x

i

g

f

k

; @

i

(

g

f

k

) =

@

i

(g)f�k@

i

(f)g

f

k+1

. This may be thought of as a special

case of localizing an A

n

-module: ifM is an A

n

-module and f 2 R then

R

f




R

M becomes an A

n

-module via @

i

(

g

f

k


m) = @

i

(

g

f

k

)
m+

g

f

k


@

i

m.

Localization of A

n

-modules lies at the heart of our algorithms.

Of particular interest are the holonomic modules which are those

�nitely generated A

n

-modules N for which Ext

j

A

n

(N;A

n

) vanishes un-

less j = n. Our standard example of a holonomic module is R = A

n

=�.

Holonomic modules are always cyclic and of �nite length over A

n

. Be-

sides that, if N = A

n

=L is holonomic, f 2 R, s is an indeterminate

and 1 is the coset of 1 2 A

n

in N , then there is a nonzero polynomial

b(s) in K[s] and an operator P (s) 2 A

n

[s] such that P (s)(f � f

s


 1) =

b(s)�f

s


1. The unique monic polynomial that divides all other polyno-

mials satisfying an identity of this type is called the Bernstein polyno-

mial of L and f and denoted by b

L

f

(s). Any operator P (s) that satis�es

P (s)f

s+1


 1 = b

L

f

(s)f

s


 1 we shall call a Bernstein operator and refer

to the roots of b

L

f

(s) as Bernstein roots of f on A

n

=L.

Any localization of a holonomic module N = A

n

� g at a single ele-

ment (and hence at any �nite number of elements) of R are holonomic

([1], 1.5.9) and in particular cyclic over A

n

, generated by f

�a

g for suf-

�ciently large a 2 N . So the complex C

�

(N ; f

1

; : : : ; f

r

) consists of

holonomic A

n

-modules whenever N is holonomic. This facilitates the

use of Gr�obner bases as computational tool for maps between holo-

nomic modules and their localizations. As a special case we note that

localizations of R are holonomic, and hence �nite, over A

n

.

2.4. The

�

Cech complex. Local cohomology modules are D-modules

and in fact holonomic: we know already that the modules in the

�

Cech

complex are holonomic, it su�ces to show that the maps are A

n

-linear.

All maps in the

�

Cech complex are direct sums of localization maps.

Suppose R

f

is generated by f

s

and R

fg

by (fg)

t

. We may replace s; t by

their minimum u and then we see that the inclusion R

f

! R

fg

is noth-

ing but the map A

n

= ann(f

u

) ! A

n

= ann((fg)

u

) sending P + ann(f

u

)
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to P � g

�u

+ ann((fg)

u

). So C

i

(N ; f

1

; : : : ; f

r

)! C

i+1

(N ; f

1

; : : : ; f

r

) is

an A

n

-linear map between holonomic modules for every holonomic N .

One can prove that kernels and cokernels of A

n

-linear maps between

holonomic modules are holonomic. Holonomicity of H

k

I

(R) follows.

Similarly, H

i

m

(H

j

I

(R)) is holonomic for i; j 2 N (since H

j

I

(R) is holo-

nomic).

3. Gr

�

obner bases of modules over the Weyl algebra

In this section we review some of the concepts and results related

to the Buchberger algorithm in modules over Weyl algebras. It turns

out that with a little care many of the important constructions from

the theory of commutative Gr�obner bases carry over to our case. For

an introduction into non-commutative monomial orders and related

topics, [13] is a good source.

Let us agree that every time we write an element in A

n

, we write it

as a sum of terms c

��

x

�

@

�

in multi-index notation. That is, �; � 2 N

n

,

c

��

2 K, x

�

= x

�

1

1

� : : : � x

�

n

n

; @

�

= @

�

1

1

� : : : � @

�

n

n

and in every monomial

we write �rst the powers of x and then the powers of the di�erentials.

Further, if m = c

��

x

�

@

�

; c

��

2 K, we will say that m has degree

degm = j� + �j and an operator P 2 A

n

has degree equal to the

largest degree of any monomial occuring in P .

Recall that a monomial order < in A

n

is a total order on the mono-

mials of A

n

, subject to m < m

0

) mm

00

< m

0

m

00

for all nonzero

monomials m;m

0

; m

00

. Since the product of two monomials in our no-

tation is not likely to be a monomial (as @

i

x

i

= x

i

@

i

+ 1) it is not

obvious that such orderings exist at all. However, the commutator

of any two monomials m

1

; m

2

will be a polynomial of degree at most

deg(m

1

)+deg(m

2

)�2. That means that the degree of an operator and

its component of maximal degree is independent of the way it is repre-

sented. Thus we may for example introduce a monomial order on A

n

by taking any monomial order on

~

A

n

= K[x

1

; : : : ; x

n

; @

1

; : : : ; @

n

] (the

polynomial ring in 2n variables) that re�nes the partial order given by

total degree, and de�ning m

1

> m

2

in A

n

if and only if m

1

> m

2

in

~

A

n

.

Let < be a monomial order on A

n

. Let G =

L

d

1

A

n

� 


i

be the free

A

n

-module on the symbols 


1

; : : : ; 


d

. We de�ne a monomial order on

G by m

i




i

> m

j




j

if either m

i

> m

j

in A

n

, or m

i

= m

j

and i > j. The

largest monomial m
 in an element g 2 G will be denoted by in(g),

called the initial term of g. Of fundamental importance is
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Algorithm 3.1 (Remainder). Let h and g = fg

i

g

s

1

be elements of G.

Set h

0

= h; �

0

= 0; j = 0 and let "

i

= "(g

i

) be symbols. Then

Repeat

If in(g

i

)j in(h

j

) set

fh

j+1

:= h

j

�

in(h

j

)

in(g

i

)

g

i

;

�

j+1

:= �

j

+

in(h

j

)

in(g

i

)

"

i

;

j := j + 1g

Until No in(g

i

) divides in(h

j

):

The result is h

a

, called a remainder <(h; g) of h under division by g,

and an expression �

a

=

P

s

i=1

a

i

"

i

with a

i

2 A

n

and in(a

i

g

i

) < in(g) for

all i. By Dickson's lemma ([13], 1.1) the algorithm terminates. It is

worth mentioning that <(h; g) is not uniquely determined, it depends

on which g

i

we pick amongst those whose initial term divides the initial

term of h

j

.

Note that if h

a

is zero, �

a

tells us how to write h in terms of g. Such

a �

a

is called a standard expression for h with respect to fg

1

; : : : ; g

s

g.

De�nition 3.2. If in(g

i

) and in(g

j

) involve the same basis element of

G, then we set s

ij

= m

ji

g

i

� m

ij

g

j

and �

ij

= m

ji

"

i

� m

ij

"

j

where

m

ij

=

lcm(in(g

j

);in(g

i

))

in(g

j

)

. Otherwise, �

ij

and s

ij

are de�ned to be zero. s

ij

is called the S-polynomial to g

i

and g

j

.

Suppose <(s

ij

; g) is zero for all i; j. Then we call g a Gr�obner basis

for the module A

n

� (g

1

; : : : ; g

s

).

The following proposition ([13], Lemma 3.8) indicates the usefulness

of Gr�obner bases.

Proposition 3.3. Let g be a �nite set of elements of G. Then g is a

Gr�obner basis if and only if h 2 A

n

g implies 9i : in(g

i

)j in(h).

Computation of Gr�obner bases over the Weyl algebra works just as

over polynomial rings:

Algorithm 3.4 (Buchberger). Input: g = fg

1

; : : : ; g

s

g � G.

Output: a Gr�obner basis for A

n

� (g

1

; : : : ; g

s

).

Begin.

Repeat

If h := <(s

ij

; g) 6= 0

add h to g

Until <(s

ij

; g) = 0 for all fi; jg:

Return g:

End.
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3.1. Now we shall describe the construction of kernels of A

n

-linear

maps using Gr�obner bases. We �rst consider the case of a map between

free A

n

-modules.

Let E =

L

s

1

A

n

"

i

; G =

L

r

1

A

n




j

and � : E ! G be a A

n

-linear map.

Assume �("

i

) = g

i

. Suppose that in order to make g a Gr�obner basis

we have to add g

0

1

; : : : ; g

0

s

0

to g which satisfy g

0

i

=

P

s

k=1

a

ik

g

k

. We get

an induced map

L

s+s

0

1

A

n

"

i

��

�

&&

~

�

M

M

M

M

M

M

M

M

M

M

L

s

1

A

n

"

i

//

�

L

r

1

A

n




j

where � is the identity on "

i

for i � s

and sends "

i+s

into

P

s

k=1

a

ik

"

k

. Of course,

~

� = ��.

The kernel of � is just the image of the kernel of

~

� under �. So in

order to �nd kernels of maps between free modules one may assume

that the generators of the source are mapped to a Gr�obner basis and

replace � by

~

�. Recall from de�nition 3.2 that �

ij

= m

ji

"

i

�m

ij

"

j

or

zero, depending on the leading terms of g

i

and g

j

.

Proposition 3.5. Assume that fg

1

; : : : ; g

s

g is a Gr�obner basis. Let

s

ij

=

P

d

ijk

g

k

be standard expressions for the S-polynomials. Then

f�

ij

�

P

k

d

ijk

"

k

g

1�i<j�s

generate the kernel of � :

L

s

1

A

n

"

i

!

L

r

1

A

n




j

,

sending "

i

to g

i

.

The proof proceeds exactly as in the commutative case, see for ex-

ample [5], section 15.10.8.

3.2. We explain now how to �nd a set of generators for the kernel of an

arbitrary A

n

-linear map. Let E;G be as in subsection 3.1 and suppose

P � E;A

n

(q

1

; : : : ; q

b

) = Q � G and � :

L

s

1

A

n

"

i

=P !

L

r

1

A

n




j

=Q. It

will be su�cient to consider the case P = 0 since we may lift � to the

free module E surjecting onto E=P .

Let as before �("

i

) = g

i

. A kernel element in E is a sum

P

i

a

i

"

i

; a

i

2

A

n

, which if "

i

is replaced by g

i

can be written in terms of the generators

q

j

of Q. Let � = f�

1

; : : : ; �

c

g be such that g [ q [ � is a Gr�obner basis

for A

n

(g; q), obtained from g[ q by application of algorithm 3.4. Then

from algorithm 3:1 we have expressions

�

i

=

X

j

c

ij

g

j

+

X

k

c

0

ik

q

k

;(3.1)
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with c

ij

; c

0

ik

2 A

n

. Furthermore, by proposition 3.5, algorithm 3.4

returns a generating set � for the syzygies on g [ q [ �. Write

�

i

=

X

j

a

ij

"

g

j

+

X

k

a

0

ik

"

q

k

+

X

l

a

00

il

"

�

l

(3.2)

and eliminate the last sum using the relations (3.1) to obtain syzygies

~�

i

=

X

j

a

ij

"

g

j

+

X

k

a

0

ik

"

q

k

+

X

l

a

00

il

 

X

v

c

lv

"

g

v

+

X

w

c

0

lw

"

q

w

!

:(3.3)

These will then form a generating set for the syzygies on g[q. Cutting

o� the q-part of these syzygies we get a set of forms

(

X

j

a

ij

"

g

j

+

X

l

a

00

il

 

X

v

c

lv

"

g

v

!)

which generate the kernel of the map E ! G=Q.

3.3. The comments in this subsection will �nd their application in al-

gorithm 5.2 which computes the structure ofH

i

m

(H

j

I

(R)) as A

n

-module.

Let

M

0

3

//

�

M

3

//

�

0

M

00

3

M

0

2

//

�

OO

�

0

M

2

//

�

0

OO

 

0

M

00

2

OO

�

0

M

0

1

//




OO

�

M

1

//




0

OO

 

M

00

1

OO

�

be a commutative diagram of A

n

-modules. Note that the row coho-

mology of the column cohomology at M

2

is given by

h

ker( 

0

) \ �

0

�1

(im �) + im( )

i

= [�(ker(�

0

)) + im( )] :

In order to compute this we need to be able to �nd:

� preimages of submodules,

� kernels of maps,

� intersections of submodules.

It is apparent that the second and third calculation is a special case

of the �rst: kernels are preimages of zero, intersections are images of

preimages (if A

n

r

�

! A

n

s

=M

 

 A

n

t

is given, then im(�) \ im( ) =

 ( 

�1

(im(�))) ).

So suppose in the situation � : A

n

r

=M ! A

n

s

=N ,  : A

n

t

=P !

A

n

s

=N we want to �nd  

�1

(im(�)). We may reduce to the case where
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M and P are zero and then lift �;  to maps into A

n

s

. The elements

x in  

�1

(im�) � A

n

t

are exactly the elements in ker(A

n

t

 

! A

n

s

=N !

A

n

s

=(N + im�)) and this kernel can be found according to the com-

ments in 3.2.

4. D-modules after Kashiwara, Malgrange and Oaku

The purpose of this section is as follows. Given f 2 R and an ideal

L � A

n

such that A

n

=L is holonomic and L is f -saturated (i.e. f �P 2

L only if P 2 L), we want to compute the structure of the module

R

f


A

n

=L. It turns out that it is useful to know the ideal J

L

(f

s

) which

consists of the operators P (s) 2 A

n

[s] that annihilate f

s


 1 2 M :=

R

f

[s]f

s


A

n

=L where the bar denotes cosets in A

n

=L. In order to �nd

J

L

(f

s

), we will consider the module M over the ring A

n+1

= A

n

ht; @

t

i.

It will turn out in 4.1 that one can easily compute the ideal J

L

n+1

(f

s

) �

A

n+1

consisting of all operators that kill f

s


 1. In proposition 4.3 we

will then explain how to compute J

L

(f

s

) from J

L

n+1

(f

s

).

Another important result in this section (proposition 4.2) shows how

to compute the structure of R

f


 A

n

=L as A

n

-module once J

L

(f

s

) is

known.

4.1. Consider A

n+1

= A

n

ht; @

t

i, the Weyl algebra in x

1

; : : : ; x

n

and

the new variable t. B. Malgrange ([18]) has de�ned an action of t and

@

t

onM = R

f

[s] �f

s




R

A

n

=L by t(g(x; s) �f

s


P ) = g(x; s+1)f �f

s


P

and @

t

(g(x; s) � f

s


P ) =

�s

f

g(x; s� 1) � f

s


 P for P 2 A

n

=L. A

n

acts

on M as expected, the variables by multiplication on the left, the @

i

by the product rule. One checks that this actually de�nes a structure

of M as a left A

n+1

-module and that �@

t

t acts as multiplication by s.

We denote by J

L

n+1

(f

s

) the ideal in A

n+1

that annihilates the element

f

s


 1 in M . Then we have an induced morphism of A

n+1

-modules

A

n+1

=J

L

n+1

(f

s

)!M sending P + J

L

n+1

(f

s

) to P (f

s


 1).

The following lemma generalizes lemma 4.1 in [18] (as well as part of

the proof given there) where the special case L = (@

1

; : : : ; @

n

); A

n

=L =

R is considered. Note that J

L

n+1

(f

s

) makes perfect sense even if L is

not holonomic.

Lemma 4.1. Suppose that L = A

n

� (P

1

; : : : ; P

r

) is f -saturated (i.e.,

if f � P 2 L, then P 2 L). With the above de�nitions, J

L

n+1

(f

s

) is the

ideal generated by f � t together with the images of the P

j

under the

automorphism � of A

n+1

induced by x! x; t! t� f .

Proof. The automorphism sends @

i

to @

i

+ f

i

@

t

and @

t

to @

t

. So if we

write P

j

= P

j

(@

1

; : : : ; @

n

), then �P

j

= P

j

(@

1

+ f

1

@

t

; : : : ; @

n

+ f

n

@

t

).
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One checks that (@

i

+ f

i

@

t

)(f

s


Q) = f

s


 @

i

Q for all Q 2 A

n+1

so

that �(P

j

(@

1

; : : : ; @

n

))(f

s


1) = f

s


P

j

(@

1

; : : : ; @

n

) = 0. By de�nition,

f � (f

s


 1) = t � (f

s


 1). So t� f 2 J

L

n+1

(f

s

) and �(P

j

) 2 J

L

n+1

(f

s

) for

i = 1; : : : ; r.

Conversely let P (f

s


1) = 0. We may assume, that P does not con-

tain any t since we can eliminate t using f�t. Now rewrite P in terms of

@

t

and the @

i

+f

i

@

t

. Say, P =

P

c

��

@

�

t

x

�

Q

��

(@

1

+f

1

@

t

; : : : ; @

n

+f

n

@

t

),

where the Q

��

are polynomials in n variables and c

��

2 K. Application

to f

s


 1 results in

P

@

�

t

(f

s


 c

��

x

�

Q

��

(@

1

; : : : ; @

n

)).

Let � be the largest � 2 N for which there is a nonzero c

��

occuring in

P =

P

c

��

@

�

t

x

�

Q

��

(@

1

+f

1

@

t

; : : : ; @

n

+f

n

@

t

). We show that the sum of

terms that contain @

�

t

is in A

n+1

��(L) as follows. In order for P (f

s


1)

to vanish, the sum of terms with the highest s-power, namely s

�

, must

vanish, and so

P

�

c

��

(�1=f)

�

f

s


 x

�

Q

��

(@

1

; : : : ; @

n

) 2 R

f

f

s


 L as

R

f

is R-
at. It follows, that

P

�

c

��

x

�

Q

��

(@

1

; : : : ; @

n

) 2 L (L is f -

saturated!) and hence

P

�

@

�

t

c

��

x

�

Q

��

(@

1

+f

1

@

t

; : : : ; @

n

+f

n

@

t

) 2 A

n+1

�

�(L).

So by the �rst part, P �

P

�

c

��

@

�

t

x

�

Q

��

(@

1

+ f

1

@

t

; : : : ; @

n

+ f

n

@

t

)

kills f

s


 1, but is of smaller degree in @

t

than P was.

The claim follows.

4.2. Let J

L

(f

s

) stand for the ideal in A

n

[s]

�

=

A

n

[�@

t

t] that kills

f

s


 1 2 R

f

[s]f

s




R

A

n

=L. Note that J

L

(f

s

) = J

L

n+1

(f

s

) \ A

n

[�@

t

t].

Again, we may talk about J

L

(f

s

) independently of the holonomicity of

L.

Recall that the Bernstein polynomial b

L

f

(s) is de�ned to be the monic

generator of the ideal of polynomials b(s) 2 K[s] for which there ex-

ists an operator P (s) 2 A

n

[s] such that P (s)(f

s+1


 1) = b(s)f

s


 1,

and that b

L

f

(s) will exist for example if L is holonomic. The following

proposition already appears as Proposition 7.3 in [20].

Proposition 4.2. If L is holonomic and a 2 Z is such that no integer

root of b

L

f

(s) is smaller than a, then we have isomorphisms

R

f


 A

n

=L

�

=

A

n

[s]=J

L

(f

s

)j

s=a

�

=

A

n

� f

a


 1:(4.1)

We remark that if any a 2 Z satis�es the conditions of the proposi-

tion, then so does every integer smaller than a.

4.3. The purpose of this subsection is to review some algorithms due

to T. Oaku. In [21] Theorem 19, Oaku showed how to construct a

generating set for J

L

(f

s

) in the case where L = (@

1

; : : : ; @

n

). According

to 4.2, J

L

(f

s

) is the intersection of J

L

n+1

(f

s

) with A

n

[�@

t

t]. We shall
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explain how one may calculate J \A

n

[�@

t

t] whenever J � A

n+1

is any

given ideal and as a corollary develop an algorithm that for f -saturated

A

n

=L computes J

L

(f

s

).

On A

n+1

[y

1

; y

2

] de�ne weights w(t) = w(y

1

) = 1; w(@

t

) = w(y

2

) =

�1; w(x

i

) = w(@

i

) = 0. If P =

P

i

P

i

2 A

n+1

[y

1

; y

2

] and all P

i

are

monomials, then we will write (P )

h

for the operator

P

i

P

i

� y

d

i

1

where

d

i

= max

j

(w(P

j

))� w(P

i

) and call it the y

1

-homogenization of P .

Note that the Buchberger algorithm preserves homogeneity in the

following sense: if a set of generators for an ideal is given and these

generators are homogeneous with respect to the weights above, then

any new generator for the ideal constructed with the classical Buch-

berger algorithm will also be homogeneous. (This is a consequence

of the facts that the y

i

commute with all other variables and that

@

t

t = t@

t

+ 1 is homogeneous of weight zero.)

Proposition 4.3. Let J = A

n+1

� (Q

1

; : : : ; Q

r

). Let I be the left ideal

in A

n+1

[y

1

] generated by the y

1

-homogenizations (Q

i

)

h

of the Q

i

, rela-

tive to the weight w above, and set

~

I = A

n+1

[y

1

; y

2

] � (I; 1� y

1

y

2

). Let

G be a Gr�obner basis for

~

I under a monomial order that eliminates

y

1

; y

2

. For each P 2 G set P

0

= t

�w(P )

P if w(P ) < 0 and P

0

= @

w(P )

t

P

if w(P ) � 0 and let G

0

= fP

0

: P 2 Gg. Then G

0

= G

0

\ A

n

[�@

t

t]

generates J \ A

n

[�@

t

t].

Proof. This is in essence Theorem 18 of [21].

So we have

Algorithm 4.4. Input: f 2 R;L � A

n

such that L is f -saturated.

Output: Generators for J

L

(f

s

).

Begin

1. For each generator Q

i

of A

n+1

� (L; t) compute the image �(Q

i

)

under x

i

! x

i

; t! t� f; @

i

! @

i

+ f

i

@

t

; @

t

! @

t

.

2. Homogenize all �(Q

i

) with respect to the new variable y

1

relative

to the weight w introduced before proposition 4.3.

3. Compute a Gr�obner basis for the ideal generated by (�(Q

1

))

h

, : : : ,

(�(Q

r

))

h

, 1 � y

1

y

2

in A

n+1

[y

1

; y

2

] using an order that eliminates

y

1

; y

2

.

4. Select the operators fP

j

g

b

1

in this basis which do not contain y

1

; y

2

.

5. For each P

j

, 1 � j � b, if w(P

j

) > 0 replace P

j

by P

0

j

= @

w(P

j

)

t

P

j

.

Otherwise replace P

j

by P

0

j

= t

�w(P

j

)

P

j

.

6. Return the new operators fP

0

j

g

b

1

.

End.
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This algorithm was already stated in Proposition 7.1 of [20].

In order to guarantee existence of the Bernstein polynomial b

L

f

(s)

we assume for our next result that L is holonomic. Let jsj denote the

complex absolute value of s.

Corollary 4.5. Suppose L is a holonomic ideal in A

n

. If J

L

(f

s

) is

known or it is known that L is f -saturated, then the Bernstein poly-

nomial b

L

f

(s) of R

f




R

A

n

=L can be found from (b

L

f

(s)) = A

n

[s] �

(J

L

(f

s

); f) \K[s].

Moreover, suppose b

L

f

(s) = s

d

+ b

d�1

s

d�1

+ : : : + b

0

and de�ne B =

max

i

fjb

i

j

1=(d�i)

g. In order to �nd the smallest integer root of b

L

f

(s), one

only needs to check the integers between �2B and 2B.

If in particular L = (@

1

; : : : ; @

n

), it su�ces to check the integers

between �b

d�1

and -1.

Proof. If L is f -saturated, propositions 4.1 and 4.3 enable us to �nd

J

L

(f

s

). The �rst part follows then easily from the de�nition of b

L

f

(s):

as (b

L

f

(s) � P

L

f

� f)(f

s


 1) = 0 it is clear that b

L

f

(s) is in K[s] and

in A

n

[s](J

L

(f

s

); f). Using an elimination order on A

n

[s], b

L

f

(s) will be

(up to a scalar factor) the unique element in the reduced Gr�obner basis

for A

n

[s] � (J

L

(f

s

); f) that contains no x

i

nor @

i

.

Now suppose js

0

j = 2B� where B is as de�ned above and � > 1.

Assume also that s

0

is a root of b

L

f

(s). We �nd

(2B�)

d

= js

0

j

d

= j �

d�1

X

0

b

i

s

0

i

j �

d�1

X

0

B

d�i

jsj

i

= B

d

d�1

X

0

(2�)

i

� B

d

((2�)

d

� 1);

using � � 1. By contradiction, s

0

is not a root.

The �nal claim is a consequence of Kashiwara's work [14] where it is

proved that if L = (@

1

; : : : ; @

n

) then all roots of b

L

f

(s) are negative and

hence �b

n�1

is a lower bound for each single root.

For purposes of reference we also list algorithms that compute the

Bernstein polynomial to a holonomic module and the localization of a

holonomic module.

Algorithm 4.6. Input: f 2 R;L � A

n

such that A

n

=L is holonomic

and f -torsionfree.

Output: The Bernstein polynomial b

L

f

(s).

Begin

1. Determine J

L

(f

s

) following algorithm 4.4.
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2. Find a reduced Gr�obner basis for the ideal J

L

(f

s

)+A

n

[s] �f using

an elimination order for x and @.

3. Pick the unique element b(s) 2 K[s] contained in that basis and

return it.

End.

Algorithm 4.7. Input: f 2 R;L � A

n

such that A

n

=L is holonomic

and f -torsionfree.

Output: Generators for an ideal J such that R

f


 A

n

=L

�

=

A

n

=J .

Begin

1. Determine J

L

(f

s

) following algorithm 4.4.

2. Find the Bernstein polynomial b

L

f

(s) using algorithm 4.6.

3. Find the smallest integer root a of b

L

f

(s).

4. Replace s by a in all generators for J

L

(f

s

) and return these gen-

erators.

End.

Algorithms 4.6 and 4.7 appear already in [20] as Theorem 6.14 and

Proposition 7.3. Correctness of step 4 in algorithm 4.7 follows from

proposition 4.2.

5. Local cohomology as A

n

-module

In this section we will combine the results from the previous sections

to obtain algorithms that compute for given i; j; k 2 N ; I � R the local

cohomology modules H

k

I

(R); H

i

m

(H

j

I

(R)) and the invariants �

i;j

(R=I)

associated to I.

5.1. Computation of H

k

I

(R). Here we will describe an algorithm that

takes in a �nite set of polynomials f = ff

1

; : : : ; f

r

g � R and returns a

presentation of H

k

I

(R) where I = (f

1

; : : : ; f

r

). In particular, if H

k

I

(R)

is zero, then the algorithm will return the zero presentation.

Consider the

�

Cech complex associated to f

1

; : : : ; f

r

in R,

0! R!

r

M

1

R

f

i

!

M

1�i<j�r

R

f

i

f

j

! � � � ! R

f

1

�:::�f

r

! 0:(5.1)

Its k-th cohomology group is H

k

I

(R). The map

C

k

=

M

1�i

1

<���<i

k

�r

R

f

i

1

�:::�f

i

k

!

M

1�j

1

<���<j

k+1

�r

R

f

j

1

�:::�f

j

k+1

= C

k+1

(5.2)

is the sum of maps

R

f

i

1

�:::�f

i

k

! R

f

j

1

�:::�f

j

k+1

(5.3)
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which are either zero (if fi

1

; : : : ; i

k

g 6� fj

1

; : : : ; j

k+1

g) or send

1

1

to

1

1

, up

to sign. Recall that A

n

=�

�

=

R and identify R

f

i

1

�:::�f

i

k

with A

n

=J

�

((f

i

1

�

: : :�f

i

k

)

s

)j

s=a

and R

f

j

1

�:::�f

j

k+1

with A

n

=J

�

((f

j

1

�: : :�f

j

k+1

)

s

)j

s=b

where a; b

are su�ciently small integers. By proposition 4.2 we may assume that

a = b � 0. Then the map (5.2) is in the nonzero case multiplication

from the right by (f

l

)

�a

where l = fj

1

; : : : ; j

k+1

gnfi

1

; : : : ; i

k

g, again

up to sign.

It follows that the matrix representing the map C

k

! C

k+1

in terms

of A

n

-modules is very easy to write down once the annihilator ideals

and Bernstein polynomials for all k- and (k + 1)-fold products of the

f

i

are known: the entries are 0 or �f

�a

l

where f

l

is the new factor.

Let �

r

k

be the set of k-element subsets of 1; : : : ; r and for � 2 �

r

k

write F

�

for the product

Q

i2�

f

i

. We have demonstrated the correctness

and �niteness of the following algorithm.

Algorithm 5.1. Input: f

1

; : : : ; f

r

2 R; k 2 N .

Output: H

k

I

(R) in terms of generators and relations as �nitely gen-

erated A

n

-module.

Begin

1. Compute the annihilator ideal J

�

((F

�

)

s

) and the Bernstein poly-

nomial b

�

F

�

(s) for all (k � 1)-, k- and (k + 1)-fold products F

�

of

f

1

; : : : ; f

r

as in 4.4 and 4.6 (so � runs through �

r

k�1

[�

r

k

[�

r

k+1

).

2. Compute the smallest integer root a

�

for each b

�

F

�

(s), let a be the

minimum of all a

�

and replace s by a in all the annihilator ideals.

3. Compute the two matrices M

k�1

;M

k

representing the A

n

-linear

maps C

k�1

! C

k

and C

k

! C

k+1

as explained in subsection 5.1.

4. Compute a Gr�obner basis G for the kernel of the map

M

�2�

r

k

A

n

!

M

�2�

r

k

A

n

=J

�

((F

�

)

s

)j

s=a

M

k

�!

M

�2�

r

k+1

A

n

=J

�

((F

�

)

s

)j

s=a

as in 3.2.

5. Compute a Gr�obner basis G

0

for a lift to

L

�2�

r

k

A

n

of the module

im(M

k�1

) �

M

�2�

r

k

A

n

=J

�

((F

�

)

s

)j

s=a

:

6. Compute the remainders of all elements of G with respect to G

0

.

7. Return these remainders and G

0

.

End.

The nonzero elements of G generate the quotient G=G

0

�

=

H

k

I

(R) so

that H

k

I

(R) = 0 if and only if all returned remainders are zero.
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5.2. Computation of H

i

m

(H

j

I

(R)). As a second application of Gr�ob-

ner basis computations over the Weyl algebra we show now how to

computeH

i

m

(H

j

I

(R)). Note that we cannot apply lemma 4.1 to A

n

=L =

H

j

I

(R) since H

j

I

(R) may well contain some torsion.

As in the previous sections, C

j

(R; f

1

; : : : ; f

r

) denotes the j-th mod-

ule in the

�

Cech complex to R and ff

1

; : : : ; f

r

g. Let C

��

be the double

complex with C

i;j

= C

i

(R; x

1

; : : : ; x

n

)


R

C

j

(R; f

1

; : : : ; f

r

), the vertical

maps �

��

induced by the identity on the �rst factor and the usual

�

Cech

maps on the second, whereas the horizontal maps �

��

are induced by

the

�

Cech maps on the �rst factor and the identity on the second. Since

C

i

(R; x

1

; : : : ; x

n

) is R-
at, the column cohomology of C

��

at (i; j) is

C

i

(R; x

1

; : : : ; x

n

)


R

H

j

I

(R) and the induced horizontal maps in the j-th

row are simply the maps in the

�

Cech complex C

�

(H

j

I

(R); x

1

; : : : ; x

n

).

It follows that the row cohomology of the column cohomology at (i

0

; j

0

)

is H

i

0

m

(H

j

0

I

(R)).

Now C

i;j

is a direct sum of modules R

g

where g = x

�

1

� : : : � x

�

i

�

f

�

1

� : : : � f

�

j

. So the whole double complex can be rewritten in terms

of A

n

-modules and A

n

-linear maps using 4.7:

C

i�1;j+1

//

�

i�1;j+1

C

i;j+1

//

�

i;j+1

C

i+1;j+1

C

i�1;j

//

�

i�1;j

OO

�

i�1;j

C

i;j

//

�

i;j

OO

�

i;j

C

i+1;j

OO

�

i+1;j

C

i�1;j�1

//

�

i�1;j�1

OO

�

i�1;j�1

C

i;j�1

//

�

i;j�1

OO

�

i;j�1

C

i+1;j�1

OO

�

i+1;j�1

Using the comments in subsection 3.3, we may now compute the mod-

ules H

i

m

(H

j

I

(R)). More concisely we have, denoting by X

�

0

in analogy

to F

�

the product

Q

�2�

0

x

�

, the following

Algorithm 5.2. Input: f

1

; : : : ; f

r

2 R; i

0

; j

0

2 N .

Output: H

i

0

m

(H

j

0

I

(R)) in terms of generators and relations as �nitely

generated A

n

-module.

Begin.

1. For i = i

0

� 1; i

0

; i

0

+ 1 and j = j

0

� 1; j

0

; j

0

+ 1 compute the

annihilators J

�

((F

�

�X

�

0

)

s

) and Bernstein polynomials b

�

F

�

�X

�

0

(s)

of F

�

�X

�

0

where � 2 �

r

j

; �

0

2 �

n

i

.

2. Let a be the minimum integer root of the product of all these

Bernstein polynomials and replace s by a in all the annihilators

computed in the previous step.
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3. Compute the matrices to the A

n

-linear maps �

i;j

: C

i;j

! C

i;j+1

and �

i;j

: C

i;j

! C

i+1;j

, again for i = i

0

� 1; i

0

; i

0

+ 1 and j =

j

0

� 1; j

0

; j

0

+ 1.

4. Compute Gr�obner bases for the modules

G = ker(�

i

0

;j

0

) \

�

(�

i

0

;j

0

)

�1

(im(�

i

0

+1;j

0

�1

))

�

+ im(�

i

0

;j

0

�1

)

and G

0

= �

i

0

�1;j

0

(ker(�

i

0

�1;j

0

)) + im(�

i

0

;j

0

�1

).

5. Compute the remainders of all elements of G with respect to G

0

and return these remainders together with G

0

.

End.

The elements of G will be generators for H

i

0

m

(H

j

0

I

(R)) and the ele-

ments of G

0

generate the relations that are not syzygies.

5.3. Computation of �

i;n�j

(R=I). In [16] it has been shown that

H

i

m

(H

j

I

(R)) is an injective m-torsion R-module of �nite socle dimen-

sion �

i;n�j

(which depends only on i; j and R=I) and so isomorphic to

(E

R

(K))

�

i;n�j

where E

R

(K) is the injective hull of K over R. We are

now in a position that allows computation of these invariants of R=I.

Algorithm 5.3. Input: f

1

; : : : ; f

r

2 R; i; j 2 N .

Output: �

i;n�j

(R=(f

1

; : : : ; f

r

)).

Begin.

1. Using Algorithm 5.2 �nd g

1

; : : : ; g

l

2 A

n

d

and h

1

; : : : ; h

e

2 A

n

d

such that H

i

m

(H

j

I

(R)) is isomorphic to A

n

(g

1

; : : : ; g

l

) moduloH =

A

n

(h

1

; : : : ; h

e

).

2. Assume that g

1

is not in H. If such a g

1

cannot be chosen, quit.

3. Find a monomial m 2 R such that m � g

1

62 H but x

i

mg

1

2 H for

all x

i

.

4. Replace H by A

n

mg

1

+H and reenter at step 2.

5. �

i;n�j

(R=I) equals the number of times step 3 was executed.

End.

The justi�cation of the correctness of the algorithm is as follows. We

know that (A

n

� g

1

+ H)=H is m-torsion (as H

i

m

(H

j

I

(R)) is) and so it

is possible (with trial and error) to �nd the monomial m in step 3.

Then the element mg

1

+ H=H has annihilator equal to m and there-

fore generates an A

n

-module isomorphic to A

n

=A

n

� m

�

=

E

R

(K). The

injection (A

n

�mg

1

+H)=H ,! (A

n

� (g

1

; : : : ; g

l

) +H)=H splits as map

of R-modules because of injectivity and so the cokernel A

n

(g

1

; : : : ; g

l

)

modulo A

n

(mg

1

; h

1

; : : : ; h

e

) is isomorphic to (E

R

(K))

�

i;n�j

�1

.

Reduction of the g

i

with respect to a Gr�obner basis of the new rela-

tion module and repetition will lead to the determination of �

i;n�j

.
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5.4. Local cohomology in ambient spaces di�erent from A

n

K

.

If A equals K[x

1

; : : : ; x

n

], I � A, X = Spec(A) and V = Spec(A=I),

knowledge of H

i

I

(A) for all i 2 N answers of course the question about

the local cohomological dimension of V in X. It is worth mentioning,

that if W � X is a smooth variety containing V then our algorithm

5.1 for the computation of H

i

I

(A) also leads to a determination of the

local cohomological dimension of V in W . Namely, if J stands for the

de�ning ideal of W in X so that R = A=J is the a�ne coordinate ring

of W and if we set c = ht(J), then it can be shown that H

i�c

I

(R) =

Hom

A

(R;H

i

I

(A)) for all i 2 N . As H

i

I

(A) is I-torsion (and hence J-

torsion), Hom

A

(R;H

i

I

(A)) is zero if and only if H

i

I

(A) = 0. It follows

that the local cohomological dimension of V in W equals cd(A; I)� c

and in fact fq 2 N : H

q

I

(A) 6= 0g = fq 2 N : H

q�c

I

(R) 6= 0g.

If however W is not smooth, no algorithms for the computation of

either H

i

I

(R) or cd(R; I) are known, irrespective of the characteristic

of the base �eld.

6. Implementation and examples

Some of the algorithms described above have been implemented as

C-scripts and tested on some examples.

6.1. The algorithm 4.4 with L = � has been implemented by Oaku

using the package Kan (see [25]) which is a postscript language for

computations in the Weyl algebra and in polynomial rings. An imple-

mentation for general L is written by the current author and part of a

program that deals exclusively with computations around local coho-

mology ([26]). [26] is theoretically able to compute H

i

I

(R) for arbitrary

i; R = Q [x

1

; : : : ; x

n

]; I � R in the above described terms of generators

and relations, using algorithm 5.1. It is expected that in the future a

Kan-based implementation will work for R = K[x

1

; : : : ; x

n

] where K

is any computable �eld of characteristic zero and also algorithms for

computation of H

i

m

(H

j

I

(R)) and �

i;j

(R) will be implemented, but see

the comments in 6.2 below.

Example 6.1. Let I be the ideal in R = K[x

1

; : : : ; x

6

] that is gener-

ated by the 2 � 2 minors f; g; h of the matrix

�

x

1

x

2

x

3

x

4

x

5

x

6

�

. Then

H

i

I

(R) = 0 for i < 2 and H

2

I

(R) 6= 0 because I is a height 2 prime

and H

i

I

(R) = 0 for i > 3 because I is 3-generated, so the only remain-

ing case is H

3

I

(R). This module in fact does not vanish, but until the

discovery of our algorithm, its non-vanishing was a rather non-trivial

fact. Our algorithm provides the �rst known proof of this fact by direct

calculation.
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Previously, Hochster pointed out that H

3

I

(R) is nonzero, using the

fact that the map K[f; g; h] ! R splits (compare [11], Remark 3.13)

and Bruns and Schw�anzl ([3], the corollary to Lemma 2) provided a

topological proof of the nonvanishing of H

3

I

(R) via �etale cohomology.

Both of these proofs are quite ingenious and work only in very special

situations.

Using the program [26], one �nds thatH

3

I

(R) is isomorphic to a cyclic

A

6

-module generated by 1 2 A

6

subject to relations x

1

= : : : = x

6

= 0.

This is a straightforward computational proof of the non-vanishing of

H

3

I

(R). Of course this proof gives more than simply the non-vanishing.

Since A

6

=A

6

(x

1

; : : : ; x

6

) is isomorphic to E

R

(R=(x

1

; : : : ; x

6

)), the injec-

tive hull of R=(x

1

; : : : ; x

6

) = K in the category of R-modules, our proof

implies that H

3

I

(R)

�

=

E

R

(K).

6.2. Computation of Gr�obner bases in many variables is in general a

time- and space consuming enterprise. Already in (commutative) poly-

nomial rings the worst case performance for the number of elements in

reduced Gr�obner bases is doubly exponential in the number of variables

and the degrees of the generators. In the (relatively small) example

above R is of dimension 6, so that the intermediate ring A

n+1

[y

1

; y

2

]

contains 16 variables. In view of these facts the following idea has

proved useful.

The general context in which lemma 4.1 and proposition 4.2 were

stated allows successive localization of R

fg

in the following way. First

one computes R

f

according to algorithm 4.7 as quotient of A

n

by a

certain holonomic ideal L = J

�

(f

s

)j

s=a

; a � 0. Then R

fg

may be

computed using 4.7 again since R

fg

�

=

R

g


 A

n

=L. (Note that all lo-

calizations of R are automatically f -torsion free for f 2 R as R is a

domain.) This process may be iterated for products with any �nite

number of factors. Note also that the exponents for the various factors

might be di�erent. This requires some care as the following situations

illustrate. Assume �rst that �1 is the smallest integer root of the Bern-

stein polynomials of f and g (both in R) with respect to the holonomic

module R. Assume further that R

fg

�

=

A

n

� f

�2

g

�1

) A

n

� (fg)

�1

.

Then R

f

! R

fg

can be written as A

n

= ann(f

�1

)! A

n

= ann(f

�2

� g

�1

)

sending P 2 A

n

to P � f � g.

Suppose on the other hand that we are interested in H

2

I

(R) where

I = (f; g; h) and we know that R

f

= A

n

� f

�2

) A

n

� f

�1

; R

g

= A

n

� g

�2

and R

fg

= A

n

�f

�1

g

�2

. (In fact, the degree 2 part of the

�

Cech complex

of example 6.1 consists of such localizations.) It is tempting to write

the embedding R

f

! R

fg

with the use of a Bernstein operator (if

P

f

(s)f

s+1

= b

�

f

(s)f

s

then take s = �2) but as f

�1

is not a generator
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for R

f

, b

�

f

(�2) will be zero. In other words, we must write R

fg

as

A

n

= ann((fg)

�2

) and then send P 2 ann(f

�2

) to P � g

2

.

The two examples indicate how to write the

�

Cech complex in terms

of generators and relations over A

n

while making sure that the maps

C

k

! C

k+1

can be made explicit using the f

i

- the exponents used in

C

k

have to be at least as big as those in C

k�1

(for the same f

i

).

Remark 6.2. One might hope that for all holonomic fg-torsionfree

modules M = A

n

=L we have (with R

g


M

�

=

A

n

=L

0

):

minfs 2 Z : b

L

f

(s) = 0g � minfs 2 Z : b

L

0

f

(s) = 0g:

This would guarantee, that successive localization at the factors of a

product does not lead to matrices in the

�

Cech complex with entries of

higher degree than localization at the product at once.

However, as was pointed out by one of the referees, the following

example shows that this hope is unfounded. Let R = C [x

1

; : : : ; x

5

], f =

x

2

1

+x

2

2

+x

2

3

+x

2

4

+x

2

5

. One may check that then b

�

f

(s) = (s+1)(s+5=2).

Hence R

f

= A

5

� f

�1

, let L = ker(A

5

! A

5

� f

�1

). Set g = x

1

. Then

b

�

g

(s) = s+ 1, let L

0

= ker(A

5

! A

5

� g

�1

).

Computations with [26] or [25] show that b

L

0

f

(s) = (s+1)(s+2)(s+

5=2) and b

L

g

(s) = (s + 1)(s + 3). This shows that R

fg

is generated by

f

�2

g

�1

or f

�1

g

�3

but not by f

�1

g

�2

and in particular not by f

�1

g

�1

.

Notice that this example not only disproves the above inequality but

also shows the inequality to be wrong if Z is replaced by R (as �3 <

min(�5=2;�1)).

Nonetheless, localizing R

fg

as (R

f

)

g

is advantageous, heuristically.

For one, it allows the exponents of the various factors to be distinct

which is useful for the subsequent cohomology computation: it helps to

keep the degrees of the maps small. (So for example R

x�(x

2

+y

2

)

can be

written as A

n

�x

�1

(x

2

+y

2

)

�2

instead of A

n

� (x

�2

� (x

2

+y

2

)

�2

). On the

other hand, since the computation of Gr�obner bases is doubly exponen-

tial it seems to be advantageous to break a big problem (localization

at a product) into many \easy" problems (successive localization).

An interesting case of this behaviour is our example 6.1. If we com-

pute R

fgh

as ((R

f

)

g

)

h

, the calculation uses approximately 2.5 kB and

lasts 10 seconds on a Sun workstation using [26]. If one tries to localize

R at the product of the three generators at once, [26] needs about 30

minutes.

So, one should proceed as follows for the computation of the

�

Cech

complex C

�

(R; f

1

; : : : ; f

r

). First compute J

�

((f

i

)

s

) for all i, �nd all

minimal integer Bernstein roots �

i

of f

i

on R and substitute them

into the appropriate annihilator ideals. Iteratively use algorithm 4.7 in
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order to compute R

f

i

1

�:::�f

i

k

�f

i

k+1

from R

f

i

1

�:::�f

i

k

If all Bernstein roots for

f

i

k+1

on R

f

1

�:::�f

k

are greater or equal to �

i

k+1

we are �ne. As soon as

one of them is smaller than the corresponding �, we need to replace �

i

by that root and start from the beginning.
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