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1. INTRODUCTION

In [HKM, Corollary 6.5], Huneke, Katz, and Marley proved the following striking re-

sult: If A is a commutative Noetherian ring containing the field of rational numbers, with

dim A 6 5, and a is the ideal generated by the size 2 minors of an arbitrary 2× 3 matrix

with entries from A, then the local cohomology module H3
a(A) equals zero. What makes

this striking is that it does not follow from classical vanishing theorems as in [HL]. It is

natural to ask whether the same holds for rings that do not necessarily contain the rationals,

and whether such results extend to matrices and minors of other sizes. Indeed, we prove:

Theorem 1.1. Let a be the ideal generated by the size t minors of an m× n matrix with

entries from a commutative Noetherian ring A, where 1 6 t 6 min{m,n}, and t differs from

at least one of m and n. If dim A < mn, then Hmn−t2+1
a (A) = 0.

The index mn− t2 + 1 is the cohomological dimension in the case of a matrix of inde-

terminates X = (xi j) over Q by Bruns and Schwänzl [BS]; specifically,

Hmn−t2+1
It (X) (Q[X ]) 6= 0 ,

where It(X) is the ideal generated by the size t minors of the matrix X . Theorem 1.1 implies

that the asserted vanishing holds whenever the entries of the matrix are not algebraically

independent. In the case m = 2, n= 3, and t = 2, the theorem says precisely that H3
a(A) = 0

if dim A 6 5, as proved in [HKM] when A contains the field of rational numbers. The

result is straightforward when A contains a field of prime characteristic, and one of the

main points of the present paper is that it includes the case of rings that do not necessarily

contain a field. This requires calculations of local cohomology in polynomial rings Z[X ];
these calculations are of independent interest, and a key ingredient is proving that there is

no integer torsion in the critical local cohomology modules. More generally, we prove:

Theorem 1.2. Let R = Z[X ] be a polynomial ring, where X is an m× n matrix of indeter-

minates. Let It be the ideal generated by the size t minors of X. Then:

(1) Hk
It
(R) is a torsion-free Z-module for all integers t,k.

(2) If k differs from the height of It , then Hk
It
(R) is a Q-vector space.

(3) Consider the N-grading on R with [R]0 = Z and degxi = 1. Set m = (x11, . . . ,xmn).
If 2 6 t 6 min{m,n}, and t differs from at least one of m and n, then there exists a

degree-preserving isomorphism

Hmn−t2+1
It

(Z[X ]) ∼= Hmn
m (Q[X ]) .
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Theorem 1.2 is extremely useful: once we know that Hk
It
(Z[X ]) is a Q-vector space,

it can then be computed using the D-module algorithms of Walther [Wal] or Oaku and

Takayama [OT]; it can also be studied using singular cohomology and comparison theo-

rems as in [BS], or using representation theory as in [Wi, RWW, RW]. For example, Theo-

rem 1.2 implies that the module Hk
It
(Z[X ]) is nonzero precisely if Hk

It
(C[X ]) is nonzero; for

recent results on the nonvanishing and structure of Hk
It
(C[X ]) in terms of Schur functors,

we refer the reader to [RWW, RW].

As an illustration of Theorem 1.2, consider a 2× 3 matrix of indeterminates X over Z.

Then the theorem gives

H3
I2
(Z[X ]) ∼= H6

m(Q[X ]) .

The first proof that H3
I2
(Z[X ]) is a Q-vector space used equational identities from [Si1, Si2]

that were constructed using the hypergeometric series algorithms of Petkovšek, Wilf, and

Zeilberger [PWZ]; the module H3
I2
(Z[X ]) is computed as well in Kashiwara and Lau-

ritzen, [KaL]. The approach in the present paper is as follows: Let p be a prime inte-

ger; we study the annihilator of p in H3
I2
(Z[X ]) as a D-module, and use a duality result

for D-modules, Theorem 2.16, to show that it vanishes. This requires Lyubeznik’s theory

of F -modules [Ly2], and also differential operators over Z[X ], Fp[X ] and Q[X ]. These

techniques work in good generality.

Section 2 develops the theory of graded F -modules and D-modules; the key result

for our applications is Theorem 2.16, but in the process, we arrive at several results of

independent interest: e.g., for a polynomial ring R over a separably closed field of prime

characteristic, we prove that the F -module HdimR
m (R) is an injective object in the category

of graded F -finite modules, Corollary 2.10. By an example of Ma, the module HdimR
m (R)

need not be an injective object in the category of F -finite modules, see [Ma, Example 4.8].

Some preliminary results on local cohomology are recorded in Section 3; this includes

an interpretation of Bass numbers of m-torsion local cohomology modules as ranks of sin-

gular cohomology groups, Theorem 3.1. Our study of the local cohomology of polynomial

rings over Z has its origins in a question of Huneke [Hu] on the associated primes of local

cohomology modules; this, as well, is discussed in Section 3.

The proof of Theorem 1.2 occupies Section 4, and in Section 5 we prove a vanishing

theorem that subsumes Theorem 1.1. In addition to determinantal ideals, our methods

extend to ideals generated by Pfaffians of alternating matrices, Section 6, and minors of

symmetric matrices, Section 7. For these, we use Barile’s computations of arithmetic rank

from [Ba2]. Section 8 deals with questions on arithmetic rank related to the vanishing

theorems proved in our paper.

Vanishing theorems for local cohomology that hold under bounds on dimension—such

as Theorem 1.1—hold a lot of promise; see Section 9 for an approach to Hochster’s mono-

mial conjecture along these lines.

To assist the reader, we mention that R will typically denote a commutative Noetherian

ring that is regular, and A an arbitrary commutative Noetherian ring.

2. GRADED F -MODULES

Let R = F[x1, . . . ,xn] be the polynomial ring in variables x1, . . . ,xn over a field F of

characteristic p > 0. We fix the standard N-grading on R where [R]0 = F and degxi = 1 for

each i. By a graded module M, we mean a Z-graded module; we use [M]k for the graded

component of M in degree k, and M( j) to denote the module M with the shifted grading

[M( j)]k = [M] j+k .
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F -modules. The concept of F -modules was introduced in [Ly2]. Set R′ to be the R-

bimodule that agrees with R as a left R-module, and has the right R-action

r′r = rpr′ for r ∈ R and r′ ∈ R′ .

For an R-module M, we set F(M) = R′⊗R M; this is an R-module via the left R-module

structure on R′.

An F -module is a pair (M ,θ ), where M is an R-module, and θ : M −→ F(M ) is

an R-module isomorphism called the structure isomorphism; we sometimes suppress θ
from the notation. A morphism of F -modules (M ,θ ) −→ (M ′,θ ′) is an R-module ho-

momorphism ϕ : M −→ M ′ that commutes with the structure isomorphisms, i.e.,

θ ′ ◦ϕ = F(ϕ)◦θ ,

see [Ly2, Definition 1.1]. With these definitions, F -modules form an Abelian category.

Graded F -modules have been studied previously in [Bl, Chapter 4.3.3] and [Zh, MZ].

In this section, we establish properties of graded F -modules that will be used later in the

paper; we believe these are also of independent interest.

If M is a graded R-module, then there is a natural grading on F(M) = R′⊗R M given by

deg(r′⊗m) = degr′+ p ·degm ,

for homogeneous elements r′ ∈ R′ and m ∈ M. With this grading, a graded F -module is

an F -module (M ,θ ) where M is a graded R-module, and θ is degree-preserving, i.e., θ
maps homogeneous elements to homogeneous elements of the same degree. A morphism

of graded F -modules is a degree-preserving morphism of F -modules. It is not hard to

see that graded F -modules form an Abelian subcategory of the category of F -modules.

The ring R has a natural graded F -module structure with structure morphism

R −→ R′⊗R R , r 7−→ r⊗ 1 .

Let m be the homogeneous maximal ideal of R. Let f denote the Frobenius action on the

local cohomology module Hn
m(R); the image of f generates Hn

m(R) as an R-module. Thus,

the following structure morphism defines a graded F -module structure on Hn
m(R):

Hn
m(R)−→ R′⊗R Hn

m(R) , r f (η) 7−→ r⊗η .

D-modules. The ring D = DF(R) of F-linear differential operators on R is the subring of

the ring EndF R generated by R and all operators of the form

∂
[t]
i =

1

t!

∂ t

∂xt
i

,

see [Gro2, Théorème 16.11.2]. In fact, D is a free R-module, with basis

∂
[t1]
1 · · · ∂

[tn]
n for (t1, . . . , tn) ∈ Nn .

As shown in [Ly2, page 115–116], each F -module carries a natural D-module struc-

ture; there exists a functor

ξ : F -mod −→ D-mod

from the category of F -modules to the category of D-modules, where the F -module M

and the D-module ξ (M ) have the same underlying R-module structure, and ϕ : M −→ M′

and ξ (ϕ) : ξ (M)−→ ξ (M′) agree as maps of sets.

Following [MZ], for each positive integer k, we set Ek to be the differential operator

∑
ti>0

t1+···+tn=k

x
t1
1 · · ·xtn

n ∂
[t1]
1 · · ·∂

[tn]
n ,



4 GENNADY LYUBEZNIK, ANURAG K. SINGH, AND ULI WALTHER

which is the k-th Euler operator; note that

E1 = x1∂1 + · · ·+ xn∂n

is the classical Euler operator. By [MZ, Theorem 4.4], if M is a graded F -module, then

the D-module ξ (M ) is Eulerian, which, by definition, means that

Ek(m) =

(
degm

k

)
m

for each positive integer k and each homogeneous element m of M .

We record an elementary lemma:

Lemma 2.1. Let d be a positive integer, with base p expansion

d = s0 + s1 p+ · · ·+ st pt , where 0 6 se 6 p− 1 for each e .

Then, for each e, the binomial coefficient
(

d
pe

)
is congruent to se modulo p.

Proof. Working in the polynomial ring Fp[z], the binomial coefficient
(

d
pe

)
mod p is the

coefficient of zpe
in the expansion of (1+ z)d . Note that

(1+ z)d = (1+ z)∑e se pe

= ∏
e

(1+ z)se pe

= ∏
e

(
1+ zpe

)se

= ∏
e

∑
i

(
se

i

)
zipe

.

When expanding the right hand side, each zℓ appears at most once by the uniqueness of the

base p expansion of ℓ; specifically, zpe
occurs with coefficient

(
se

1

)
= se. �

Proposition 2.2. The category of graded F -modules is a full subcategory of the category

of F -modules, i.e., every F -module morphism of graded F -modules is degree-preserving.

Let N ⊂ M be F -modules. If M is a graded F -module, then N and M /N are

graded F -modules.

By the above proposition, the category of graded F -modules is closed, in the category

of F -modules, under the formation of subquotients; it is not closed under extensions; see

Example 2.14, which uses [Ma, Example 4.8].

Proof. Let ϕ : M −→ M ′ be an F -module map, where M ,M ′ are graded F -modules;

we need to show that ϕ is degree-preserving. Let m be a homogeneous element of M of

degree d. Express ϕ(m) as a sum of homogeneous elements,

ϕ(m) = m1 + · · ·+mv ,

where mi ∈ M ′ is homogeneous of degree di, and the integers di are pairwise distinct.

Since ξ is a functor and ξ (M ) and ξ (M ′) agree with M and M ′ respectively as sets, the

map ϕ is a D-module map. It follows that

ϕ(Ek(m)) = Ek(ϕ(m)) for each k > 1 .

Expanding each side, one has

∑
i

(
d

k

)
mi = ∑

i

(
di

k

)
mi ,

and hence (
d

k

)
≡

(
di

k

)
mod p for each i,k .

Lemma 2.1 implies that di = d for each i, and hence also that v= 1. Thus, the element ϕ(m)
is homogeneous of degree d, which proves the first assertion.



LOCAL COHOMOLOGY MODULES SUPPORTED AT DETERMINANTAL IDEALS 5

We next show that N is a graded F -module. Given m ∈ N , write it as a sum of

homogeneous elements

m = m1 + · · ·+mv ,

where mi ∈ M is homogeneous of degree di, and the integers di are pairwise distinct; we

need to show that mi ∈ N for each i. By a slight abuse of notation we denote ξ (N )
and ξ (M ) by N and M respectively. Since N is a D-submodule of M , and m ∈ N , it

follows that Ek(m) ∈ N for each k > 1. But then

(
dv

k

)
m−Ek(m) =

v

∑
i=1

[(
dv

k

)
−

(
di

k

)]
mi =

v−1

∑
i=1

[(
dv

k

)
−

(
di

k

)]
mi

is an element of N for each k > 1; by Lemma 2.1,
(

dv

k

)
−
(

di
k

)
is nonzero for some choice

of k. As the displayed element is a sum of at most v− 1 homogeneous elements, an in-

duction on v shows that mi ∈ N for each i. The final assertion, namely that M /N is a

graded F -module, follows immediately. �

The proof of the previous proposition also yields:

Proposition 2.3. A D-module map between Eulerian D-modules is degree-preserving.

Let N ⊂ M be D-modules. If M is Eulerian, then so are N and M /N .

F -finite modules. An F -module (M ,θ ) is F -finite if M is the direct limit of the top

row in the commutative diagram

M
β

−−→ F(M)
F(β )
−−→ F2(M) −−→ ·· ·

β

y F(β )

y F2(β )

y

F(M)
F(β )
−−→ F2(M)

F2(β )
−−−→ F3(M) −−→ ·· ·

where M is a finitely generated R-module, β : M −→ F(M) is an R-module homomor-

phism, and the structure isomorphism θ is induced by the vertical maps in the diagram,

see [Ly2, Definition 2.1]. When M is graded and β is degree-preserving, we say that the

F -module M is graded F -finite.

The map β : M −→ F(M) above is a generating morphism of M . If β is injective,

we say that M is a root of M , and that β is a root morphism. The image of M in M

will also be called a root of M . A minimal root of M is a root M such that no other

root of M is contained in M. The minimal root is unique, see [Ly2, Theorem 3.5]. If M

is a graded F -finite module, then its minimal root M is graded, and β : M −→ F(M) is

degree-preserving; we say β is the minimal root morphism of M .

A basic result in the theory of F -modules says that an F -finite module M has finite

length in the category of F -modules. This means, in particular, that every filtration of M

in the category of F -modules can be completed to a maximal filtration

0 = M0 ⊂ M1 ⊂ ·· · ⊂ Mℓ = M .

Every maximal filtration has the same length ℓ, which is defined to be the length of M .

The set of the composition factors

{M1/M0, . . . ,Mℓ/Mℓ−1}

depends only on M , and not on the maximal filtration. It follows from Proposition 2.2 that

the composition factors of a graded F -finite module are all graded.
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Set m to be the homogeneous maximal ideal of R, and ∗E to be the injective hull

of R/m in the category of graded R-modules. Shifting the grading by n, one has a degree-

preserving isomorphism
∗E(n) ∼= Hn

m(R) ,

see, for example, [GW, Theorem 1.2.7]. Set

∗D(−) = HomR(−, Hn
m(R)) ,

which is the graded Matlis duality functor; this is a contravariant exact functor. If M is

a graded R-module that is cofinite (respectively, finitely generated), then ∗D(M) is graded

and finitely generated (respectively, cofinite). For a graded module M that is cofinite or

finitely generated, one has
∗D(∗D(M)) = M ,

see [GW, Theorem 1.2.10]; in particular, there is a one-to-one correspondence between

graded submodules of M and graded quotients of ∗D(M), namely, an inclusion N −→ M

corresponds to a surjection ∗D(M) −→ ∗D(N).
The following is a version of [Ly2, Lemma 4.1]; the proof is similar when M is cofinite,

and is readily adapted to the case where M is a finitely generated R-module.

Lemma 2.4. Let M be a graded R-module that is either cofinite or finitely generated. Then

there is an R-module isomorphism

∗τ : ∗D(F(M)) −→ F(∗D(M))

that is degree-preserving, and functorial in M.

The functor ∗H (−). We set R{ f} to be the ring extension of R generated by an ele-

ment f subject to the relations f r = rp f for each r ∈ R. By an R{ f}-module we mean a

left R{ f}-module. Thus, an R{ f}-module is an R-module M with a Frobenius action, i.e.,

a map f : M −→ M such that f (rm) = rp f (m) for each m ∈ M.

By a graded R{ f}-module, we mean a graded R-module M such that

f : [M]d −→ [M]pd for each integer d .

It is straightforward to check that the induced R-module homomorphism

F(M) = R′⊗R M −→ M , where r′⊗m 7−→ r′ f (m) ,

is degree-preserving i.e., it is a morphism in the category of graded R-modules. Applying

the graded Matlis duality functor ∗D to this morphism, the induced natural map

∗D(M)−→ ∗D(F(M))

is degree-preserving. Following this map with ∗τ produces the natural map

βM : ∗D(M) −→ F(∗D(M)) ,

that, again, is degree-preserving. If M is cofinite, then ∗D(M) is finitely generated, and we

set ∗H (M) to be the F -finite module with generating morphism βM . As βM is degree-

preserving, the module ∗H (M) is graded. Thus, ∗H (−) is a functor from the category of

graded cofinite R{ f}-modules to the category of graded F -finite modules.

Let M be an R{ f}-module. An element m of M that is annihilated by some power of f is

said to be nilpotent; the module M is nilpotent if f e(M) = 0 for some e. The set of nilpotent

elements of M is an R{ f}-submodule of M, this is the nilpotent part of M, denoted Mnil.

The reduced R{ f}-module

Mred = M/Mnil
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has no nonzero nilpotent elements. Set M f e
to be the R-submodule generated by the

set f e(M). We use Mst to denote the intersection of the descending chain

M ⊇ M f ⊇ M f 2
⊇ ·· · .

Each M f e
is an R{ f}-module, hence so is Mst. It is straightforward to verify that

(Mred)
st = (Mst)red ,

and we denote this R{ f}-module by Mst
red. If M is a graded R{ f}-module, then so are the

modules Mred, Mst, and Mst
red. The following is a graded version of [Ly2, Theorem 4.2]:

Theorem 2.5. Consider the functor ∗H (−) from the category of graded cofinite R{ f}-

modules to the category of graded F -finite modules. Then:

(1) The functor ∗H (−) is contravariant, additive, and exact.

(2) ∗H (M) = 0 if and only if M is nilpotent.

(3) The minimal root morphism of ∗H (M) is

βMst
red

: ∗D(Mst
red)−→ F(∗D(Mst

red)) .

(4) ∗H (M) is isomorphic to ∗H (M′) in the category of F -modules if and only if Mst
red

is isomorphic to (M′)st
red in the category of R{ f}-modules.

The proofs of assertions (1) and (2) are, aside from minor modifications, the same as

those of [Ly2, Theorem 4.2 (i), (ii)], while the proofs of (3) and (4) require the following

lemma that is a graded analogue of [Ly2, Lemma 4.3]. We point out that

βM : ∗D(M) −→ F(∗D(M))

is injective if and only if Mst = M, see [Ly2, page 105, lines 3–6].

Lemma 2.6. Let M be a graded cofinite R{ f}-module with M = Mst; it follows that βM is

a root morphism of ∗H (M). Let N be a graded R-submodule of ∗D(M).

(1) N is a root of an F -submodule N of ∗H (M) if and only if N = ∗D(M′′), where M′′

is a homomorphic image of M in the category of R{ f}-modules; in this case, βM′′ is

a root morphism of N .

(2) N is a root of ∗H (M) if and only if N = ∗D(M/M′), where M′ is a nilpotent R{ f}-

submodule of M; in this case, βM/M′ is a root morphism of ∗H (M/M′).

(3) N is the minimal root of ∗H (M) if and only if N = ∗D(Mred); in this case, the

morphism βMred
is the minimal root morphism of ∗H (M).

The proof of the lemma parallels that of [Ly2, Lemma 4.3].

Proposition 2.7. The functor ∗H (−) from the category of graded cofinite R{ f}-modules

to the category of graded F -finite modules is surjective.

Proof. Let β : M −→ F(M) be a generating morphism for a graded F -finite module M .

Using Lemma 2.4, we have an R-module homomorphism γ which is the composition

R′⊗R
∗D(M) F(∗D(M))

∗τ−1

−−→ ∗D(F(M))
∗D(β )
−−−→ ∗D(M) .

We define an additive map f : ∗D(M)−→ ∗D(M) by f (η) = γ(1⊗η). Note that

f (r η) = γ(1⊗ r η) = γ(rp ⊗η) = rpγ(1⊗η) = rp f (η) ,

i.e., ∗D(M) has a natural R{ f}-module structure. Observe that ∗H (∗D(M)) = M . �
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Proposition 2.8. Let I be a homogeneous ideal of R. Then

∗
H (Hn−k

m (R/I)) ∼= Hk
I (R) .

The proof mirrors that of [Ly2, Example 4.8]; one replaces local duality by graded local

duality, which says that if M is a finitely generated graded R-module, then there is a natural

functorial degree-preserving isomorphism

∗D(Hn−k
m (M)) ∼= ExtkR(M,R(−n)) ,

see [GW, Proposition 2.1.6]; note that R(−n) is the graded canonical module of R.

We now prove our main theorem on graded F -modules:

Theorem 2.9. Let M be a graded cofinite R{ f}-module. Then the following are equivalent:

(1) Among the composition factors of the Eulerian D-module ξ (∗H (M)), there is at

least one composition factor with support {m}.

(2) Among the composition factors of the graded F -finite module ∗H (M), there is at

least one composition factor with support {m}.

(3) There exists an F -submodule M of ∗H (M) such that every composition factor

of M has support bigger than {m}, and ∗H (M)/M has support {m}.

(4) The action of the Frobenius f on [M]0, the degree zero part of M, is not nilpotent.

Proof. Without loss of generality, we assume that M = Mst
red is reduced; each of the state-

ments is unaffected by replacing M with Mst
red.

By [Ly2, Theorem 5.6], if M is an F -finite module that is simple in the category of

F -modules, then, in the category of D-modules, ξ (M ) is the direct sum of finitely many

simple D-modules, say ξ (M )∼=⊕iNi, where each Ni is a simple D-module.

If M is any F -finite module, then the composition factors of ξ (M ) in the category

of D-modules are the modules Ni appearing in the direct sum decomposition of the mod-

ules ξ (M ′), where M ′ runs through the composition factors of M in the category of

F -modules. By [Ly2, Theorem 2.12], each simple F -module M ′ has a unique associated

prime, which must then be the unique associated prime of each Ni appearing in the direct

sum decomposition of ξ (M ′) in the category of D-modules. Thus, ξ (M ) has a composi-

tion factor with support {m} if and only if M has a composition factor with support {m}.

This proves the equivalence of (1) and (2).

Note that ∗D(M) −→ ∗H (M) is injective since M = Mst
red; we think of ∗D(M) as a

submodule of ∗H (M) via this map. The map ∗D(M) −→ F(∗D(M)) is the minimal root

morphism of ∗H (M). Let

0 = M0 ⊂ M1 ⊂ ·· · ⊂ Mℓ =
∗
H (M)

be a maximal filtration of ∗H (M) in the category of F -finite modules. Set Ni to be the

module Mi ∩
∗D(M). Then Ni is a root of Mi. The surjection M −→ ∗D(Ni) is an R{ f}-

module map. We denote the kernel of this surjection by Mi; this is an R{ f}-submodule

of M; thus, there exists a chain of graded R{ f}-submodules

M = M0 ⊃ M1 ⊃ ·· · ⊃ Mℓ = 0 ,

such that the natural map

βMi/Mi+1
: ∗D(Mi/Mi+1)−→ F(∗D(Mi/Mi+1))

is a generating morphism of Mi+1/Mi.

Suppose Mi+1/Mi has support {m}. Since ∗D((Mi/Mi+1)
st) is a root of Mi+1/Mi,

hence isomorphic to a submodule of Mi+1/Mi, it has support {m}. As ∗D((Mi/Mi+1)
st)

is finitely generated, it has finite length as an R-module. It follows that (Mi/Mi+1)
st
red is
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concentrated in degree zero: indeed, if m is a nonzero element of degree d 6= 0, then, for

each e, the element f e(m) is nonzero of degree d pe, contradicting the finite length.

Since Mi+1/Mi is nonzero, the action of the Frobenius f on (Mi/Mi+1)
st
red cannot be

nilpotent. But (Mi/Mi+1)
st
red is a subquotient of [M]0, hence the action of f on [M]0 is not

nilpotent. This proves that (2) implies (4).

Assuming (4) holds, set M′ = [M]>0, which is the R-submodule of M generated by the

homogeneous elements of nonnegative degree. This is then an R{ f}-submodule of M, and

one has an exact sequence in the category of graded R{ f}-modules,

0 −−→ M′ −−→ M −−→ M/M′ −−→ 0 .

This yields the exact sequence in the category of graded F -modules,

0 −−→ ∗H (M/M′) −−→ ∗H (M) −−→ ∗H (M′) −−→ 0 .

Since M′ has finite length and a non-nilpotent Frobenius action, the module ∗H (M′) is

nonzero with support {m}. Since [M/M′]0 = 0, it follows from the fact that (2) implies (4)

that all the composition factors of ∗H (M/M′) have support bigger than {m}. This proves

that (4) implies (3), which, in turn, trivially implies (2). �

By Hochster [Ho3, Theorem 3.1], the category of F -modules has enough injectives.

However, since Hn
m(R) is typically not an injective object in the category of F -finite mod-

ules, see [Ma, Example 4.8], the following corollary is very unexpected:

Corollary 2.10. Let R be a standard graded polynomial ring of dimension n over a sepa-

rably closed field. Then the R-module Hn
m(R), with its natural F -module structure, is an

injective object in the category of graded F -finite modules.

Proof. Let M be a graded F -finite module with Hn
m(R) as an F -submodule; it suffices to

show that Hn
m(R) ⊂ M splits in the category of graded F -modules. The module Hn

m(R)
is a composition factor of M with support {m}; we first reduce to the case where M has

support precisely {m} as follows.

By Theorem 2.9, there exists a surjection ϕ : M −→N of graded F -modules such that

each composition factor of kerϕ has support bigger than {m}, and N has support {m}.

Since Hn
m(R) is a simple F -module that is not in kerϕ , it maps to an isomorphic copy that

is an F -submodule of N . Assuming that there is a splitting N = ϕ(Hn
m(R))⊕N ′ in the

category of graded F -modules, the composition

M
ϕ

−−→ N ϕ(Hn
m(R))⊕N ′ π1−−→ ϕ(Hn

m(R))
ϕ−1

−−→ Hn
m(R) ,

where π1 is the projection to the first component, provides a splitting of Hn
m(R) ⊂ M in

the category of graded F -modules.

We may thus assume that M is a graded F -finite module with support {m}; we need to

show that Hn
m(R)⊂M splits in the category of F -modules. Take ∗D(M) to be the minimal

root of M ; then M is a graded R{ f}-module by Proposition 2.7. Note that Mred =M, and M

has finite length as an R-module. Since homogeneous elements of M of nonzero degree are

necessarily nilpotent, it follows that M is concentrated in degree 0. Thus, M is annihilated

by m, and is a finite F{ f} module, where F is viewed as the residue field R/m.

Since Hn
m(R) is an F -submodule of M , there exists an F{ f}-module homomorphic

image N of M such that
∗D(N) = ∗D(M)∩Hn

m(R) .

By the following lemma, the surjection M −→ N splits in the category of F{ f}-modules.

Applying ∗H , the inclusion Hn
m(R)⊂M splits in the category of graded F -modules. �
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Remark 2.11. For R as in Corollary 2.10, we do not know whether Hn
m(R) is injective in

the category of graded F -modules.

Lemma 2.12. Let F be a separably closed field of positive characteristic. Then every exact

sequence of F{ f}-modules

0 −−→ L −−→ M −−→ N −−→ 0 ,

where L, M, N, are F-vector spaces of finite rank, splits in the category of F{ f}-modules.

Proof. We identify L with its image in M, and N with M/L. Using [Ho3, Theorem 4.2],

choose a basis e1, . . . ,eℓ for L such that f (ei) = ei for each i; when F is algebraically closed,

this also follows from [Di, page 233]. Similarly, N has a basis v1, . . . ,vn with f (v j) = v j

for each j. It suffices to prove that each v j lifts to an element w j ∈ M with f (w j) = w j .

Set v = v j and let ṽ in M be a lift of v. Since f (v) = v, it follows that f (ṽ)− ṽ is an

element of L. Thus, there exist elements ci ∈ F with

f (ṽ)− ṽ =
ℓ

∑
i=1

ciei .

For each i, the separable equation

T p −T + ci = 0

has a root ti in F. Setting

w = ṽ+
ℓ

∑
i=1

tiei ,

it is readily seen that f (w) = w. �

The following example of Ma shows that the corollary does not hold over arbitrary

fields; more generally, Ma computes the relevant Ext groups in [Ma, Theorem 4.5].

Example 2.13. We consider F -modules over the field F= Fp. Take M to be F⊕F with

structure morphism

θM : M −→ F(M ) , (a,b) 7−→
(
a⊗ 1,(a+ b)⊗ 1

)
.

Then F, with structure morphism

θF : F−→ F(F) , b 7−→ b⊗ 1 ,

may be identified with the F -submodule 0⊕F of M . We claim that the inclusion F⊂ M

does not split in the category of F -modules. Indeed, a splitting is a map of F-vector spaces

ϕ : M −→ F , (a,b) 7−→ aα + b

for some α in F, such that the following diagram commutes:

M
ϕ

−−→ F

θM

y
yθF

F(M )
F(ϕ)
−−→ F(F)

However, θF ◦ϕ(a,b) = (aα + b)⊗ 1, whereas

F(ϕ)◦θM (a,b) = F(ϕ)
(
a⊗ 1,(a+ b)⊗ 1

)
= F(ϕ)

(
a⊗ (1,1)+ b⊗ (0,1)

)

= a⊗ (α + 1)+ b⊗ 1 = (aα p + a+ b)⊗ 1 .

Thus, the commutativity forces α p + 1 = α , which is not possible for α ∈ Fp.
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Example 2.14. Let R = F[x1, . . . ,xn], where n > 1 and F is an algebraically closed field of

characteristic p > 0. By [Ma, Example 4.8], there exists an exact sequence

0 −−→ Hn
m(R) −−→ M −−→ R −−→ 0

that is not split in the category of F -finite modules. Since Hn
m(R) is an injective object

in the category of graded F -finite modules by Corollary 2.10, it follows that M is not a

graded F -module; thus, the category of graded F -modules is not closed—as a subcate-

gory of the category of F -modules—under extensions.

We record another consequence of Theorem 2.9:

Corollary 2.15. If M ′ and M ′′ are graded F -finite modules such that M ′ has sup-

port {m} and M ′′ has no composition factor with support {m}, then every extension

0 −−→ M ′ −−→ M −−→ M ′′ −−→ 0

in the category of graded F -modules is split.

Proof. By Theorem 2.9, there exists an F -module surjection M −→ M1 where M1 is an

F -module with support {m}, and the kernel of this surjection has no composition factor

with support {m}. Restricting to M ′, the surjection induces an isomorphism M ′ −→M1.

Thus, we have an F -module splitting M −→ M ′. �

Applying Theorem 2.9 to Proposition 2.8, we obtain the following theorem:

Theorem 2.16. Let R be a standard graded polynomial ring, where [R]0 is a field of prime

characteristic. Let m be the homogeneous maximal ideal of R, and I an arbitrary homoge-

neous ideal. For each nonnegative integer k, the following are equivalent:

(1) Among the composition factors of the Eulerian D-module ξ (Hk
I (R)), there is at least

one composition factor with support {m}.

(2) Among the composition factors of the graded F -finite module Hk
I (R), there is at

least one composition factor with support {m}.

(3) Hk
I (R) has a graded F -module homomorphic image with support {m}.

(4) The natural Frobenius action on [HdimR−k
m (R/I)]0 is not nilpotent.

Example 2.17. Consider the polynomial ring R=Fp[x1, . . . ,x6], where p is a prime integer.

Let m denote the homogeneous maximal ideal of R, and set I to be the ideal generated by

x1x2x3 , x1x2x4 , x1x3x5 , x1x4x6 , x1x5x6 , x2x3x6 , x2x4x5 , x2x5x6 , x3x4x5 , x3x4x6 ;

this is the Stanley-Reisner ideal for a triangulation of the real projective plane RP2 as

in [SW2, Example 5.2]. The ideal I height 3. We claim that H3
I (R) has a graded F -module

homomorphic image with support {m} if and only if p = 2.

For each k > 1, one has

[Hk+1
m (R/I)]0 = Hk

sing(RP
2 ; Z/pZ) ,

by Hochster’s formula, see, for example, [BH2, Section 5.3]. Using this,

[H3
m(R/I)]0 =

{
Z/2Z if p = 2 ,

0 if p > 2 .

The ring R/I is F-pure since I is a square-free monomial ideal; when p = 2, the Frobenius

action on [H3
m(R/I)]0 is thus injective. The claim now follows from Theorem 2.16.
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Corollary 2.18. Let R = Z[x1, . . . ,xn] be a polynomial ring with the N-grading [R]0 = Z

and degxi = 1 for each i. Let I be a homogeneous ideal, p a prime integer, and k a

nonnegative integer. Suppose that the Frobenius action on

[
Hn−k
(x1,...,xn)

(R/(I+ pR))
]

0

is nilpotent, and that the multiplication by p map

Hk+1
I (R)

xi

p
−−→ Hk+1

I (R)
xi

is injective for each i. Then the multiplication by p map on Hk+1
I (R) is injective.

Proof. The ring DZ(R) of differential operators on R is a free R-module with basis

∂
[t1]
1 · · · ∂

[tn]
n for (t1, . . . , tn) ∈ Nn ,

see [Gro2, Théorème 16.11.2]. Multiplication by p on R induces

−−→ Hk
I (R) −−→ Hk

I (R/pR)
δ

−−→ Hk+1
I (R)

p
−−→ Hk+1

I (R) −−→ ,

which is an exact sequence of DZ(R)-modules. Specifically, the kernel of multiplication

by p on Hk+1
I (R) is a DZ(R)-module; since it is annihilated by p, it is also a module over

DZ(R)/pDZ(R) = DFp
(R/pR) .

If this kernel is nonzero, then it is a homomorphic image of Hk
I (R/pR) in the category of

Eulerian DFp
(R/pR)-modules, supported precisely at the homogeneous maximal ideal m

of R/pR. But this is not possible, since the DFp
(R/pR)-module Hk

I (R/pR) has no compo-

sition factor with support {m} by Theorem 2.16. �

Example 2.19. Let E be an elliptic curve in P2
Q. Consider the Segre embedding of E ×P1

Q

in P5
Q. Set R = Z[x1, . . . ,x6], and let I ⊂ R be an ideal such that (R/I)⊗ZQ is the homoge-

neous coordinate ring of the embedding. For all but finitely many primes p, the reduction

of E modulo p is an elliptic curve that we denote by Ep. By Serre [Se] and Elkies [El]

respectively, there exist infinitely many prime integers p such that Ep is ordinary, and in-

finitely many such that Ep is supersingular.

Take a prime p for which Ep is an elliptic curve; then (R/I)⊗Z Fp is a homogeneous

coordinate ring for Ep ×P1
Fp

. Using the Künneth formula, one obtains

H2
m(R/(I+ pR)) = H1(Ep,OEp)⊗H0(P1

Fp
,OP1

Fp

) .

Hence, the Frobenius action on the rank one Fp-vector space H2
m(R/(I + pR)) may be

identified with the map

H1(Ep,OEp)⊗H0(P1
Fp
,OP1

Fp

)
f

−−→ H1(Ep,OEp)⊗H0(P1
Fp
,OP1

Fp

),

which is zero when Ep is supersingular, and nonzero when Ep is ordinary. It follows

that the module H2
m(R/(I + pR))st is zero when Ep is supersingular, and nonzero when

it is ordinary. By [HS, page 75] or [Ly5, Theorem 3.1], the same holds for H4
I (R/pR),

implying that the multiplication by p map

H4
I (R)

·p
−−→ H4

I (R)
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is surjective for infinitely many prime integers p, and also not surjective for infinitely

many p; see also [SW1]. Corollary 2.18 implies that the map is injective for each p for

which Ep is an elliptic curve, since
[
H3
m(R/(I+ pR))

]
0
= H1(Ep,OEp)⊗H1(P1

Fp
,OP1

Fp

) = 0 ,

and H4
I (R)xi

= 0 for each i because araIRxi
= 3; compare with [BBL+, Example 3.3].

3. PRELIMINARIES ON LOCAL COHOMOLOGY

The following theorem enables the calculation of the Bass numbers of certain local

cohomology modules in terms of singular cohomology:

Theorem 3.1. Consider the polynomial ring R = C[x1, . . . ,xn]. Let I be an ideal of R,

and m a maximal ideal. If k0 is a positive integer such that SuppHk
I (R) ⊆ {m} for each

integer k > k0. Then, for each k > k0, one has an isomorphism of R-modules

Hk
I (R)

∼= Hn
m(R)

µk ,

where µk is the C-rank of the singular cohomology group Hn+k−1
sing (Cn \Var(I) ; C).

If I and m are homogeneous with respect to the standard grading on R, then the dis-

played isomorphism is degree-preserving.

Proof. Set D to be the Weyl algebra R〈∂1, . . . ,∂n〉, where ∂ j denotes partial differentia-

tion with respect to the variable x j; this is the ring of C-linear differential operators on R.

Each Hk
I (R) is a holonomic D-module, see for example, [Ly1, Section 2] or [ILL+, Lec-

ture 23]. We claim that for each integer k with k > k0, the module Hk
I (R) is isomorphic, as a

D-module, to a finite direct sum of copies of the injective hull E = Hn
m(R) of R/m as an R-

module. This follows from Kashiwara’s equivalence, [Kas, Proposition 4.3]; alternatively,

see [Ly4, Lemma (c), page 208].

For each k > k0, set µk to be the C-rank of the socle of Hk
I (R); it follows that

Hk
I (R)

∼= Eµk .

Regard ∂ j as the endomorphism of D which sends a differential operator P to the com-

position ∂ j ·P. Then ∂1, . . . ,∂n are commuting endomorphisms of D . Let K•(∂∂∂ ;D) be the

Koszul complex on these endomorphisms; this is a complex of right D-modules. For a left

D-module M, set

dR(M) = K•(∂∂∂ ;D)⊗D M ,

which is typically a complex of infinite-dimensional C-vector spaces. Define dRi(M) to

be the i-th cohomology group of the complex dR(M). We regard dR(−) as a functor from

the category of D-modules to the category of complexes of C-vector spaces. Alternatively,

consider the map that is the projection from X = SpecR to a point; then dR(M) is the direct

image of M under the projection map; see [BGK+, Section VI.5].

If M is a holonomic D-module, then each dRi(M) is a C-vector space of finite rank

by [BGK+, Theorem VII.10.1]. It is straightforward to verify that

dRi(E) =

{
0 if i 6= n ;

C if i = n .

For k > k0, it follows that the complex dR(Hk
I (R)) is concentrated in cohomological de-

gree n, and that

dRn(Hk
I (R)) = Cµk .
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Let U be a Zariski open subset of X , and let Uan be the corresponding analytic open

subset. By the Poincaré Lemma, the complex K•(∂∂∂ ;D)⊗D OUan is a resolution of the

constant sheaf C on Uan. Grothendieck’s Comparison Theorem, [Gro1, Theorem 1], shows

that the hypercohomology of the complex K•(∂∂∂ ;D)⊗D OU coincides with the cohomology

of the constant sheaf on Uan, which is the singular cohomology of Uan.

For an element g of R, set Ug = X \Var(g). Since Ug is affine, and hence Uan
g is Stein,

the singular cohomology of Uan
g is the cohomology of the complex dR(Rg).

Let ggg = g1, . . . ,gm be generators of I, and consider the complex of left D-modules

C•(ggg;R) : 0 −→
⊕

i

Rgi
−→

⊕

i< j

Rgig j
−→ ·· · −→ Rg1···gm −→ 0 ,

that is supported in cohomological degrees 0, . . . ,m. For each p > 1, this complex has

cohomology H p(C•(ggg;R)) = H
p+1
I (R).

The sets Ugi
= X \Var(gi) form an affine open cover for U = X \Var(I), so the double

complex Q•,• with

Qp,q = Kq(∂∂∂ ;D)⊗D Cp(ggg;R)

is a local trivialization of dR(OU ). It follows that the cohomology of the total complex

of Q•,• is the singular cohomology of Uan, see [BT, Theorem 8.9], and the surrounding

discussion. Consider the spectral sequence associated to Q•,•, with the differentials

E p,q
r −→ E p−r+1,q+r

r .

Taking cohomology along the rows, one obtains the E1 page of the spectral sequence,

where the q-th column is dR(H p(C•(ggg;R))). Thus,

E
p,q
2 = dRq(H p(C•(ggg;R)))

= dRq(H p+1
I (R)) for p > 1 .

Suppose that p > max{1,k0 − 1}. Then E
p,q
2 = dRq(Eµp+1), which is zero for q 6= n. It

follows that the differentials to and from E
p,q
2 are zero, and so E

p,q
∞ = E

p,q
2 . In particular,

H
p+n
sing (U

an) = E p,n
∞ = Cµp+1 for p > max{1,k0 − 1} .

This proves the isomorphism asserted in the theorem for k > max{2,k0}.

It remains to consider the case where Hk
I (R) is m-torsion for each k > 1. If there exists a

minimal prime p of I with p 6=m, then Hk
p(Rp) = 0 for each k > 1, which forces p= 0 and

thus I = 0; the theorem holds trivially in this case. Lastly, we have the case where I has

radical m; without loss of generality, I = m. Then the only nonvanishing module H•
m(R)

is Hn
m(R) = E; since Cn \Var(m) is homotopic to the real sphere S2n−1, we have

Hn+k−1
sing (Cn \Var(m) ; C) =

{
0 if 1 6 k 6 n− 1

C if k = n .
�

If I and m are homogeneous, then Hk
I (R) and Hn

m(R) are Eulerian graded D-modules

and the isomorphism Hk
I (R)

∼= Hn
m(R)

µk is degree-preserving by [MZ, Theorem 1.1].

Arithmetic rank. The arithmetic rank of an ideal I of a ring A, denoted araI, is the least

integer k such that

rad I = rad(g1, . . . ,gk)A

for elements g1, . . . ,gk of A. It is readily seen that H i
I(A) = 0 for each i > ara I. The

corresponding result for singular cohomology is the following, see [BS, Lemma 3]:
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Lemma 3.2. Let W ⊆ W̃ be affine varieties over C, such that dimW̃ \W is nonsingular of

pure dimension d. If there exist k polynomials f1, . . . , fk with

W = W̃ ∩Var( f1, . . . , fk) ,

then

Hd+i
sing(W̃ \W ; C) = 0 for each i > k .

Lemma 3.3. Let B −→ A be a homomorphism of commutative rings; let I be an ideal of B.

If I can be generated up to radical by k elements, then

Hk
I (B)⊗B A ∼= Hk

IA(A) .

Proof. Let b1, . . . ,bk be elements of B that generate I up to radical. Computing Hk
I (B)

using a Čech complex on the bi, one obtains Hk
I (B) as the cokernel of the homomorphism

∑i Bb1···b̂i···bk
−−→ Bb1···bk

.

Since the functor −⊗B A is right-exact, Hk
I (B)⊗B A is isomorphic to the cokernel of

∑i Ab1···b̂i···bk
−−→ Ab1···bk

,

which is the local cohomology module Hk
IA(A). �

The a-invariant. Let A be an N-graded ring such that [A]0 is a field; let m be the ho-

mogeneous maximal ideal of A. Following [GW, Definition 3.1.4], the a-invariant of A,

denoted a(A), is the largest integer k such that

[HdimA
m (A)]k 6= 0 .

The following lemma is taken from [HH, Discussion 7.4]:

Lemma 3.4. Let A be an N-graded ring with [A]0 = Z, that is finitely generated as an

algebra over [A]0. Assume, moreover, that A is a free Z-module. Let p be a prime integer.

If the rings A/pA and A⊗ZQ are Cohen-Macaulay, then

a(A/pA) = a(A⊗ZQ) .

Proof. The freeness hypothesis implies that for each integer n, one has

rankFp
[A/pA]n = rankZ [A]n = rankQ [A⊗ZQ]n ,

so A/pA and A⊗ZQ have the same Hilbert-Poincaré series; the rings are Cohen-Macaulay,

so the Hilbert-Poincaré series determines the a-invariant. �

Suppose A is an N-graded normal domain that is finitely generated over a field [A]0 of

characteristic zero. Consider a desingularization ϕ : Z −→ SpecA, i.e., a proper birational

morphism with Z a nonsingular variety. Then A has rational singularities if

Riϕ∗OZ = 0 for each i > 1;

the vanishing is independent of ϕ . By Flenner [Fl] or Watanabe [Wat], a(A) is negative

whenever A has rational singularities. By Boutot’s theorem [Bo], direct summands of

rings with rational singularities have rational singularities; specifically, if A is the ring of

invariants of a linearly reductive group acting linearly on a polynomial ring, then a(A)< 0.
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Associated primes of local cohomology. Huneke [Hu, Problem 4] asked whether local

cohomology modules of Noetherian rings have finitely many associated prime ideals. A

counterexample was given by Singh [Si1], see Example 3.5 below, by constructing p-

torsion elements for each prime integer p. The same paper disproved a conjecture of

Hochster about p-torsion elements in H3
I2
(Z[X ]), where X is a 2× 3 matrix of indeter-

minates, and motivated our study of p-torsion in local cohomology modules Hk
It
(Z[X ]),

for It a determinantal ideal; this is completely settled by Theorem 1.2 of the present paper.

Example 3.5. Let A be the hypersurface Z[u,v,w,x,y,z]/(ux+ vy+wz), and let a be the

ideal (x,y,z). By [Si1] the module H3
a(A) has p-torsion for each prime integer p, equiva-

lently, H3
a(A), viewed as an Abelian group, contains a copy of Z/pZ for each p. Chan [Ch]

proved that H3
a(A) contains a copy of each finitely generated Abelian group; moreover, the

ring and module in question have a Z4-grading, and Chan shows that any finitely generated

Abelian group may be embedded into a single Z4-graded component.

When R is a regular ring, Hk
a(R) is conjectured to have finitely many associated prime

ideals, [Ly1, Remark 3.7]. This conjecture is now known to be true when R has prime

characteristic by Huneke and Sharp [HS]; when R is local or affine of characteristic zero

by Lyubeznik [Ly1]; when R is an unramified regular local ring of mixed characteristic

by [Ly3]; and when R is a smooth Z-algebra by [BBL+]. For rings R of equal character-

istic, local cohomology modules Hk
a(R) with infinitely many associated prime ideals were

constructed by Katzman [Kat], and subsequently Singh and Swanson, [SS].

A related question is whether, for Noetherian rings A, the sets of primes that are minimal

in the support of Hk
a(A) is finite, equivalently, whether the support is closed in SpecA. For

positive answers on this, we point the reader towards [HKM] and the references therein.

4. DETERMINANTAL IDEALS

We prove Theorem 1.2 using the results of the previous sections; we begin with a well-

known lemma, see, for example, [BV, Proposition 2.4]. We sketch the proof since it is an

elementary idea that is used repeatedly.

Lemma 4.1. Consider the matrices of indeterminates X =(xi j) where 16 i6m, 16 j 6 n,

and Y = (yi j) where 2 6 i 6 m, 2 6 j 6 n. Set R = Z[X ] and R′ = Z[Y ]. Then the map

R′[x11, . . . ,xm1, x12, . . . ,x1n]x11
−→ Rx11

with yi j 7−→ xi j −
xi1x1 j

x11

is an isomorphism. Moreover, Rx11
is a free R′-module, and for each t > 1, one has

It(X)Rx11
= It−1(Y )Rx11

under this isomorphism.

Proof. After inverting the element x11, one may perform row operations to transform X into

a matrix where x11 is the only nonzero entry in the first column. Then, after subtracting

appropriate multiples of the first column from other columns, one obtains a matrix



x11 0 . . . 0

0 x′22 . . . x′2n
...

...
...

0 x′m2 . . . x′mn


 where x′i j = xi j −

xi1x1 j

x11

;
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the asserted isomorphism is then yi j 7−→ x′i j. The ideal It(X)Rx11
is generated by the size t

minors of the displayed matrix, and hence equals It−1(Y )Rx11
. The assertion that Rx11

is a

free R′-module follows from the fact that the ring extension

Z
[
xi j − xi1x1 j/x11 | 2 6 i 6 m, 2 6 j 6 n

]
⊂ Z [X , 1/x11]

is obtained by adjoining indeterminates x11, . . . ,xm1,x12, . . . ,x1n, and inverting x11. �

Proof of Theorem 1.2. Multiplication by a prime integer p on R induces the exact sequence

−−→ Hk
It
(R/pR)

δ
−−→ Hk+1

It
(R)

p
−−→ Hk+1

It
(R) −−→ Hk+1

It
(R/pR) −−→ ,

and (1) is precisely the statement that each connecting homomorphism δ as above is zero.

The ideal ItR/pR is perfect by Hochster-Eagon [HE], i.e., R/(It + pR) is a Cohen-Macaulay

ring; alternatively, see [DEP, Section 12]. By [PS, Proposition III.4.1], it follows that

Hk
It
(R/pR) = 0 if and only if k 6= heightIt .

Thus, to prove (1) and (2), it suffices to prove the injectivity of the map

(4.1.1) H
height It+1
It

(R)
p

−−→ H
height It+1
It

(R) .

We proceed by induction on t. The ideal I1 is generated by a regular sequence, so the

injectivity holds when t = 1 as the modules in (4.1.1) are zero.

We claim that the a-invariant of the ring R/(It + pR) is negative. This follows from the

fact that R/(It + pR) is F-rational, see [HH, Theorem 7.14]; alternatively, the a-invariant

is computed explicitly in [BH1, Corollary 1.5] as well as [Gra]. In particular, one has
[
H

dimR/(It+pR)
(x11,...,xmn)

(R/(It + pR))
]

0
= 0 .

By Corollary 2.18, it now suffices to show that the map (4.1.1) is injective upon invert-

ing each xi j, without loss of generality, x11. We use the matrix Y as in Lemma 4.1 with

identifications yi j = xi j − xi1x1 j/x11, and R′ = Z[Y ]. The ring Rx11
is a free R′-module by

Lemma 4.1, so one has an R′-module isomorphism Rx11
∼=

⊕
R′, and so

H
heightIt (X)+1

It (X)
(Rx11

) = H
height It (X)+1

It−1(Y )
(Rx11

) ∼=
⊕

H
heightIt (X)+1

It−1(Y )
(R′) .

But

heightIt(X) = (m− t + 1)(n− t+ 1) = heightIt−1(Y ) ,

and multiplication by p is injective on

H
heightIt−1(Y)+1

It−1(Y )
(R′)

by the inductive hypothesis. This completes the proof of (1) and (2).

We next verify that Hmn−t2+1
It

(Z[X ]) is a Q-vector space under the hypotheses of (3).

By (2), it is enough to check that mn− t2+ 1 is greater than

heightIt = (m− t + 1)(n− t+ 1) .

After rearranging terms, the desired inequality reads

(t − 1)(m+ n− 2t) > 0 ,

and the hypotheses on t ensure that this is indeed the case. Hence

Hmn−t2+1
It

(Z[X ]) ∼= Hmn−t2+1
It

(Q[X ]) .
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We claim that Hmn−t2+1
It

(Q[X ]) is m-torsion; it suffices to check that it vanishes upon in-

verting, say, x11. Using Lemma 4.1 as before, one has

Hmn−t2+1
It (X) (Q[X ])x11

∼=
⊕

Hmn−t2+1
It−1(Y)

(Q[Y ]) ,

but these modules are zero since mn− t2+ 1 is greater than

ara It−1(Y ) = (m− 1)(n− 1)− (t− 1)2 + 1 .

Hence the support of Hmn−t2+1
It

(Q[X ]) is contained in {m}; of course, Hk
It
(Q[X ]) = 0 for

all k > mn− t2+ 1. By the D-module arguments as in the proof of Theorem 3.1, we have

Hmn−t2+1
It

(Q[X ]) ∼= Hmn
m (Q[X ])µ ,

and it remains to determine the integer µ . It suffices to compute this after base change

to C, so we work instead with C[X ]. By [BS, Lemma 2], one has

H2mn−t2

sing (Cmn \Var(It) ; C) ∼= C ,

and Theorem 3.1 now implies that µ = 1. �

We examine Theorem 1.2 for a 2× 3 matrix of indeterminates:

Example 4.2. Let R = Z[u,v,w,x,y,z] be a polynomial ring over Z. Take I2 to be the ideal

generated by the size 2 minors of the matrix
(

u v w

x y z

)
.

Let p be a prime integer, and set R = R/pR. Multiplication by p on R induces the coho-

mology exact sequence

−−→ H2
I2
(R)

π
−−→ H2

I2
(R)

δ
−−→ H3

I2
(R)

p
−−→ H3

I2
(R) −−→ 0 ,

bearing in mind that H3
I2
(R) = 0 since I2 is perfect. Theorem 1.2 implies that the connecting

homomorphism δ is zero i.e., that π is surjective; we examine this in elementary terms.

Towards this, view H2
I2
(R) as the direct limit

lim
−→
e∈N

Ext2
R

(
R/(∆

[pe]
1 ,∆

[pe]
2 ,∆

[pe]
3 ), R

)
,

where ∆1 = vz−wy, ∆2 = wx− uz, and ∆3 = uy− vx. The complex

0 −−→ R
2

[
u x
v y
w z

]

−−−→ R
3 [∆1 ∆2 ∆3 ]
−−−−−−→ R −−→ 0

is a free resolution of R/(∆1,∆2,∆3). By the flatness of the Frobenius map, it follows that

0 −−→ R
2




upe

xpe

vpe
ype

wpe
zpe





−−−−−−→ R
3

[
∆

pe

1 ∆
pe

2 ∆
pe

3

]

−−−−−−−−→ R −−→ 0

is a free resolution of R/(∆
[pe]
1 ,∆

[pe]
2 ,∆

[pe]
3 ) for each e > 1. Hence H2

I2
(R) is generated by

elements αe and βe corresponding to the relations

upe

∆pe

1 + vpe

∆pe

2 +wpe

∆pe

3 ≡ 0 mod pR ,

xpe

∆
pe

1 + ype

∆
pe

2 + zpe

∆
pe

3 ≡ 0 mod pR ,
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respectively, where e > 1. As π is surjective, these relations must lift to R; indeed, in [Si1],

we constructed the following equational identity:

∑
i, j

(
k

i+ j

)(
k+ i

k

)(
k+ j

k

)[
uk+1∆2k+1

1 (−wx)i(vx) j∆k−i
2 ∆k− j

3

+ vk+1∆2k+1
2 (−uy)i(wy) j∆k−i

3 ∆k− j
1

+wk+1∆2k+1
3 (−vz)i(uz) j∆k−i

1 ∆k− j
2

]
= 0

for each k > 0. Viewed as a relation on the elements ∆2k+1
1 , ∆2k+1

2 , and ∆2k+1
3 , the identity

yields an element of H2
I2
(R) for each k. Take k = pe − 1. Since

(
k

i+ j

)(
k+ i

k

)(
k+ j

k

)
≡ 0 mod p unless (i, j) = (0,0) ,

the element of H2
I2
(R) maps to an element of H2

I2
(R) corresponding to the relation

(
∆1∆2∆3

)pe−1
[
upe

∆pe

1 + vpe

∆pe

2 +wpe

∆pe

3

]
≡ 0 mod pR ,

i.e., precisely to αe. The case of βe is, of course, similar.

5. THE VANISHING THEOREM

Let M be an m× n matrix with entries from a commutative Noetherian ring A. Set a to

be the ideal generated by the size t minors of M. By Bruns [Br, Corollary 2.2], the ideal a

can be generated up to radical by mn− t2 + 1 elements. It follows that cdR(a), i.e., the

cohomological dimension of a, satisfies

cdA(a) 6 mn− t2+ 1 .

While this inequality is sharp in general, [BS, Corollary, page 440], we can do better when

additional conditions are imposed upon the ring A:

Theorem 5.1. Let M = (mi j) be an m× n matrix with entries from a commutative Noe-

therian ring A. Let t be an integer with 2 6 t 6 min{m,n} that differs from at least one

of m and n. Set a to be the ideal generated by the size t minors of M. Then:

(1) The local cohomology module Hmn−t2+1
a (A) is a Q-vector space, and thus vanishes

if the canonical homomorphism Z−→ A is not injective.

(2) Suppose that dim A < mn, or, more generally, that dim A⊗ZQ< mn. Then one has

cdA(a)< mn− t2+ 1; in particular, Hmn−t2+1
a (A) = 0.

(3) If the images of mi j in A⊗Z Q are algebraically dependent over a field that is a

subring of A⊗ZQ, then cdA(a)< mn− t2+ 1.

Remark 5.2. The hypotheses of the theorem exclude t = 1 and t = m = n since, in these

cases, assertion (1) need not hold.

The cohomological dimension bounds in (2) and (3) are sharp: take R =Q[X ] to be the

ring of polynomials in an m×n matrix of indeterminates X , and set A = R/x11R; note that

dim A < mn. Let t be as in Theorem 5.1. Multiplication by x11 on R induces the local

cohomology exact sequence

−−→ Hmn−t2

It A
(A)

δ
−−→ Hmn−t2+1

It
(R)

x11−−→ Hmn−t2+1
It

(R) −−→ 0 .

By Theorem 1.2, the support of Hmn−t2+1
It

(R) is precisely the homogenous maximal ideal

of R, so imageδ = kerx11 is nonzero. It follows that Hmn−t2

It A
(A) is nonzero.
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Proof of Theorem 5.1. Set R to be the polynomial ring Z[X ], where X is an m× n matrix

of indeterminates. By Theorem 1.2 we have

Hmn−t2+1
It

(R) ∼= Hmn
m (Q⊗Z R),

where m = (x11, . . . ,xmn)R. Let R −→ A be the ring homomorphism with xi j 7−→ mi j; the

extended ideal ItA equals a. Since It is generated up to radical by mn− t2+1 elements, and

m by mn elements, Lemma 3.3 provides the first and the third of the isomorphisms below:

(5.2.1) Hmn−t2+1
a (A) ∼= Hmn−t2+1

It
(R)⊗R A ∼= Hmn

m (Q⊗Z R)⊗R A ∼= Hmn
m (Q⊗Z A) .

It follows that Hmn−t2+1
a (A) is a Q-vector space, which settles (1).

For (2), if dim A ⊗Z Q < mn, then Hmn
m (A ⊗Z Q) vanishes since the cohomological

dimension is bounded above by the Krull dimension of the ring. Thus, by (5.2.1),

Hmn−t2+1
a (A) = 0 .

Since a can be generated up to radical by mn− t2+1 elements, Hk
a(A) also vanishes for all

integers k with k > mn− t2+ 1. Hence, cdA(a)< mn− t2+ 1.

For (3), let F be the field, and set B to be the F-subalgebra of A⊗ZQ generated by the

images of mi j. Take b to be the ideal of B generated by the size t minors. Then dim B<mn,

so (2) gives Hmn−t2+1
b (B) = 0. Using (1) along with Lemma 3.3, it follows that

Hmn−t2+1
a (A) ∼= Hmn−t2+1

a (A⊗ZQ) ∼= Hmn−t2+1
b (B)⊗B (A⊗ZQ) = 0 . �

6. PFAFFIANS OF ALTERNATING MATRICES

We prove the analogues of Theorem 1.2 and Theorem 5.1 for Pfaffians of alternating

matrices. Let t be an even integer. The ideal generated by the Pfaffians of the t× t diagonal

submatrices of an n× n alternating matrix of indeterminates has height
(

n− t + 2

2

)
,

see for example [JP, Section 2], and its arithmetic rank is
(

n

2

)
−

(
t

2

)
+ 1

by Barile, [Ba2, Theorem 4.1]. We need the following result, which is the analogue of

Lemma 4.1 for alternating matrices; see [JP, Lemma 1.2] or [Ba2, Lemma 1.3]:

Lemma 6.1. Let X be an n× n alternating matrix of indeterminates; set R = Z[X ]. Then

there exists an (n− 2)× (n− 2) generic alternating matrix Y with entries from Rx12
, such

that Rx12
is a free Z[Y ]-module, and

Pt(X)Rx12
= Pt−2(Y )Rx12

for each even integer t > 4 .

Theorem 6.2. Let R = Z[X ] be a polynomial ring, where X is an n× n alternating matrix

of indeterminates. Let t be an even integer, and let Pt denote the ideal generated by the

Pfaffians of the size t diagonal submatrices of X. Then:

(1) Hk
Pt
(R) is a torsion-free Z-module for all integers k.

(2) If k differs from the height of Pt , then Hk
Pt
(R) is a Q-vector space.

(3) Let m be the homogeneous maximal ideal of Q[X ]. If 2 < t < n, then

H
(n

2)−(
t
2)+1

Pt
(Z[X ]) ∼= H

(n
2)

m (Q[X ]) .



LOCAL COHOMOLOGY MODULES SUPPORTED AT DETERMINANTAL IDEALS 21

Proof. We follow the logical structure of the proof of Theorem 1.2. Let p be a prime

integer. The ring R/(Pt + pR) is Cohen-Macaulay by [KL] or [Mar1, Mar2], so the mod-

ule Hk
Pt
(R/pR) vanishes for k 6= heightPt by [PS, Proposition III.4.1]. For (1) and (2), it

thus suffices to prove the injectivity of the map

(6.2.1) H
heightPt+1
Pt

(R)
p

−−→ H
heightPt+1
Pt

(R) ,

and this is by induction on t, the case t = 2 being trivial since P2 is generated by a regular

sequence. The a-invariant of R/(Pt + pR) is computed explicitly in [BH1, Corollary 1.7];

alternatively, (R/Pt)⊗ZQ is the ring of invariants of the symplectic group—which is lin-

early reductive in the case of characteristic zero—and hence has rational singularities;

using Lemma 3.4, it follows that the a-invariant of the ring R/(Pt + pR) is negative.

Using Lemma 6.1, the inductive hypothesis implies that (6.2.1) is injective upon invert-

ing x12, equivalently, any xi j. But then Corollary 2.18 yields the injectivity of (6.2.1).

For (3), note that H
(n

2)−(
t
2)+1

Pt
(Z[X ]) is a Q-vector space by (2), since the hypothesis

(t − 2)(n− t) > 0

is equivalent to (
n

2

)
−

(
t

2

)
+ 1 >

(
n− t+ 2

2

)
.

To verify that H
(n

2)−(
t
2)+1

Pt
(Q[X ]) is m-torsion, it suffices to check that

H
(n

2)−(
t
2)+1

Pt
(Q[X ])x12

= 0 ,

and this follows from Lemma 6.1 since(
n

2

)
−

(
t

2

)
+ 1 > araPt−2(Y ) =

(
n− 2

2

)
−

(
t − 2

2

)
+ 1 .

By Theorem 3.1, it follows that

H
(n

2)−(
t
2)+1

Pt
(Q[X ]) ∼= H

(n
2)

m (Q[X ])µ ,

where µ is the rank of the singular cohomology group

H
2(n

2)−(
t
2)

sing (L\Var(Pt) ; C)

as a complex vector space, where L is the affine space C(
n
2). The computation of this

cohomology follows entirely from [Ba2]; however, since it is not explicitly recorded, we

include a sketch for the convenience of the reader. The cohomology groups below are with

coefficient group C.

Let V = Var(Pt) and Ṽ = Var(Pt+2). Then Ṽ \V is smooth by [KL, Theorem 17], and

of complex dimension (
n

2

)
−

(
n− t

2

)
.

Consider the exact sequence of cohomology with compact support:

−−→ H
(t

2)
c (L\ Ṽ ) −−→ H

(t
2)

c (L\V ) −−→ H
(t

2)
c (Ṽ \V) −−→ H

(t
2)+1

c (L\ Ṽ) −−→ .

We claim that the middle map is an isomorphism; for this, it suffices to prove that

H
(t

2)
c (L\ Ṽ ) = 0 = H

(t
2)+1

c (L\ Ṽ) .
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By Poincaré duality, this is equivalent to

H
2(n

2)−(
t
2)

sing (L\ Ṽ ) = 0 = H
2(n

2)−(
t
2)−1

sing (L\ Ṽ) ,

which follows from Lemma 3.2 since Pt+2 has arithmetic rank
(

n
2

)
−
(

t+2
2

)
+ 1.

Using Poincaré duality once again, we have

H
2(n

2)−(
t
2)

sing (L\V ) ∼= H
2(n

2)−2(n−t
2 )−(

t
2)

sing (Ṽ \V) .

By [Ba2, page 73], the space Ṽ \V is a fiber bundle over the Grassmannian Gn−t,n, with

the fiber being the space Alt(t) of invertible alternating matrices of size t; this is homo-

topy equivalent to a compact, connected, orientable manifold of real dimension
(

t
2

)
. Since

Gn−t,n is simply connected, the Leray spectral sequence

E
p,q
2 = H

p
sing(Gn−t,n ; H

q
sing(Alt(t))) =⇒ H

p+q
sing (Ṽ \V )

shows that

H
2(n

2)−2(n−t
2 )−(

t
2)

sing (Ṽ \V ) ∼= C ,

and it follows that µ = 1. �

We next record the vanishing theorem for local cohomology supported at Pfaffian ideals:

Theorem 6.3. Let M = (mi j) be an n×n alternating matrix with entries from a commuta-

tive Noetherian ring A. Let t be even with 2 < t < n, and set a to be the ideal generated by

the Pfaffians of the size t diagonal submatrices of M. Set c =
(

n
2

)
−
(

t
2

)
+ 1. Then:

(1) The local cohomology module Hc
a(A) is a Q-vector space, and thus vanishes if the

canonical homomorphism Z−→ A is not injective.

(2) If dim A⊗ZQ <
(

n
2

)
, or, more generally, if the images of mi j in A⊗ZQ are alge-

braically dependent over a field that is a subring of A⊗ZQ, then cdA(a)< c.

Proof. Set R = Z[X ], where X is an n× n alternating matrix of indeterminates. Define an

R-algebra structure on A using xi j 7−→ mi j. The theorem now follows from

Hc
Pt
(R) ∼= H

(n
2)

m (Q⊗Z R),

using arguments as in the proof of Theorem 5.1. �

Remark 6.4. Once again, the bound on cdA(a) is sharp: Take R =Q[X ] to be a polynomial

ring in an n× n alternating matrix of indeterminates. As in Remark 5.2, set A = R/x12R.

Then Hc−1
Pt A

(A) is nonzero.

7. MINORS OF SYMMETRIC MATRICES

We prove the analogue of Theorem 1.2 for minors of symmetric matrices, and also the

analogue of Theorem 5.1 in the case of minors of odd size; the corresponding result is not

true for even sized minors, see Remark 7.5. The ideal It generated by the size t minors of

an n× n symmetric matrix of indeterminates has height
(

n− t + 2

2

)
,

see, for example [Jo, Section 2]. By [Ba2, Theorems 3.1, 5.1], the arithmetic rank of It is

ara It =

{(
n
2

)
−
(

t
2

)
+ 1 if the characteristic equals 2, and t is even,(

n+1
2

)
−
(

t+1
2

)
+ 1 else.
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If t is odd, and the symmetric matrix of indeterminates is over a field of characteristic zero,

then the cohomological dimension cd(It) equals
(

n+ 1

2

)
−

(
t + 1

2

)
+ 1 .

Theorem 7.1. Let R = Z[X ] be a polynomial ring, where X is a symmetric matrix of

indeterminates. Let It denote the ideal generated by the size t minors of X. Then:

(1) Hk
It
(R) is a torsion-free Z-module for all integers t,k.

(2) If k differs from the height of It , then Hk
It
(R) is a Q-vector space.

(3) Let m be the homogeneous maximal ideal of Q[X ]. If t is odd with 1 < t < n, then

H
(n+1

2 )−(t+1
2 )+1

It
(Z[X ]) ∼= H

(n+1
2 )

m (Q[X ]) .

The analogue of Lemma 4.1 for symmetric matrices is the following; for a proof, see

[MV, Lemme 2] or [Jo, Lemma 1.1] or [Ba2, Lemma 1.2].

Lemma 7.2. Let X be an n× n symmetric matrix of indeterminates. Set R = Z[X ] and

∆ = x11x22 − x2
12. Then:

(1) There exists an (n− 1)× (n− 1) generic symmetric matrix Y with entries from Rx11

such that Rx11
is a free Z[Y ]-module, and

It(X)Rx11
= It−1(Y )Rx11

for each t > 2 .

(2) There exists an (n− 2)× (n− 2) generic symmetric matrix Y ′ with entries from R∆

such that R∆ is a free Z[Y ′]-module, and

It(X)R∆ = It−2(Y
′)R∆ for each t > 3 .

Proof of Theorem 7.1. For the most part, the proof is similar to that of Theorem 1.2 and

Theorem 6.2: The ring R/(It + pR) is Cohen-Macaulay by Kutz [Ku], so Hk
It
(R/pR) van-

ishes for k 6= heightIt by [PS, Proposition III.4.1]. For (1) and (2), it suffices to prove the

injectivity of the map

(7.2.1) H
height It+1
It

(R)
p

−−→ H
height It+1
It

(R) ,

and this is by induction on t, the case t = 1 being trivial since I1 is generated by a regular

sequence. The a-invariant of R/(It + pR) is computed in [Ba1] as well as [Co, Section 2.2];

alternatively, (R/It)⊗ZQ is the ring of invariants of the orthogonal group, and hence has

rational singularities, and so R/(It + pR) has a negative a-invariant using Lemma 3.4.

Using Lemma 7.2, the inductive hypothesis implies that (7.2.1) is injective upon invert-

ing x11 as well as upon inverting ∆. The radical of the ideal generated by the elements xii

for 1 6 i 6 n and x j jxkk − x2
jk for j < k is (x11,x12, . . . ,xnn), so the map (7.2.1) is indeed

injective by Corollary 2.18.

For (3), note that H
(n+1

2 )−(t+1
2 )+1

It
(Z[X ]) is a Q-vector space, since (t − 1)(n− t) > 0

ensures that (
n+ 1

2

)
−

(
t + 1

2

)
+ 1 >

(
n− t+ 2

2

)
.

To verify that H
(n+1

2 )−(t+1
2 )+1

It
(Q[X ]) is m-torsion, it suffices to check that

H
(n+1

2 )−(t+1
2 )+1

It
(Q[X ])x11

= 0 = H
(n+1

2 )−(t+1
2 )+1

It
(Q[X ])∆ .
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By Lemma 7.2, it is enough to check that
(

n+ 1

2

)
−

(
t + 1

2

)
+ 1 > ara It−1(Y ) =

(
n

2

)
−

(
t

2

)
+ 1

and that (
n+ 1

2

)
−

(
t + 1

2

)
+ 1 > araIt−2(Y

′) =

(
n− 1

2

)
−

(
t − 1

2

)
+ 1 ,

which is indeed the case. Theorem 3.1 now implies that

H
(n+1

2 )−(t+1
2 )+1

It
(Q[X ]) ∼= H

(n+1
2 )

m (Q[X ])µ ,

with µ being the rank of the singular cohomology group

H
2(n+1

2 )−(t+1
2 )

sing (L\Var(Pt) ; C) ,

where L = C(
n+1

2 ). This, again, follows from [Ba2], though we sketch a proof:

Let V = Var(It) and Ṽ = Var(It+1). Then Ṽ \V is smooth by [Ba2, Theorem 2.2], and

of complex dimension (
n+ 1

2

)
−

(
n− t+ 1

2

)
.

Consider the exact sequence of cohomology with compact support:

H
(t+1

2 )
c (L\ Ṽ) −−→ H

(t+1
2 )

c (L\V ) −−→ H
(t+1

2 )
c (Ṽ \V) −−→ H

(t+1
2 )+1

c (L\ Ṽ ) .

The ideal It+1 has arithmetic rank
(

n+1
2

)
−
(

t+2
2

)
+ 1, so Lemma 3.2 implies that

H
2(n+1

2 )−(t+1
2 )

sing (L\ Ṽ ) = 0 = H
2(n+1

2 )−(t+1
2 )−1

sing (L\ Ṽ) .

By Poincaré duality, one then has

H
(t+1

2 )
c (L\ Ṽ ) = 0 = H

(t+1
2 )+1

c (L\ Ṽ) .

Thus, Poincaré duality gives

H
2(n+1

2 )−(t+1
2 )

sing (L\V) ∼= H
2(n+1

2 )−2(n−t+1
2 )−(t+1

2 )
sing (Ṽ \V) .

By [Ba2, page 68], the space Ṽ \V is a fiber bundle over the Grassmannian Gn−t,n, with the

fiber being the space Sym(t) of invertible symmetric matrices of size t; this is homotopy

equivalent to a compact, connected manifold of real dimension
(

t+1
2

)
, and when t is odd,

the manifold is orientable. The Leray spectral sequence

E
p,q
2 = H

p
sing(Gn−t,n ; H

q
sing(Sym(t))) =⇒ H

p+q
sing (Ṽ \V)

now gives

H
2(n+1

2 )−2(n−t+1
2 )−(t+1

2 )
sing (Ṽ \V ) ∼= C ,

completing the proof. �

Theorem 7.3. Let M =(mi j) be an n×n symmetric matrix with entries from a commutative

Noetherian ring A. Let t be an odd integer with 1< t < n, and set a to be the ideal generated

by the size t minors of M. Set c =
(

n+1
2

)
−
(

t+1
2

)
+ 1. Then:

(1) The local cohomology module Hc
a(A) is a Q-vector space, and thus vanishes if the

canonical homomorphism Z−→ A is not injective.
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(2) If dim A⊗ZQ <
(

n+1
2

)
, or, more generally, if the images of mi j in A⊗ZQ are alge-

braically dependent over a field that is a subring of A⊗ZQ, then cdA(a)< c.

Proof. The proof is similar to that of Theorem 5.1. �

Remark 7.4. The bound on cdA(a) above is sharp: Take R =Q[X ] to be a polynomial ring

in an n×n symmetric matrix of indeterminates. The module Hc
It
(R) is m-torsion for t odd,

and it follows as in Remark 5.2, that Hc−1
It A

(A) is nonzero for A = R/x11R.

Remark 7.5. Let R =Q[X ] be a polynomial ring in an n×n symmetric matrix of indeter-

minates, and consider the ideal I2 generated by the size 2 minors of X . Then cdR(I2) =
(

n
2

)

by [Og, Example 4.6]. Set A = R/(x11,x22, . . . ,xnn). Then the ideal I2A is primary to the

homogeneous maximal ideal of A, and hence

cdA(a) = dim A =

(
n

2

)
.

Thus, while dim A < dim R, we have cdA(I2A) = cdR(I2).

8. A QUESTION ON ARITHMETIC RANK

The vanishing result, Theorem 5.1, raises the following question:

Question 8.1. Let A be a polynomial ring over a field, and a the ideal generated by the

size t minors of an m× n matrix with entries from A. Suppose dim A < mn, and that t

differs from at least one of m,n. Can a be generated up to radical by mn− t2 elements?

There are, of course, corresponding questions when M is a symmetric or alternating

matrix. While we admittedly have no approach to these questions, we record two examples:

Example 8.2. This is an example from [Ba3]. Let A be the polynomial ring F[v,w,x,y,z],
and let a be the ideal generated by the size two minors of

(
0 v w

x y z

)
,

i.e., a = (vx, wx, vz−wy). Then araa = 2, since heighta = 2, and a is the radical of the

ideal generated by

f = wx2 + z(vz−wy) and g = vx2 + y(vz−wy) ;

to see this, note that v f −wg = (vz−wy)2.

The following example, and generalizations, may be found in [Va]; see also [BV, Ba4].

Example 8.3. Let A be the polynomial ring F[u,v,w,x,y], and let a be the ideal generated

by the size two minors of (
u v w

v x y

)
.

Then, again, araa= 2, since a is the radical of the ideal generated by v2 − ux and

det




u v w

v x y

w y 0


 ,

see, for example, [Va, Example 2.2].



26 GENNADY LYUBEZNIK, ANURAG K. SINGH, AND ULI WALTHER

9. HOCHSTER’S MONOMIAL CONJECTURE

The vanishing theorems proved earlier in this paper suggest an approach to Hochster’s

monomial conjecture, [Ho1]; recall that the conjecture says:

Conjecture 9.1. Let x1, . . . ,xd be a system of parameters for a local ring A. Then

xt
1 · · ·x

t
d /∈

(
xt+1

1 , . . . , xt+1
d

)
A for each t ∈ N .

The conjecture was proved for rings containing a field by Hochster, in the same paper

where it was first formulated; the mixed characteristic case remains unresolved for rings of

dimension greater than three, as do its equivalent formulations, the direct summand con-

jecture, the canonical element conjecture, and the improved new intersection conjecture.

The case where dim A 6 2 is straightforward, while Heitmann [He] proved these equiva-

lent conjectures for rings of dimension three. Related homological conjectures including

Auslander’s zerodivisor conjecture and Bass’s conjecture were proved by Roberts [Ro1]

for rings of mixed characteristic.

The following approach to Conjecture 9.1 was proposed by Hochster, [Ho2, Section 6]:

if the monomial conjecture is false, then there exists a local ring (A,m) with system of

parameters x1, . . . ,xd , and elements y1, . . . ,yd ∈ A such that

xt
1 · · ·x

t
d =

d

∑
i=1

yix
t+1
i

for some t ∈ N. Thus, A is an algebra over the hypersurface

Bd,t = Z[X1, . . . ,Xd ,Y1, . . . ,Yd ]/
(
X t

1 · · ·X
t
d −

d

∑
i=1

YiX
t+1
i

)

using the homomorphism with Xi 7−→ xi and Yi 7−→ yi. By Lemma 3.3, one has

Hd
(x1,...,xd)

(A) = Hd
(X1,...,Xd)

(Bd,t)⊗Bd,t
A .

Hochster’s original idea was to prove that Hd
(X1,...,Xd)

(Bd,t) vanishes, and thus obtain a con-

tradiction, since the module

Hd
(x1,...,xd)

(A) = Hd
m(A)

must be nonzero by Grothendieck’s nonvanishing theorem. However, Roberts [Ro2] proved

that the module H3
(X1,X2,X3)

(B3,2) is nonzero. This leads to the following question:

Question 9.2. Does the module

Hd
(X1,...,Xd)

(Bd,t)⊗Bd,t
A

vanish for each Bd,t -algebra A with dim A = d ?

If the Bd,t -algebra A is a complete local domain of dimension d satisfying the monomial

conjecture, then Hd
(X1,...,Xd)

(Bd,t)⊗Bd,t
A vanishes by the Hartshorne-Lichtenbaum vanish-

ing theorem. An affirmative answer to this question would imply the monomial conjecture.

The vanishing theorems in this paper—where a local cohomology module is nonzero, but

vanishes upon base change to rings of smaller dimension—are encouraging in this regard.
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