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Preface

In this dissertation we shall develop some of the theory of local coho-

mology modules. This will be done by elementary means via direct limits.

It should be understood that we will not touch sheaf theory, Koszul- and

^

Cech-complexes which however all belong to the subject in one or the other

way.

This dissertation is thought to give beginning postgraduate students an

introduction to the subject and so it starts in chapter one with the basic

de�nitions not assuming the reader to know about this. In this �rst chapter

are done the mot obvious results one can get without other tools. One of

these tools is described and developed in the second chapter, the concept

of direct limits. Again the reader is not assumed to know about this and

so we give an introduction to direct limits and adjoint pairs. We show how

local cohomology is related to direct limits and as a consequence, that local

cohomology and direct limits commute.

In the third chapter we show a useful relationship between the local

cohomology modules with respect to di�erent ideals, which has its origin in

algebraic topology. We will use the Mayer-Vietoris-sequence to show that

local cohomology is in a certain sense independent of the ring in question, to

be more precise we will show that local cohomology \commutes" with ring

homomorphisms. These very neat results are then used in chapter four to

calculate some local cohomology modules and we will establish in many cases

the vanishing of these modules in connection with dimensions and depths

of the modules and ideals under consideration. Also in this chapter we will

give a short extract to the theory of secondary representation without doing

proofs to this subject. We show then, that it can be used succesfully in local

cohomology to get results which are otherwise rather di�cult to achieve.

Since the theory of local cohomology has its origin in algebraic geometry,

it is natural that the main interest on the base rings is put onto rings which

actually occur in geometry. One large and important class of these is the

type of Gorenstein rings, which will be discussed in chapter �ve. We will

prove there the \algebraic" part of the main theorem on local Gorenstein

rings (that means that we will not develop nor use the concepts \unmixed"

or Cohen-Macaulay). In the second part of this chapter we demonstrate a

dualizing property, these rings have.

This will then be applied in chapter six, where we imitate a proof of

Faltings Annnihilator Theorem. Also, as preparation to the proof, we will
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4 PREFACE

make some comments about the connections of sets stable under stabilisation

and direct limits over directed index sets as were encountered in chapter two.

Any reader who wants to have a chance to enjoy reading this dissertation

should be as familiar as possible with Steps in commutative Algebra by R.

Y. Sharp and Introduction to homological Algebra by D. G. Northcott (see

bibliography) (or alternatively with any other book about basic commutative

and homological algebra). The results from thes etwo books are widely used

throughout and are the basis for our work. Any other concept that is used

and does not occur in either of the two mentioned books will be de�ned

and developed from the very beginning { with one exception: since we will

deal quite a lot with derived functors, injective modules are frequently under

consideration. Many of the results to follow will depend on the structure

theory for injective modules due to Eben Matlis. Because of this there is an

appendix concerned with injectives only. It did not seem to be convenient to

put that material in the text wherever it would be needed, since one easily

gets lost in the story if it is changed every line.



CHAPTER 1

Introduction

Notation 1.1. We begin this chapter with some conventions and nota-

tions. Throughout this dissertation we always denote by

� A a Noetherian commutative ring with identity,

� a an ideal of the ring A,

� M a module over A,

� N the set 0,1,2, : : : of the nonnegative integers,

� Z the set of integers,

� C

A

the category of A-modules and A-homomorphisms,

� m.c.s. a multiplicatively closed subset which contains 1.

Local cohomology is a branch of mathematics, linking commutative alge-

bra and algebraic geometry. The concept of local cohomology itself originally

was de�ned in 1961 by Grothendieck in the language of algebraic geometry

and subsequently developed by him, R. Hartshorne and others. Later it

became also part of commutative algebra by the work of Sharp and Mac-

donald. More recently Faltings has made considerable contributions to the

subject. As a consequence, this dissertation will be guided in the parts con-

cerning local cohomology by papers written by Sharp and Macdonald and

it will terminate in a rereading of a paper of Faltings in a weakened form

(see chapter 6).

After these preliminaries we come to

Definition 1.2. For the A-module M de�ne the subset �

a

(M) to be

the set

fm 2M : 9n 2 N : a

n

m = 0g =

[

n2N

(0 :

M

a

n

):

This set is called the a-torsion of M .

Remark 1.3. �

a

(M) has similarities with the usual torsion-part of an

Abelian group with one di�erence: while the torsion of a group is de�ned to

be the set of elements which vanish under multiplication by some 0 6= n 2 N,

i.e. by multiplication by some ideal of Z, �

a

(M) concentrates on a and its

powers.

We demonstrate this with
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6 1. INTRODUCTION

Example 1.4. Let A = Z;M = Z=12Z. Then M is in the group-

theoretical sense completely torsion, whereas if a = 2 � Z; b= 3 � Z then

�

a

(M) = fm 2M : 2

n

�m = 0 for some n 2 Ng

= f(0 + 12Z); : : : ; (9 + 12Z)g and

�

b

(M) = fm 2M : 3

n

�m = 0 for some n 2 Ng

= f(0 + 12Z); (4 + 12Z); (8 + 12Z)g;

and these sets are di�erent.

Let M;N;S be A-modules. A little thought makes clear that �

a

(M) is

not only a subset of M but actually a submodule of M . Also, if f :M ! N

is an A-homomorphism, then for m 2 �

I

(M) we know that there is an

n 2 N such that a

n

m = 0 and hence a

n

� f(m) = f(a

n

m) = 0 such that

f(m) 2 �

a

(N). We have therefore established a map �

a

(f) : �

a

(M) !

�

a

(N). It is further clear that for another A-homomorphism g : N ! S

(so g(�

a

(N)) � �

a

(S)), �

a

(g � f) = �

a

(g) � �

a

(f) and �

a

(id

M

) = id

�

a

(M)

because �

a

applied to maps is just restriction. So we have proved

Lemma 1.5. �

a

is a (covariant) functor from the category C

A

of A-

modules and A-homomorphisms to itself.

Lemma 1.6. �

a

is left exact.

Proof. Let 0 ! M

0

f

�! M

g

�! M

00

! 0 be a short exact sequence.

Because �

a

(f) is restriction, it is clear that 0 ! �

a

(M

0

) ! �

a

(M) is exact

and since �

a

is functor, �

a

(g) � �

a

(f) = 0. Furthermore �

a

(g) : �

a

(M) !

�

a

(M") has kernel

ker(�

a

(g)) = fx 2 �

a

(M) : �

a

(g)(x) = 0(i.e. g(x) = 0) g

= fx 2 �

a

(M) : x 2 ker(g)g

= �

a

(M) \ ker(g)

= �

a

(M) \ im(f):

So if x 2 ker(�

a

(g)), then there is y 2 M

0

: f(y) = x. Also x 2 �

a

(M)

implies the existence of n 2 N : 0 = a

n

� x = a

n

f(y) = f(a

n

y). Therefore

a

n

y � ker(f). Since f is a monomorphism, this implies a

n

� y = 0, i.e.

y 2 �

a

(M

0

) and so x 2 im(�

a

f).

Now that we have this friendly property of the functor �

a

, we may use

it after the following

Definition 1.7. Let A; a and M be as usual. Then the i-th local coho-

mology module of M with respect to a, written H

i

a

(M), is de�ned by

H

i

a

(M) = (R

i

�

a

)(M);

the i

th

right derived functor of �

a

applied to M .

By the previous lemma, we may observe, that H

0

a

and �

a

are naturally

equivalent functors ( see e.g. [9] , Theorem 6.5).
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Definition 1.8. Let M be an A-module. Then the support of M with

respect to A, written supp

A

(M), is de�ned to be the set

fp 2 Spec(A) :M

p

6= 0g

where M

p

is the localisation of M at p. If there is no misunderstanding

about the base ring, we also will use the symbol supp(M).

Now if M;A; a are as usual, then since A is Noetherian for m 2 M are

equivalent

m 2 �

a

(M) () 9n 2 N : a

n

m = 00

, a �

p

ann(m)

, Var(a) � Var(ann(A �m))

, Var(a) � supp(A �m)

so that

�

a

(M) = fm 2M : supp(A �m) � Var(a)g:

This is in fact the historical origin of the local cohomology modules, de�ned

in this way by A. Grothendieck as the local sections of the structure sheaf

of A on Spec(A) tensored by M (see for example in [3], Ch. 1).

We will now make the �rst observation concerning the vanishing of cer-

tain local cohomology modules, this being the beginning of a long sequence.

Lemma 1.9. Let A; a;M be as usual. Then X := �

a

(M=�

a

(M)) = 0.

Proof. Let � = x + �

a

(M) 2 X. Then there is a natural number n :

a

n

� = 0 by de�nition of X. Now A is Noetherian, so a

n

is �nitely generated,

say by a

1

; : : : ; a

t

and so a

n

� is generated by a

1

�; : : : ; a

t

�. Since a

n

� = 0 in

M=�

a

(M), it follows that a

1

x; : : : ; a

t

x are all in �

a

(M). By de�nition of

�

a

(M) there are 


1

; : : : ; 


t

in N : a




i

(a

i

x) = 0 for each i = 1; : : : ; t. Let 


be the biggest of these 


i

, then a




(a

i

x) = 0 for 1 � i � t and so a


+n

x = 0

or x 2 �

a

(M).

The following lemmata will make easier the actual computation of local

cohomology modules and shorten some proofs.

Lemma 1.10. Let A; a;M be as usual. Then for each i� 0,

H

i

a

(M) = H

i

p

a

(M):

Proof. Since H

i

a

is calculated by taking an injective resolution, apply-

ing �

a

and taking cohomology, it will su�ce to show that �

a

and �

p

a

are

equal as functors. This we do.

We want to show, that

fm 2M : 9n 2 N : a

n

m = 0g = fm 2M : 9n 2 N :

p

a

n

m = 0g

But since a �

p

a we have (

p

a)

n

m = 0) a

n

m = 0 and since A is Noether-

ian there is t(a) 2 N : (

p

a)

t(a)

� a, so that a

n

m = 0) (

p

a)

n�t(a)

m = 0 and

hence �

a

(M) = �

p

a

(M).
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Corollary 1.11. Let a; b be two ideals in A and M a module over A.

Then

H

i

a

(�) = H

i

b

(�) as functors ,

p

a =

p

b:

Proof. ): Let

p

a 6=

p

b. Without loss of generality we can assume the

existence of an x 2

p

an

p

b. Let M := A=

p

b. Then of course �

b

(M) =M ,

but � := x +

p

b 62 �

a

(M) since otherwise there would have to be n 2 N :

a

n

� = 0

M

, that is, a

n

x �

p

b such that x 2

p

b, a contradiction.

(: Suppose,

p

a =

p

b. Then there exist numbers � and � such that

(

p

a)

�

� a and (

p

b)

�

� b because A is Noetherian (see [12],8.21). So a

�

� b

and b

�

� a. This shows that m 2 M is annihilated by some power of a i�

it is annihilated by some power of b.

Therefore �

a

and �

b

are equal as functors and hence so are the derived

functors.

Corollary 1.12. For two ideals a; b we have H

i

a�b

= H

i

a\b

as functors.

Proof. The result follows directly from [12], 2.30.

In many cases in commutative algebra the \localization of a problem"

is a powerful tool, because the local case is easier to handle. However, one

needs to show before that the current problem \commutes with localization".

We do this now with the formation of the a-torsion modules.

Proposition 1.13. Let S � A be a multiplicatively closed subset (in the

sequel \m.c.s.") and a an ideal in A. Then the functors from C

A

to C

S

�1

A

S

�1

�

a

(�);�

aS

�1

A

(S

�1

(�))

are naturally equivalent and for the A-moduleM , S

�1

�

a

(M) and �

aS

�1

A

(M)

are equal as subsets of S

�1

(M).

Proof. For each A-module M we de�ne

� := S

�1

�

a

(M) = f

m

s

: s 2 S;m 2M;9n 2 N : a

n

m = 0g

and


 := �

aS

�1

A

(S

�1

M) = f

m

s

: s 2 S;m 2M;9n 2 N : (aS

�1

A)

n

�

m

s

= 0g:

We will consider both 
 and � as subsets of S

�1

M . It is obvious that

� � 
. So let

m

s

be in 
. Hence there is an n 2 N : (aS

�1

A)

n

m

s

= a

n

m

s

= 0,

considering S

�1

M as an A-module. Now A is Noetherian and hence a

n

�nitely generated, say by a

1

; : : : ; a

t

. Then a

i

m

s

= 0 for each 1 � i � t such

that there exist

s

i

2 S : s

i

a

i

m = 0(1 � i � t)

and hence s

1

s

2

: : : s

t

a

i

m = 0 for all 1 � i � t. But then

a

n

ms

1

s

2

: : : s

t

m = 0 and

s

1

s

2

: : : s

t

m

s

1

s

2

: : : s

t

s

=

m

s



1. INTRODUCTION 9

so that we have found an element in 
 that equals

m

s

and has its numerator

in �

a

(M). So 
 � �, hence 
 = �. But functors which are equal are of

course naturally equivalent.

Corollary 1.14. For any m.c.s. S � A and every ideal a � A and

i 2 N, the functors

S

�1

H

i

a

(�) and H

i

aS

�1

A

(S

�1

(�))

are naturally equivalent functors.

Proof. Writing \Inj" for taking an injective resolution, it is su�cient

to show that

S

�1

�H

i

� �

a

� Inj(M) and H

i

� �

a�S

�1

A

� S

�1

� Inj(M)

are naturally isomorphic modules for the A-moduleM . Since S

�1

is an exact

functor (see [12], 9.9), S

�1

and taking cohomology commute (see [9],6.1).

Further we just have seen, that S

�1

� �

a

and �

aS

�1

A

� S

�1

are naturally

equivalent. So it remains to show that localization commutes with taking

injective resolutions. But [11], Thm.3.76 together with the mentioned fact

that S

�1

is exact, shows that applying S

�1

to an injective resolution gives

an injective resolution of the localized object. And this is enough since

[9], Theorem 6.2 assures that derived functors are independent from the

resolution chosen. This proves the corollary.

Definition 1.15. We call an A-module M a-torsion precisely when

�

a

(M) =M , and a-torsionfree whenever �

a

(M) = 0.

The following proposition will use some work of the appendix.

Proposition 1.16. If a is an ideal of A and I an injective module over

A, then �

a

(I) is injective too. Further �(p;�

a

(I)) equals �(p; I) if a � p

and is otherwise zero.

Proof. By 7.18 the injective module I is representable as direct sum of

indecomposable injective submodules, which by 7.19 are the injective hull

of A=p for some prime in A or another. By 7.22 each x 2 E(A=p) for

p 2 Spec(A), has its annihilator equal to some p-primary ideal q. Since A

is Noetherian, this means that p

n

� x � q � x = 0 for some n 2 N. So E(A=p)

is p-torsion.

Let now p be containing a. Then of course any module that is p-torsion

is a-torsion as well. On the other hand, if there is a direct indecomposable

summand E = E(A=p) of I such that p does not contain a, then � 2 anp

exists and this implies by 7.22 again that no element of E is annihilated

by any power of a. So �

a

(I) is the direct sum of all indecomposable injec-

tive submodules of I whose corresponding prime ideals contain a, which is

injective by 7.2.

This is a very nice statement, since one can now easily predict what

happens to injective resolutions under the application of �

a

.
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A natural question is now to ask whether it is possible to give for a-

torsion modules M an injective resolution all modules of which are torsion

too. The next proposition settles this question.

Proposition 1.17. Any a-torsion module M possesses an injective res-

olution consisting only of a-torsion modules.

Proof. Let E(M) be the injective hull ofM . Then the natural sequence

0!M ! E(M)! E(M)=M ! 0

gives by the left exactness of �

a

rise to an exact sequence

0! �

a

(M) =M ! �

a

(E(M))! �

a

(E(M)=M)

and we have just seen that �

a

(E(M)) is injective. So we may embed every

module that is a-torsion into an injective a-torsion module. But since clearly

quotients of a-torsion modules are a-torsion too, the cokernel of any such

embedding is a-torsion again so that the proposition is proved.

The reader should note that we have just shown that the injective hull

E(M) of a-torsion modules M is a-torsion again because �

a

(E(M)) is in-

jective and E(M) is de�ned as smallest injective module containing M and

�

a

(E(M)) � E(M).

Corollary 1.18. 1. For a-torsion modules M , H

i

a

(M) = 0 for all

i > 0.

2. The natural epimorphism � : N ! N=�

a

(N) induces isomorphisms

H

i

a

(�) : H

i

a

(N)! H

i

a

(N=�

a

(N))

for all i > 0.

Proof. 1. This is clear by the de�nition of derived functors and

1.17.

2. By applying the connected sequence of functors H

i

a

(i 2 N) to

0! �

a

(N)! N ! N=�

a

(N)! 0

we get exact sequences

H

i

a

(�

a

(N))! H

i

a

(N)! H

i

a

(N=�

a

(N))! H

i+1

a

(�

a

(N))

for all i > 0 and this proves (ii) because of (i).



CHAPTER 2

Limits

The intention of this chapter is to introduce �rst a useful notion, with

the help of one may solve quite a lot of problems, which otherwise are rather

unhandy and non-transparent. It will resemble (and this probably gave the

name) usual limits, but now there are not numbers \going to somewhere" but

structures. However, before speaking about limits, we must declare what

\going towards" means here. The reader interested in a more exhaustive

treatment than we intend to do, is referred to [11], Ch. 2 and for basic

facts and de�nitions from homological algebra we give [11] again and [2] as

reference.

Definition 2.1. A set I is called quasi-ordered precisely if on I works

a relation which is re
exive and transitive. We will refer to this couple as

(I;�) or to I alone if the relation meant is obvious.

The following de�nition will be explained in the paragraph after it.

Definition 2.2. A direct (resp. inverse) system in a category C with

quasiordered index set (I;�) is a covariant (contravariant) functor

F : I �! C

where I is interpreted as category in the sense of [11], Ch.1, Ex.7. The

collection of all these functors with their natural transformations is a cate-

gory and will be denoted by Dir

C

(I). (See [11], Ex. 2.40 and the following

remarks.)

This de�nition certainly will seem strange to many readers, and we will

explain the meaning a bit: via F we are given for each i 2 I an object F(i)

which we will write F

i

such that whenever i; j 2 I and i � j then there is a

C-morphism '

i

j

: F

i

! F

j

(resp. F

j

! F

i

in the inverse case) such that

� '

i

i

is the identity on F

i

and

� for each triple i; j; k 2 I satisfying i � j � k we have '

i

k

= '

j

k

� '

i

j

(resp. '

i

k

= '

i

j

� '

j

k

).

Usually we will denote F by fF

i

; '

i

j

g and call '

i

j

the inner morphisms of F.

Example 2.3. Let M be an A-module. Take I = N with the natural

order and F

i

=M for each i 2 I. Then with '

i

j

= id

M

this becomes a direct

system in C

A

, the category of A-modules.

There is a similar and more useful

11
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Example 2.4. If M is a module over A, the family of its �nitely gen-

erated submodules is quasiordered by inclusion and may therefore serve as

index set. Let for each i 2 I (which is hence a module) F

i

be i itself and

de�ne for i � j 2 I (i.e. F

i

� F

j

in M) '

i

j

as the inclusion '

i

j

: F

i

! F

j

.

Then this is a direct system in C

A

.

Proof. This is obvious.

We also have an example for an inverse system:

Example 2.5. Let I = N with its natural order and F

i

= a

i

for a an

ideal in A. Let '

i

j

: a

j

! a

i

be the natural inclusion for i � j 2 I. Then

this is an inverse system over N in C

A

.

Proof. That the combination of natural inclusions gives again a natural

inclusion is clear and so is item one of the de�nition of inverse systems. That

F is contravariant is obvious.

We are now able to de�ne the concept of a direct limit, on which we will

dwell during the remainder of the chapter.

Definition 2.6. Let F = fF

i

; '

i

j

g be a direct system in a category C

over the quasi-ordered set I. The direct limit of this system, written lim

�!

F

i

,

is

1. an object lim

�!

F

i

and a family of morphisms '

i

: F

i

! lim

�!

F

i

in C

which we will usually call the natural maps (i 2 I),

2. satisfying '

i

= '

j

� '

i

j

whenever i; j 2 I and i � j and

3. solving the universal mapping problem

lim

! F

i

X

p

j

'

j

'

i

p

i

���������� >

F

j

�

F

i

?

'

i

j

�

�

�

�

�

�

�

�7

S

S

S

S

S

S

S

So

�

�

�

�

�

�>

Z

Z

Z

Z

Z

Z}

meaning that whenever we are given X 2 Ob(C) and morphisms p

i

for i 2 I,

such that p

i

= p

j

� '

i

j

for all i � j in I, then there is a unique morphism

� : lim

�!

F

i

! X making all triangles commute.

One may therefore imagine a direct limit to be a thing, lying behind

the last F

i

, being as big as necessary (for the existence of � ), as small as

possible (for the uniqueness of � ) behaving properly under passage (for the

commutativity ).

We settle now the question, how di�erent direct limits of the same direct

system may be.
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Lemma 2.7. The direct limit of a direct system F over the index set I

in the category C is, if it exists, unique up to equivalences in the category C.

Proof. Let F = fF

i

; '

i

j

g

fi2Ig

be a direct system over I in C with direct

limits L;L

0

respectively together with natural maps '

i

: F

i

! L and '

0

i

:

F

i

! L

0

such that for all i � j 2 I

'

i

= '

j

� '

i

j

; '

0

i

= '

0

j

� '

i

j

:

Then the universal property yields two C-morphisms � : L ! L

0

and �

0

:

L

0

! L such that for all i 2 I

� � '

i

= '

0

i

; �

0

� '

0

i

= '

i

:

It follows, that � � �

0

� '

0

i

= '

0

i

and �

0

� � � '

i

= '

i

. So if we set in the

de�nition of direct limits lim

�!

F

i

= L;X = L and p

i

= '

i

, the maps id

L

and

�

0

� � : L! L make all triangles commute. But by the uniqueness property

of the induced map, id

L

has to be equal to �

0

� � . Similarily, id

L

0

has to be

equal to � � �

0

so that � and �

0

are equivalences in C.

Proposition 2.8. The direct limit lim

�!

F

i

of a direct system fF

i

; '

i

j

g in

the category C

A

of A-modules exists and is isomorphic to

L

F

i

=S where S is

the submodule of

L

F

i

generated by all elements of the form �

j

'

i

j

(f

i

)��

i

(f

i

),

where �

i

means the natural embedding F

i

!

L

F

i

.

Proof. We omit the proof because it is technical and not very interest-

ing. We give as reference [11], Theorem 2.16.

We are now going to use example 2.4 and consider its direct limit.

Example 2.9. Let M be an A-module and fM

i

; '

i

j

g the direct sytem

in C

A

de�ned in 2.4. Then lim

�!

M

i

�

=

M .

Proof. Let �

i

: M

i

!

L

M

i

be the natural injections. Let further S

be the submodule of

L

M

i

generated by all elements of the form �

i

(m

i

) �

�

j

� '

i

j

(m

i

) (m

i

2M

i

). Then by 2.8, lim

�!

M

i

�

=

L

M

i

=S. So it is enough to

show that M

�

=

L

M

i

=S. This we do.

By de�nition, elements of

L

M

i

have only �nitely many nonzero entries,

so that we may de�ne

' :

M

M

i

!M by (: : : ;m

i

; : : : ;m

j

; : : : )! �

i2I

m

i

Since all elements of S are mapped to 0 under ' , there is an induced map

'

�

:

L

M

i

=S ! M . It is obvious that ' is surjective (and hence '

�

), we

investigate the kernel.

Let m = (: : : ;m

i

; : : : ;m

j

; : : : ) be in

L

M

i

. Then only �nitely many

coordinates of M are nonzero, say those with indices i

r

: r = 1; : : : ; t. Then

�

1�r�t

M

i

r

is a �nitely generated submodule of M and hence there is an

index i

0

2 I such that

M

i

0

= �

1�r�t

M

i

r

:
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It follows, that i

r

� i

0

for 1 � r � t. So �

t

1

m

i

r

2 M

i

0

. Now suppose

(m+ S) 2

L

M

i

=S is in ker('

�

), such that

0 = '

�

(m+ S) = (�

1�r�t

m

r

) = (�

1�r�t

'

i

r

i

0

(m

i

j

))

Therefore

m = �

1�r�t

�

i

r

(m

i

r

) = �

1�r�t

(�

i

r

(m

i

r

)� �

i

0

� '

i

r

i

0

(m

i

r

))

which is in S. So ker'

�

� 0 + S, such that '

�

is injective. Therefore it is

an isomorphism.

Remark 2.10. Let C be a category, I a quasi-ordered set and fA

i

; '

i

j

g; fB

i

;  

i

j

g

and fC

i

; �

i

j

g be three direct systems in C over I. Suppose further that we

are given two morphisms s; t of direct systems: that is for each i 2 I we have

a map s

i

: A

i

! B

i

and t

i

: B

i

! C

i

such that for all i; j 2 I and i � j

 

i

j

� s

i

= s

j

� '

i

j

and �

i

j

� t

i

= t

j

�  

i

j

Then these maps give rise to well de�nedA-homomorphismsA

i

! lim

�!

B

i

; B

i

!

lim

�!

C

i

and A

i

! lim

�!

C

i

via the combination of s and t with the natural maps

'

i

;  

i

and �

i

from A

i

; B

i

and C

i

into lim

�!

A

i

; lim

�!

B

i

and lim

�!

C

i

respectively.

By 2.6 there are then induced maps

s

!

: lim

�!

A

i

! lim

�!

B

i

;

t

!

: lim

�!

B

i

! lim

�!

C

i

and

t�s

!: lim

�!

A

i

! lim

�!

C

i

such that for each i 2 I

s

!

�'

i

=  

i

� s

i

;

t

!

� 

i

= �

i

� t

i

and s � t

!

�'

i

= �

i

� t

i

� s

i

:

But from this and the uniqueness part of the de�nition of direct limits follows

immediately, that

t

!

�
s

!

= t � s

!

. Obviously whenever s is an identity map of

direct systems (so A

i

= B

i

and s

i

= id

A

i

for all i 2 I),
s

!

is identity as well

and it follows that lim

�!

is a covariant functor from Dir

C

(I) to C.

The example 2.9 has been of a rather special nature which makes things

very easy. The point is, that the index set was directed. That means

the following: since the sum of two �nitely generated modules is �nitely

generated too, for any two �nitely generated submodules of M there is

another �nitely generated submodule of M containing both, a fact we used

with delight. This explains the importance of

Definition 2.11. A quasiordered set is called directed if for all pairs

i; j 2 I there is a k 2 I with i � k and j � k. A direct system over a

directed set in a category C will be called directed system in C.

The importance of directed index sets is layed down in the following

lemma, which we will not prove because it does not involve new ideas. The

interested reader be referred to [11], Theorem 2.17.
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Lemma 2.12. Let I be a (quasiordered) directed set and fA

i

; '

i

j

g a di-

rected system over I in the category C

A

. Denote the injection A

i

!

L

A

i

by

�

i

and let lim

�!

A

i

be represented by

L

A

i

=S, S being de�ned as in 2.8. Then

(for i 2 I)

� lim

�!

A

i

consists entirely of elements of the form �

i

a

i

+S where a

i

2 A

i

and

� �

i

a

i

+ S = 0, 9j 2 I : i � j; '

i

j

a

i

= 0.

We have another example for directed systems:

Example 2.13. Let M be an A-module. Let fM

i

g be a family of sub-

modules over the set I satisfying

M =

X

i2I

M

i

:

Let fN

!

g

!2


be the family of all possible �nite sums of M

i

's. De�ne '

!

!

0

:

N

!

! N

!

0

to be the inclusion map if ! � !

0

. (Then 
 is the set of �nite

elements of the powerset of I). Then M

�

=

lim

�!

(N

!

).

Proof. We proceed as in 2.9 and observe �rst, that the index set is

directed since �nite unions of �nite subsets give �nite subsets. It will su�ce

to show, that M is isomorphic to

L

(N

!

)=S where S is the submodule

of

L

(N

!

) =: N generated by all elements like �

!

1

(n

!

1

) � �

!

2

� '

!

1

!

2

(n

!

1

)

whenever !

1

� !

2

(so that N

!

1

� N

!

2

) and �

!

: N

!

!

L

N

!

for all ! 2 


is the natural embedding.

As before we de�ne ' : N ! M by adding up all nonzero components.

Again this map is surjective, linear and the kernel includes S. On the other

hand, if some element n = (0; : : : ; n

!

1

; : : : ; n

!

r

; 0; : : : ) 2 N belongs to the

kernel of ', then there is an !

0

such that

N

!

1

+ : : :+N

!

r

= N

!

0

and then

0 = '(n) = �

r

1

n

!

i

= �

r

1

'

!

i

!

0

(n

!

i

)

so that

n+ S = 0 +

r

X

1

(�

!

i

(n

!

i

)� �

!

0

� '

!

i

!

0

(n

!

i

)) + S

and hence each kernel element of '

�

is in S. Hence M

�

=

N=S

�

=

lim

�!

(N

!

).

Remark 2.14. We want to point out to the reader, that one can instead

of the system fN

!

g take an arbitrary system of submodules of M subject

to the condition, that the index set is directed, the inner morphisms are

inclusions and the union of all submodules involved covers M .

One of the features of directed systems shows
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Proposition 2.15. Let I be a directed set. Then lim

�!

(exists for all

directed systems fA

i

; '

i

j

g over I in C

A

and) carries exact sequences of objects

in Dir

C

A

(I) into exact sequences in C

A

. (For morphisms of direct systems

see 2.10).

Proof. By [9], Theorem 3.3 it is enough to show that lim

�!

takes short

exact sequences in Dir

C

A

(I) to short exact sequences in C

A

. So suppose

we are given three directed systems over I whose entries are objects and

morphisms in C

A

, say A = fA

i

; '

i

j

g;B = fB

i

;  

i

j

g; C = fC

i

; �

i

j

g. Let further

s : Dir

A

! Dir

B

and t : Dir

B

! Dir

C

be morphisms in Dir

C

A

(I) such that

for each i 2 I the sequence

0! A

i

s

i

! B

i

t

i

! C

i

! 0

is exact. Let further denote �

i

; �

i

and �

i

be the injections A

i

!

L

A

i

; B

i

!

L

B

i

and C

i

!

L

C

i

and imagine lim

�!

A

i

as

L

A

i

=S; lim

�!

B

i

as

L

B

i

=T and

lim

�!

C

i

as

L

C

i

=U where S is as in 2.8 and T;U are the analogues to S.

Then as in 2.10 there are maps
s

!

: lim

�!

A

i

! lim

�!

B

i

and

t

!

: lim

�!

B

i

!

lim

�!

C

i

such that every possible triangle commutes. Let now x 2 lim

�!

A

i

be

in ker(
s

!

). By 2.12, x is image under some �

i

followed by the factorisation

L

A

i

!

L

A

i

=S, say x = �

i

a

i

+ S for some i 2 I and a

i

2 A

i

. Then

s

!

(x) = �

i

� s

i

(a

i

) + T by de�nition of
s

!

:

Since
s

!

(x) = 0, �

i

� s

i

(a

i

) + T = 0 what by 2.12 again implies 9j 2 I :

 

i

j

�s

i

(a

i

) = 0 in A

j

. Now s is morphism, hence  

i

j

�s

i

= s

j

�'

i

j

and therefore

s

j

� '

i

j

(a

i

) = 0. By hypothesis s

j

is monomorphism and so '

i

j

(a

i

) = 0. But

then x = �

i

(a

i

) + S = �

j

� '

i

j

(a

i

) + S = 0 + S whence
s

!

is shown to be

injective.

The remaining parts (exactness in lim

�!

B

i

and lim

�!

C

i

) may be done even

without the assumption of I being directed (see [11],remarks after Th. 2.18)

and we will do only the �rst assertion, the latter being entirely similar.

Since lim

�!

is a functor, it is immediate that ker(

t

!

) � im(
s

!

). So let y =

�

i

(b

i

)+T be in lim

�!

B

i

such that

t

!

(y) = 0. As before

t

!

(y) = �

i

�t

i

(b

i

)+U = 0

whence by 2.12 9j 2 I : �

i

j

� t

i

(b

i

) = 0. Again t is morphism and it follows

t

j

�  

i

j

(b

i

) = 0. So  

i

j

(b

i

) is in ker(t

j

) = im(s

j

). So 9a

j

: s

j

(a

j

) =  

i

j

(b

i

).

But then

y = �

i

(b

i

) + T = �

j

�  

i

j

(b

i

) + T = �

j

� s

j

(a

j

) + T =
s

!

(�

j

(a

j

+ S))

because
s

!

is limit morphism, and we have shown that y 2 im(
s

!

). As said

before, exactness in lim

�!

C

i

is left to the reader.

Before we can apply the theory developed so far to local cohomology,

we have to investigate the existence of direct limits in Dir

C

A

(I). When

we do this, we necessarily have to speak about direct systems in Dir

C

A

(I).
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That is, about direct systems of direct systems of modules. To be able

to do this, we have to blow up our notation as follows: Given a direct

system Dir

A

= fA

i

; '

i

j

g in Dir

C

A

(I) we will from now on denote the A-

homomorphism '

i

j

: A

i

! A

j

by '

i;j

so that we now refer to Dir

A

as to

fA

i

; '

i;i

0

g (equivalent changes apply to other direct systems in Dir

C

A

(I) like

Dir

B

or Dir

C

). It will now happen that we have in the same time to deal

with two direct systems, say Dir

j

A

and Dir

j

0

A

which are linked by a morphism

'

j;j

0

. Then there is for each i 2 I an A-homomorphism '

j;j

0

i

: A

ji

! A

ji

.

(Here of course A

ji

is the module of index i in the direct system Dir

j

A

etc.)

To say now that '

j;j

0

is a morphism from the direct system fDir

j

A

; '

j

i;i

0

g

to the direct system fDir

j

0

A

; '

j

0

i;i

0

g is therefore to say that for all i � i

0

2 I

we have

'

j;j

0

i

: A

ji

! A

j

0

i

; '

j

i;i

0

: A

ji

! A

ji

0

; '

j

0

i;i

0

: A

j

0

i

! A

j

0

i

0

such that

'

j

0

i;i

0

� '

j;j

0

i

= '

j;j

0

i

0

� '

j

i;i

0

by de�nition of morphisms in Dir

C

A

(I).

Up to now we have dealt only with two di�erent direct systems, but

we take now remedial measures against this. For let J be a second quasi-

ordered set. We continue our notation such that for each j 2 J A

j

denotes a

direct system of A-modules over one and the same quasi-ordered set I, such

that as before A

ji

is the A-module belonging to the index i 2 I in the direct

system A

j

belonging to the index j 2 J . As in the preceding paragraph, '

j;j

0

will denote the morphism A

j

! A

j

0

which is a morphism in Dir

Dir

C

A

(I)

(J).

Suppose that for each i 2 I, fA

ji

; '

j;j

0

i

g is a direct system over J . To say

then that fA

j

; '

j;j

0

g is a direct system over J in Dir

Dir

C

A

(I)

(J) is precisely

to say that for all i � i

0

2 I and for all j � j

0

2 J

'

j;j

0

i

0

� '

j

i;i

0

= '

j

0

i;i

0

� '

j;j

0

i

:

It is therefore clear that the family fA

ji

g of A-modules together with the

families f'

j

i;i

0

: A

ji

! A

ji

g and f'

j;j

0

i

: A

ji

! A

ji

g can be interpreted as a

direct system of objects of Dir

C

A

(I) over J if and only if it can be interpreted

as a direct system of objects of Dir

C

A

(J) over I.

We investigate now the question of direct limits of direct systems of

direct systems of A-modules and A-homomorphisms.

In conjunction with the comments above we will denote an object in

Dir

Dir

C

A

(I)

(J) (which is then also an object inDir

Dir

C

A

(J)

(I)) by fA

ji

; '

j;j

0

i

; '

j

i;i

0

g.

Now suppose, that A is such an object and assume, that I and J are

directed. We will try to �nd lim

�!

i

(A

ji

), meaning that we try to produce a

direct limit over the directed set I with objects in Dir

C

A

(J).

Fix j 2 J . Then the A-modules A

ji

(for varying i 2 I) make up a

direct system over I together with the maps '

j

i;i

0

with varying i; i

0

. By 2.8
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this direct system posesses a direct limit lim

�!

i

(A

ji

) which is representable by

L

i2I

A

ji

=S where S is the submodule of

L

i2I

A

ji

generated by all elements

of the form �

j

i

(a

j

i

) � �

j

i

0

� '

j

i;i

0

(a

j

i

). (Here �

j

i

is the natural injection A

ji

!

L

i2I

A

ji

). Then for all j � j

0

2 J there is a commutative diagram

A

j

i

A

j

0

i

-

A

j

i

0

A

j

0

i

0

-

? ?

'

j;j

0

i

'

j;j

0

i

0

'

j

i;i

0

'

j

0

i;i

0

lim

�!

i

A

j

0

i

�

j

0

i

�

j

i

�

j

i

0

�

j

0

i

0

@

@

@

@

@R

�

�

�

�

�	

�

�

�

�

�

�

�

�

�

�

��

A

A

A

A

A

A

A

A

A

A

AU

lim

�!

i

A

j

i

'

j;j

0

�������������� >

which by the fact that lim

�!

i

A

ji

is a direct limit yields a map '

j;j

0

: lim

�!

i

(A

ji

)!

lim

�!

i

(A

ji

) (in the picture dashed) such that for all i 2 I

�

j

0

i

� '

j;j

0

i

= '

j;j

0

� �

j

i

:

From this immediately follows that for all j � j

0

� j" 2 J , '

j;j"

= '

j

0

;j"

�

'

j;j

0

. flim

�!

i

A

ji

; '

j;j

0

g is then up to isomorphisms in Dir

C

A

(J) obviously the

only possible solution for our direct limit problem.

To show that this construction actually yields a direct limit, we have to

show that, given fX

j

;  

j;j

0

g 2 Dir

C

A

(J) together with a family f�

j

i

g

i2I

such

that

� �

j

i

: A

ji

! X

j

,

� for all j 2 J and all i; i

0

2 I we have �

j

i

= �

j

i

0

� '

j

i;i

0

and

� for all j � j

0

2 J and all i 2 I is true that �

j

0

i

� '

j;j

0

i

=  

j;j

0

� �

j

i

(which is nothing but the description of a map from a direct system to

an object in Dir

C

A

(J)), there exists a unique Dir

C

A

(J)-morphism � from

flim

�!

i

A

ji

; '

j;j

0

g to fX

j

;  

j;j

0

g (such that for each j 2 J there is an A-

homomorphism �

j

satisfying  

j;j

0

��

j

= �

j

0

�'

j;j

0

). The situation is demon-

strated in the picture below, in which all straight line polygones commute

and we are looking for the dashed maps making everything commute and
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being unique.

A

j

i

A

j

0

i

-

A

j

i

0

A

j

0

i

0

-

? ?

'

j;j

0

i

'

j;j

0

i

0

'

j

i;i

0

'

j

0

i;i

0

lim

�!

i

A

j

0

i

�

j

0

i

�

j

i

�

j

i

0

�

j

i

0

�

j

0

i

0

�

j

0

i

0

�

j

i

�

j

0

i

S

S

S

S

S

S

S

S

S

S

S

Sw

�

�

�

�

�	

S

S

S

S

S

S

S

S

S

S

S

Sw

�

�

�

�

�	

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

��

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

AU

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

AU

lim

�!

i

A

j

i

'

j;j

0

-

X

j

X

j

0

-

 

j;j

0

�

j

�

j

0

Now the construction of some unique maps makes no problem since each

of the lim

�!

i

A

ji

is a direct limit and therefore there exist maps �

j

as indicated

in the picture making both \sidefaces" of all possible \roofs" commute and

we have to care about the bottom in the sequel. At this stage the property

of I being directed comes to play an important role. Because of this, for

each j 2 J , lim

�!

i

A

ji

is not only a direct sum of A-modules factorized by a

relation module (see 2.8) but also each element in each of these direct limits

is image under some �

j

i

(which is de�ned by �

j

i

followed by the appropriate

factorization: see 2.12).

So �x j � j

0

2 J and take � 2 lim

�!

i

(A

ji

). As just outlined, there is an

i 2 I and a �

j

i

2 A

ji

such that � = �

j

i

(�

j

i

) + S

j

.

By the hypothesis that f�

j

i

g is a map from a direct system to an object

(in Dir

C

A

(J)) we have

 

j;j

0

� �

j

i

(�

j

i

) = �

j

0

i

� '

j;j

0

i

(�

j

i

)

and because the side triangles commute,

�

j

0

i

� '

j;j

0

i

(�

j

i

) = �

j

0

� �

j

0

i

� '

j;j

0

i

(�

j

i

)

and

 

j;j

0

� �

j

� �

j

i

(�

j

i

) =  

j;j

0

� �

j

i

(�

j

i

)

while the commutativity of the backside yields

�

j

0

� �

j

0

i

� '

j;j

0

i

(�

j

i

) = �

j

0

� '

j;j

0

� �

j

i

(�

j

i

)
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so that

�

j

0

� '

j;j

0

(�) = �

j

0

� '

j;j

0

� �

j

i

(�

j

i

)

= �

j

0

� �

j

0

i

� '

j;j

0

i

(�

j

i

)

= �

j

0

i

� '

j;j

0

i

(�

j

i

)

=  

j;j

0

� �

j

i

(�

j

i

)

=  

j;j

0

� �

j

� �

j

i

(�

j

i

)

=  

j;j

0

� �

j

(�)

whence the bottom commutes for all j; j

0

2 J and i; i

0

2 I. As said before,

the lim

�!

i

A

ji

are unique up to isomorphism and the �

j

are unique for chosen

A

ji

and hence

flim

�!

i

A

ji

; '

j;j

0

g

i2I;j2J

is a direct limit in Dir

C

A

(J) for the direct system fA

j

; '

j;j

0

i

; '

j

i;i

0

g. We have

proved

Proposition 2.16. Let I; J be two quasiordered sets and I be directed

and let fA

j

; '

j;j

0

g be a direct system over J in Dir

C

A

(I) as explained above.

Then lim

�!

j

A

j

exists.

Definition 2.17. Let I; J be directed sets and suppose we are given

for each i 2 I; j 2 J an A-module A

ji

and for all i � i

0

2 I and j � j

0

2

J A-homomorphisms '

j

i;i

0

: A

ji

! A

ji

0

and '

j;j

0

i

: A

ji

! A

j

0

i

satisfying

'

j

0

i;i

0

�'

j;j

0

i

= '

j;j

0

i

0

� '

j

i;i

0

. Suppose further, that for each i 2 IfA

ji

; '

j;j

0

i

g is a

directed system over J in C

A

and that for each j 2 J; fA

ji

; '

j

i;i

0

g is a direct

system over I in C

A

. Then this collection of data A = fA

ji

; '

j

i;i

0

; '

j;j

0

i

g may

be interpreted as an object of both Dir

Dir

C

A

(J)

(I) and Dir

Dir

C

A

(I)

(J). Then

we will say that A is a directed bisystem over I and J in C

A

.

Corollary 2.18. Let I and J be two directed sets. Let A be a directed

bisystem over I and J in C

A

, then both lim

�!

i

A

ji

and lim

�!

jA

ji

exist.

Proof. The interpretation has been outlined in the text before 2.16,

the existence of lim

�!

i

A

ji

is proposition 2.18 and the existence of lim

�!

jA

ji

follows from this by exchange of the sets I and J .

As in 2.10 one may verify that lim

�!

i

and lim

�!

j

are covariant functors.

Being able now from a directed bisystem fA

ji

; '

j

i;i

0

; '

j;j

0

i

g over the di-

rected sets I and J respectively to produce two direct systems flim

�!

i

A

ji

g

and flim

�!

j

A

ji

g to which one can apply the functors lim

�!

j

and lim

�!

i

respec-

tively, naturally the question arises

Is lim

�!

i

(lim

�!

j

(A

ji

)) = lim

�!

j

(lim

�!

i

(A

ji

)) ?

We will deal now with this question.
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For this we introduce a functor de�ned on arbitrary categories - a functor

opposite to the lim

�!

-functor and very related to 2.3. So let C be a category

and c 2 Ob(C). If then I is a quasiordered set one can produce a direct

system over I in Dir

C

(I) as follows: For all i 2 I de�ne c

i

to be equal to

c and for all i � j 2 I let '

i

j

be the identity map on c. Then fc

i

; '

i

j

g

is clearly a direct system in C over I. Again it is easy to see that this is

a covariant functor and we will denote it by j(:)j(I) such that in our case

jcj(I) = fc

i

; '

i

j

g. We now specify C to be the category of A-modules and

A-homomorphisms C

A

.

Let fB

i

;  

i

j

g be a direct system over the directed set I. Let furtherM be

anA-module. Then we can form Hom

A

(lim

�!

B

i

;M) as well as Hom

Dir

C

A

(I)

(fB

i

; '

i

j

g; jM j(I)).

There are extraordinary relationships between these two Hom's:

Let t be in Hom

Dir

C

A

(I)

(fB

i

;  

i

j

g; jM j(I)) such that for each i � j 2 I

we have a commutative diagram

B

i

M

i

-

B

j

M

j

-

? ?

t

i

t

j

 

i

j

id

M

lim

�!

M

�

=

M

�

i

�

i

�

j

�

j

-�

�

�

�

�

�	

@

@

@

@

@R

lim

�!

B

i

which may be interpreted as

B

i

B

j

?

 

i

j

A

A

A

A

A

A

A

A

A

AU

�

�

�

�

�

�

�

�

�

��

lim

�!

B

i

M

�

�

�

�

�	

@

@

@

@

@R

�

i

�

i

� t

i

�

j

�

j

� t

j

����� >

�

which gives a unique map � making the diagram commute.

So we have established a map � : Hom

Dir

C

A

(I)

(fB

i

;  

i

j

g; jM j(I)) !

Hom

A

(lim

�!

B

i

;M). This map is surjective, since a given homomorphism

� : lim

�!

B

i

! M can be used to produce t : fB

i

;  

i

j

g ! jM j(I) by de�ning

t

i

: B

i

! M

i

=M as to be � � �

i

what of course is a morphism of directed

systems with

t

!

= �.

Lemma 2.19. � is injective.

Proof. We have just seen, that from any homomorphism � : lim

�!

B

i

!

M one can get a corresponding morphism of direct systems t : fB

i

;  

i

j

g !
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jM j(I) by de�ning t

i

= � � �

i

. So we have to show that any morphism of

direct systems t : fB

i

;  

i

j

g ! jM j(I) can be produced in this way. Now in the

�rst of the two pictures above by properties of direct limits (with an imagined

� : lim

�!

B

i

! lim

�!

(M

i

)

�

=

M), �

i

�t

i

= ���

i

. Also the reader may easily verify

that each �

i

is exactly the inverse to the isomorphism '

�

established in 2.9.

So whenever t

i

6= '

�

�� ��

i

, then �

i

� t

i

6= �

i

�'� �� ��

i

= � ��

i

which is a

contradiction. So always to a homomorphism of the limits belongs a unique

morphism of the direct systems and � is injective.

Now we investigate the behaviour of � under variation of fB

i

;  

i

j

g andM

respectively. So suppose �rst we have a second direct system in C

A

; fA

i

; '

i

j

g

together with a morphism of direct systems s : fA

i

; '

i

j

g ! fB

i

;  

i

j

g. Then

we might calculate �(t � s) and �(t)��(s). (The situation is pictured below.)

A

i

B

i

M

i

- -

s

i

t

i

a

j

B

j

M

j

- -

s

j

t

j

? ? ?

�

i

'

i

j

�

i

 

i

j

�

i

�

i

j

A

A

A

A

A

A

A

AU

@

@

@

@R

A

A

A

A

A

A

A

AU

@

@

@

@R

A

A

A

A

A

A

A

AU

@

@

@

@R

lim

�!

A

i

lim

�!

B

i

lim

�!

M

i

�

=

M

�

j

�

j

�

j

Since lim

�!

is a functor, the two homomorphisms coincide.

Secondly we might vary the moduleM (and therefore jM j(I)) by means

of a homomorphism f : M ! M

0

, and look what happens now but the

corresponding picture is exactly the one above only replacing (A;B;M; t; s)

by (B;M;M

0

; s; �

�1

(f)) wherever they occur. Again by the fact that lim

�!

is

functor, �(�

�1

(f) � s) is wellde�ned. We conclude, that � is bijective and

natural in both variables. We have now set the stage for

Theorem 2.20. Let fA

ji

; '

j

i;i

0

; '

j;j

0

i

g

i2I;j2J

be a directed bisystem over

the directed sets I and J . Then lim

�!

i

(lim

�!

j

(A

ji

))

�

=

lim

�!

j

(lim

�!

i

(A

ji

)).

Proof. In the preceding paragraphs we have explained, that j(:)j(I) is

for every directed system I a functor working on any category C, so for

example we can apply it to C

A

. Further we have shown that lim

�!

is a functor

working at least on the categories Dir

C

A

(I);Dir

C

A

(J) and Dir

Dir

C

A

(J)

(I) =:

D. We will for the remainder of this proof denote lim

�!

j

by F and j:j(J) by

G. Then F : Dir

C

A

(J)! C

A

and G : C

A

! Dir

C

A

(J).

Further we have a natural bijection (with C := Dir

C

A

(J))

� : Hom

A

(F (Y

i

);X))! Hom

C

(Y

i

; G(X))

for all X 2 Ob(C

A

) and Y

i

2 Ob(C).
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Our aim is now to show for an element Y in Ob(D), that F (lim

�!

i

(Y ))

and lim

�!

i

(F (Y )) are isomorphic. So let Y be in Ob(D), so that it is a direct

system over I with entries Y

i

and inner morphisms '

i;i

0

in Dir

C

A

(J). Let

further X be an object of C

A

and let be given a family of C

A

-morphisms

fg

i

: i 2 Ig with g

i

: FY

i

! X such that

FY

i

FY

i

0

?

F'

i;i

0

A

A

A

A

A

A

A

A

A

AU

�

�

�

�

�

�

�

�

�

��

F (lim

�!

Y

i

)

X

�

�

�

�

�	

@

@

@

@

@R

F�

i

g

i

F�

i

0

g

i

0

where the �

i

are the natural maps Y

i

! lim

�!

i

(Y

i

), commutes for all

i; i

0

2 I. If we can show for each such X and each such fg

i

: i 2 Ig that

there exists a unique morphism F (lim

�!

i

Y

i

) ! X then by the uniqueness of

direct limits we have shown that

F (lim

�!

i

Y

i

)

�

=

lim

�!

i

(F (Y

i

))

because both constructions solve the same universal mapping problem.

Consider now the commutative diagram for all i � j 2 I:

Y

i

Y

i

0

?

'

i;i

0

A

A

A

A

A

A

A

A

A

AU

�

�

�

�

�

�

�

�

�

��

lim

�!

Y

i

GX

�

�

�

�	

@

@

@

@R

�

i �

�1

(g

i

)

�

i

0

�

�1

(g

i

0

)

����� >

�

in which the left part trivially commutes and the the right part commutes

by the naturality of � .

By de�nition of direct limits there is � 2 Hom

C

(lim

�!

i

Y

i

; G(X)) making all

these diagrams commute. Now de�ne in the original picture 
 : F (lim

�!

i

Y

i

)!

X as to be �(�).

Since � is natural, so is �

�1

and therefore 
 makes all diagrams in ques-

tion commute. Also, 
 is unique since the existence of of two such morphisms

by the bijectivity of � would contradict the uniqueness of �.
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We have shown that F (lim

�!

i

Y

i

) and lim

�!

i

(F (Y

i

)) are solutions for the

same universal mapping problem and hence are isomorphic.

Remark 2.21. As the reader probably has noticed, the proof of 2.20

is based in a singular manner on � . Without it, there were no such proof

possible. The existence of such a connecting � for the functors F and G

is usually expressed by saying, that F and G are a dual or adjoint pair.

The above established fact that the left brother of an adjoint pair always

commutes with direct limits is not the only property, these couples enjoy.

For example, F is always right exact and G always left exact. The interested

reader is referred to the subsections on Limits and Watts theorems in [11].

In the hope that not all readers are run away frustrated by the amount

of homological algebra we now will show the way in which local cohomology

is related to direct limits. To this end we return to the notation of direct

systems, we introduced �rst.

Definition 2.22. Let M be an A-module, I be a directed set and A =

fa

i

; '

i

j

g an inverse directed system (see 2.2) of ideals of A over I (so that

i � j 2 I ) a

i

� a

j

), then �

0

A

(M) is de�ned to be

S

(0 :

M

Aa

i

).

Remark 2.23. It follows from 2.14 that �

0

A

(M) is isomorphic to lim

�!

(0 :

M

a

i

).

Lemma 2.24. Let I be a directed set and A = fa

i

; '

i

j

g be an inverse

directed system of ideals over I. Then there is a natural isomorphism from

lim

�!

Hom

A

(A=a

i

;M) to �

0

A

(M).

Proof. For i 2 I let '

i

denote theA-homomorphism Hom

A

(A=a

i

;M)!

M that is de�ned by f ! f(1+ a

i

). Then from a � f(1+ a

i

) = f(a+ a

i

) = 0

for a 2 a

i

it follows that '

i

maps actually into (0 :

M

a

i

). Further, if

m 2 (0 :

M

a

i

), one can de�ne a map f

m

: A=a

i

!M by f

m

(1 + a

i

) = m. It

follows that '

i

is an epimorphism.

If '

i

(f) happens to be zero, then necessarily f(1 + a

i

) = 0 and so

f(A=a

i

) = 0 and hence f = 0. We conclude that '

i

is an isomorphism

from Hom

A

(A=a

i

;M) to (0 :

M

a

i

).

All these isomorphisms are natural in M since given � : M ! M

0

, the

diagram

Hom(A=a

i

;M)

Hom(A=a

i

;M

0

)

-

(0 :

M

a

i

) (0 :

M

0

a

i

)

-

? ?

commutes

because of

-

-

f

f(1 + a

i

) �(f(1 + a

i

))

� � f

(� � f)(1 + a

i

)

? ?

Let for i � j;  

i

j

: A=a

i

! A=a

j

denote the natural projection. Then

A

0

:= fA=a

i

;  

i

j

g is an inverse system over I, hence a contravariant functor
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from I to C

A

, Hom

A

(�;M) � A

0

is a covariant functor from I to C

A

. So by

application of the functor lim

�!

we get a natural isomorphism ' between

lim

�!

Hom

A

(A=a

i

;M) and lim

�!

(0 :

M

a

i

):

To have any use of this lemma we should show that �

a

and �

0

A

are by

some means related things. This we do.

Proposition 2.25. Let a be an ideal of A and consider

A = fa

i

; '

i

j

g = fa

i

; ,!g

i2N

as inverse directed system over I = N.

Then �

a

(�) and �

0

A

(�) are naturally equivalent.

Proof. We observe �rst that the indexing set is directed.

Let M be an A-module. For each i 2 I we have (0 :

M

a

i

) � �

a

(M) such

that we can think for j � i of a commutative diagram

(0 :

M

a

i

)

(0 :

M

a

j

)

?

'

i

j

A

A

A

A

A

A

A

A

A

AU

�

�

�

�

�

�

�

�

�

��

lim

�!

(0 :

M

a

i

)
�

a

(M)

�

�

�

�

�	

@

@

@

@

@R

�

i

p

i

�

j

p

j

���� >

�

where all p

i

and '

i

j

are inclusion maps and the �

i

are the natural ones. By

2.6 there is a unique � making all these pictures commute. Now by 2.12

every element in lim

�!

(0 :

M

a

i

) is image of some element in one module in the

\middle axis". So especially are all elements in the kernel of �. But then

ker� must be equal to zero since the corresponding diagram commutes and

each p

i

is injective.

On the other hand, whenever m 2 �

a

(M), 9i 2 I : a

i

� m = 0. So

m 2 (0 :

M

a

i

) and therefore M is image under some p

i

and hence under �

too. So � is an isomorphism.

If f : M ! M

0

is a homomorphism, then there is a map f of direct

systems

f : f0 :

M

a

i

; '

i

j

g ! f(0 :

M

0

a

i

); '

j

0

i

g

induced by f and de�ned by restriction. ('

j

0

i

: (0 :

M

0

a

j

) ! (0 :

M

0

a

i

) for

j � i 2 I). Then � 2 lim

�!

(0 :

M

a

i

) is image of (say) m 2 (0 :

M

a

i

) under �

i
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and so

�

a

(f) � � � �

i

(m) = �

a

(f) � p

i

(m)

= p

0

i

� f

i

(m)

= �

0

� �

0

i

� f

i

(m)

= �

0

� lim

�!

(f) � �

i

(m)

because of (in this order): the de�nition of direct limits, �

a

(f) is restriction,

the de�nition of direct limits. And of course lim

�!

(f) = f . (We have expanded

the notation by dashes to the corresponding things of M

0

.) It follows, that

the isomorphism is natural.

We therefore can unambiguously take � instead of �

0

whenever both

functors are de�ned and will in the sequel denote both by �.

Corollary 2.26. � is always left exact.

Proof. This follows immediately from 2.25, 2.15 and the fact that Hom

is left exact.

We are now going to produce a statement similar to 2.25 involving the

H

i

a

.

Suppose, T is an A-linear functor C

A

� C

A

! C

A

which is contravariant

in the �rst variable and covariant in the second. Let further I be a directed

set. Also let fa

i

g be an inverse system of ideals over I such that for all

j � i 2 I the natural morphism nat

i

j

is the projection A=a

i

! A=a

j

. Then

fA=a

i

; nat

i

j

g are an inverse system of A-modules over I . We then may

apply the functor T (�;M) with M an A-module to this inverse system to

get a direct system fT (A=a

i

;M); T (nat

i

j

;M)g over the directed set I. So

we then can apply lim

�!

. If T happens to be left exact, it is a consequence of

2.15 that this procedure if applied to an exact sequence

0!M

0

f

�!M

g

�!M

00

! 0

yields an exact sequence

0! lim

�!

T (A=a

i

;M

0

)! lim

�!

T (A=a

i

;M)! lim

�!

T (A=a

i

;M"):

Of course the standard example for T is Hom, but the Ext

i

are available

too. Since lim

�!

is a functor and Hom and Ext

0

are naturally equivalent,

lim

�!

(Hom(A=a

i

; �)) and lim

�!

(Ext

0

(A=a

i

; �)) are as well.

Now if

0!M

0

f

�!M

g

�!M

00

! 0

is an exact sequence of A-modules, there are for all i 2 I connecting ho-

momorphisms Ext

n

(A=a

i

;M

00

) ! Ext

n+1

(A=a

i

;M

0

), which are natural in

both variables (see [9], Theorem 6.3) and make the long exact Ext-sequence

with a

i

in the �rst variable exact. Then application of lim

�!

yields connecting

homomorphisms

lim

�!

Ext

n

(A=a

i

;M

00

)! lim

�!

Ext

n+1

(A=a

i

;M

0

)
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such that for all n 2 N

lim

�!

Ext

n

(A=a

i

;M)! lim

�!

Ext

n

(A=a

i

;M

00

)!

! lim

�!

Ext

n

(A=a

i

;M

0

)! lim

�!

Ext

n+1

(A=a

i

;M)

is exact.

So flim

�!

Ext

n

(A=a

i

; �)g is a connected sequence of covariant functors.

Theorem 2.27. Let A = fa

i

; '

i

j

g be an inverse system of ideals over the

directed set I in A. For all 0 � n 2 N,

H

n

A

(�) = R

n

�

A

(�) and lim

�!

Ext

n

(A=a

i

; �)

are naturally equivalent functors.

Proof. By 2.25 and 2.24, this is the case for n = 0. Also, H

i

A

(I) = 0

whenever I is an injective module and i is a positive integer. Similarily

Ext

n

(A=a

i

; I) = 0 for injective I and n > 0. So lim

�!

Ext

n

(A=a

i

; I) = 0 for

such I; n. Further flim

�!

Ext

n

(A=a

i

; �)g

n2N

is a connected right sequence of

functors since lim

�!

is exact and trivially so are the R

n

�

a

(�). By [9], Corollary

6.10 we are done.

The work previously done in this chapter brings now

Corollary 2.28. The local cohomology functors commute with direct

limits on directed sets.

Proof. This follows directly from 2.20 and 2.27.
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CHAPTER 3

Sequences

As the title of the chapter promises, the main e�ort in this part will be

spent on sequences and some consequences of these investigations.

The sequences arise in the most cases by the application of the connected

sequence of functors fH

i

a

g

i�N

to a moduleM with two di�erent ideals a and b

say. This may remind some reader of relative homology where the homology

groups of three di�erent spaces, which are however related to each other by

set theoretic conditions, are put into a long exact sequence. We will here

produce an analogue.

While in algebraic topology for two topological spacesX

1

;X

2

theMayer-

Vietoris-sequence provides an exact sequence

: : :! H

n

(X

1

\X

2

)! H

n

(X

1

)�H

n

(X

2

)! H

n

(X

1

[X

2

)! H

n�1

(X

1

\X

2

)! : : :

for each n 2 N, we will produce for two ideals a and b of A an exact sequence

: : :! H

n

a+b

(M)! H

n

a

(M)�H

n

b

(M)! H

n

a\b

(M)! H

n+1

a+b

(M)! : : :

for every n 2 N. If one now looks back to chapter 1, 1.5 and uses the

de�nition of �

a

described there, takes further X

1

= Var(a) and X

2

= Var(b)

(then Var(a + b) = X

1

\ X

2

and Var(a \ b) = X

1

[ X

2

) the similarities

between both sequences become extraordinary. However the reader should

be aware, that the indices go up instead of down.

In the previous chapter we saw that one can de�ne local cohomology for

inverse systems of ideals over directed sets. Our �rst lemma here deals with

the comparability of those functors.

Lemma 3.1. Let (I;�) and (J;�) be two directed sets. Let further A =

fa

i

g and B = fb

i

g be two inverse systems of ideals over I and J respectively.

Suppose that for all i 2 I9j 2 J : a

i

� b

j

and for all j 2 J 9i 2 I : b

j

�

a

i

. Then

(i) �

A

= �

B

as functors,

(ii) the negative strongly connected sequences

flim

�!

Ext

n

A

(A=a

i

;�)g

n�N

and

flim

�!

Ext

n

A

(A=b

j

;�)g

n�N

are isomorphic.

Proof. (i) is clear by the de�nition of � and 2.23. (ii) follows from

(i).

29
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Example 3.2. Let the index set be N with the natural order, B = fa

i

+

b

i

g an inverse system of ideals over N with inclusions as inner morphisms.

Then because of a

i

+ b

i

� (a+ b)

i

and (a+ b)

2i�1

� a

i

+ b

i

, it follows

from 3.1 that the functors

H

n

a+b

(�) and H

n

B

(�)

are naturally equivalent.

This example will play an important part in the construction of the

Mayer-Vietoris sequence.

Lemma 3.3. 4.3

Let a and b be two ideals in A. Then fa

i

\ b

i

g

fi�Ng

is an inverse system

over N and the connected sequences

flim

�!

Ext

n

(A=(a

i

\ b

i

);�)g

n�N

and

fH

n

a\b

(�)g

n�N

are naturally isomorphic.

Proof. It is clear that (a \ b)

i

� a

i

\ b

i

. By 3.1 and 2.25 it su�ces

to show that for each i 2 N there exists a q(i) 2 N such that a

q(i)

\ b

q(i)

�

(a\ b)

i

. To do this we use the Artin-Rees lemma. (See for example in [10],

Chapter 4, par. 7). This Artin-Rees lemma states that for all i 2 N there is

a c 2 N such that

a

i

0

+c

\ b

i

= a

i

0

(a

c

\ b

i

)

for all 0 � i

0

. But then, for i = i

0

:

a

i+c

\ b

i+c

� a

i+c

\ b

i

= a

i

(a

c

\ b

i

) � a

i

� b

i

� (a \ b)

i

and the proof is completed.

The following construction will so to say be the basis on which we will

build our sequence.

Lemma 3.4. Let N

1

; N

2

� M be three A-modules. Writing in the dis-

played sequence below

�(m+N

1

\N

2

) = (m+N

1

;m+N

2

); �(x+N

1

; y+N

2

) = x�y+(N

1

+N

2

);

the sequence

0!M=(N

1

\N

2

)

�

!M=N

1

�M=N

2

�

!M=(N

1

+N

2

)! 0

is exact.

Proof. It is obvious that the sequence is a zero complex, that � is

injective and that � is surjective. So let (x+N

1

; y+N

2

) be in ker(�). Then

x� y = n+ n

0

for some n 2 N

1

and n

0

2 N

2

.

So (x+N

1

; y+N

2

) = (x�n+N

1

; y�n

0

+N

2

) = �(x�n+N

1

\N

2

) 2

im(�).
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As the reader might suspect we we will apply to the sequence

0! A=(a

i

\ b

i

)! A=a

i

�A=b

i

! A=(a

i

+ b

i

)! 0

(which is exact by 3.4) the functors Ext

n

(�;M) for n 2 N, take the direct

limit and use then 3.2 and 3.3 to get informations about the local cohomology

modules. In this procedure obviously the term lim

�!

Ext

n

A

(A=a

i

� A=b

i

;M)

occurs. This rather looks like H

n

a

(M)�H

n

b

(M) but we can use here neither

3.2 nor 3.3.

Lemma 3.5.

lim

�!

Ext

n

A

(A=a

i

�A=b

i

;�) and H

n

a

(�)�H

n

b

(�)

are naturally equivalent for all n 2 N.

Proof. Let L;N;M be modules and 0! L

�

! M

�

! N ! 0 be a split

exact A-sequence. This is to say that 9�

0

and �

0

such that

0

L M N

0

- - - -

0

L M N

0

� � � �

��

�

0

�

0

is a commutative diagram with exact rows and �

0

� � + � � �

0

= id

M

. Then

the application of Ext

n

A

(�;X) gives by the A-linearity and half-exactness of

Ext the (commutative) diagram with exact rows

Ext

n

A

(L;X)Ext

n

A

(N;X) Ext

n

A

(M;X)

- -

Ext

n

A

(N;X) Ext

n

A

(M;X) Ext

n

A

(L;X)

� �

�

�

�

�

�

0

�

�

0

�

again with exact rows and ~�

0

� ~� + ~� � ~�

0

= Hom

A

(id

M

;X) showing

that both ~� = Ext

n

A

(�;X) and ~�

0

= Ext

n

A

(�

0

;X) are surjective and ~� =

Hom

A

(�;X) and ~�

0

= Hom

A

(�

0

;X) are injective. So the application of

Ext

n

A

(�;X) gives again a split exact sequence.

Now let for all j � i 2 N and all ideals a; b in A

0! A=a

i

! A=a

i

�A=b

i

! A=b

i

! 0
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denote the natural, split sequence and h

i

j

: A=a

i

! A=a

j

and k

i

j

: A=b

i

!

A=b

j

the natural projections. Then we have for all such i; j; a; b a commu-

tative diagram

0

A=a

j

A=a

j

�A=b

j

A=b

j

0

- - - -

0

A=a

i

A=a

i

�A=b

i

A=b

i

0

- - - -

? ? ?

h

j

i

h

j

i

� k

j

i

k

j

i

with split exact rows and application of Ext

n

A

(�;M) yields

0

Ext

n

(A=b

j

;M) Ext

n

(A=b

j

;M)� (A=a

j

;M) Ext

n

(A=a

j

;M)

0

- - - -

0

Ext

n

(A=b

i

;M) Ext

n

(A=b

i

;M)� (A=a

i

;M) Ext

n

(A=a

i

;M)

0

- - - -

6 6 6

Ext

n

(k

j

i

;M) Ext

n

(k

j

i

� h

j

i

;M) Ext

n

(h

j

i

;M)

with again split exact rows.

Now we take direct limits in each row and observe that by 2.15 this gives

a split exact sequence

0! lim

�!

Ext

n

A

(A=a

i

;M)! lim

�!

(Ext

n

A

(A=a

i

�(A=b

i

;M))! lim

�!

Ext

n

A

(A=b

i

;M)! 0

by [9] Th. 1.4 and 2.24 proves that for all A-modules M

H

n

a

(M)�H

n

b

(M) and lim

�!

Ext

n

A

(A=a

i

�A=b

i

;M)

are isomorphic. Now Ext and lim

�!

are functors so that from a map f :M !

M

0

we get translations of the above diagrams into similar ones with M

0

instead of M which then yield a translation of the �nal sequence into one

withM replaced byM

0

showing that the stated isomorphism is natural.

We now have collected enough information to prove the �rst and basic

Theorem 3.6. For all A-modules M and all pairs of ideals in A there

is a long exact sequence

0 ! H

0

a+b

(M)! H

0

a

(M)�H

0

b

(M)! H

0

a\b

(M)!

! H

1

a+b

(M)! H

1

a

(M)�H

1

b

(M)! H

1

a\b

(M)!

: : :! : : :

! H

n

a+b

(M)! H

n

a

(M)�H

n

b

(M)! H

n

a\b

(M)!

: : :! : : :
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such that for f :M !M

0

a homomorphism, the diagram

H

n

a+b

(M)

H

n

a

(M) �H

n

b

(M) H

n

a\b

(M)

H

n+1

a+b

(M)

- - -

H

n

a+b

(M

0

)

H

n

a

(M

0

)�H

n

b

(M

0

) H

n

a\b

(M

0

)
H

n+1

a+b

(M

0

)

- - -

? ? ? ?

H

n

a+b

(f )

H

i

a

(f )�H

n

b

(f )

H

n

a\b

(f )

H

n+1

a+b

(f )

commutes for all n 2 N.

Proof. Let i � j 2 N and let h

j

i

: A=a

j

! A=a

i

and k

j

i

: A=b

j

! A=b

i

denote the natural homomorphisms. Applying 3.4 to the submodules a

l

; b

l

of A for l = i; j one checks easily that the diagram

0

A=(a

i

\ b

i

) A=a

i

�A=b

i

A=(a

i

+ b

i

)

0

- - - -

0

A=(a

j

\ b

j

) A=a

j

�A=b

j

A=(a

j

+ b

j

)

0

- - - -

? ? ?

h

i

j

L

k

i

j

commutes and has exact rows. So we may apply the functor Hom

A

(�;M)

to it to get a long exact sequence

0! Hom

A

(A=(a

i

+ b

i

);M)! Hom

A

(A=a

i

�A=b

i

;M)! Hom

A

(A=(a

i

\ b

i

);M)!

Ext

1

A

(A=(a

i

+ b

i

);M)! Ext

1

A

(A=a

i

�A=b

i

;M)! Ext

1

A

(A=(a

i

\ b

i

);M)!

: : :!

Ext

n

A

(A=(a

i

+ b

i

);M)! Ext

n

A

(A=a

i

�A=b

i

;M)! Ext

n

A

(A=(a

i

\ b

i

);M)!

: : :!

together with a translation of this sequence into the same sequence with

j instead of i. This sequence is natural in M since Hom is a functor. So

passing to direct limits this naturality is conserved and the result is the long
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exact sequence

0! lim

�!

(Hom

A

(A=(a

i

+ b

i

);M))! lim

�!

(Hom

A

(A=a

i

�A=b

i

);M))!

! lim

�!

(Hom

A

(A=(a

i

\ b

i

);M)!

lim

�!

(Ext

1

A

(A=(a

i

+ b

i

);M))! lim

�!

(Ext

1

A

(A=a

i

�A=b

i

);M))!

! lim

�!

(Ext

1

A

(A=(a

i

\ b

i

);M))!

! : : :!

lim

�!

(Ext

n

A

(A=(a

i

+ b

i

);M))! lim

�!

(Ext

n

A

(A=a

i

�A=b

i

);M))!

! lim

�!

(Ext

n

A

(A=(a

i

\ b

i

);M))!

! : : :

Using 3.5, 3.2 and 3.3 the proof is complete.

Theorem 3.6 is the most important tool we will encounter in this chapter.

We will in the remainder of the chapter deal with the question how far the

calculation of local cohomology modules is dependent of the base ring under

special homomorphisms. To this we �rst introduce the notion of acyclic

modules and show a property acyclic modules have.

Definition 3.7. An A-module M is called T -acyclic for an additive

functor T : C

A

! C

A

whenever all right derived functors of order greater

than zero of T applied to M are 0.

The actual use of acyclic modules is illustrated by the following

Lemma 3.8. Let T be a left exact additive covariant functor from the

category of A-modules to itself. Denote by T

i

its i-th right derived functor.

Suppose,

0!M !M

0

!M

1

!M

2

! : : :

is an exact sequence and T

i

(M

j

) = 0 for all 1 � i and j 2 N. Then

T

i

(M)

�

=

ker(T (M

i

!M

i+1

))= im(T (M

i�1

!M

i

)). Thus the right derived

functors of T may be calculated by means of T -acyclic resolutions.

Proof. Let

0!M

�

! A

0

d

0

! A

1

d

1

! : : :

be a T -acyclic resolution (that is, the displayed sequence is exact and all A

i

are T -acyclic) for the A-module M . By the left exactness of T this gives

that

0! T (M)

T (�)

! T (A

0

)

T (d

0

)

! T (A

1

)

is exact and so T (M)

�

=

ker(T (d

0

)) so that we have proved the claim for

i = 0.

Let now i > 0 and suppose that for all j � i � 1 we have proved that

T

j

(M)

�

=

H

j

(T (A

�

)) where A

�

denotes the given acyclic resolution of M

and H

j

the j

th

cohomology module. Since the diagram
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0

M

A

0

A

1

A

2 : : :

- - - - -

ker(d

1

)

0 0

�

d

0

d

1

d

2

@

@R �

��

�

�� @

@R

� �

com-

mutes, with � and � the obvious natural maps,

0! ker(d

1

)

�

! A

1

d

1

! A

2

: : :

is an acyclic resolution for ker(d

1

).

By the inductive hypothesis we have then

T

i�1

(ker(d

1

))

�

=

�

H

i

(T (A

�

)) for i>1

ker T (d

1

) for i=1

Further from the exactness of

0!M ! A

0

�

! ker(d

1

)! 0

follows, for i > 1,

T

i

(M)

�

=

T

i�1

(ker(d

1

))

�

=

H

i

(T (A

�

))

and for i = 1 that

0! T (M)

T�

! T (A

0

)

T�

! T (ker(d

1

))! T

1

(M)! 0

is exact. So T

1

(M)

�

=

T (ker(d

1

))= im(T (�)). But T (ker(d

1

)) = ker(T (d

1

))

by the left exactness of T in the sequence

0! ker(d

0

)

�

! A

1

d

1

! A

2

and im(T (�)) = im(T (� � �)) = im(T (d

0

)).

The following two results pave the way for a statement that is needed

for the theorem after it, but from its nature belongs into the next chapter.

It will therefore be stated explicitely in there.

Lemma 3.9. Let a 2 A. Then there is a natural isomorphism

lim

�!

Hom

A

(A � a

n

;M)!M

a

where M

a

means the localization of M with respect to the m.c.s. fa

n

g

n�N

.

Proof. For all n 2 N there is an A-homomorphism �

n

: Hom

A

(A �

a

n

;M) ! M

a

given by �

n

(f)

n

= f

n

(a

n

)=a

n

. If one takes �

n

0

n

: A � a

n

!

A � a

n

to be the inclusion map whenever n � n

0

2 N, then clearly �

n

0

�

Hom

A

(�

n

0

n

;M) = �

n

. Taking lim

�!

induces therefore a homomorphism

� : lim

�!

Hom

A

(A � a

n

;M)!M

a

:

We try to show that this homomorphism is injective and surjective.
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So let f 2 ker(�). Since the direct system fHom

A

(A�a

n

;M);Hom

A

(�

n

0

n

;M)g

has directed index set, it follows from 2.12 that there is an n 2 N and a

f

n

2 Hom

A

(A � a

n

;M) such that f is image under an inner morphism of f

n

.

By property 3 of direct limits, then �

n

(f

n

) = f

n

(a

n

)=a

n

= 0. By the de�ni-

tion of M

a

there is an s 2 N : a

s

f

n

(a

n

) = 0 whence Hom

A

(�

n+s

n

;M)(f

n

) =

f

n

� �

n+s

n

= 0. So the image of f

n

in lim

�!

Hom

A

(A � a

n

;M) is zero and � is

injective.

Let now � 2M

a

. So � =

m

a

n

for some n 2 N;m 2M . As A is Noetherian,

the sequence

(0 :

A

a) � (0 :

A

a

2

) � : : : � (0 :

A

a

i

) : : :

is eventually stationary so that there exists a c 2 N : (0 :

A

a

c

) = (0 :

A

a

c+i

)

for all i 2 N. Hence r � a

c+n

= r

0

� a

c+n

for r; r

0

2 A) r� r

0

2 (0 :

A

a

c+n

) =

(0 :

A

a

c

) and so r � a

c

m = r

0

� a

c

m. So we can de�ne

h : A � a

c+n

!M

a

by h(ra

c+n

) = ra

c

m:

Then �

c+n

(h) = h(a

c+n

)=a

c+n

= a

c

m=a

c+n

= m=a

n

= �. So � is surjective.

Given an A-homomorphism ' :M !M

0

fromM into another A-module

M

0

, then each f 2 lim

�!

Hom

A

(A � a

n

;M) is image of some f

n

2 Hom

A

(A �

a

n

;M) for some n. So for the naturality of � we have by property 3 of direct

limits and the fact that lim

�!

is functor to show that '

a

(�

n

(f

n

)) = �

0

n

(' � f

n

),

where '

a

(x=y) = '(x)=y for x=y 2 M

a

and �

0

denotes the isomorphism

lim

�!

Hom

A

(A � a

n

;M

0

)!M

0

a

. But this is obvious.

Lemma 3.10. For the ideal a of A, denote the inclusion map a

i

0

,! a

i

for i � i

0

by �

i

0

i

. The family of A-modules and A-homomorphisms

fHom

A

(a

i

;M);Hom

A

(�

i

0

i

;M)g

i;i

0

�N

is a direct system over N, so that we can form its direct limit. Then

H

n

a

(�)and(R

n�1

(lim

�!

Hom

A

))(A � a

i

;�)

are naturally equivalent functors for n > 1.

Proof. For all i 2 N we have an exact sequence

0! a

i

! A! A=a

i

! 0:

Further, for 1 � j 2 N, we have the commutative diagram

0

a

j

A

A=a

j

0

- - - -

0

a

i

A

A=a

j

0

� � � �
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Applying the functor Hom(�;M) and its right derived functors yields

long exact sequences

0 ! Hom

A

(A=a

i

;M)! Hom

A

(A;M)

�

=

M ! Hom

A

(A � a

i

;M)!

! Ext

A

1

(A=a

i

;M)! Ext

A

1

(A;M) = 0! Ext

A

1

(A � a

i

;M)!

! : : :

! Ext

A

n

(A=a

i

;M)! Ext

A

n

(A;M) = 0! Ext

A

n

(A � a

i

;M)!

! : : :

for all i 2 N. By [9], theorem 6.7, the above picture assures, that there is

for all i � j 2 N a chain map from the displayed long sequence to one where

i is replaced by j and by this theorem again, the long sequence is natural in

M . Now we take direct limits to get for all n � 1

lim

�!

Ext

n

(a

i

;M)

�

=

lim

�!

Ext

n+1

(A=a

i

;M)

by the exactness of lim

�!

, and the isomorphisms are clearly natural. It fol-

lows from 2.27 that H

n+1

a

(M)

�

=

lim

�!

Ext

n+1

(A=A � a

i

;M) and [9], theo-

rem 6.1 together with 2.15 shows that lim

�!

Ext

n

(a

i

;M) is isomorphic to

R

n

(lim

�!

Hom

A

(a

i

;M)).

Theorem 3.11. Let M be an A-module. Suppose, � is a set of ideals

in A with the properties that

� � is closed under the formation of �nite sums and products,

� 0 2 �,

� each ideal in � is the sum of �nitely many principal ideals which

belong to �.

Then from H

1

J

(M) = 0 for all J 2 � follows that M is �

J

-acyclic.

Proof. Since �

0A

is the identity functor on C

A

, resolutions are un-

changed under application of it and so each M is �

0

-acyclic.

Now let x be in A and consider a := x �A, an ideal. Suppose, H

1

Ax

(M) =

0. We show that then M is �

Ax

-acyclic.

From 3.10 we get that for n � 2, H

n

A�x

(M)

�

=

R

n�1

(lim

�!

Hom

A

(A �x

i

;M))

and this is by 3.9 isomorphic to R

n�1

(M

x

), meaning that the (n � 1)-st

right derived functor of (�)

x

is applied to M . But localization is an exact

functor and hence its derived functors of order unequal to zero vanish. So

H

n

A�x

(M)

�

=

0 for all n > 1 and by hypothesis H

1

A�x

(M) = 0, so M is

A � x-acyclic. This proves the theorem for principal ideals in �.

Now suppose inductively, that t > 1 and we have proved that whenever

J

0

2 � can be expressed as sum of at most t � 1 principal ideals which all

belong to � , then M is acyclic for �

J

0

. We saw this to be correct for t = 2.

Now let J = Ax

1

+ Ax

2

+ : : : + Ax

t

where all the principal ideals on the

right side belong to �.

Set K = Ax

1

+ : : : + Ax

t�1

and K

0

= Ax

t

. By hypothesis K;K

0

and

K � K

0

belong to �. Since K;K

0

;K � K

0

are all expressible as sum of less

than t principal ideals of �, it follows from the inductive hypothesis, that
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M is acyclic with respect to �

K

;�

K

0

and �

K�K

0

. Using the Mayer-Vietoris

sequence we see that for each i > 1 the sequence

H

i�1

K�K

0

(M)! H

i

K+K

0

(M)! H

i

K

(M)�H

i

K

0

(M)

is exact, the �rst and last term being 0 by inductive hypothesis andK+K

0

=

J . Therefore M is �

J

-acyclic.

We will now assume until further notice that there is a second com-

mutative ring B together with a homomorphism f : A ! B, such that B

considered as an A-module by means of f is 
at. We will then investigate

how far the local cohomology modules with respect to an ideal I � A are

related to the local cohomology modules with respect to the ideal f(I) � B.

We will need some preparatory statements.

Lemma 3.12. Let A

0

be another commutative ring and let T;U : C

A

!

C

A

0

be two additive contravariant left exact functors. Suppose � : T ! U is

a morphism of functors such that �

A

: T (A) ! U(A) is an isomorphism.

Then �

M

: T (M) ! U(M) is an isomorphism for all �nitely generated

A-modules M .

Proof. Since T and U are additive, it follows that for a split exact

sequence

0! F

0

! F ! A! 0

of free A-modules F; F

0

the induced diagram

0

T (A) T (F ) T (F

0

)

0

- - - -

0

U(A) U(F ) U(F

0

)

0

- - - -

? ? ?

�

=

�

A

�

F

�

F

0

has split exact rows (see e.g. 3.5). Since free modules of rank one are

isomorphic to A, it follows by the �ve lemma (see [11], Lemma 3.32) through

induction on rank that �

F

is an isomorphism for all free modules of �nite

rank.

If nowM is an arbitrary �nitely generated A-module,M has a free resolu-

tion where all modules involved are �nitely generated (see e.g. [9], Theorem

5.10). So taking the last three terms of this resolution, and applying T and

U to it, we get the (commutative) diagram

0

T (M) T (F

0

) T (F

1

)

- - -

0

U(M) U(F

0

) U(F

1

)

- - -

? ? ?

�

M

�

=

�

F

0

�

=

�

F

1
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with exact rows (since T;U are left exact). Now the two right vertical

maps are isomorphisms and it follows from the �ve lemma again that �

M

is

an isomorphism.

The reader should note that these isomorphisms are natural since � is

transformation.

Lemma 3.13. Let the ring homomorphism f : A ! B be 
at, meaning

that B is A-
at by means of f . Let E be an A-module. Then by [11],

Theorem 1.8, E


A

B can be made into a B-module via s�(�

1�i�t

(m

i


b

i

)) =

�

1�i�t

(m

i


 s � b

i

). Moreover if g : E ! F is an A-homomorphism, then

both E


A

B and F 


A

B are B-modules and g


A

id

B

: E


A

B ! F 


A

B

is a B-homomorphism.

It is clear that g = id

E

induces g
 id

B

= id

E
B

and for a combined map

we have (g �g

0

)
 id

B

= (g
 id

B

)� (g

0


 id

B

). So (�)


A

B may be viewed as

(additive) covariant functor from C

A

to C

B

, the category of B-modules and

B-homomorphisms.

We may therefore consider T = Hom

A

(�; E)


A

B and U = Hom

B

((�)


A

B;E


A

B) to be additive contravariant functors from C

A

to C

B

. Then there

is a morphism of functors � : T ! U such that

1. for each A-module M , each g 2 Hom

A

(M;E) and each b 2 B we have

�

M

(g 
 b) = b � (g 
 id

B

);

2. the composition

E 


A

B




! Hom

A

(A;E)


A

B

�

A

! Hom

B

(A


A

B;E 


A

B)

�

! E 


A

B

where 
 and � are the natural isomorphisms (see [9],Th.2.6) is the

identity map,

3. �

M

is an isomorphism for all �nitely generated A-modules M .

Proof. As one easily veri�es, the �

M

as stated constitute a homomor-

phism from Hom

A

(M;E) 


A

B to Hom

B

((M 


A

B); (E 


A

B)).

1. Using the displayed formula, we have to show that it gives a morphism

of functors. That is, that it is natural in M . So suppose, we have

a map f : M

0

! M . Then we have to show that for each element

g 2 Hom

A

(M;E) 


A

B and all b 2 B

�

M

0

� (Hom

A

(f;E)


A

B)(g 
 b) = Hom

B

(f 


A

B;E 


A

B) � �

M

(g 
 b);

but this is obvious.

2. Under the given composition we follow the element e
 b with e 2 E

and b 2 B:

e
 b! f

e


 b! b(f

e


 id

B

)! b(e
 1) = e
 b

(where f

e

: A! E by a! a � e) and we are done.

3. Since tensoring with B over A and Hom

A

(�; E) are additive exact

functors and Hom

B

(�; E 


A

B) is left exact we can invoke lemma

3.13 since (ii) proves that �

A

is an isomorphism.
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Proposition 3.14. Assume that the ring homomorphism f : A ! B

is 
at. Let E be an injective A-module and be I an ideal of A. Then the

natural B-homomorphism

� : E 


A

B ! Hom

B

(I �B;E 


A

B)

with �(g)(b) = b � g for all g 2 E 


A

B and all b 2 I �B is surjective.

Proof. Since f is 
at, B is A-
at and so the natural B-homomorphism


 : I 


A

B ! I � B

for which 
(�

t

i=1

a

i


 b

i

) = �

t

i=1

f(a

i

)b

i

for all t 2 N; a

1

; : : : ; a

t

2 I and

b

1

; : : : ; b

t

2 B is an isomorphism: from the commutative diagram

0

I 


A

B A


A

B

- -

0

I � B B

- -

? ?




�

=

"

where " is the natural isomorphism and the top row is induced by the

exact sequence 0! I ! A, follows that 
 is injective.

That 
 is surjective follows from the fact that

P

t

1

f(a

i

) � b

i

is the general

form of an element of I � B with t 2 N; a

i

2 I and b

i

2 B. Now I is �nitely

generated and so the B-homomorphism from 3.13

�

I

: Hom

A

(I; E)


A

B ! Hom

B

(I 


A

B;E 


A

B)

is an isomorphism. Since E is A-injective, it follows from the exact sequence

0 ! I ! A and the natural isomorphism � : E

�

=

Hom

A

(A;E), that

� : E ! Hom

A

(I; E) by �(x)(a) = a � x for all x 2 E and all a 2 I is

surjective, so that application of the rightexact functor (�)


A

B shows that

� 
 id

B

: E 


A

B ! Hom

A

(I; E) 


A

B

is a (B-)epimorphism. So

Hom

B

(


�1

; E 


A

B) � �

I

� (� 
 id

B

) : E 


A

B ! Hom

B

(I � B;E 


A

B)

is surjective. But this maps e
 b! �(f)
 b! b � (�(f)
 id

B

)! b � (�(f)


id

B

) � 


�1

which is exactly �. So we are done.

The next theorem will pave the way for what is called the '
at base

change'.

Theorem 3.15. Assume that the ring homomorphism f : A! B is 
at

and let E be an injective A-module. Then E 


A

B is �

I�B

-acyclic for all

ideals I of A.
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Proof. For each n 2 N the natural B-homomorphism E 


A

B !

Hom

B

(I

n

B;E 


A

B) of 3.14 is surjective. Because of I

n

B = (I � B)

n

and

since lim

�!

is exact, the induced homomorphism

lim

�!

(E 


A

B)! lim

�!

(Hom

B

(I

n

�B;E 


A

B))

is surjective. So from the natural short exact sequences 0! I

n

�B ! B !

B=I

n

� B ! 0 together with the translations into a similar one with n

0

for

n, follows by application of lim

�!

Hom

B

(�; E 


A

B) that

0! lim

�!

Hom

B

(B=I

n

�B;E 


A

B)! lim

�!

Hom

B

(B;E 


A

B)

! lim

�!

Hom

B

(I

n

�B;E 


A

B)

! lim

�!

Ext

1

B

(B=I

n

�B;M)! lim

�!

Ext

1

B

(B;M) = 0

is exact. Since the third map is surjective, the fourth term is zero and this

is just saying that H

1

IB

(E 


A

B) = 0. Since this is true for all ideals I of A,

we conclude by 2.6 that E 


A

B is �

IB

-acyclic for all ideals I of A.

We come now to one of the more important statements of this chapter

for the work in the following chapters. It is concerned with the change of

the base ring under 
at homomorphisms. We remind the reader that he has

seen before one result to this topic, namely 1.14.

Lemma 3.16. Let the ring homomorphism f : A ! B be 
at. Then

there is a natural equivalence of functors

' : �

a

(�)


A

B ! �

aB

((�)


A

B)

from C

A

to C

B

which maps m
 b into m
 b for m 2 �

a

(M) and b 2 B.

Proof. Let M be an A-module. Since f is 
at, �

a

(M) ,!M induces a

B-monomorphism �

a

(M)


A

B !M 


A

B and its image is a-torsion since




A

is A-linear.

So we can for all A-modules M give a ' as stated such that '

M

is

injective. It is further clear that ' is natural in M because �

a

is 'taking

subsets'. So we have to show that ' is always surjective.

For let n 2 N. A=a

n

is a �nitely generated A-module and therefore 3.13

yields a B-isomorphism

�

A=a

n : Hom

A

(A=a

n

;M)


A

B ! Hom

B

(A=a

n




A

B;M 


A

B)

such that �

A=a

n
(f 
 b) = b(f 
 id

B

) for all f 2 Hom

A

(A=a

n

;M) and all

b 2 B. Then we may produce a composite

(0 :

M

a

n

)


A

B ! Hom

A

(A=a

n

;M)


A

B

�

A=a

n

�! Hom

B

((A=a

n

)


A

B;M 


A

B)

! Hom

B

(B=a

n

B;M 


A

B)! (0 :

M
B

(aB)

n

)

in which all undescribed maps are the natural isomorphisms. Under this

composition, m
 b is mapped

m
b! f

m


b! b(f

m


id

B

)! b�(�a

i

b

i

+(a

n

))! �f

m

(a

i

)
b

i

! b(m
1) = m
b:
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So the composition is exactly '

M

restricted to (0 :

M

a

n

) 


A

B. Since for

each m 2 �

a

(M) there is an n such that a

n

�m = 0, each m


A

b for b 2 B

is image under '

M

. So ' must be always surjective.

Theorem 3.17 (Flat Base Change). Assume that the ring homomorphism

f : A! B is 
at. Then the connected right sequences of covariant functors

(H

n

a

(�)


A

B)

n�N

and (H

n

a�B

((�)


A

B)

n�N

from C

A

to C

B

are isomorphic.

Proof. Since (�)


A

B is exact, it is clear that both the sets of functors

are connected sequences, of course right, covariant and from C

A

to C

B

. Also

for n > 0 trivially H

n

a

(E) = 0 whenever E is injective A-module and by

3.15 we see that H

n

a�B

(E 


A

B) is zero for such an E if n > 0. Also by 3.16

we have the statement proved for n = 0. The result follows then from [9],

theorem 6.10 and its corollary.

This theorem will be a basic tool in chapters 4 and 6.

We will �nish this chapter with the preparation and proof of a statement

that is similar to 3.17 and will �nd application in the next chapter. What

follows is taken from [24], paragraph 4. We will make clear the notation

used in the remainder of the chapter.

A;B will denote commutative Noetherian rings, such that f : A ! B

is a ring homomorphism. If a is an ideal of A then a

e

will denote the

ideal f(a) � B of B, whereas if b is an ideal of B, b

c

will denote the ideal

f

�1

(b) of A. Every B-module M can be considered as A-module by means

of f . So we can calculate for an ideal a of A and a B-module M the local

cohomology by consideringM as an A-module via f and then calculating the

local cohomology of this A-module. On the other hand, we could calculate

the local cohomology of the B-moduleM with respect to the B-ideal a

e

and

then consider these B-modules as A-modules via f . It would be nice if these

two ways would lead to the same result, wouldn't it ?

Lemma 3.18. Suppose, that E is an indecomposable injective B-module.

Then E is �

a

-acyclic for all ideals a of A when regarded as A-module via f .

Proof. By 7.17 E = E(B=p) for some prime p of B. We have as usual

two cases:

a) If a 6� p

c

, then there is an a in anp

c

and by 7.22 multiplication by a

provides an A-automorphism on E, which by the A-linearity of �

a

implies

that multiplication by a induces an A-automorphism of H

i

a

(E) for all i 2 N.

But each z 2 H

i

a

(E) is represented by � + im�

a

(E

i�1

! E

i

) where E

i

and

E

i�1

are the i

th

and (i�1)

st

term of an injective resolution ofM respectively

and � 2 �

a

(E

i

). So there exists n 2 N for which a

n

� = 0 such that a

n

z = 0.

So z = 0. So H

i

a

(E) = 0 in this case for all i 2 N.

b) If a � p

c

, then E is a-torsion by 1.16 and by 1.18 E is �

a

-acyclic.
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Corollary 3.19. Suppose now, that E is an arbitrary injective B-

module. Then if E is considered to be an A-module via f , E is �

a

-acyclic

for all ideals a of A.

Proof. By 7.21 E is direct sum of injective indecomposable B-modules

which by 3.18 are all �

a

-acyclic for all ideals a in A. By the fact that all H

i

a

are A-linear functors they commute with �nite direct sums. So whenever E

is �nite direct sum of indecomposable injective modules, it is �

a

-acyclic for

all a � A. If E is in�nite direct sum of injective indecomposable submodules,

we invoke lemma 2.13 together with 3.18 and 2.28 to see that for all a and

i 2 N

+

;H

i

a

(E) is direct limit of zeros, hence zero itself.

Theorem 3.20. Let a be an ideal of A. The connected right sequences of

covariant functors from C

B

to C

A

, fH

i

a

(�)g

i�N

and fH

i

a

e

(�)g

i�N

are isomor-

phic, where the latter is to be interpreted as '�rst calculate local cohomology

with respect to a

e

and then restrict the result to A

0

whereas the �rst is to be

interpreted as '�rst restrict to A and then form H

i

a

of the result'.

Proof. We �rst show, that the claim is true for i = 0. Let M be a

B-module. Then �

a

(M) = fm 2 M : 9n 2 N : a

n

� m = 0g = fm 2

M : 9n 2 N : (a

e

)

n

m = 0g = �

a

e

(M) restricted to A since multiplication

of m by elements of a is de�ned via f(a) � B. Further, if g : M ! N

is a B-homomorphism, then �

a

e

(g) is the restriction of g to �

a

(M) since

�

a

e

(g) is restriction of g and restriction to A is to take the same map. Also

�

a

(g) is the restriction of a B-map to an A-map followed by the restriction

to �

a

(M). So both maps coincide. Hence �

a

(:) and �

a

e

(:) are naturally

equivalent functors.

Now for a B-injective module E it is trivial that H

i

a

e

(E) is zero for all

i > 0 and from 3.19 we know this for H

i

a

(E) for i > 0. By [9], Theorem 6.10

and its corollary we are done.
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CHAPTER 4

Zeros

In this chapter we will have a large account concerning the calculation

of local cohomology modules. This will involve to a large extent the work

done in the previous chapter. Also we will make good use of the results of

chapter 2, where we established close relationships between local cohomology

modules and the functors Hom and Ext. Since these functors are the concern

of many branches of algebra, there are some auxiliary results, we will invoke.

To this we �rst give some reminders concerning regular sequences and related

things.

Definition 4.1. Let M be an A-module. An element a 2 A is said to

be M -regular if a � x 6= 0 for all 0 6= x 2M . A sequence a

1

; : : : ; a

n

is said to

be anM -sequence, or anM -regular sequence, if the following two conditions

hold:

1. a

1

isM -regular, a

2

isM=a

1

M -regular,: : : ; a

n

isM=(a

1

; : : : ; a

n�1

)M -

regular;

2. M 6= (a

1

; : : : ; a

n

) �M .

If (a) = (a

1

; a

2

; : : : ; a

n

) is an M -sequence, we will denote by (a) both the

sequence and the ideal generated by the members of the sequence.

We cite now some theorems about M -sequences without proof. The

references given are always with respect to [7] so that the interested reader

is referred to this book.

Theorem 4.2. (see 16.1) If a

1

; : : : ; a

n

is an M -sequence, then so is

a




1

1

; a




2

2

; : : : ; a




n

n

for any set of positive integers f


i

g

1�i�n

.

Theorem 4.3. (see 16.6) Let a be an ideal of A, A a Noetherian ring,

M a �nitely generated A-module and a �M 6= M . Then for a given integer

n the following are equivalent:

1. Ext

i

A

(N;M) = 0 for all i � n � 1 and for any �nitely generated

A-module N such that supp(N) � V ar(a),

2. Ext

i

A

(A=a;M) = 0 for all i � n� 1,

3. Ext

i

A

(N;M) = 0 for all i < n and some �nitely generated A-module

N with Var(a) = supp(N),

4. There exists an M -sequence of length n contained in a.

It is a straightforward consequence of the latter theorem, that for a

�nite A-module M (meaning �nitely generated) the length of all maximal

45
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M -sequences contained in a (maximal means, that there is no other M -

sequence contained in a which is a proper superset of it) is a well determined

integer, whenever a �M 6=M .(See [7], Theorem 16.7)

Definition 4.4. Let M be a �nite module over A, a an ideal in A such

that a�M 6=M . Then the well de�ned integer that represents the length of a

maximalM -sequence contained in a is called the depth of M with respect to

a or the a-depth of M , written depth(a;M). If it happens, that a �M =M ,

we will write depth(a;M) =1. In the light of theorems 4.2 and 4.3 we have

depth(a;M) = inffi 2 N : Ext

i

A

(A=a;M) 6= 0g:

Before we now start to use these things we will restate a result we proved

earlier to �nish an inductive argument but had the opinion, it would be

placed better in this chapter by nature.

Theorem 4.5. Let A;M; a be as usual. Then a is �nitely generated. If

n denotes the number of elements of a which is at least needed to generate

it, then for all i 2 N,

H

n+i+1

a

(M) = 0:

Proof. By the �rst two paragraphs of the proof of 3.11, the theorem is

proved for n = 0 and 1.

Suppose inductively, that r > 1 and the theorem is proved for all smaller

values of n than r. Let a be generated by r elements, say a = (g

1

; : : : ; g

r

).

Set b = (g

1

; : : : ; g

r�1

). Then b and g

r

� A are generated by less than r

elements and we can apply the inductive hypothesis to them. Further we

know from 1.12 that H

i

b�(g

r

�A)

(�) and H

i

b\g

r

�A

(�) are naturally equivalent

functors for all i 2 N. The Mayer-Vietoris-sequence 3.6 yields then the

existence of an exact sequence

H

r+i

b�(g

r

�A)

(M)! H

r+i+1

b+g

r

�A

(M)! H

r+i+1

b

(M)�H

r+i+1

g

r

�A

(M)

for all i 2 N. By inductive hypothesis, the left hand term is zero for all i 2 N

since b is generated by r�1 elements and the right hand term is zero by the

inductive hypothesis again and the fact that r + i + 1 > 1. It follows, that

the middle term is zero for all i 2 N, that is, H

r+i+1

a

(M) = 0. The theorem

follows by induction.

This theorem providing an upper bound for local cohomology modules

being nonzero is in contrast to the following, which is taken from [22],

Theorem 2.1. In this following statement we adopt the convention, that

for a local ring A with maximal ideal m we denote depth(m;M) just by

depth(M).

Proposition 4.6. Let A be a Noetherian local ring with maximal ideal

m. Suppose M is a nonzero �nitely generated A-module. Then depth(M) is

the least integer i for which H

i

m

(M) 6= 0.
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Proof. By de�nition,H

i

m

(M) is isomorphic to the ith cohomology mod-

ule of the complex obtained by application of �

m

to a minimal injective

resolution of M . Let r denote depth(M). Then by 7.23 and 4.3, r is the

smallest integer i for which �

i

(m;M) > 0. Then by 1.16 all H

i

m

(M) = 0 for

i � r � 1. Also

H

r

m

(M)

�

=

ker(�

m

(E

r

(M)! E

r+1

(M))= im(�

m

(E

r�1

(M)! E

r

(M)))

= fker(E

r

(M) ! E

r+1

(M))g \ �

m

(E

r

(M)) since �

m

(E

r�1

) = 0. Now

K := ker(E

r

(M) ! E

r+1

(M)) cannot be zero since E

r

would otherwise

have to be zero because the latter is an essential extension of the former by

de�nition. But from �

r

(m;M) 6= 0 follows E

r

nonzero. Further �

m

(E

r

) is

nonzero because �

r

(m;M) 6= 0. Hence K and �

m

(E

r

) meet nontrivially. So

H

r

m

(M) 6= 0.

We give now a nonlocal version to this proposition, using a di�erent

approach. This proof is taken from [1], Ch. 7.

Theorem 4.7. Let A be a Noetherian commutative ring. Let M be a

nonzero �nitely generated A-module. Suppose a is an ideal of A such that

a �M 6= M . Then depth(a;M) is �nite and equal to the least integer i for

which H

i

a

(M) 6= 0.

Proof. Let (x) = (x

1

; : : : ; x

r

) be a maximal M -sequence contained in

a such that r = depth(a;M). Then, by 4.2, (x

n

1

; : : : ; x

n

r

) is an M -sequence

for all n 2 N

+

and of course contained in a

n

. So depth(a

n

;M) � r. On the

other hand, depth(a

n

;M) cannot exceed r, since a

n

is subset of a. So for all

n 2 N

+

, depth(a

n

;M) = r.

So we have, by 4.3,

Ext

i

A

(A=a

n

;M) = 0 for all i < r and n 2 N:

By 2.27 this implies that

H

i

a

(M)

�

=

lim

�!

(Ext

i

A

(A=a

n

;M)) = lim

�!

(0) for all i < r:

So it remains to show that H

r

a

(M) 6= 0. We will do this by induction on r.

If r = depth(a;M) = 0, then by de�nition of depth there is no nonzerodi-

visor on M in a and so a has to be contained in the union of the associated

primes of M . Since ass(M) is �nite, by [12], Theorem 3.61 follows that

a � p for some p 2 ass(M). So there exists a submodule of M isomor-

phic to A=p by [12], 9.33. Since A=p is annihilated by a, it follows that

�

a

(M)

�

=

H

0

a

(M) 6= 0.

Now suppose that depth(a;M) = r � 1 and we have proved the theorem

for all values of depth(a;M) smaller than r. Let x

1

be a nonzerodivisor on

M in a which exists by the fact that depth(a;M) � 1. Suppose (M=x

1

M) =

a(M=x

1

M), then aM + x

1

M =M such that aM =M , a contradiction. So

depth(a;M=x

1

M) = r � 1 by the remark following 4.3. By the inductive

hypothesis,

H

r�1

a

(M=x

1

M) 6= 0:
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Since x isM -regular, there is an exact sequence 0!M

x

1

!M !M=x

1

�M !

0 giving rise to a long exact H-sequence, a part of which is

H

r�1

a

(M)! H

r�1

a

(M=x

1

M)! H

r

a

(M):

The �rst part of the proof gives that the left term is zero and the inductive

hypothesis assures that the middle term is nonzero such that by the exact-

ness H

r

a

(M) cannot vanish. This completes the inductive step and the proof

is complete.

While 4.5 gave a criterion for the vanishing of certain local cohomology

modules using an invariant of the corresponding ideal alone, and 4.6 one

using both the ideal and the module, we will now have a statement involving

only information from the module in question.(See [24], Theorem 6.1)

Proposition 4.8. Let A be a Noetherian ring, M a �nitely generated

A-module of Krulldimension 0 and a an ideal of A. Then H

i

a

(M) = 0 for all

i � 1. (Remember, that the Krulldimension of an A-module M is de�ned to

be the length n of the longest sequence of primes of A, p

1

� : : : � p

n

2 SpecA

such that each prime of the chain belongs to supp(M). See e.g. [7], Chapter

2, paragraph 5.)

Proof. The assumptions imply by [12], 9.20 that a prime ideal p of A

belongs to the support of M if and only if it contains the annihilator of M .

Since the Krulldimension of M is 0, this implies that the dimension of M is

0 so that ann(M) has only maximal ideals of A in its variety. By [12], 8.38

then A= ann(M) is Artinian so that by [12], 7.20 M is Artinian and by [12],

7.36 there exists a �nite set of submodules of M

0 �M

0

�M

1

� : : : �M

r

=M

such that for all 1 � i � r we have M

i

=M

i�1

�

=

A=p

i

for some prime ideal

p

i

ofA. By the following argument each of these p

i

is in supp(M):

The above sequence shows that

0 6= (A=p

i+1

)

p

i+1

�

=

(M

i+1

=M

i

)

p

i+1

�

=

(M

i+1

)

p

i+1

=(M

i

)

p

i+1

by [12], 9.12. Hence (M

i+1

)

p

i+1

is nonzero and so p

i+1

is in supp(M). It

follows, that all p

i

are maximal. We show now that if M

0

�

=

A=p for p

maximal in Spec(A), then H

i

a

(M

0

) = 0 for i � 1.

For, we consider a minimal injective resolution of M

0

0! A=p! E

0

(A=p)! E

1

(A=p)! : : :! E

n

(A=p)! : : : :

A=p is p-torsion, so by 1.17 and 7.22, if p

0

is a prime of A di�erent from p,

then �

i

(p

0

; A=p) = 0 for p

0

� p and all i, such that by the maximality of p

E

i

(A=p)

�

=

�

i

(p;A=p)

M

1

E(A=p)

It may now happen
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a) a 6� p.

Then there exists x 2 anp, and by 7.22 we are done.

b) a � p.

By 1.16 E(A=p) is then a-torsion such that by 1.18 A=p is �

a

-

acyclic.

So for p maximal in Spec(A), H

i

a

(A=p) = 0 for i � 1. So in our chain

0 =M

0

�M

1

� : : : �M

n

=M;

H

i

a

(M

0

) = H

i

a

(M

1

) = 0 for i � 1. Assume inductively that we have shown

for 0 � j � t 2 N that H

i

a

(M

j

) = 0 for i > 0. This is certainly true for

t = 1. Then from

0!M

t

! M

t+1

! M

t+1

=M

t

! 0;

the natural exact sequence with M

t+1

=M

t

�

=

A=p

t+1

, follows by application

of the functors fH

i

a

g

i�N

that for all 1 � i

0 = H

i

a

(M

t

)! H

i

a

(M

t+1

)! H

i

a

(A=p) = 0

is exact, proving that M

t+1

is �

a

-acyclic as well. By induction we have

proved that for t = n, H

i

a

(M

n

) = H

i

a

(M) = 0 for all 1 � i.

We now extend this result to many more modules. (Taken again from

[24], Theorem 6.1)

Theorem 4.9. Let A be a Noetherian commutative local ring. Let M be

an arbitrary A-module of Krulldimension s < 1. Then H

i

a

(M) = 0 for all

ideals a and all integers i � s+ 1.

Proof. The case s = 0 has been proved for �nitely generated modules in

4.8. We consider the direct system of 2.4 with respect toM and observe, that

any submodule of M has Krulldimension not exceeding the Krulldimension

ofM itself. By 2.28, taking local cohomology modules commutes with other

direct limits, so that whenever i is a positive integer and the Krulldimension

of M is zero, H

i

a

(M) is isomorphic to the direct limit of zeros, hence zero

itself. So suppose inductively that 1 � k 2 N and that whenever N is an

A-module with Krulldimension s � k� 1, then H

i

a

(N) = 0 for all i � s+ 1.

Suppose,M is a �nite A-module with Krulldimension k. By [12], 9.40 there

is a �nite chain of submodules of M

0 =M

0

�M

1

� : : : �M

r

=M

such that for all 1 � i � r, M

i

=M

i�1

�

=

A=p

i

for some prime p

i

in A. Then

all these p

i

belong to supp(M) by the argument in 4.8. So dim(A=p) � k

for all p

i

in this chain.

By an inductive argument similar to that at the end of 4.8 it is then

enough to show that for all prime ideals p of A with dim(A=p) = k we have

H

i

a

(A=p) = 0 for all i � k + 1. This we do.

Let � = (A=p)

p

be regarded as A-module in the natural way. Let further

� : A=p ! � be the natural homomorphism, which is injective by the fact
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that A=p is integral domain. Let H = �=(A=p) be the cokernel of �. Then

we have an exact sequence

0! A=p! �! H ! 0:(�)

We will show now that H

i

a

(�) = 0 for all 1 � i.

a) a 6� p

then there exists x 2 anp and multiplication by it provides an

isomorphism on �. This is due to the fact that p is prime: x provides a

monomorphism on A=p trivially and x+p being not the zero element

in A=p becomes unit in (A=p)

p

. By the fact that �

a

is A-linear,

multiplication by x induces an automorphism on H

i

a

(�). But each

z 2 H

i

a

(�) for 1 � i is representable as � + im(�

a

(E

i�1

(�)! E

i

(�)))

where the E

i

constitute a minimal injective resolution for M and �

is an element of �

a

(E

i

(�)) and hence annihilated by some power of a

and so by some power of x as well. This only being possible if z = 0

shows that H

i

a

(�) = 0 if 1 � i.

b) a � p

then � is a-torsion and we saw in 1.18 that then H

i

a

(�) = 0 for

1 � i.

So always H

i

a

(�) = 0 for 1 � i. Now consider again the exact sequence

(*). Since localisation is an exact functor and �

p

: (A=p)

p

! �

p

is an

isomorphism, H

p

= 0. So supp

A

(H) � supp

A

(A=p)nfpg. Since of course

p is the unique minimal ideal in supp

A

(A=p), the Krulldimension of H is

� k � 1. By the inductive hypothesis H

i

a

(H) = 0 whenever i � k. Now (*)

induces a long exact sequence, and a part of it is

: : :! H

k

a

(H)! H

k+1

a

(A=p)! H

k+1

a

(�)! : : :

Now for all 1 � i, H

i

a

(�) = 0 and for all i � k, H

i

a

(H) = 0 such that by the

exactness of the displayed sequence H

i

a

(A=p) = 0 for all i � k + 1.

As indicated above it is now clear that this implies the correctness of the

statement of the theorem for all �nitely generated modules of Krulldimension

k.

Now we can consider the direct system of 2.4 for an arbitrary A-module

M and observe that any submodule of M has Krulldimension at most equal

to that of M itself. It follows that whenever i exceeds the Krulldimension k

ofM , thenH

i

a

(M

0

) = 0 for all �nitely generated submodules ofM . So the di-

rect limit of these H

i

a

(M

0

) is zero and equals on the other hand H

i

a

(lim

�!

(M

0

))

since we know that taking local cohomology modules commutes with other

direct limits over directed sets. (See 2.28.) But this is exactly H

i

a

(M) by

2.9. We have therefore for all A-modules M of Krulldimension k proved

that i � k + 1 implies that H

i

a

(M) = 0 for all ideals a of A. The theorem

follows by induction.

We want to point out here that there are other proofs of this theorem,

one for example is to be found in [3], 1.12. However the reader should not
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expect to understand the proof there without having either experiences in

sheaf theory or a lot of patience.

If we now put together what we have learned in the previous three state-

ments, then if A is a Noetherian local ring, a the maximal ideal of A and

M an arbitrary module then whenever i 2 N is such that H

i

m

(M) 6= 0, we

must have i � Krulldimension(M); if M is �nitely generated, H

i

m

(M) 6= 0

implies i � depth(m;M) for such i and H

depth(m;M)

m

(M) 6= 0. The reader

may wonder what about the upper bound for such i - can it be improved?

We answer this question now with a theorem to be found in [1], Chapter 6.

At this point we want to tell the reader, that there are yet more meth-

ods to investigate local cohomology than we have encountered up to now.

For example, local cohomology modules occur as (co-)homology modules of

suitable Koszul- or

�

Cech-complexes. We will not further explain this and

the interested reader is best referred to [1].

Another way of investigation arises by what is called secondary repre-

sentation of a module This is a tool of commutative algebra introduced and

developed by I. G. Macdonald, which is dual to the usual concept of primary

dcomposition. We will give some results of this theory in the next de�nition

but we do not intend to prove these statements.

Definition 4.10. We say that the A-moduleM is secondary if and only

if multiplication of M by a 2 A provides either a surjective or a nilpotent

endomorphism on M for each a 2 A. If M happens to be secondary, then

p

ann

A

(M) is a prime ideal and M is said to be p-secondary.

Further, if there is a �nite family of p-secondary modules fM

i

g

1�i�n

for

n 2 N, then the sum of these A-modules is again p-secondary. (Remember:

the �nite intersection of q-primary submodules was again q-primary.)

If for an A-module M there are submodules M

i

; 1 � i � n for some

n 2 N such that

M =M

1

+ : : :+M

n

where M

i

is p

i

-secondary for 1 � i � n, then the above line will be called a

secondary decomposition forM . Such a decomposition is said to be minimal

whenever all prime ideals involved are di�erent and no module of the sum

is super
uous. The reader may note that by the fact that �nite sums of

secondary modules are secondary, one can produce a minimal decomposition

from a given arbitrary decomposition.

As for primary decomposition, the prime ideals which occur in a min-

imal secondary decomposition for the A-module M satisfy the uniqueness

property one might hope: in any two minimal secondary decompositions for

the A-module M , the sets of prime ideals involved are identical. This set

(with respect to the module M) is called the attached prime ideals of M

and is written att

A

(M):

To have any use of these things one has to show, that there are modules

which have secondary decomposition. In fact there are and it is no surprise

that one can show, that all Artinian modules do. (The proof is similar to
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the primary case and uses sum-irreducible modules.) However, the class of

modules that actually have secondary decomposition is larger than the class

of Artinian modules: for example in [25] is shown that injective modules

over Noetherian rings have secondary decompositions and of course there

are injective non-Artinian modules over Noetherian rings. The interested

reader is also referred to [22].

We give now a theorem taken from [22] (Theorem 2.2), which has local

cohomology as topic and involves in statement as well as in proof the concept

just described.

Theorem 4.11. Suppose, (A;m) is a local commutative Noetherian ring.

Let M be a nonzero �nitely generated A-module of Krulldimension s =

dim(M).

Then

H

s

m

(M) 6= 0 and Att

A

(H

s

m

(M)) = fp 2 Ass(M) : dim(A=p) = sg:

The reader will admit that especially the second part of this statement

is rather striking. The following is an application of this theorem.

Corollary 4.12. Let A be an arbitrary Noetherian commutative ring

and M a nonzero �nitely generated A-module. Let a be an ideal of A such

that a + ann(M) is a proper ideal of A. Let p be a minimal prime of a +

ann(M) and let r = dim

A

p

M

p

. Then H

r

a

(M) 6= 0.

Proof. Let b = ann(M). Then M can be viewed as an A=b-module in

the natural way. By 3.20 applied to the natural projection A! A=b we can

calculate the local cohomology over A=b so that

H

r

a

(M)

�

=

H

r

(a+b)=b

(M)

and again we use 3.20 to get

H

r

(a+b)=b

(M)

�

=

H

r

a+b

(M);

M on the right side again being considered as A-module.

From the fact that a + b has p as minimal prime follows that (a + b)

p

has pA

p

as minimal prime. But the latter is maximal, so the former is

pA

p

-primary. So

H

r

(a+b)A

p

(M

p

) = H

r

pA

p

(M))

by 1.11 and by 4.11 the right hand term is nonzero. If we put together the

information we have collected, we obtain

(H

r

a

(M))

p

�

=

(H

r

a+b

(M))

p

by the above argument

�

=

H

r

(a+b)A

p

(M

p

)by the 
at base change

�

=

H

r

pA

p

(M

p

)by1.11

6= 0
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whence H

r

a

(M) 6= 0.

We conclude that for a Noetherian local ringA with maximal ideal m and

M a nonzero �nitely generated A-module the possible integers i for which

H

i

m

(M) 6= 0, have to be between depth(M) and Krulldim.(M) = dim(M)

and the values of i on either side correspond to nonzero local cohomology

modules. Since every nonzero �nitely generated module has a dimension,

this means that for such a module M over such a ring there always exists

an i such that the i

th

right derived functor of �

m

(�) evaluated at M is

nonzero. So the question arises, whether there are other general constraints

we have not yet treated which force H

i

m

(M) to be zero. That means, we are

interested in the structure of the subset �(m;M) � N which is de�ned to

consist exactly of these i 2 N for which H

i

m

(M) 6= 0. We will show that if A

is allowed to vary over all Noetherian local rings, then for each �nite � � N

there is a Noetherian ring A and a �nitely generated moduleM over A such

that � = �(m;M). The idea and proof are due to I. G. Macdonald and to

be found in [21].

Theorem 4.13. Let � be a �nite subset of N. Then there is a Noether-

ian local A-algebra (B; n) over a Noetherian local ring (A;m) such that for

i 2 N we have

H

i

n

(B) 6= 0, i 2 �

Proof. Let n be the largest integer in �. Let � be any �eld. Then let

A be the power series ring over � in the n indeterminates x

1

; : : : ; x

n

. Then

A is a regular Noetherian local ring with dimension n and maximal ideal

m = (x

1

; : : : ; x

n

) �A. (See [12], 8.13, 3.19 and 15.29.) Further it is clear that

x

1

; : : : ; x

n

is an A-sequence in m. So depth(A) � n. Hence �(m; A) = fng.

For each i 2 N let p

i

be the ideal generated by x

i+1

; : : : ; x

n

. Then by [12],

15.38 each p

i

is prime. Let further M be the A-module de�ned by

M =

M

i��nfng

A=p

i

:

We are interested in �(m;M). By 4.6 and the fact that x

1

; : : : ; x

i

is an

A=p

i

-sequence contained in m, all j 2 �(m; A=p

i

) have to be at least i. On

the other hand, the annihilator of A=p

i

is equal to p

i

and so dim(A=p

i

) = i.

Since A=p

i

is �nitely generated, dim(A=p

i

) = Krulldim(A=p

i

) so that by 4.8

and the previous comment �(m; A=p

i

) = fig.

Now we know that � is additive for every A-ideal a and therefore the

same is true for the H

i

m

. From this it follows, (see e.g. the proof of 3.5) that

H

i

a

(N �N

0

) = H

i

a

(N) �H

i

a

(N

0

) and therefore �(m; N � N

0

) = �(m; N) [

�(m; N

0

) for all A-modules N;N

0

. Hence

�(m;M) =

[

i�Nnfng

�(m; A=p

i

) = �nfng:

We will now explain, how one can on the direct sum of a ring and a module

over this ring de�ne a new ring structure. For let R be a Noetherian local
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ring and N an R-module. Let S = R�N . De�ne a multiplication on S by

(r � x) � (s� y) = rs� ry + sx:

This is clearly commutative with identity (1,0),

(r � x) � [(s� y) � (t� z)] = (r � x)(st� sz + ty) = rst� rsz + rty + stx

which is obviously symmetric in r; s; t and x; y; z so that � is associative.

Finally,

(r�x)�[(s+t�y+z)] = rs+rt�ry+rz+sx+tx= (r�x)(s�y)+(r�x)(t�z)

and hence S is commutative ring.

Further, 0�N is an ideal of S since R�N = N and N

2

= 0. By the latter

token, 0 � N �

p

(0). Since R

�

=

S=N , it follows, that S;R;N are all S-

modules and especially N and R are Noetherian because each S-submodule

of either of them is R-submodule as well and is zero as S-module i� it is

zero as R-module. By [12], 7.17 it follows that S is Noetherian S-module,

hence Noetherian ring.

If a denotes the maximal ideal of R, we consider the submodule a�N of

S. One easily detects this to be an ideal. Further, if x�n is in Sna�N , then x

has to be a unit in R and so has an inverse. Then (x�n)�(x

�1

�(�x

�1

�n)) =

1

R

�0, the identity of S. Hence each element outside a�N is unit in S such

that with the observation that a�N is ideal, we see that S is a Noetherian

local ring with maximal ideal a�N .

We apply this to the local Noetherian ring A and the �nitely generated

A-moduleM to get the Noetherian local ring A�M =: B. Since B=M

�

=

A,

A can be considered as B-algebra. So every A-module X can be considered

as B-module via � : B ! A and of course the other way round.

So for our investigations about the vanishing of local cohomology mod-

ules it does not matter, whether we consider for a B-module X, H

i

m�M

(X)

or the restriction of this to an A-module by means of the natural embedding

A! B. We consider the exact sequence of B-modules

0!M ! B ! A! 0

and the resulting long exact cohomology sequence

: : :! H

i

m�M

(M)! H

i

m�M

(B)! H

i

m�M

(A)! H

i+1

m�M

(M)! : : :

for each i 2 N. If we now restrict this sequence to A-modules, theorem 3.20

allows us to calculate instead the local cohomology of M , B, A, considered

as A-modules by means of the inclusion map A ! B. It follows then from

the part of the long exact H

i

-sequence

H

i

m

(M)! H

i

m

(B)! H

i

m

(A)

(now as A-modules) and the considerations at the beginning of the proof,

that whenever i is in �(m;M), then since i < n that H

i

m

(M) 6= 0 and

H

i

m

(A) = 0 so that H

i

m

(B) 6= 0 or if i = n, that H

i

m

(A) 6= 0 and H

i

m

(M) = 0

and so H

i

m

(B) 6= 0 again. On the other hand, if i is neither equal to n nor
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in �(m;M), then H

i

m+M

(B) = H

i

m

(B) = 0 since both neighbouring terms

of H

i

m

(B) are zero. Therefore �(m�M;B) = �nfng [ n = �.

Remark 4.14. We have even shown that for each �nite � � N, there is

a Noetherian ring which, considered as module over itself gives the desired

�.

Having come so far, we want to make a connection between the things

already done and what is to follow in the next two chapters.

We showed in 4.12 that whenever M is a �nitely generated A-module

and nonzero, and a an ideal of A with a + ann(M) 6= A, then for each

minimal prime q of a+ ann(M) we have

H

dim

A

q

M

q

a

(M) 6= 0:

Now suppose, p is a minimal prime of ann(M) contained in q and ht(q=p) =

dim

A

q

(M

q

) = r. Then p consists only of zerodivisors on M by [12], 9.36. It

follows, depth

A

p

(M

p

) = 0. So if we invoke the notation of 4.13 to denote by

�(a;M) the set of integers i, for which H

i

a

(M) 6= 0, and let �

a

(M) be the

smallest element of �(a;M), then we can write

i < �

a

(M)) i < depth(p � A

p

;M

p

) + ht(q=p):

since depth(p � A

p

; A

p

) = 0;ht(q=p) = r and H

r

a

(M) = H

dim

A

q

M

q

a

(M) 6= 0.

Now suppose, there is a nonzerodivisor x onM . Suppose further, that there

is a minimal prime q

0

of a+ann(M=x �M) such that dim

A

q

0

(M=x �M)

q

0

= r

0

is greater than zero. By 4.12 again, H

r

0

a

(M=x �M) 6= 0 and from the exact

sequence

0!M

x

!M !M=x �M ! 0

which induces

H

r

0

a

(M)! H

r

0

a

(M=x �M)! H

r

0

+1

a

(M)

follows that at least one of the outer terms has to be nonzero. So �

a

(M)

cannot exceed r

0

+ 1.

Suppose now, that p

0

is a minimal prime of ann(M=x �M) contained in q

0

with ht(q

0

=p

0

) = dim

A

0

q

(M

q

0

) = r

0

. Then p

0

containes x because x annihilates

M=x �M , and x is M -regular. It follows that depth

A

p

0

(M

p

0

) � 1. Again we

put our knowledge in a new way:

i < �

a

(M)) i < r

0

+ 1) i < ht(q

0

=p

0

) + depth

A

p

0

(M

p

0

):

because depth(p

0

A

0

p

;M

p

0

) � 1, ht(q

0

=p

0

) = r

0

and H

r

0

+1

a

(M) or H

r

0

a

(M)

are nonzero. One becomes interested in these sums of depths and heights

and especially the question arises, whether we can say something about

the other implication: is there an integer i, smaller than all possible sums

of depth

A

p

(M

p

) + ht(q=p) for q in the variety of a and p � q for which

H

i

a

(M) = 0 ?
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We will try to �nd an answer to this problem for quite a large class of

rings, according to geometrical problems. This will involve the concept of

Gorenstein rings, which will be developed in the next chapter.



CHAPTER 5

Gorenstein rings and Duality

At the end of the last chapter we made a promise to investigate a ques-

tion concerning the relationships between the set of integers �(a;M) which

indicate the nonvanishing of local cohomology modules of the A-module M

with respect to the ideal a of A on one side and A sum of certain depths

and dimensions on the other. The answer we will provide, which will be

given in the next chapter, involves to a great deal Gorenstein rings and a

special property these rings enjoy. So this chapter is essentially devoted to

the introduction of Gorenstein rings and the proof, that two certain modules

have the same annihilator.

The work in the �rst half of the chapter is based on the structure of

injective modules and we have to make some additional comments to this

topic.

It is shown in 7.21 that every injective module over a Noetherian com-

mutative ring A can be decomposed into the direct sum of indecomposable

injective modules which all are the injective hull of A=p for some prime

p 2 Spec(A) or another. 7.20 states that this decomposition is unique in

the sense that given two compositions of the same injective module, then for

all p 2 Spec(A) the number of summands which equal E(A=p) is the same

for both decompositions. So each injective module E is up to isomorphism

uniquely described by a set of cardinals f�(p; E)g

p�spec(A)

, which stand for

the number of terms E(A=p) in each decomposition of E into a direct sum

of indecomposable injective modules. So given an A-module M , we saw

in 7.23 how M de�nes a sequence of sets of cardinals f�

i

(p;M)g

p�spec(A);i�N

such that f�

p�spec(A)

E(A=p)

M

i

pmo

g

i�N

are the modules which occur in every

minimal injective resolution of M (of course up to isomorphisms).

Definition 5.1. For all prime ideals p in A, �(p) is de�ned as (A=p)

p

.

Lemma 5.2. Let M be A �nite A-module. We claim that if there are two

primes p; p

0

in A with ht(p

0

=p) = 1 (that means that p

0

� p and this inclusion

allows no prime between them), then �

r

(p;M) 6= 0 implies �

r+1

(p

0

;M) 6= 0.

(See [16],3.1.)

Proof. Let

0!M ! E

0

(M)! E

1

(M)! : : :! E

i

(M)! : : :

be a minimal injective resolution forM . ThenAE

i

�

=

L

q�spec(A)

(E(A=q))

M

i

qmo

.

57
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If we apply to this exact sequence the functor (�)

p

, then we get an acyclic

complex which is by [11], Theorem 3.76 an injective resolution of M

p

and

by 7.11 even a minimal injective resolution. Let x 2 p

0

np, B = A

p

0

=p

p

0

and

C = B=xB = (A=(p; x))

p

0

. Then p �B is properly contained in the radical of

(p; x) �B so that this radical equals p

0

�B. So (p

0

=(p; x))

p

0

is nilpotent what

means that C is Artinian.

Further, x is not a zerodivisor on B. Then

0! B

x

! B ! C ! 0

is exact and induces the exact sequence

Ext

r

A

(B;M)

x

! Ext

r

A

(B;M)! Ext

r+1

A

(C;M)

We use now the fact established in 7.23 that the hypothesis implies that

Ext

r

A

p

(�(p);M

p

) = (Ext

r

A

(A=p;M))

p

6= 0

where �(q) denotes for all primes q in A the quotient A

q

=(q � A

q

).

It follows, that (Ext

r

A

(B;M))

p

6= 0 since �(p)

�

=

B

p

. Hence (Ext

r

A

(B;M))

p

0

6=

0 since p

0

� p. If we now localize the above Ext-sequence at p

0

and observe

that x is in the Jacobson radical of A, (Ext

r+1

A

(C;M))

p

0

cannot be zero by

Nakayamas lemma.

Now �(p

0

)

�

=

C=(p

0

�C). Further C is an Artinian ring, so of �nite length.

If the length of C�(C) = 1, then C

�

=

�(p

0

) and we are done. We show that

Ext

r+1

A

p

0

(�(p

0

);M

p

0

) is nonzero. Let k be a minimal submodule of C (by the

de�nition of multiplication of A on C it does not matter whether we say

A-submodule or C-submodule). Since C is local, it follows that k � p

0

� C.

We have then a short exact sequence

0! k ! C ! C=k ! 0

which gives rise to the exact triple

Ext

r+1

A

p

0

(C=k;M

p

0

)! Ext

r+1

A

p

0

(C;M

p

0

)! Ext

r+1

Ap

0

(k;M

p

0

)

Since the the middle term is nonzero, either of the two outer terms has to

be nonzero as well. If it is the right one, we are done: k has by de�nition

length 1, is therefore isomorphic to A

p

0

=q for some maximal ideal q of A

p

0

.

Since this is unique and equals p

0

� A

p

0

, k

�

=

�(p

0

). If it is the left one, then

we may reformulate the problem with C=k instead of C which is still local

Artinian ring, but �(C=k) = �(C)�1. Proceding in this way, either at some

stage a right hand term in the various Ext-sequences is nonzero or left one

is never zero. In the �rst case we know that then Ext

r+1

A

p

0

(�(p

0

);M

p

0

) 6= 0

whereas in the latter the procedure terminates with the result that C=k has

length 1 and is hence again isomorphic to �(p

0

). We conclude that in every

case Ext

r+1

A

p

0

(�(p

0

);M

p

0

) cannot be zero. Again applying lemma 7.23 we see

that �

r+1

(p

0

;M) 6= 0.
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The attentive reader will have noticed, that we proved in chapter 4 the

theorems 4.6 and 4.7, which look quite similar, in two di�erent looking ways.

The reference to 7.23 throws light on that a�air: the di�erence has not been

that big.

We come now to the �rst major ingredience of a theorem that is to follow

in 5.8.

Definition 5.3. Given an A-module M we will say, that the injective

dimension of M , written injdim(M) (or injdim

A

(M) if the base ring is in

question), equals r if and only if there is an injective resolution

0!M ! E

0

! E

1

! : : :! E

r

! 0

and there is no exact such sequence with fewer than r terms. If there is no

such 'terminating' resolution ofM , we will say, that M has in�nite injective

dimension and write injdim(M) =1.

Proposition 5.4. (See [16]3.3) Let (A; p) be local, M 6= 0 a �nite A-

module with �nite injective dimension r. Then r = depth(p; A).

Proof. Let q 2 Spec(A) be such that �

r

(p; A) 6= 0. Such q exists since

otherwise by 7.21 E

r

(M) = 0, a contradiction to injdim(M) = r. Suppose q

were not maximal. Then there is a q

0

in Spec(A) such that ht(q

0

=q) = 1. By

5.2 then �

r+1

(q

0

;M) 6= 0 such that E

r+1

(M) 6= 0 contradicting injdim(M) =

r again. So all such q have to be maximal, that is q = p. It follows from

7.23, that Ext

r

A

(A=p;M) 6= 0.

Now the injective dimension of M is r such that ext

r+1

A

(�;M) is the zero

functor. Via the long exact Ext-sequence with M as second argument it

turns out that Ext

r

A

(�;M) is rightexact. So

0! A=p! N ! (N=(A=p))! 0

exact for some A-module N implies

Ext

r

A

(N;M)! Ext

r

A

(A=p;M)! 0

to be exact, proving that then Ext

r

A

(N;M) 6= 0 for such N .

Let now (x) be a maximal A-sequence in A such that since A local,

(x) � p. We show how one can embed A=p in A=(x). (Remember, we

have agreed, that (x) denotes the A-sequence and the ideal generated by the

elements of this sequence as well.) Let � 2 ((x) : p)n(x)where(x) : p denote

the ideal quotient.

(� exists because (x) : p = (x) implies that p is not in ass((x)) and then

each element in pnA�(x) would be a nonzerodivisor in A=(x) by [12], 9.33 and

9.36 and hence eligible to extend (x) to an A-sequence of length exceeding

depth(p; A). Finally p = (x) implies ((x) : p) = A 6= p.)

De�ne now ' : A=p! A=(x) by '(a+ p) = � � a+ (x). We have to check

several things:

If � 2 p, then '(� + p) = � � � + (x) = 0 + (x). Further, if for a; a

0

we have a + p = a

0

+ p, then a � a

0

2 p and hence '(a + p) � '(a

0

+ p) =
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a � �+ a

0

� �+ p = (a� a

0

) � �+ p = 0+ p by the de�nition of �. �+ p so that

' is a map.

If a; b 2 A, then '(a + b + p) = � � (a + b) + (x) = � � a + � � b + (x) =

'(a + p) + '(b + p) so that ' is additive. Similarily one shows ' to be

A-linear.

If '(a + p) = 0, then � � a + (x) = 0, that is, � � a 2 (x). If here a 2 p,

then a+ p = 0. Otherwise, A is unit and � must be in (x), a contradiction.

Hence a 2 p and therefore ' is injective.

We have shown that A=(x) admits a momomorphism A=p ,! A=(x) so

that

Ext

r

A

(A=(x);M) 6= 0:

This proves, that the homological dimension of A=(x) is at least r. By

[9],Th.9.20, this homological dimension is equal to the length of (x). Hence

depth(A) � r

So we have to show the other inequality, which will be drawn from a more

general result taken from [15], 4.10:

Sublemma 5.5. (Auslander/Goldman): Let (A;m) be a local Noether-

ian commutative ring and N a �nite A-module of �nite homological dimen-

sion n (see [9], paragraph 7.5). IfM is a nonzero �nitely generated A-module

, then Ext

n

A

(N;M) 6= 0. Proof of sublemma: Let

0! P

n

d

n

! P

n�1

d

n�1

�! : : :! P

0

d

0

! N ! 0

be a projective resolution constructed as follows: N is �nitely generated by

hypothesis, say by at least n

0

elements. Let then P

0

= A

n

0

and d

0

the natural

projection (x

1

; : : : ; x

n

0

)! �

n

0

1

x

i

��

i

where the �

i

constitute a generating set

of minimal cardinality n

0

for N . Of course P

0

is Noetherian and hence so

is ker(d

0

). So we can apply this procedure to ker(d

0

) instead of N and get

Noetherian P

1

and ker(d

1

). We proceed in this way until we have an exact

sequence

P

n�1

d

n�1

�! : : : P

0

d

0

! N ! 0

where all involved modules P

i

are �nitely generated free. Then by [9], Theo-

rem 7.11 and the fact that the homological dimension of N is n, ker(d

n�1

) is

projective. Since A is local this gives by [9], Theorem 9.12 that ker(d

n�1

) =:

P

n

is even free and, since Noetherian, a �nite direct sum of A's, just as all

other modules in the sequence with possible exception of N .

Let now i 2 N be �xed between 0 and n and let x 2 P

i

. Then x =

(x

1

; : : : ; x

n

i

) with x

j

2 A for 1 � j � n

i

. Suppose 4d

i

(x) = 0. Let

f�

j

g

1�j�n

i

be the generating set for ker(d

i�1

) that was used to construct

our resolution for N . Then 0 = d

i

(x) = �

n

i

l=1

x

l

� �

l

. If now one of the x

l

happens to be outside m, then it is unit, hence has an inverse. In this case

(if this x

l

has l = k)

�

k

= (�

n

i

l=1;l 6=k

x

l

�

l

) � x

�1

k
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showing that �

k

is super
uous in the generating set for ker(d

i�1

). This

contradiction shows, that for all i 2 N we have

ker(d

i

) � m � P

i

:

After these preliminaries we observe that

Hom

A

(P

n�1

;M)

Hom

A

(d

n

;M)

�! Hom

A

(P

n

;M)

nat

! Ext

n

A

(N;M)! 0

is exact by de�nition of Ext and since the homological dimension of M is n.

We want to show, that Ext

n

A

(N;M) 6= 0, so suppose this were not the case.

Then each f 2 Hom

A

(P

n

;M) is restriction of some g 2 Hom

A

(P

n�1

;M).

Since

d

n

(P

n

) � m � P

n�1

;

this means that f(P

n

) � m�M for all f 2 Hom

A

(P

n

;M). Since the homolog-

ical dimension of N is n, P

n

cannot be zero. Since it is free, each � 2M is

image under some f 2 Hom

A

(P

n

;M). Since f(P

n

) � m �M , this gives that

m �M � M , a contradiction to Nakayamas lemma. Hence there must exist

f 2 Hom

A

(P

n

;M) which are not restrictions of a map g 2 Hom

A

(P

n�1

;M)

whence Hom

A

(d

n

;M) is not surjective and hence Ext

n

A

(N;M) 6= 0. End of

proof of Sublemma.

We apply this now to N = A=(x), such that the homological dimension

of N equals the depth of A by [9], Theorem 9.20. For M we take the M

of the sublemma. Then, since both M and A=(x) are �nitely generated, the

sublemma gives

Ext

depth(p;A)

A

(A=(x);M) 6= 0

showing that the injective dimension of M has to be at least equal to

depth(p; A). This together with the inequality immediately preceeding the

sublemma, proves

r = depth(p;M):

This result (especially in the form of the following proposition) will cer-

tainly give rise to some surprise, showing that there is nothing like an ana-

logue to homological codimension: 'cohomological codimension ' is either 0

or not �nite.

Corollary 5.6. If the injective dimension of the local ring (A;m), con-

sidered as module over itself, is �nite, then

injdim

A

(A) = dim(A) = depth(m; A):

Proof. It follows from 5.4 that injdim(A) = depth(A). Of course

depth(A) � dim(A).

On the other hand, let p be a minimal prime of A such that ht(m=p) =

dim(A). Then p �A

p

2 Ass(A

p

) since no other prime is there. So A

p

contains

a submodule isomorphic to �(p). Therefore

Hom

A

p

(�(p); A

p

) 6= 0
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and by 7.23 �

0

(p � A

p

; A

p

) 6= 0. By 7.11 this implies that �

0

(p; A) 6= 0.

Applying 5.2, ht(m=p) times, we get

�

ht(m=p)

(m; A) 6= 0;

which by 7.23 gives that Ext

ht(m=p)

A

(A=m; A) = Ext

dim(A)

A

(A=m; A) 6= 0.

Hence dim(A) � injdim(A). So

dim(A) � injdim(A) = depth(A) � dim(A):

This completes the proof.

The following is the last preparatory result for the introduction of Goren-

stein rings.

Lemma 5.7. (See [16], 2.6) Let A be a commutative Noetherian ring.

Let M be an A-module and x a nonzero divisor on both M and A. Then

�

i

(p=x �A;M=x �M) =M

i

plpm

for all primes p of A which contain x and all i � 0.

Proof. Let p be in Spec(A) and x 2 p. By 7.11, 7.23 and the fact that

localisation is exact (so that (Ext

i

A

(M;N))

p

�

=

Ext

i

A

p

(M

p

; N

p

)) it is clear

that we may assume that p is maximal. This we do.

By 7.23 we have then

M

i

pm = dim

�(p)

Ext

i

A

(A=p;M):

Now A=p can be considered as A=x � A-module, and each homomorphism

starting in A=p is annihilated by x. So Ext

i

A

(A=p;M) is A=x � A module.

Then by [9], Theorem 9.6

Ext

i+1

A

(A=p;M)

�

=

Ext

i

A=x�A

(A=p;M=x �M)

as A=x � A-modules and hence as A-modules as well. Now A=p

�

=

((A=x �

A)=(p=x � A)) and hence

�

i

(p=x �A;M=x �A) = dim

�(p=x�A)

=ext

i

A=x�A

(((A=x �A)=(p=x �A));M=x �M)

= dim

�(p)

Ext

i

A=x�A

(((A=x �A)=(p=x �A));M=x �M)

= dim

�(p)

Ext

i+1

A

(A=p;M)

= �

i+1

(p;M)

by 7.23 again.

We have spoken frequently about the following

Theorem 5.8. (See [16],3.6) Let A be Noetherian commutative ring.

Then the following conditions on a prime ideal p in A are equivalent:

1. injdim

A

p

A

p

<1;

2. injdim

A

p

A

p

= ht(p)(= dimA

p

);

3. M

i

pa = 0 for all i > ht(p);
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4. M

i

pa = 0 for some i > ht(p);

5. M

i

pa = 0 for i < ht(p) and �

ht(p)

(p; A) = 1;

6. M

i

qa = �

i;ht(q)

for all prime ideals q � p.(Kronecker delta)

Proof. 1) 2 is 5.6,

2) 3 is trivial,

3) 4 as well.

4) 1 : Let injdim

A

p

A

p

be in�nite. By 7.11, M

i

pa = �

i

(p � A

p

; A

p

). If

ht(p) = 0, then p � A

p

is the only prime in A

p

so that �

i

(p � A

p

; A

p

) = 0

implies E

i

A

p

(A

p

) = 0. If this happens for i > ht(p), injdim

A

p

A

p

=1 is not

possible. So in the case ht(p) = 0 we are done.

Assume inductively, that ht(p) = h > 0 and the statement has been

proved for all values of ht(p) smaller than h. This is the case for h = 1.

Let q be a prime ideal contained in but di�erent from p, the existence of

which is guaranteed by h > 0. De�ning s := ht(p=q), we observe that s > 0

and

s+ ht(q) � h

In the case that injdim

A

q

A

q

=1, we know �

i

(q�A

q

; A

q

) 6= 0 for all i > ht(q)

by the inductive hypothesis. So by 5.2, �

i+s

(p � A

p

; A

p

) 6= 0 for i > ht(q)

such that by the above displayed inequality M

i

pa 6= 0 for i > h.

So whenever there exists an ideal q � p in A with injdim

A

q

A

q

= 1,

then we have proved that M

i

pa 6= 0 for all i > ht(p).

There remains the case, where no such ideal exists. Then for q � p, we

have

�(q � A

p

; E

i

A

p

(A

p

)) = �(q �A

q

; (E

i

A

p

(A

p

))

q�A

p

) =M

i

qa

by 7.11 where

0! A

p

! E

0

A

p

(A

p

)! : : :! E

i

A

p

(A

p

)! : : :

is a minimal injective resolution of the A

p

-module A

p

.

injdim

A

q

A

q

is �nite, so by 5.6 these �

i

's have to be zero whenever i

exceeds the height of q. So for i � ht(p), E

i

A

p

(A

p

) is direct sum of copies

of E(�(p)). If the cardinality of the set of these copies happens to be zero,

the injective resolution displayed terminates and hence injdim

A

p

A

p

is �nite,

again contradicting the hypothesis. So in each case we have the required

conclusion or the needed contradiction.

1) 5: By 5.6, the hypothesis implies that depthA

p

= dimA

p

= ht(p).

So

Ext

i

A

p

(�(p)); A

p

) = 0 for 0 � i < ht(p)

by 4.3 and this gives by 7.23, that �

i

(p �A

p

; A

p

) = 0 for all such i.

Let (x) be a maximal A

p

-sequence (of length ht(p)). Then by 5.7,

�

i

(p �A

p

=(x); A

p

=(x)) = �

i+ht(p)

(p � A

p

; A

p

) for all i 2 N:

It follows that injdim

A=(x)

A=(x) < 1. Since 1 implies 3, E

i

A

p

=(x)

(A

p

=(x))

does not contain any submodule isomorphic to E(�(p � A

p

=(x))) for i > 0
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so that we can by 5.2 conclude that injdim

A

p

=(x)

A

p

is zero. It follows, that

E

0

A

p

=(x)

(A

p

=(x)) is homomorphic image of A

p

=(x) under the natural inclusion.

Therefore these two modules are isomorphic and A

p

=(x) is self injective. So

A

p

=(x) has to be isomorphic to

E

A

p

=(x)

((A

p

=(x))=(p �A

p

=(x))) = E

A

p

=(x)

(�(p �A

p

=(x)))

since A

p

=(x) is local and hence indecomposable. We conclude that

Hom

A

p

=(x)

(�(p � A

p

=(x)); A

p

=(x))

�

=

�(p �A

p

=(x))

since these are vectorspaces and E(�(p�A

p

=(x))) is essential over �(p�A

p

=(x)).

By 5.2 and 5.7 again we conclude

�

ht(p)

(p; A) = �

ht(p�A

p

)

(p �A

p

; A

p

) = �

0

(p � A

p

=(x); A

p

=(x)) = 1:

5) 3: From the hypothesis, 7.23 and 4.3 follows, that depthA

p

= ht(p) =

dimA

p

. As above the consequence is that for a maximal A

p

-sequence (x),

(x) is p � A

p

-primary. This time from the hypothesis (and 5.2), �

0

(p �

A

p

=(x); A

p

=(x)) = 1. Since there is no other prime in A

p

=(x), E(A

p

=(x)) =

E(�(p �A

p

=(x))). So we may embed A

p

=(x) and �(p �A

p

=(x)) in one and the

same injective indecomposable A

p

=(x)-module E(A

p

=(x)). On this point we

will shorten the notation: we know from A

p

=(x), that it is local Artinian

and the injective hull of its residue �eld contains a carbon copy of it. We

denote in the following A

p

=(x) by R, p �A

p

=(x) by m , �(p �A

p

=(x)) by � and

E(�(p �A

p

=(x))) by E. We will in the sequel by R denote the ring R as well

as its isomorphic image in E and the same applies to �.

We want then to show, that the injective dimension of R is 0. This can

be done by proving, that the natural embedding R ,! E is surjective. This

we do.

Since � is simple, it is generated by one element, say by g. Let k 2 �

be nonzero. Since E is essential over R, R \R � k 6= 0. So 0 6= r = k � r

0

for

r; r

0

2 R. Since � is annihilated by m, r

0

has to be in Rnm such that r

0

is

unit and k 2 R. So � � R.

Let f 2 Hom

R

(�;E). Then m � f(k) = F (m � k) = f(0) = 0 for all

k 2 �. By 7.23, f(g) has then to be in � and hence f(�) � � � R. So

E � A � � implies together with f(�) � � for all f 2 Hom

A

(�;E), that

Hom

R

(�;E) = Hom

R

(�;R) = Hom

R

(�; �)

�

=

�.

It follows, Hom

R

(hom

R

(�;E); E)

�

=

�. Now R is Artinian and so there

is a �nite chain of submodules of R

0 = R

0

� R

1

� : : : � R

n�1

� R

n

= R

for some n 2 N andR

i

=R

i�1

�

=

� for 1 � i � n. Denoting Hom

R

(Hom

R

(X;E); E)

by X" for each R-module X, we can for all R-modules de�ne a homo-

morphism '

M

: M ! M" by the rule '

M

(m)(f) = f(m) for m 2 M ,

f 2 Hom

R

(M;E). It is obvious from the de�nition that this is a natural

map in the sense that given two R-modulesM;N and an R-map f :M ! N ,

the diagram
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M N

f

-

-

M" N"

Hom

R

(Hom

R

(f;E); E)

? ?

'

M

'

N

commutes.

Since E is injective, Hom

R

(�; E) is exact contravariant and hence (�)" an

exact covariant functor. So ' is a natural transformation from the (exact)

identity functor to (�)".

If '

�

(k) = 0 for k 2 � then f(k) = 0 for all f 2 Hom

A

(�;E). For f the

inclusion map this proves that '

�

is injective. Since � is simple and as we

just have established its image is nonzero, the image of � is a vectorspace of

dimension one over �. Since the same is true for �" and the latter contains

the former, '

�

is surjective. Since in the above displayed sequence �

�

=

R

1

,

we can make the inductive hypothesis, that '

M

is an isomorphism for all R

i

for 0 � i � t. This we know is true for t = 1. We have an exact sequence

0! R

t+1

! R

t

! R

t+1

=R

t

�

=

�! 0

which gives rise to the commutative diagram

0

R

t

R

t+1

R

t+11

=R

t

�

=

�

0

- - - -

0

R

t

"

R

t+1

"
(R

t+1

=R

t

)"

�

=

�"

0

- - - -

? ? ?

'

R

t

'

R

t+1

'

R

t+1

=R

t

Now by inductive hypothesis, the right and left vertical maps are iso-

morphisms, so that by the �ve lemma '

R

t+1

has to be an isomorphism

as well. It follows by induction, that '

R

is an isomorphism. Further

R" = Hom

R

(Hom

R

(R;E); E) is isomorphic to Hom

R

(E;E) in the natural

manner.

Now the exact sequence

0! R! E ! E=R! 0

gives rise to

0! Hom

R

(E=R;E)! Hom

R

(E;E)! Hom

R

(R;E)! 0

Since we have proved that the middle term is isomorphic to R and the right

hand term is clearly isomorphic to E, we have established a surjective map

from R to E. Since R is of �nite length n, its image E cannot have length

greater than n. It follows from R � E, that R = E. Hence R is of injective

dimension 0.
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So in our original problem, A

p

=(x) is sel�njective. So M

i

pa = 0 for

i > ht(p) by 5.2 and 5.7.

1) 6: 1)3 and 5 , so M

i

pa = �

i;ht(p)

. By [11], 3.76 property 1 is

inherited by subideals of p, so we are done.

6)1 is obvious. .

Definition 5.9. Let A be as usual and p an ideal in A that satis�es the

equivalent conditions of 5.8. Then A

p

is said to be a local Gorenstein ring.

In the case that for all maximal ideals m of A

m

is local Gorenstein, we will

say that A is Gorenstein.

At this point it is convenient, to make some remarks:

� If a ring A is Gorenstein, then for each maximal ideal m of A, A

m

is local Gorenstein by de�nition and hence of �nite injective dimen-

sion. By 5.8 this is inherited by all further localisations, such that A

Gorenstein implies that all localisations A

p

for p 2 Spec(A) are local

Gorenstein.

� If A is Gorenstein and �nite dimensional, then there is a minimal

injective resolution

0! A! E

0

! E

1

! : : :! E

dim(A)

! 0:

(Since �

i+dim(A)

(p; A) = 0 for all i 2 N

+

by 7.11 and 5.8.) Localizing

at a prime ideal p, that makes a contribution to E

n

, one sees that

injdim

A

p

A

p

� n by 7.11 and by the theorem n = ht(p) = injdim(A).

So dim

A

A � n. On the other hand, a maximal ideal m of height

dim

A

A has to make a contribution to E

dim(A)

since otherwise the

localisation of the above sequence at m would produce the injective

resolution of a local Gorenstein ring with injective dimension smaller

than the height of its maximal ideal. So injdim(A) � dim(A). Hence

dim

A

A = injdim

A

A.

� The concept of local Gorenstein rings is closely related to local Cohen-

Macaulay rings, which are de�ned by the equation depthA = dimA.

So we see that local Gorenstein ) local Cohen-Macaulay. The dif-

ference is in that for all p in the spectrum of a Gorenstein ring

�

ht(p)

(p�A

p

; A

p

) = 1, what is not necessarily true for Cohen-Macaulay

rings: let � be a �eld, R = �[x; y]=(x; y)

2

for two indeterminants x; y.

Then R is local Noetherian with nilpotent maximal ideal m. Hence

depth(m; R) = dim(r) = 0 so that R is Cohen-Macaulay. Now the

quotient �eld of R is isomorphic to �. Further is R considered as �-

module isomorphic to ����x���y. Also, x�R and y�R are annihilated

by m and are not R-multiples of each other. So dim

�

(Hom

R

(�;R) � 2.

Hence either R is not the injective hull of � or �

0

(m; �) 6= 1. Since

dim(R) = 0, in both cases follows, that R is not Gorenstein.

Coming along this way one can describe Gorenstein rings also as

Cohen-Macaulay rings, in which some (or each) system of parame-

ters (see [12],15.19) in A

p

generates an irreducible ideal in A

p

or,
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equivalently, by the criterion that each ideal of height r which can be

generated by r elements is unmixed (that is all associated primes have

the same height, r) and the primary components are all irreducible.

So there are various ways of de�ning Gorenstein rings, which may

be found and studied for example in [16], or in texts on geometry

as [3] or [4]. We will neither develop nor use other descriptions of

Gorenstein rings in this work.

� Regular rings are Gorenstein: it follows from [7], Theorem 19.3 that

it su�ces to prove, that local regular rings are local Gorenstein rings.

This we do. In a local regular ring (A;m) of dimension n exists by

de�nition a set � of n elements, which generates m. Since by [12],

15.38 all ideals generated by subsets of � are prime, it follows that �

is an A-regular sequence such that regular rings are Cohen-Macaulay.

Now Ext

n

A=�

(A=m; A=�)

�

=

Ext

0

A

(A=m; A) by [9], Theorem 9.6. The

former module is of dimension 1 over A=m so that regular rings satisfy

condition 5 of the theorem and are Gorenstein.

As �nal remark we want tell the reader that not each Gorenstein

ring is regular: Let � be any �eld and �[x] the ring of polynomials

over � in one indeterminate x. Then R = �[x]=(x)

2

is Noetherian

local ring with nilpotent maximal ideal m, hence Artinian. As above

follows, that R is Cohen-Macaulay. Now any R-homomorphism that

starts in � is annihilated by m. So the range of f 2 Hom

r

(�;R) has

to be inside 0 :

R

m. This is exactly R�x

�

=

� as R-modules. Therefore,

dim

�

(Hom

R

(�;R)) = 1:

Consider the injective hull E(R). Since x � R is the only prime ideal

in R, E(R) is direct sum of copies of E(�). The above equality shows

then that E(R) = E(�). For local Artinian modules of this kind we

have shown in the proof of 5.8, 5)3, that they are Gorenstein. On

the other hand, R is not integral domain and hence not regular.

As the reader probably has noticed, we have used in the proof of 5.8 part

5)3 a very peculiar property of E(A

p

=p � A

p

) - it produced isomorphisms

M ! Hom

A

(Hom

A

(M;E); E)

for modules of �nite lengthM over local Gorenstein rings A. The remainder

of this chapter will be devoted to some features of these isomorphisms. To

this end we will follow an idea of Yoneda, which is to be found in [4], Chapter

4, concerning the interpretation of Ext-functors.

By de�nition, for the calculation of Ext

i

A

(M;N) for two A-modules (we

do not assume A to be Gorenstein here) M;N one has to take a projec-

tive resolution P

�

for M and an injective resolution I

�

for N , then to build

the complex Hom

A

(P

�

; I

�

) and to take cohomology. This procedure may be

replaced by using M instead of P

�

and calculating H

n

(Hom

A

(M; I

�

)), as is

outlined in [9], Theorem 7.9. In this way each f 2 Ext

n

A

(M;N) can be inter-

preted as f + imf(I

n�1

! I

n

) � Hom

A

(M; I

n�1

)g where f 2 Hom

A

(M; I

n

)
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and (I

n

! I

n+1

) � f is zero. This identi�cation will prove to be very useful

in the sequel.

At this point we take for each A-module M an arbitrary injective reso-

lution and �x it. If in the sequel we say 'take the injective resolution of M '

this always will refer to the now selected one.

Let now again F;G be two A-modules. Let further be the injective

resolutions just selected be

0! G

�

! Y

0

�

0

! Y

1

�

1

! : : :! Y

n

�

n

! : : :

and

0! F

"

! X

0

�

0

! X

1

�

1

! : : :! X

n

�

n

! : : : :

Suppose we are given a set of A-homomorphisms ff

i

g

i�N

such that f

i

:

X

i

! Y

i+s

for all i 2 N and a �xed s 2 N such that the diagram

0

F

X

0

X

1 : : :

X

j

X

j+1

f

0

f

1

f

j

: : :

- - - - - - -

�

0

"

�

s

H

H

H

H

H

Hj

H

H

H

H

H

Hj

H

H

H

H

H

Hj

0

G

Y

0 : : :

Y

s

Y

s+1 : : :

�

�

0

�

s

- - - - - -

commutes . Under these circumstances we will write, that f 2 Hom

s

A

(X

�

;Y

�

)

with an obvious interpretation for varying s;X

�

;Y

�

. It is then clear that f

0

combined with " gives a homomorphism from F to Y

s

. We will write in the

sequel for this, that f

0

� " 2 Hom

s

A

(F;Y

�

), again with an obvious interpre-

tation for other s; F;Y

�

.

We observe, that if f 2 Hom

s

A

(X

�

;Y

�

), then f

0

� " 2 Hom

s

A

(F;Y

�

) and

�

s

� f

0

� " = f

1

� �

0

� " = 0 by the commutativity of the diagram. So

f

0

� " 2 ker(Hom

A

(F; �

0

) and so de�nes in this way as cocycle an element

in H

s

(Hom

A

(F;Y

�

))

�

=

Ext

s

A

(F;G). So there is a map

'

s

: Hom

s

A

(X

�

;Y

�

)! Ext

s

A

(F;G)

for all s 2 N working by f ! f

0

� ".

Now two di�erent maps f; g 2 Hom

s

A

(X

�

;Y

�

) which are homotopic, give

the same representative in Ext

s

A

(F;G) under this procedure: if f

0

= g

0

+

i

1

� �

0

+ (0 ! Y

0

) � i

0

for i

1

: X

1

! Y

0

and i

0

: X

0

! 0, then visibly

f

0

� " = g

0

� " by the exactness of X

�

. We therefore put together all maps

in Hom

s

A

(X

�

;Y

�

) which are homotopic. We call the result Hom

s

A

(F;Y

�

).

Since the corresponding representative in Ext

s

A

(F;G) of an element f 2

Hom

s

A

(F;Y

�

) is independent on the chosen member of the homotopy class,

we have established a map

'

0

s

: Hom

s

A

(X

�

;Y

�

)! Ext

s

A

(F;G):

Let now again f 2 Hom

s

A

(X

�

;Y

�

) and suppose further that '

s

applied to

f gives the zero map, that is f

0

� " 2 im(Hom

A

(F; �

s�1

)). Then there is a
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b 2 Hom

A

(F; Y

s�1

) with f

0

� " = �

s�1

� b. So we have

0

F

X

0

X

1 : : :

f

1

?

f

0

b

- - - -

"

i

0

�

0

? ?

Y

s�2

Y

s�1

Y

s

Y

s+1

�

s�2

�

s�1

�

s

- - -

�

�

�

�

�

�

�

and Y

s�1

is injective. So there exists i

0

: X

0

! Y

s�1

such that i

0

�" = b.

Then ! := f

0

� �

s�1

� i

0

maps X

0

intoY

s

, ! � " is zero, F ! X

0

! X

1

is

exact and Y

s

is injective. So there exists i

1

: X

1

! Y

s

such that i

1

� �

0

=

f

0

� �

s�1

� i

0

. Proceeding in this way, we establish the existence of maps

i

j

: X

j

! Y

j+s�1

for j 2 N with

f

j

= �

j�s+1

� i

j

+ i

j+1

� �

i

:

Therefore f is nullhomotopic. (In the case s = 0, f

0

� " is in Hom

A

(F; 0)

by the left exactness of the Hom-functor, so f

0

� " = 0 such that we can

build up the family fi

j

g beginning with i

1

: X

1

! Y

0

since i

0

: X

0

! 0 is

unique.)

Now let v be an element of Ext

s

A

(F;G) in the sense we have adopted.

Then we can write v = v+im(Hom

A

(F; �

s�1

)), v 2 Hom

A

(F; Y

s

), �

s

�v = 0.

We have the diagram

0

F

X

0

X

1

X

2

�

1

	

	

	�

f

0

v

- - - -

"

�

0

@

@

@R

	

	

	�

Y

s�1

Y

s

Y

s+1

Y

s+2

�

s�1

�s

�

s+1

- - -

	

	

	�

showing that v factors through X

0

by the injectivity of Y

s

. So f

0

exists.

Since �

s

� v = 0, �

s

� f

0

� " = 0.

Hence

� �

s

� f

0

: X

0

! Y

s+1

,

� F ! X

0

! Y

s+1

is zero,

� F ! X

0

! X

1

is exact,

� Y

s+1

is injective.

It follows the existence of f

1

2 Hom

s

A

(X

1

; Y

s+1

) such that f

1

��

0

= �

s

�f

0

.

Working our way along the resolution of F we get A-homomorphisms

ff

i

g

i�N

which by construction constitute an f 2 Hom

s

A

(X

�

;Y

�

). It is obvious

that '

s

applied to f gives v. Then '

s

(homotopy class of f) equals v as

well. So '

0

s

is surjective.

We show now how to turn Hom

s

A

(X

�

;Y

�

) into a module. Suppose, we

have f; g 2 Hom

s

A

(X

�

;Y

�

). We de�ne the sum (f+g) by (f+g)

i

(x) = f

i

+g

i

for x 2 X

i

. Since all f

i

; g

i

are A-homomorphisms, this gives again a chain
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map. We also can de�ne, for f 2 Hom

s

A

(X

�

;Y

�

) the negative (�f) where

(�f)

i

(x) = �f

i

(x) for x 2 X

i

. Since again all f

i

are A-homomorphisms,

this gives a chain map and of course f + (�f) is the zero transformation.

Lastly for a 2 A and f 2 Hom

s

A

(X

�

;Y

�

) we de�ne (a � f) by (a � f)

i

(x) =

af

i

(x) = f

i

(a�x) which is possible because f

i

isA-linear and A commutative.

So Hom

s

A

(X

�

;Y

�

) is an A-module.

Now that we know that domain and range of '

s

are A-modules there

is the natural question whether '

s

is possibly an A-homomorphism. Since

'

s

applied to f 2 Hom

s

A

(X

�

;Y

�

) is taking the cohomology class of f

0

, it is

clear that by de�nition of addition in Hom

s

A

(X

�

;Y

�

), '

s

is additve. Also for

a 2 A,

'

s

(a � f) = '

s

(fx

i

! a � f

i

(x

i

)g

i�N ;x

i

�X

i

) = af

0

= af

0

= a'

s

(f)

such that '

s

is A-linear. Now our �rst investigations concerning '

s

have

brought to light that f 2 Hom

s

A

(X

�

;Y

�

) maps to zero under '

s

if and

only if f is nullhomotopic. By the now established fact that '

s

is an

A-homomorphism, it follows that the set of nullhomotopic translations of

degree s is actually the kernel of '

s

, Hom

s

A

(X

�

;Y

�

) is as the qoutient an

A-module and '

0

s

: Hom

s

A

(X

�

;Y

�

)! Ext

s

A

(F;G) is an isomorphism.

Suppose now, we have a thirdA-moduleH together with the correspond-

ing injective resolution 0 ! H

�

! Z

�

and an A-homomorphism � : H ! F .

Then we can build over � a chain map �

�

: Z

�

! X

�

in the sense of [9], Chap-

ter 5. By [9], Theorem 5.13 all possible �

�

belong to the same homotopy

class.

We may now take one of these and �x it. Then for any f 2 Hom

s

A

(X

�

;Y

�

)

we can combine f

i

and �

i

to a homomorphism f

i

� �

i

: Z

i

! Y

i+s

for

all i 2 N. It is then clear that this collection of A-maps commutes with

the coboundaries of Y

�

and Z

�

. So ff

i

� �

i

g

i�N

represents an element of

Hom

s

A

(Z

�

;Y

�

). This means, that starting with an f 2 Hom

s

A

(X

�

;Y

�

) we can

�rst apply '

s

and then combine the result with � or we consider '

s

applied

to the combination of �

�

and f , in both cases �nishing in Ext

s

A

(H;G). So

the question is about the commutativity of the diagram

Hom

s

A

(Z

�

;Y

�

)

��

H

s

(Hom(H;Y

�

))

-

Hom

s

A

(X

�

;Y

�

)

��

�

H

s

(Hom(F;Y

�

))

-

6 6

If we follow one element each time, we get
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g

g

0

� �

-

-

f � �

�

6 6

f

h � �

f

0

� "

h

and the combined maps work as follows

f � �

�

(f � �

�

)

0

� � = f

0

� �

0

� � = f

0

� " � �

-

-

f

0

� "

6

6

f

f

0

� " � �

by the construction of �

�

. It follows, that '

s

is natural in the �rst variable

of the Hom

s

A

-functor.

Since we do not want to investigate what happens to ' under change of

the injective resolutions, we stick to the agreement, that for one module we

have selected just one injective resolution.

Now let T be a covariant A-linear functor which is left exact and denote

by T

i

its right derived functors. LetM;N be two A-modules and 0!M

"

!

M

�

and 0 ! N

�

! N

�

be the two corresponding injective resolutions. Then

as explained there is an A-isomorphism

'

0

s

M;N

: Hom

s

A

(M

�

;N

�

)! Ext

s

A

(M;N)(s 2 N):

So to each f 2 Ext

s

A

(M;N) corresponds a unique class of homotopic transla-

tions f

�

of degree s fromM

�

toN

�

. The functor T , if applied to a translation

g

�

:M

�

! N

�

of degree s yields a translation T (g

�

) : T (M

�

)! T (N

�

) of the

same degree and homotopic translations are carried into homotopic transla-

tions. It follows that each such T (g

�

) induces a family of A-homomorphisms

on the cohomology modules in a unique fashion, where homotopic transla-

tions induce the same family of morphisms by [9], Theorem 4.7.

Since the cohomology modules of T (M

�

) are just the derived functors of

T applied to M and the same is true for N instead of M , we conclude that

each f in Ext

s

A

(M;N) gives rise to a unique family of A-homomorphisms

from T

i

(M) to T

s+i

(N). This is to say, that for f 2 Ext

s

A

(M;N) and

m 2 T

i

(M) there is a unique element n 2 T

i+s

(N) such that the latter

is the unique result of the action on the cohomology induced by f via '

s

applied to m. We conclude, that there is a map

� : T

i

(M)� Ext

s

A

(M;N)! T

i+s

(M)
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for all A-modules M;N and all i; s 2 N. Is is clear from the de�nition, that

this map is A-linear in the �rst component. What about the second?

Let f; g 2 Ext

s

A

(M;N). By the de�nition of �, m � g + m � f is

the result of the cohomology map induced by f applied to m added to the

result of the cohomology map induced by g applied to m. But this is just the

result of (f + g) �m, so � is additive in the second argument. Similarily,

if f 2 Hom

A

(M

�

, N

�

) corresponds to f 2 Ext

s

A

(M;N), then m � (a � f)

is just A times m � f so that � is A-linear in both arguments. Since

this is the case, each m 2 T

i

(M) gives rise to a unique A-homomorphism

Ext

s

A

(M;N) ! T

i+s

(N). By the linearity in the �rst argument, we have

established an A-homomorphism




T

M;N

: T

i

(M)! Hom

A

(Ext

s

A

(M;N); T

i+s

(N))

for which

m! (f ! m� f):

We consider now the case of varying M . For, let � : M ! M

0

be an A-

homomorphism andM

0

�

be our chosen injective resolution for M

0

. Then we

build over � chainmap as before and described in [9], 5.12. We would like

to show that the diagram

T

i

M

Hom

A

(Ext

j

M

(M;N); T

i+j

N)

-

T

i

M

0

Hom

A

(Ext

j

A

(M

0

; N); T

i+j

N)




T

M;N




T

M

0

;N

T

i

� Hom

A

(Ext

j

A

(�;N); T

i+j

N)

-

? ?

is commutative. If we take m 2 T

i

(M) and follow it on its way in the

diagram, we �nd

m
((f :M ! N

j

)! T

i

f (m))

-

(T

i

�)(m)

((f

0

:M

0

! N

j

)! (T

i

(f

0

)((T

i

�

0

)(m)))

((f

0

:M

0

! N

j

)! T

i

(f

0

�)(m))

-

?

?

and since T is functor, 
 is natural in M . Consequently, 


T

M;N

estab-

lishes a natural transformation from the covariant functor T

i

to the covariant

functor Hom

A

(Ext

s

A

(�; N); T

s+i

(N)) for all i; s 2 N and each �xed N .

We will now apply this theory to the functor �

a

for an ideal a of A. We

have just established a natural transformation




�;N

= 


�

a

�;N

: H

i

a

(�)! Hom

A

(Ext

s

A

(�; N);H

i+s

a

(N))

for each �xed A-module N and all i; s 2 N.
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Suppose now, that (A;m) is local Gorenstein. Then from 5.8 follows,

that for all prime ideals p in Spec(A)

M

i

pa = �

i;ht(p)

:

The local cohomolgy modules of A with respect to m are then zero for

i < dim(A) by 4.6 and equal to E

dim(A)

(A) for i = dim(A) by 1.16 and the

fact that

im(�

m

(E

dim(A)�1

! E

dim(A)

)) = 0:

We set now i+ s = dim(A) and have in this case a natural transformation




�;A

: H

i

m

(�)! Hom

A

(Ext

dim(A)�i

A

(�; A); I)

for all A-modules N and all 0 � i � dim(A) where I denotes E

dim(A)

A

(A) =

H

dim(A)

m

(A). Denote dim(A) by n. We consider the case i = n, � = A:




A;A

: I = H

n

m

(A)! Hom

A

(Hom

A

(A;A); I)

�

=

Hom

A

(A; I)

�

=

I

It would be nice if this were an isomorphism. To answer this question we

consider what is going on here. Let 0! A! A

�

be the injective resolution

that belongs according to our agreement to A. In our earlier notation we

have s = 0. Let � be an element of H

n

m

(A) = I. Then 
 is de�ned by means

of �. Take id

A

2 Hom

A

(A;A)

�

=

Ext

0

(A;A). We have now to ask, how to

calculate �� id

A

. By construction of the bijectivity between Hom

s

A

(A;A

�

)

and Ext

s

A

(A;A) we have to build up a chain map over an A-homomorphism,

that makes

0

A

A

0

�

- -

0

A

A

0

�

- -

?

M

id

M

id

#

id

A

commute. One easily detects that id

A

0
is a very suitable map to �ll the

diagram. Further it is clear, that in every case like

A

j�1

A

j

A

j+1

�

j�1

�

j

- -

A

j�1

A

j

A

j+1

�

j�1

�

j

- -

?

M

id

M

id

#

id

A

j�1

we can use id

A

j

to complete the diagram commutative for j 2 N. It

follows, that the induced morphism on the cohomology is the identity map,

because �

m

is restriction of domain when applied to maps. Therefore for all

� 2 H

n

m

(A)

�� id

A

= �:



74 5. GORENSTEIN RINGS AND DUALITY

So 


A;A

is injective. Further, all elements of Hom

A

(A;A) are A-multiples

of id

A

. Since the pairing is linear, � � (id

A

� a) = a � � for a 2 A. So each

map from Hom

A

(A;A) is uniquely described by the image of id

A

. From the

above line follows then, that 


A;A

is the identity map. We prove now for

all �nitely generated modules M that 


M;A

is actually an isomorphism. To

this end let M be �nitely generated and

F

r

! F

s

!M ! 0

be the end of A free resolution for M , where F

s

; F

r

are the �nite direct

sum of r and s copies of A respectively. (We have shown in 5.5, that this is

possible.) Since �

m

is A-linear, and hence H

n

m

as well, they carry exact split

sequences into split exact sequences, which implies in the current case that

by induction on rank 


F;A

is an isomorphism for �nitely generated free F .

Then

H

n

m

(A

s

) H

n

m

(A

r

) H

n

m

(M)

0 0

- - - -

Hom

A

(Ext

0

A

(A

s

; A); I) Hom

A

(Ext

0

A

(A

r

; A); I) Hom

A

(Ext

0

A

(M;A); I)

0 0

�

=

�

=
?

- - - -

? ? ? ? ?

is a commutative diagram in which all vertical maps except for the mid-

dle one are A-isomorphisms. Further, the topline is exact since n = dim(A)

and by 4.9 H

n

m

(�) is right exact. Also, Ext

0

A

(�; A) is naturally isomorphic

to Hom

A

(�; A) and the latter is left exact. Since Hom

A

(�; I) is exact, the

combination is rightexact. It follows from the cited before �ve lemma, that




M;A

is an isomorphism for all �nitely generated modules M .

Since I is injective A-module, the functor Hom

A

(�; I) is exact and so

Hom

A

(Ext

n�i

A

(�; A); I) and L

n�i

(Hom

A

(Hom

A

(�; A); I)

are naturally eqivalent functors by [9], Theorem 5.1 where the L means

'leftderived'.

We know further, that fH

i

m

(�)g

i�N

is a connected sequence of covariant

functors and that H

n

m

(�) and Hom

A

(Ext

0

(�; A); I) are naturally equivalent

functors on �nitely generated modules.

We aim to show for the present that the fH

i

m

(�)g are the leftderived

functors of H

n

m

(�) on the subcategory of C

A

consisting only of �nitely gen-

erated modules. By [9], Theorm 6.2 one can calculate these functors by

means of a projective resolution consisting of �nitely generated modules, if

this exists. And it does by 5.5. So by [9], Theorem 6.12 and its corollary it

is su�cient to show that for all short exact sequences

0! X ! P ! Y ! 0

where X, P, Y are �nitely generated and P projective, the sequence

0! H

n�i

m

(Y )! H

n�i+1

m

(X)! Hm

n�i+1

(P )
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is exact for i > 0.

We know that the sequence

H

n�i

m

(P )! H

n�i

m

(Y )! H

n�i

m

(X)! H

n�i+1

m

(P )

is exact, because H

i

m

(�) are derived functors. It therefore su�ces to show,

that H

i

m

(P ) = 0 whenever i < n. This we do. Since �nitely generated

projective modules over local rings are �nitely generated free modules by

[9], Theorem 9.12 and hence a �nite direct sum of copies of A, it su�ces by

the linearity of the functors in question, to show that

H

n�i

m

(A) = 0 for i > 0:

But this is clear since A is local Gorenstein. So we have shown that for

�nitely generated modules M , H

n�i

m

(M) and L

i

(H

n

m

(M)) are naturally iso-

morphic modules.

Together with the above result we get that

fH

i

m

(�)gandfHom

A

(Ext

i

A

(�; A); I)g(i 2 N)

are naturally equivalent connected sequences of functors on the category

of �nitely generated A-modules and A-homomorphisms between them. So

there is for each �nitely generated A-module M a natural isomorphism

� : H

i

m

(M)! Hom

A

(Ext

n�i

A

(M;A); I)

and an induced isomorphism

� : Hom

A

(H

i

m

(M); I)! Hom

A

(Hom

A

(Ext

n�i

A

(M;A); I); I):

Let now a = ann(H

i

m

(M)) and b = ann(Ext

n�i

A

(M;A)). Then the �rst

isomorphism shows that b � a, whereas the latter shows

a � (Hom

A

(Hom

A

(Ext

n�i

(M;A); I); I)) = 0:

We try to show, that a = b, that is a � Ext

n�i

A

(M;A) = 0. To this end, we

show that each A-module X can be embedded in Hom

A

(Hom

A

(X; I); I).

Let x 2 X. Then the map

 : X ! Hom

A

(Hom

A

(X; I); I) by x! (f ! f(x))

where f 2 Hom

A

(X; I) establishes obviously an A-homomorphism. If then

x happens to be mapped into zero, then for each f 2 Hom

A

(X; I), f(x)

must be zero. So if we can for all 0 6= x 2 X show, that there is at least

one map f in Hom

A

(X; I) such that f(x) 6= 0, we have shown, that  is

injective and this is what we want.

If x 2 X is nonzero, then A � x is a nonzero cyclic module and hence

isomorphic to A= ann(x) where ann(x) 6= A. So ann(x) � m, since A is

local, and there is a natural projection nat : A= ann(x) ! A=m carrying

(a+ann(x)) into (a+m). Lastly I is the injective hull of A=m and so allows a

monomorphism � : A=m! I. The combination of all these homomorphisms

is obviously a homomorphism �

x

from A � x into I and x is mapped to

x! 1 + ann(x)! 1 +m! �(1 +m) 6= 0:



76 5. GORENSTEIN RINGS AND DUALITY

Since I is injective, the diagram

0

X

- -

?

A � x

I

� � nat � "

�

�

�

�

�

�

�

�

x

can be completed by a homomorphism �

x

under which x is not annihi-

lated. So for each x 2 X there is a homomorphism X ! I for which x is

not in the kernel. We conclude, that  is injective. Hence from

a � Hom

A

(Hom

A

(Ext

n�i

A

(M;A); I); I) = 0

follows that

a � Ext

n�i

A

(M;A) = 0:

We put together all results in the �nal statement of this chapter.

Theorem 5.10.

ann

A

(Ext

n�i

A

(M;A)) = ann

A

(H

i

m

(M))

for all 0 � i � n = dim(A) whenever A is local Gorenstein and M �nitely

generated.

The interested reader might like to consider the skeleton of this proof,

which is mainly to be found between Pr. 4.10 and Th. 6.3 of [4].



CHAPTER 6

Annihilators

We have set the stage in the last chapter for a theorem, which is known

as Faltings' annihilator theorem, or, as Faltings himself calls it in a later

paper([19]) the weak annihilator theorem. This theorem will give a partial

answer to the question mentioned repeatedly about connections between

depths, dimensions and zeros. The result we will prove is up to a corollary

the only outstanding point of this chapter and it will be the most involved

of this work. However, we have to admit, that we only give a weakened

form of the original proof and statement and the reader interested in the

strong annihilator theorem should study [20] rather than what follows. On

the other hand, readers who do not know about dualising complexes will

fare better with our version.

Although the original proof �lls only two small pages, we will need con-

siderably more space and as said before the whole last chapter has been

preparation for the proof. We have to make a remark about the notation.

In the sequel if I is an ideal of A and Var(I) = Z � Spec(A), we will for the

functor H

n

I

also use the symbol H

n

Z

,so emphasising the interpretation of �

given after 1.8.

Lemma 6.1. Let B be a commutative Noetherian ring and b an ideal of

B. Set A := B=b. Let M be an A-module. Set Z = Var(I) and Y = Var(J)

for two ideals I; J � b of B. Denote the set fp=b : p 2 Zg of prime ideals

in A by Z

0

and fp=b : p 2 Y g by Y

0

. Suppose, Z � Y . Fix i 2 N.Then there

exists an ideal a

0

in A with Var(a

0

) � Y

0

and a �H

i

Z

0

(M) = 0 if and only if

there exists an ideal a � b in B with Var(a) � Y and a

0

�H

i

Z

(M) = 0.

Proof. Suppose, a � B is an ideal as described in the second part

of the claim. Then a

0

= a=b has variety in Y

0

. Further, H

i

Z

(M) is by

independence of the base ring (3.20) when M is considered as B-module

isomorphic to H

i

Z

0

(M), this then restricted to a B-module. So a annihilates

H

i

Z

0

(M). Now, if (a+ b) 2 a

0

, then multiplication of an A-module by this

yields the same result as multiplication by a alone, because b has to be in

the annihilator of such a module. It follows, that a

0

�H

i

Z

0

(M) = 0.

Conversely, if a

0

is an ideal of A with variety in Y

0

, then a

0

= a=b for

some ideal a in B. Of course Var(a) � Y:SinceH

i

Z

0

(M) is an A-module,

b �H

i

Z

0

(M) = 0. Then (a+b) 2 a

0

implies (a+b) �H

i

Z

0

= a �H

i

Z

0

(M) and this

is zero as we know so that a �H

i

Z

0

(M) = 0. By 3.20 again a �H

i

Z

(M) = 0.

We prove two similar lemmata.

77
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Lemma 6.2. Let B be a commutative ring. Set B=c = A for some ideal

c in B. Let b be a prime ideal in B and set a = b=c, a prime ideal in A. Let

M be an A-module, such that we may consider it as B-module as well.

depth

A

a

(M

a

) = depth

B

b

(M

b

)

for all A-modules M .

Proof. We have A

a

�

=

(B=c)

b=c

�

=

(B

b

)=(c

b

) by [12], 5.44. Further, an

element m =

�

�

2 M

b

is zero if and only if there is a � 2 B

b

nb � B

b

with

� � � = 0. This is the case if and only if (� + c) �m = 0 which can happen if

and only if

m

�+c

= 0 in M

a

.

Let � be in b �B

b

and assume, that � is a zerodivisor on M

b

. Then there

is an m 2 M and � 2 Bnb, such that � �

m

�

= 0. Hence there is �

0

2 Bnb

with � �m � �

0

= 0. Since c annihilates M , this implies that

(� + c) �m � (� + c) = 0;

showing that (� + c) �

m

�+c

= 0 and hence the image of � under the natural

projection B

b

! A

a

is zerodivisor on M

a

. Similarily is clear that whenever

(� + c) 2 A

a

is zerodivisor on M

a

, that then � 2 B

b

is zerodivisor on M

b

.

Since by [12], 9.44 for � 2 B

b

M

a

=((� + c) �M

a

)

�

=

M

b

=(((x) + c) �M

b

;

we can in the case that there is a zerodivisor on M

a

in a � A

a

apply the

above argument to the quotient of M

a

. It follows that there is a one-one-

correspondence between theM

a

-sequences in a �A

a

and theM

b

-sequences in

b � B

b

which preserves length, hence maximal M

a

-sequences have the same

length as maximal M

bB

-sequences.

Lemma 6.3. Let B be a commutative ring and x; z 2 Spec(B). Let

b � x \ z and set A = B=b, x

0

= x=b, z

0

� z=b. Then

dim((B=x)

z

) = dim((A=x

0

)

z

0

):

Proof. If x 6� z, then x

0

6� z

0

and both dimensions are -1, because the

modules are zero. If x � z, then the result follows from 2.46, 3.28 and 5.32

of [12].

It is admitted, that these three statements are neither di�cult nor the

proofs very interesting. However, a reader who for the �rst time comes

across these three things in a phrase like 'obviously' and is not given any

further comment, might be a bit worried.

We will now develop a functor, that is very related to the torsion functor,

but not quite the same. For we make

Definition 6.4. Let A be commutative noetherian. A subset Z of

Spec(A) is said to be stable under specialisations if z 2 Z implies Var(z) � Z.

This is to say that Z is the union of closed sets in Spec(A) where a set

is closed, if and only if it is the variety of some ideal of A.



6. ANNIHILATORS 79

Definition 6.5. Let A be commutative Noetherian and Z � Spec(A)

be stable under specialisations. Let M be an A-module. We de�ne �

Z

(M)

to be the set

�

Z

(M) = fm 2M : supp(A �m) � Zg:

Since A �m is �nitely generated, this is the same as

fm 2M : Var(ann(m)) � Zg = fm 2M : 9ainA : Var(a) � Z; a

n

�m = 0g

and it follows from this last description, that �

Z

(M) is a submodule.

Further, given anA-homomorphism f :M ! N it is clear that f(�

Z

(M))

consists only of elements which are annihilated by an ideal a of A with

Var(a) � Z. Since �

Z

is taking submodules, its restriction to maps is restric-

tion. Therefore combined A-homomorphisms give rise to combined induced

homomorphisms, because this � too is restriction if applied to maps, and

application to the identity map on M leads to the identity map on �

Z

(M).

So �

Z

is a covariant functor. As said before, its application to maps is

restriction so �

Z

is linear.

We come now to statement and proof of the annihilator theorem.

Theorem 6.6. Let A be the quotient of a Gorenstein ring of �nite di-

mension. Let Z � Y � Spec(A) be the varieties of two ideals I; J . Suppose,

that M is a �nitely generated A-module. Then for s 2 N

(i) 9a � A with Var(a) � Y such that a �H

i

Z

(M) = 0 for all 0 � i � s,

is a consequence of

(ii) for all x 2 Spec(A)nY and for all z 2 Var(x) \ Z we have

depth

A

x

(M

x

) + dim(A=x)

z=x

> s:

Proof. We have shown in 6.1, 6.2 and 6.3 that if condition (i) or (ii)

is valid for A, then they are also valid for B with B=c

�

=

A and the other

way round. So we may, and do, assume that A itself is a �nitedimensional

Gorenstein ring.

By theorem 5.8 and 7.11 for a prime x; d(x) := ht(x) is the unique i 2 N

for which

Ext

i

A

x

(�(x);M

x

) 6= 0:

We de�ne now a family of subsets of Z by

Z

n

:= fz 2 Z : ht(z) � ng:

These are obviously sets, which are stable under specialisation. Further,

Z

0

= Z and Z

n

= 0 for n > dim(A). We de�ne now for all i; n 2 N an

A-homomorphism

�

i

: H

i

Z

n

(M)!

M

z�Z

n

nZ

n+1

H

i

z�A

z

(M

z

)

as follows.
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We start with i = 0. For m 2 �

Z

0

(M) de�ne �

0

(m) to be

M

z�Z

n

nZ

n+1

(

m

1

)

where of course each

m

1

has a di�erent meaning. Let m be in �

Z

n

(M) and

suppose, that z 2 supp(A �m). Then supp(A �m) contains only prime ideals

of height at least n and z is in this set. It follows, that z is minimal in

supp(A � m) and by [12], 9.39 in ass(A � m) and a minimal element there.

Let z

1

; : : : ; z

t

be the remaining associated primes of A �m.

Suppose, t = 0. Then z is the unique element of ass(A= ann(m)) so

that ann(m) is z-primary. It follows, that m is z-torsion and hence

m

1

is

z � A

z

-torsion.

Suppose now, that t 6= 0. By the minimality of z in ass(A= ann(m)),

there is a � 2

S

t

1

z

i

nz. 4 Since A is Noetherian, there is an r 2 N such that

�

r

� z

r

� ann(m). Then

z

r

� A

z

�

m

1

= z

r

�A

z

�

�

r

�m

�

r

= 0

and hence

m

1

is in �

z�A

z

(M

z

). We have to check, that this is a map. Let

m 2 �

Z

n

(M). All z for which the component of the sum above is nonzero,

have to be in Z

n

nZ

n+1

and in supp(A �m) as well. Because of this all ideals

in the support of m have height at least n since m 2 �

Z

n

(M) and no ideal

of height greater than n can occur on the right side. So all z for which the

right hand term has nonzero z-component have to be minimal members of

supp(m), hence by [12], 9.39 in ass(A � m). These are �nitely many such

that �

0

is a map.

The linearity is obvious, because localisation is linear. If m 2 �

Z

n

(M)

is in the kernel of �

0

, then no element of support of m is of height n, so that

m is in �

Z

n+1

(M). On the 4 other hand clearly each m 2 �

Z

n+1

(M) is in

the kernel of �

0

.

So

0! �

Z

n+1

(M) ,! �

Z

n

(M)

�

0

!

M

Z

n

nZ

n+1

�

z�A

z

(M

z

)

is exact. Now for a second moduleM

0

and anA-homomorphism f :M !M

0

we get the induced diagram

�

Z

n+1

(M)

�

Z

n

(M)

L

M

z

Z

n

nZ

n+1

- -

�

Z

n+1

(M

0

)

�

Z

n

(M

0

)

L

M

0

z

Z

n

nZ

n+1

- -

? ? ?

�

Z

n+1

�

Z

n

L

f

z
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The left quadrangle commutes, because �

a

is restriction. In the right

quadrangle each m 2 �

Z

n

(M) is mapped either to

m �!

M

Z

n

nZ

n+1

(

m

1

) �!

M

Z

n

nZ

n+1

f

z

(

m

1

)

or

m! f(m)!

M

Z

n

nZ

n+1

(

f(m)

1

)

which is the same by the de�nition of f

z

.

So the exact sequence is natural inM . Let now E be an injective module

and

e

s

be in �

z�A

z

(E

z

). By 1.13, there exists e

0

2 �

z

(E) and s

0

2 Anz such

that

e

s

=

e

0

s

0

. By 1.16, �

z

(E) is injective. By 7:22, the map � given by

�(") = s

0

� " for " 2 �

z

(E) is an automorphism of �

z

(E). Hence there is an

e" 2 �

z

(E) with s

0

� e" = e

0

. So

e"

1

=

e

0

s

0

=

e

s

.

Further, if z

0

2 Spec(A) is in the support of e", Anz

0

cannot contain any

element of z since e" is z-torsion. So all such z

0

contain z. So z is the unique

minimal prime ideal in the support of e". Then �

0

(e") = (: : : ; 0;

e

s

; 0; : : : )

and hence �

0

is surjective for injective modules and there is for each injective

A-module E an exact sequence

0! �

Z

n+1

(E) ,! �

Z

n

(E)

�

0

!

M

Z

n

nZ

n+1

�

z�A

z

(E

z

)! 0:

It follows, that the application of this exact sequence to an injective resolu-

tion of M yields by [9], Theorem 4.5, that

H

i

Z

n+1

(M) �! H

i

Z

n

(M) �!

M

Z

n

nZ

n+1

(H

i

z�A

z

(M

z

)

is an exact sequence for all i 2 N and all A-modules M .

The proof of the theorem goes in several stages:

(i) is implied by (iii):

for all i � s and for all j 2 N there is an ideal a � A with

Var(a) � Y such that a �H

i

z�A

z

(M

z

) = 0 for all z 2 Z

j

nZ

j+1

.

Proof:

(iii)) (i): Let a

i

j

be such that Var(a

i

j

) � Y and a

i

j

�H

i

z

j

(M

z

j

) for all

i � s, for all j 2 N, for all z

j

2 Z

j

nZ

j+1

. Since A is �nitedimensional,

H

i

Z

d+r

(M) is zero for r 2 N

+

and d = dim(A) by de�nition of Z

d+1

.

Then from the exact sequence

H

i

Z

d+r

(M)

�

! H

i

Z

d+r�1

(M)!

M

Z

d+1�r

nZ

d�r

H

i

z�A

z

(M

z

)

and the hypothesis follows that a

i

d+r�1

� H

i

Z

d+r�1

(M)=im(�) = 0 for

all r 2 N. It follows, that the annihilator of a

i

d

� a

i

d�1

� : : : � a

i

0

�H

i

Z

0

(M)

4 contains the annihilator of H

i

Z

d+1

(M) which is A. Since H

i

Z

0

(M) =

H

i

Z

(M) and the product of all these a's has variety contained in the
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union of the varieties of these ideals, which in turn are all subsets of

Y , the product satis�es the conditions of statement (i).

(iii) is equivalent to (iv):

for all i � s and for all k 2 N9a � A with Var(a) � Y such that

a � Ext

d(z)�i

A

z

(M

z

; A

z

) = 0 for all z 2 Z

k

nZ

k+1

.

Proof: see 5.10.

(iv) is equivalent to (v):

for all i � s, for all k 2 N, for all z 2 Z with d(z) = k there

exists an a � A with Var(a) � Y and a � Ext

k�i

A

z

(M

z

; A

z

) = 0.

Proof:

(iv)) (v) is clear.

(v)) (iv): Suppose, a�Ext

d(z)�i

A

z

(M

z

; A

z

) = 0 for some prime ideal

z. Then this implies (a � Ext

d(z)�i

A

(M;A))

z

= 0 and this is equivalent

to z 62 supp(a �Ext

d(z)�i

A

(M;A)). And since Ext on �nitely generated

modules is �nitely generated, this is equivalent to

z 62 Var(ann(a � Ext

d(z)�i

A

(M;A))):

So if one a works in the sense of the statement (v) for z, it works then

for all z

0

2 Spec(A)nVar(ann(a�Ext

d(z)�i

A

(M;A))). If we for each �xed

i and k take a(z) with d(z) = k such that a(z) � Ext

k�i

A

z

(M

z

; A

z

) = 0

which is possible by the hypothesis, then the union of all Spec(A)nVar(a�

ann(Ext

k�i

A

(M;A))) contains Z

k

nZ

k+1

. But the union of comple-

ments of varieties is the complement of the intersection of varieties

and the intersection of varietis is the variety of the sum of the cor-

responding ideals. Since A is Noetherian, there have to be �nitely

many ideals a

j

: 1 � j � r for some r 2 N, such that the union of all

the corresponding sets Spec(A)nVar(ann(a �Ext

k�i

A

(M;A))) contains

Z

k

nZ

k+1

and each a

j

is one of the above a(z). It follows, that there is

for all �xed k; i 2 N a �nite set of ideals with variety in Y such that

each z 2 Z

k

nZ

k+1

may be served by one of them to satisfy condition

(iv). But then the product of these works for all 4 z 2 Z

k

nZ

k+1

and

we are done.

(v) is equivalent to (vi):

for all 0 � i � s and for all z 2 Z it is the case that

supp(Ext

d(z)�i

A

z

(M

z

; A

z

)) � Y:

Proof:

Statement (vi) is equivalent to:

for all 0 � i � s, for all k 2 N and for all z with d(z) = k is

correct that

supp(Ext

k�i

A

z

(M

z

; A

z

)) � Y:

This is equivalent to:
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for all 0 � i � s and for all k 2 N and for all z : d(z) = k it is the

case that

Var(ann(Ext

k�i

A

z

(M

z

; A

z

)) � Y

(since these Ext's are �nitely generated), and this is just statement

(v) in other words.

(vi) is equivalent to (vii):

for all x 2 Spec(A)nY and for all z 2 Var(x) \ Z and for all

0 � i � s

(Ext

d(z)�i

A

(M;A))

x

= 0

Proof:

(vi)) (vii):

(Ext

d(z)�i

A

(M;A))

x

�

=

((Ext

d(z)�i

A

(M;A))

z

)

x

�

=

(Ext

d(z)�i

A

z

(M

z

; A

z

))

x

for x � z, and this is zero for all x 2 AnY by (vi).

(vii)) (vi):

from the above displayed line follows that whenever the left hand

term is zero, the right hand is as well. It follows from statement (vii)

that the support of the right hand bracket is contained in Y , what is

statement (vi).

(vii) is equivalent to (viii):

for all x 2 Spec(A)nY , for all z 2 Var(x)\Z and for all 0 � i � s,

H

i+d(x)�d(z)

x�A

x

(M

x

) = 0:

Proof:

A is Gorenstein, so A

x

is local Gorenstein and by 5.10 we can

draw the conclusion

ann(H

i+d(x)�d(z)

x�A

X

(M

x

)) = ann(H

d(x)�(d(z)�i)

x�A

x

(M

x

))

= ann(Ext

d(z)�i

x�A

x

(M

x

; A

x

))

= ann(Ext

d(z)�i

A

(M;A))

x

So if one of the two modules is zero, then it has annihilator A and

hence the other has to be zero.

(viii) is equivalent to (ii):

Proof:

By 4.6, H

i�d(z)+d(x)

x�A

X

(M

X

) = 0 for all i smaller than s + 1 if and

only if depth(x � A

x

) > s � d(z) + d(x). The only thing that then

remains to show is that d(x) + ht(z=x) = d(z) and that follows from

[7], Theorem 17.4.

The reader will wonder, why in almost all cases we have proved the

equivalence of the various statements. The reason is that one can �ll the

gap (i)) (iii) and hence prove the equivalence of (i) and (ii). This would

have been done here, if it could have been achieved by reasonable e�ort.
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Unfortunately the author has found no substitute for this step given by

Faltings. And he uses the spectral sequence for combined functors

E

p;q

2

= H

p

fzg

(H

q

Z

(M))

z

) H

p+q

fzg

(M)

and this is beyond the scope of this work. However, interested readers may

try to read [11], theorems 11.38 to 11.42.

The theorem does not give a complete answer to our question, but at

least a partial one: if there is no ideal with variety in Y that annihilates

H

i

Z

(M), then of course this cannot be zero. One can change the appearance

of the theorem into the following, which is also due to Faltings and to be

found in [20].

Theorem 6.7. Let A be a quotient of a �nite dimensional Gorenstein

ring and M a �nitely generated A-module. Set further for the ideal b of A,

Var(b) = Z. Then

(i') H

i

Z

(M) is �nitely generated for 0 � i � s and

(ii) for all x 2 Spec(A)nZ and for all z 2 Z with z � x,

depth

A

x

(M

x

) + (ht(z)� ht(x) > s

are equivalent conditions for a natural number s.

Proof. We show that condition (i') is equivalent to condition (i) of

theorem 6.6:

(i')) (i): If the H

i

Z

(M) are �nitely generated for i < s, then for each

generator g there is a natural number n(g) such that b

n(g)

�g = 0 because all

these modules have to be b-torsion by de�nition. It follows that the product

of all these annihilators of generators (which are only �nitely many for each

i) annihilatesH

i

A

(M) so that the �nite product of all these annihilators from

i = 0 to s annihilates all local cohomology modules with respect to b with

order at most s.

(i)) (i'): we know that M is �nitely generated, hence so is H

0

Z

(M).

From 1.18 we know that H

i

Z

(M) = H

i

Z

(M=�

Z

(M)) for i > 0. So we can,

and do, replace M by M=�

Z

(M) =: N .

Since H

0

Z

(N) = 0, it follows, that Z contains no associated prime p of

N .(Otherwise (A=p) � N , a contradiction.) So Var(a) � Z ) Var(a) \

Ass(N) = ;. So a is contained in no associated prime of N . By [12],

Theorem 3.61 it follows, that a is not in the union of the associated primes

of N . So we �nd x 2 an

S

p�Ass(N)

p. By [12], Theorem 9.36 this x is a

nonzerodivisor on N . So

0!M

x

!M !M=x �M ! 0

is exact and gives rise to

H

i

Z

(M)

x

! H

i

Z

(M)! H

i

Z

(M=M � x)! H

i+1

Z

(M)

x

! H

i+1

Z

(M)

because �

Z

is A-linear. But if we take a to be as statement (i) claims

and i is smaller than s, then the left and the right map are zero maps.

Hence H

i+1

Z

(M) is a quotient of H

i

Z

(M=x �M) and of course M=x �M is
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�nitely generated. 4 It follows further from the displayed sequence, that

whenever a annihilates the local cohomology modules of M of order less

than s + 1, then it annihilates the local cohomology modules of M=x �M

of order less than s. So we can inductively assume that it is proved for all

�nitely generated modules whose local cohomology modules are annihilated

by a up to order r 2 N, that their local cohomology modules up to order r are

�nitely generated and by the above argument conclude, that if r < s, then

H

r+1

Z

(M) as quotient of a �nitely generated module is �nitely generated as

well. The theorem follows by induction.

We conclude, as an example, that if one accepts or veri�es the proof of

(i))(iii), and takes a �nitely generated module M of dimension s 6= 0 over

a local Gorenstein ring A, then there exists a minimal prime of ann(M), say

p, so that ht(m=p) = s and then depth

A

p

(M

p

) + ht(m) � ht(p) = 0 + s by

[7], 17.4 such that H

s

m

(M) is not �nitely generated.

However, this can be proved without assuming A to be Gorenstein and

without spectral sequences. The interested reader is referred to [22] where

he will meet again secondary representations.
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CHAPTER 7

Appendix

This appendix will give some accounts to the structure theory of injective

modules, and most of the appendix comes from papers by Eben Matlis and

Hyman Bass.

Theorem 7.1. Every A-modules M can be embedded in an A-injective

module.

Proof. See [9],Th.5.8.

Theorem 7.2. For the Noetherian ring A we have

� any direct sum of injective A-modules is injective,

� any direct limit over a system of injective A-modules is an injective

A-module,.

Proof. See [2],Ch.1,Ex.8.

In [18], Eckmann and Sch�opf have shown that every A-modules M can

be embedded into an A-injective module E(M) which is in some sense a

smallest one. To understand what this means, we introduce the concept of

an essential extension:

Definition 7.3. 2.1 Let M � N be two A-modules. We call N an

essential extension of M if and only if each nonzero submodule M

0

of N

intersects M nontrivially. (That is M \M

0

6= 0). We will call an essen-

tial extension N of M proper whenever N 6= M . Further we will call a

monomorphism f :M ! N essential if N is an essential extension of f(M).

Proposition 7.4. Let I be an A-module. Then the following are equiv-

alent:

1. I is injective,

2. I is a direct summand of every extension of itself and

3. I has no proper essential extension.

Proof. (i))(ii): This is [9],Th.5.6.

(ii))(iii): I has to be direct summand of any extension E of itself, so

E = I

L

F for some A-module F . For essential extensions this implies

F = 0 because I \ F = 0 in any case.

(iii)) (i): Let E be injective, I � E. We want to show that

0! I ! E ! E=I ! 0

87
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splits. By Zorn's lemma and since the union of a chain of modules which do

not intersect F nontrivially is a module which intersects I only in 0, there

is a maximal submodule F of E such that F \ I is 0. Then � : I ,! E and

� : E ! E=F can be combined to a monomorphism � � � because F \ I = 0.

Whenever now G=F is a nonzero submodule of E=F , then F � G and G

must intersect I nontrivially. Then �� �(I)\G=F is nonzero and hence E=F

is an essential extension of I. By hypothesis, this is improper so E=F

�

=

I.

So E = F + I and F \ I = 0 so that E = F

L

I. Therefore I is direct

summand of E and hence injective.

We will now come to another description of essential extensions, which

will be useful in further proofs.

Lemma 7.5. E is an essential extension of M , for all e 2 E either

e = 0 or 9a 2 A such that e � a 2M but e � a is not zero.

Proof. ): If e 2 E but e 6= 0, then Ae is a nonzero submodule of E,

hence meets M nontrivial and each element of the intersection is a multiple

of e.

(: If F is a nonzero submodule of E then take f 2 F with f 6= 0 giving

an element a 2 A with 0 6= a � f 2 M and hence F \M 6= 0 so that the

criterion for essential extensions is satis�ed.

We now investigate the behaviour of essential extensions under unions.

Lemma 7.6. Let M � E be two A-modules and let fE

i

: i 2 Ig be a

family of submodules of E with for i; j 2 I either E

i

� E

j

or E

j

� E

i

such that each E

i

is an essential extension of M . Then

S

E

i

is an essential

extension of M .

Proof. By 7.5 it su�ces to show that for all 0 6= e 2

S

E

i

there is an

a 2 A: 0 6= a � e 2 M . But this is clear since every element in the union is

in some E

i

, where this condition is satis�ed.

Proposition 7.7. For each A-modules M there is an injective module

E(M) which is essential over M .

Proof. By 7.1 there exists for any A-modules M an injective E con-

taining M . We consider the family of essential extensions over M which lie

in E. This family is not empty sinceM is in it and by 7.6 and Zorn's lemma

there is a maximal element in this family. We call it E(M). We want to

show that E(M) is injective; by 7.4 this is the same as saying that E(M)

has no proper essential extension. So suppose the module F contains E(M)
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and F is essential over E(M). Then we have

0

F

- -

?

E(M)

E

�

�

�

�

�

�

�

�

'

which can be completed by a map ' such that the diagram commutes

because E is injective.

Now ker' is 0 because otherwise ker'\M 6= 0 since F is essential over

M , but then '(m) = 0 for some 0 6= m 2 M , which of course is wrong. So

'(F ) is a carboncopy of F in E containing E(M) and being an essential

extension of M . By construction of E(M) we have '(F ) = E(M), that is

' is an isomorphism onto E(M) and hence F = E(M) by commutativity of

the diagram. So E(M) has no proper extensions and is injective by 7.4.

Definition 7.8. The module E(M) constructed in 7.7 will be called an

injective hull of M and be denoted by E

A

(M). If no doubt about the base

ring exists, we will omit the index A.

Example 7.9. Let R be an integral domain. Then E

R

(R), the injective

hull of R considered as module over itself, is precisely its �eld of fractions

K = (Rnf0g)

�1

R.

Proof. Let � be a submodule of K. Then it is either 0 or contains a

nonzero element, say k. In the latter case k =

p

q

for some elements p; q of

R. Then p 6= 0. So k � q = p 2 R and we have shown that K is essential

extension of R.

We show now that K is injective. Since R � K;E(R) � E(K). If

we form E(R) inside E(K), then K � E(R): we have just seen, that K is

essential extension of R. Whenever there are R-modulesX;Y and a diagram

0

Y

-

X

K

f

?

�

1

,!

which one can

extend to

-

�

1

,!

0

X Y

K

?

?

�

�

�

�

�

�

�

f

E(R)

�

2

'

then we can �nd a ' such that �

2

� f = ' � �

1

. Now let 0 6= y 2 Y with

'(y) not in �

2

(K). Then there is a 0 6= r 2 R : r �'(y) 2 K because E(R) is

essential over K. Suppose, that s 2 R would be a zerodivisor on E. Then

there is an 0 6= e 2 E such that s � e = 0. This implies, that R � s\R � e = 0.

Since R is integral domain, R � s

�

=

R or s = 0. Since E(R) is essential

over R and e 6= 0, we must have s = 0. Hence each nonzeroelement of R is

nozerodivisor on E. But we know, that r is nonzero.
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Since r � '(y) =

p

q

for some p; q 2 R and r is nonzerodivisor on E(R),

'(y) =

p

qr

and hence '(y) 2 K. By contradiction '(Y ) � �

2

(K). Hence

' may be used to complete the left diagram above and so K is injective

R-module.

Proposition 7.10. 2 Given an A-module M and two injective hulls E

and E

0

of M there is an A-isomorphism between them, �xing M .

Proof. We have the diagram

0

E

- -

?

M

E

0

�

2

�

1

�

�

�

�

�

�

�

"

which may be completed by " to a commutative diagram. " is monic since

otherwise its kernel has a nontrivial intersection withM which is impossible.

" is epimorphic too since "(E) is injective in E

0

, therefore a direct summand

ofE

0

containingM . So the other summand has to be 0 because E

0

is essential

over M , whence " is an isomorphism.

That M is �xed under " is obvious.

One may therefore speak about the essential extension instead of one.

We turn now to the investigation of the structure of injective hulls. The �nal

goal is to get insight into injective resolutions which is needed thruoghout

this work. The main source of references will again be [23]. However, the

next result is taken from [17],(Co.1.3). This can be proved by showing, that

localisations are direct limits and direct limits sometimes preserve essential

monomorphisms. Since this would cause the reader to switch here to chapter

2, we only give a reference for the interested reader.

Proposition 7.11. If A is a Noetherian ring and S a multiplicatively

closed subset of A, then the exact functor S

�1

carries essential monomor-

phisms into essential monomorphisms.

Proof. See [17],1.3.

Definition 7.12. LetM be a nonzero A-module. ThenM is said to be

indecomposable i� its only direct summands are 0 and M itself.

Proposition 7.13. For an A-modules M the following are equivalent:

1. E(M) is indecomposable,

2. there are no nonzero submodules S; TofM such that S \ T = 0 and

3. E(M) is injective hull of every nonzero submodule of itself.
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Proof. (i)) (ii): By the construction of injective hulls it is clear that

M � N ) E(M) � E(N). Suppose we have 0 6= S; T �M and S \ T = 0.

Then we can think about E(S) and E(T ) to be inside E(M). If this is done,

S \E(T ) 6= 0) (S \E(T )) � E(T ) and nonzero, hence S \ T 6= 0

so that by contradiction S \E(T ) = 0. Similarily, T \E(S) = 0.

If we had E(T ) \ E(S) 6= 0, then E(T ) \ S 6= 0 since E(S) is essential

extension of S. The latter is impossible, hence so is the former. Now E(S)�

E(T ) is injective and submodule of E(M), so it is a direct summand. Hence

E(M) = E(T )�E(S)� I for some injective module I. E(S) and E(T ) are

nonzero, so E(M) is decomposable.

(ii)) (iii): Let 0 6= F be a submodule of E(M). We want to show

that E(M) is essential over F . So let G be another submodule of E(M).

Suppose, that G 6= 0. If F \G = 0, then F \G\M = (F \M)\(G\M) = 0.

Further F \M and G \M are nonzero because F and G are and E(M) is

essential over M . This contradicts statement (ii).

(iii)) (i): suppose E(M) were decomposable, say E(M) = X�Y where

X and Y are nonzero. Then X;Y are injective by [9],Pr.5.6. If both are

nonzero E(M) cannot be the injective hull of the submodule X, contradict-

ing (iii).

In the sequel we will dwell a great deal on these injective indecomposable

modules and we will establish a representation theory for injective modules.

Before we show that indecomposable modules may behave in an unexpected

way.

Example 7.14. It is shown in [5], Th.19, that for example the ring of

integers possesses an indecomposable module N of rank two (there is one

constructed there). It follows, that there are two elements n; n

0

2 N such

that z �n+ z

0

�n

0

= 0 for z; z

0

2 Z implies that z; z

0

are zero. So the injective

hull of this module has the same problem. It follows, that E

Z

(N) cannot

be indecomposable, since by the previous result it has to be the injective

hull of each nonzero submodule and this is for Z � n impossible, because it

cannot intersect Z � n

0

nontrivially.

The representation we aim to produce is closely related to the ideal

structure of A, especially to Spec(A). So we make the

Definition 7.15. Let I be an ideal of A and J

1

; : : : ; J

n

be n further

ideals of A such that

I =

n

\

1

J

i

:

This we call a decomposition of I and whenever we have for 1 � i � n that

J

i

6�

T

j 6=i

J

j

we will call the decomposition irredundant.

Proposition 7.16. Let I be an ideal in A and I =

T

r

i=1

J

i

be an irre-

dundant decomposition of I. If each E(A=J

j

) is indecomposable, then the
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natural embedding (via

L

n

1

A=J

i

)

A=I !

n

M

1

E(A=J

i

) =: F

can be extended to an isomorphism E(A=I)! F .

Proof. Whenever we write A=I, we will mean the submodule of F

consisting of all elements (a + J

1

; a + J

2

; : : : ; a + J

n

) which is isomorphic

to A=I. We know that F is injective from 7.2 such that E(A=I) � F and

it su�ces to show that F is an essential extension of A=I. So we will show

that for G a nonzero submodule of F , G \A=I 6= 0.

Let �rst G = A=J

1

. Since J

1

6�

T

n

2

J

i

, 9a 2

T

n

2

J

i

nJ

1

. Then

(a+ J

1

; a+ J

2

; : : : ; a+ J

n

) = (a+ J

1

; 0; : : : ; 0) 6= 0;

which is in A=J

1

as well as in A=I. So A=J

1

\ A=I 6= 0. The same argu-

ment works for all other J

2

; : : : ; J

n

. Now E(A=J

i

) is indecomposable by

hypothesis, so by 7.13 E(A=J

i

) is the incective hull of A=I \ A=J

i

for all

0 � i � n. Now let G be an arbitrary submodule of F . If G is nonzero,

0 6= x 2 G exists. Then x is in F and has coordinates x

1

; : : : ; x

n

. Let i

1

be

the lowest element of f1; : : : ; ng such that x

j

2 A=J

j

\ A=I for j < i

1

and

x

i

1

6�A=J

i

1

\A=I. If this i

1

does not exist, x is sum of elements in A=I and

therefore in A=I. If i

1

exists, there exists a

i

1

2 A such that 0 6= a

i

1

� x and

(a

i

1

x)

j

2 A=I \ A=J

j

for j � i

1

. We may now repeat this procedure with

a

i

1

x instead of x and �nd or �nd not an a

i

2

such that i

1

< i

2

; 0 6= (a

i

2

a

i

1

x)

and (a

i

2

a

i

1

x)

j

2 A=J

j

\ A=Iforj < i

2

but (a

i

2

a

i

1

x)

i

2

=2 A=J

i

2

. Working

in this manner through the components of x, we �nally reach a collection

a

i

1

; a

i

2

; : : : ; a

i

r

such that the product of all a

i

's multiplied by x is nonzero

and the ith component of the product is contained in A=J

i

\ A=I. Hence

this product is the sum of elements in A=I and so itself in A=I. This proves

that for each nonzero module G � F we always have G\A=I 6= 0 and so F

is essential over A=I.

Theorem 7.17. A module E over A is indecomposable and injective

, E

�

=

E(A=J) for some irreducible ideal J of A. If this is the case, for

every e 2 E; e 6= 0; E = E(A= ann(e)).

Proof. (For irreducible ideals see e.g.[12],4.31.)

):If J is irreducible, and F;G are submodules of A=J with F \G = 0,

then F = K=J and G = L=J where K;L � J are two ideals of A. So K = J

or L = J and hence F = 0 or G = 0. By 7.13, E(A=J) is indecomposable.

(: Let E be indecomposable and injective, 0 6= e 2 E and J = ann(e).

Then Ae 6= 0 and by proposition 7.4 E = E(Ae). Now Ae

�

=

A= ann(e) =

A=J such that E = E(A=J). Since E(A=J) is indecomposable, we conclude

by 7.13 that A=J contains no nonzero submodules S; T such that S\T = 0.

Then an irredundant decomposition J = K \L of ideals K;L is impossible,

because then S = K=J and T = L=J are submodules of A=J which satisfy

S \ T = 0. Hence J is irreducible.
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Before we come to the promised structure theorem, let us observe that

for a nontrivialA and a maximal ideal m in A (which exists by Zorn's lemma:

see [12],3.9), E(A=m) is indecomposable, simply because maximal ideals are

necessarily irreducible.

Theorem 7.18. Every injective A-module has A decomposition as a di-

rect sum of indecomposable injective submodules.

Proof. Let M be injective. Let fE

!

g

!�


be a family of submodules

of M which are injective and indecomposable. We will call this family

independent, if

�

n

1

E

!

i

=

n

M

1

E

!

i

for all �nite subsets f!

1

; : : : ; !

n

g of 
. Then by 7.2 this sum is injective

for an independent family and clearly decomposable into the direct sum of

injective indecomposable modules. It follows again from 7.2 together with

2.14 that for a chain of such families the union of the corresponding sums

is injective and has a decomposition into indecomposable injective modules.

By Zorn's lemma and the empty family, there is a maximal submodule N of

M which is decomposable into the direct sum of injective indecomposable

modules. Suppose M 6= N and look for a contradiction.

N is clearly injective, so direct summand of M . M = N � P; P 6= 0.

Let � 2 P and � 6= 0. Then ann(�) is the intersection of �nitely many

irreducible ideals since A is Noetherian (see [12],4.33). So by 7.16 and

7.17, E(A= ann(�)) is a direct sum of �nitely many indecomposable injective

modules. Further A�

�

=

A= ann(�) so we can build E(A= ann(�)) inside

E(P ) = P . But N � N � E(A�) which contradicts the maximality of

N .

At this stage now, the primes of A start to be important, because we are

going to show a highly interesting connection between E(A=q) and E(A=q

0

)

where q; q

0

are irreducible ideals with equal radical.

Theorem 7.19. There is a one-one-correspondence between the prime

ideals of A and the injective indecomposable A-modules. It is given by p$

E(A=p) and whenever

p

q = p for an irreducible ideal q, then E(A=q) =

E(A=p).

Proof. Primes are irreducible and hence by 7.17 E(A=p) is indecom-

posable. Suppose p; p

0

give E(A=p)

�

=

E(A=p

0

). Then, embedding A=p and

A=p

0

in E(A=p), their intersection has to be nonzero because E(A=p) is es-

sential extension of both quotients. Let 0 6= x be in this intersection. Since

p; p

0

prime,

p

( ann(x)) = p = p

0

. So the map p! E(A=p) is injective.

Now let E be some indecomposable injective A-module. By 7.17 there

exists an irreducible ideal q in A such that E = E(A=q). Suppose, q 6=

p

q =: p. Let n be the smallest integer such that p

n

� q (see [12],8.21).

Take b 2 p

n�1

nq. Denote the image of b in A=q by b. Clearly ann

A

(b) � p.
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But on the other hand, if a 2 ann

A

(b), then a � b 2 q and so a 2 p because

irreducibles are primary (see [12],4.34). So p = ann

A

(b). By 7.17 this gives

E(A=p) = E(A=q) whence the map p! E(A=p) is onto.

Theorem 7.20. The decomposition of 7.18 is unique in the sense that

given two decompositions of the same injective module, the cardinality of

summands equal to A=p for a de�nite p are equal.

Proof. We will come back to this proof later, as reference is given

[23],Pr.2.7.

Corollary 7.21. If E is an injective module over A, then 9 cardinals

�

p

(E) (p 2 spec(A)), such that

E

�

=

M

p�spec(A)

(E(A=p)

�

p

(E)

where M

n

means the direct sum of n copies of M .

Proof. We need only collect all summands equal to E(A=p), count

them and observe, that the number in each decomposition is invariant by

7.20.

We have now established a very nice structure theorem which we will

use together with the following statement to investigate the behaviour of

injective modules under the application of the cohomology functor �

a

(�).

Lemma 7.22. Let p be a prime ideal of A and E = E(E=p). Then:

� (i) q is an irreducible p-primary ideal if and only if there is an x 6= 0

such that ann(x) = q and

� (ii) if a 2 Anp, then ann(a � x) = ann(x) for all x 2 E and the

endomorphism of E de�ned by x! a � x is an automorphism of E.

Proof. (i) is an immediate consequence of the fact that for irreducible

q E(A=q) = E(A=p) (and therefore admits a monomorphism A=q! E(A=p)

) and 7.19.

(ii) If a 2 Anp, the map � : E ! E by x ! a � x has kernel 0 because

otherwise a should be in p by (i). Therefore the image of E under this map is

injective in E. Now E(A=p) is indecomposable and hence either �(E(A=p))

is the zero module or E(A=p) itself. Since A=p is nonzero and ker(�) 6= 0,

0 as image is not possible. So this multiplication by a provides a surjective

monomorphism.

Proposition 7.23. (See [16]2.7) With the notation of above we have

�

i

(p;M) = dim

�(p)

Ext

i

A

p

(�(p);M) = dim

�(p)

(Ext

i

A

(A=p;M))

p

for all i 2 N; allp 2 Spec(A), all A-modules M .

Proof. If we take a minimal injective resolution for M and localize at

p, then by 7.11 and 7.20

�

i

(p;M) = �

i

(p � A

p

;M

p

):
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So it su�ces to show that

�

i

(p �A

p

;M

p

) = dim

�(p)

Ext

i

A

p

(�(p);M

p

):

So we may assume, that p is maximal in A and A is local. This we do. Let

0! M ! E

1

! E

2

! : : :

be a minimal injective resolution forM . Now de�ne T

i

to be the submodule

of E

i

which consists of the elements of E

i

which are annihilated by p. Then

each element of T

i

belongs by 7.22 and the fact that p is maximal to a

component of E

i

isomorphic to E(A=p). We investigate these T

i

. Suppose

for a moment, that �

i

(p;M) = 1. Then T

i

� A=p of course. If there

were t 2 T

i

nA=p, then A � t \ A=p 6= 0 by the fact that E

i

is essential

extension of A=p. So there are a; � 2 A such that a � t = � + p 6= 0. It

follows a 62 p since t 2 T

i

. Now A is local, hence a is unit. It follows,

t = a

�1

�+ p 2 A=p, a contradiction. Hence in this case T

i

= A=p. We drop

now the assumption, that �

i

(p;M) = 1. It follows that T

i

�

=

(A=p)

�

i

(p;M)

.

Since (A; p) is supposed to be local, �(p)

�

=

A=p such that T

i

�

=

(�(p))

�

i

(p;M)

.

Since �(p) is �eld, Hom

�(p)

(�(p); T

i

)

�

=

Hom

A

(�(p); T

i

)

�

=

(�(p))

�

i

(p;M)

.

Hence

dim

�(p)

Hom

A

(�(p); E

i

) � �

i

(p;M):

Now > can only occur if there are homomorphisms from �(p) to E

i

the

image of which is not contained in T

i

. But since p � �(p) = 0, p � f = 0 for

all f 2 Hom

A

(�(p); E

i

). So f(�(p)) � T

i

.

Further if t 2 T

i

, A � t\d

i�1

(E

i�1

) 6= 0 since by de�nition E

i

is injective

hull of d

i�1

(E

i�1

). So a � t = d

i�1

(e

i�1

) 6= 0 for some a 2 A and e

i�1

2 E

i�1

and it follows that a 62 p so that t = d

i�1

(a

�1

� e

i�1

). So T

i

� kerd

i�1

.

Therefore

0! Hom

A

(�;E

0

)

Hom

A

(�;d

0

)

�! Hom

A

(�;E

1

)

Hom

A

(�;d

1

)

�! : : :

is a complex with zero di�erentiation: f

i

2 Hom

A

(�;E

i

) �nishes in T

i

and

that is killed under d

i

. It follows, that im(Hom

A

(�; d

i�1

) = 0 such that

Hom

A

(�;E

i

) = Ext

i

A

(�;M). The result follows. .

We want to remark, that since the Ext-functors are independent from

the injective resolution chosen, this statement shows the correctness of 7.20
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Further Reading

There are many possibilities the reader might be interested in after �n-

ishing this dissertation and we will try to match some of these:

� for geometrical interest an easy (compared with other texts!) intro-

duction is I. G. Macdonald's \Introduction to Algebraic Geometry"

([6]), afterwards one may proceed with [3]. Another possibility is

\Introduction to Algebraic Geometry" by D. Mumford ([8]).

� For the more algebraic interested reader, a script by M. P. Brod-

man should be mentioned, in it is investigated the \ideal transform"

lim

�!

Ext

n

A

(a

i

;M)

� One might have found interest in duality; in this case [4] is a book

one can proceed with.

In all, but especially the last, one needs a bit more than a basic background

in sheaf theory. To this topic Tennison's \Sheaf theory" ([14]) is a good

introduction or the book by Swan ([13]).

However in all cases the reader might look forward to the �rst edition

of [1].

97
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