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ABSTRACT. We characterize the (regular) holonomicity of Horn systems of differential equations
under a hypothesis that captures the most widely studied classical hypergeometric systems.

1. INTRODUCTION

Let Z = Cm with coordinates z1, z2, . . . , zm, and denote by ∂z1 , ∂z2 , . . . , ∂zm the partial derivative
operators ∂/∂z1, . . . , ∂/∂zm. The Weyl algebra DZ , generated by the zi and ∂zi , is the ring of
algebraic differential operators on Z.

The goal of this article is to obtain D-module theoretic results about normalized Horn systems; in
particular, we seek criteria for the following two properties. A (left) DZ-module M is holonomic
if ExtjDZ

(M,DZ) = 0 whenever j 6= m; it is regular holonomic if the natural restriction map from
formal to analytic solutions of M is an isomorphism in the derived category. We note that if O is a
function space, the space of O-valued solutions ofM is HomDZ

(M,O). Thus, ifm > 1, regularity
ofDZ-modules involves the derived solutions ExtjDZ

(M,O) for j > 0, where O is either the space
of formal or analytic solutions of M at any given point of Z.

Definition 1.1. Let B be an n×m integer matrix of full rank m with rows B1, B2, . . . , Bn, whose
Z-column span contains no nonzero vectors with all nonnegative entries. Let κ ∈ Cn and η ..=
[z1∂z1 , z2∂z2 , . . . , zm∂zm ]. Construct the following elements of DZ :

qk ..=
∏
bik>0

bik−1∏
`=0

(Bi · η + κi − `) and pk ..=
∏
bik<0

|bik|−1∏
`=0

(Bi · η + κi − `).

(1) The Horn hypergeometric system associated to B and κ is the left DZ-ideal

Horn(B, κ) ..= DZ · 〈qk − zkpk | k = 1, 2, . . .m〉 ⊆ DZ . (1.1)

(2) Assume thatB has anm×m identity submatrix, and assume that the corresponding entries
of κ are all zero. The normalized Horn hypergeometric system associated to B and κ is the
left DZ-ideal

nHorn(B, κ) ..= DZ ·
〈

1

zk
qk − pk

∣∣∣∣ k = 1, 2, . . .m

〉
⊆ DZ . (1.2)

7

Normalized Horn systems abound in the mathematical literature, and they include the (generalized)
Gauss hypergeometric equation(s), as well as the systems of differential equations corresponding
to the Appell series, Horn series in two variables, Lauricella series, and Kampé de Feriét functions,
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among others. In general, Horn hypergeometric systems have proved resistant to D-module theo-
retic study; in fact, we are aware of only [Sad02, DS07, DMS05, BMW19], which contain partial
results regarding the holonomicity of Horn(B, κ).

In the late 1980s, Gelfand, Graev, Kapranov, and Zelevinsky introduced a different kind of hyper-
geometric system, known as A-hypergeometric, or GKZ systems, that are much more amenable to
a D-module theoretic approach [GGZ87, GKZ89]. A modification of these systems led to lattice
basis D-modules, whose solutions are in one-to-one correspondence with the solutions of Horn
systems.

Definition 1.2. Let B and κ be as in Definition 1.1, and set d = n − m. Let A = (aij) be a
d × n integer matrix of full rank, whose columns span Zd as a lattice, and such that AB = 0. Let
X = Cn with coordinates x1, x2, . . . , xn and consider the Weyl algebra DX generated by the xi
and their corresponding ∂xi = ∂

∂xi
. Denote θi = xi∂xi for i = 1, 2, . . . , n. The polynomial ideal

I(B) ..=

〈 ∏
(Bj)i>0

∂xi
(Bj)i −

∏
(Bj)i<0

∂xi
(Bj)i

〉
⊂ C[∂x1 , ∂x2 , . . . , ∂xn ]

is called a lattice basis ideal. Let Ei ..=
∑n

j=1 aijθj , and denote by E − Aκ the sequence E1 −
(Aκ)1, E2 − (Aκ)2, . . . , Ed − (Aκ)d, which are known as Euler operators. The lattice basis DX-
module associated to B and κ is the quotient of DX by the left DX-ideal H(B, κ) generated by
I(B) and E − Aκ. 7

The solutions of Horn hypergeometric systems and lattice basis binomial D-modules are related
as follows. Let B and κ be as in Definition 1.1, and denote by b1, b2, . . . , bm the columns of
B. Let ϕ(z) = ϕ(z1, z2, . . . , zm) be a germ of a holomorphic function at a point p of Z that
is nonsingular for DZ/Horn(B, κ). Then ϕ(z) is a solution of DZ/Horn(B, κ) if and only if
xκg(xb1 , xb2 , . . . , xbm) is a solution ofDX/H(B, κ) (at a corresponding point pB = (pB1 , . . . , pBn)
in X). Note that this does not imply any relationship among higher derived solutions of the corre-
sponding modules, or about solutions at singular points.

This correspondence between the solutions of the Horn and lattice basis D-modules does not im-
ply that there is a D-module theoretic relationship between the systems. This would be desirable,
since lattice basis D-modules are fairly well understood; in particular, there are complete charac-
terizations of their holonomicity and regularity (see Section 3), so one could hope to transfer these
results from the lattice basis to the Horn setting. Unfortunately, the following example shows that
such a D-module theoretic relationship cannot exist in general.

Example 1.3. The lattice basis DX-module corresponding to

B =



1 1 2
−1 −1 0

0 0 −1
1 0 0
0 1 0
−1 0 0

0 −1 0


and κ =



2
0
0
0
0
0
0


is holonomic, but DZ/Horn(B, κ) is not. This can be tested explicitly using the computer algebra
system Macaulay2 [M2]. 7
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However, for normalized Horn systems, the main result in this article provides a relationship be-
tween these and their lattice basis counterparts.

Theorem 1.4. Suppose that the top m rows of B form an identity matrix and κ1 = κ2 = · · · =
κm = 0. Let r denote the inclusion r : Z ↪→ X given by (z1, z2, . . . , zm) 7→ (z1, z2, . . . , zm, 1, . . . , 1).
If r∗ is the restriction (inverse image under r) on DX-modules, then there is an equality

DZ

nHorn(B, κ)
= r∗

(
DX

H(B, κ)

)
.

This result is inspired by [Beu11b, §§11-13]. In this work, Beukers obtains examples of classical
Horn series by setting to one certain variables in the series solutions of associatedA-hypergeometric
systems. Theorem 1.4 implies this correspondence among series solutions, as well as invariants
including characteristic varieties and singular loci.

Corollary 1.5. Under the hypotheses of Theorem 1.4, the (regular) holonomicity of the modules
DZ/nHorn(B, κ) and DX/H(B, κ) are equivalent.

Notation. In [BMW19], Z̄ and Z are used for Cm and (C∗)m, while in this article, we use Z and
Z∗, at the suggestion of the referee.

Outline. In §2, we prove Theorem 1.4. In §3, we recall the characterizations for holonomicity and
regularity of lattice basis D-modules and prove Corollary 1.5.
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ously shared their insight and expertise with us while we worked on this project. Parts of this work
were carried out at the Institut Mittag-Leffler program on Algebraic Geometry with a view towards
Applications and the MSRI program on Commutative Algebra. We thank the program organizers
and participants for exciting and inspiring research atmospheres.

2. NORMALIZED HORN SYSTEMS ARE RESTRICTIONS

In this section, we prove Theorem 1.4. We use the notation and assumptions introduced in Defini-
tions 1.1 and 1.2.

By [SST00, §5.2], the restriction r∗ of a cyclic DX-module DX/J is given by

r∗
(
DX

J

)
=

C[x1, x2, . . . , xn]

〈xm+1 − 1, xm+2 − 1, . . . , xn − 1〉
⊗C[x1,x2,...,xn]

DX

J
. (2.1)

It is a fact that the restriction of a cyclic DX-module is not necessarily cyclic. Consequently, to
establish Theorem 1.4, the first step is to show that r∗(DX/H(B, κ)) = r∗(DX/DX · 〈I(B), E −
Aκ〉) is cyclic. To do this, we compute the b-function for the restriction, as defined in [SST00,
§§5.1-5.2]. The relevant result states that, if the maximal integral root of this b-function is 0, then
the restriction is a cyclic module (see [SST00, Algorithm 5.2.8]).

Lemma 2.1. If the matrix formed by the top m rows of B has rank m, then the b-function b(s) of
H(B, κ) for restriction to {x ∈ X | xm+1 = xm+2 = · · · = xn = 1} divides s.
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Proof. Consider the change of variables xj 7→ xj + 1 for m + 1 ≤ j ≤ m, and let J denote the
DX-ideal obtained from H(B, κ) via this change of variables. We now compute the b-function of
J for restriction to {x ∈ X | xm+1 = xm+2 = · · · = xn = 1}.
With w = (0m,1d) ∈ Rn, the vector (−w,w) induces a filtration on DX , and the b-function
we wish to compute is a generator of the principal ideal gr(−w,w)(J) ∩ C[s], where s ..= θm+1 +
θm+2 + · · · + θn. Note that, since the submatrix of B formed by its first m rows has rank m,
the submatrix of A consisting of its last n − m = d columns has rank d. Thus there are vectors
ν(m+1), ν(m+2), . . . , ν(n) ∈ Rd such that (ν(j)A)k = δjk for m + 1 ≤ k ≤ n. For m + 1 ≤ j ≤ n,
with β = Aκ,

d∑
i=1

ν
(j)
i Ei − ν(j) · β =

m∑
k=1

(ν(j)A)kθk + θj − ν(j) · β ∈ DX · 〈E − β〉.

Using the change of variables

xj 7→

{
xj for 1 ≤ j ≤ m

xj + 1 for m+ 1 ≤ j ≤ n,

and then multiplying by xj , for m+ 1 ≤ j ≤ n, we obtain

m∑
k=1

(ν(j)A)kxjθk + x2j∂xj + θj − ν(j) · βxj ∈ J.

Taking initial terms with respect to (−w,w) of this expression, it follows that θj ∈ gr(−w,w)(J)
for each m + 1 ≤ j ≤ n. Therefore s = θm+1 + θm+2 + · · · + θn ∈ gr(−w,w)(J), and the result
follows. �

Proof of Theorem 1.4. By Lemma 2.1, r∗(DX/H(B, κ)) is of the form DZ/L. In order to find the
ideal L, we must perform the intersection

H(B, κ) ∩Rm, where Rm
..= C[x1, x2, . . . , xn]〈∂x1 , ∂x2 , . . . , ∂xm〉 ⊆ DX , (2.2)

and then set xm+1 = xm+1 = · · · = xn = 1. We proceed by systematically producing elements
of the intersection (2.2). Using the same argument as in the proof of Lemma 2.1, we see that
for m + 1 ≤ j ≤ n, each θj can be expressed modulo DX · 〈E − β〉 as a linear combination
of θ1, θ2, . . . , θm and the parameters κ. By our assumption on B, θj can be written explicitly as
follows:

θj = κj +
m∑
i=1

bjiθi mod DX · 〈E − β〉 for m+ 1 ≤ j ≤ n. (2.3)

Now if P ∈ DX , then there is a monomial µ in xm+1, xm+2, . . . , xn so that the resulting operator
µP can be written in terms of x1, x2, . . . , xn, ∂x1 , ∂x2 , . . . , ∂xm , and θm+1, θm+2, . . . , θn. In addi-
tion, working moduloDX · 〈E−β〉, one can replace θj when j > m by the expressions (2.3). Thus
µP is an element of Rm modulo Rm · 〈E − β〉. If this procedure is applied to Ei − βi, the result is
zero. We now apply it to one of the generators ∂(bk)+x −∂(bk)−x of I(B), where b1, b2, . . . , bm denote
the columns of B. An appropriate monomial in this case is µk =

∏n
j=m+1 x

|bjk|
j . Then the fact that
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bkk = 1 for 1 ≤ k ≤ m and (2.3) together imply that

µk(∂
(bk)+
x − ∂(bk)−x )

=
(∏

bjk<0 x
−bjk
j

)
∂xk

bkk
∏

j>m,bjk>0 x
bjk
j ∂xj

bjk −
∏

j>m,bjk>0 x
bjk
j

∏
bjk<0 x

−bjk
j ∂xj

−bjk

=
(∏

bjk<0 x
−bjk
j

)
∂xk
∏

j>m,bjk>0

∏bjk−1
`=0 (κj +

∑m
i=1 bjiθi − `)

−
∏

j>m,bjk>0 x
bjk
j

∏
bjk<0

∏−bjk−1
`=0 (κj +

∑m
i=1 bjiθi − `).

(2.4)

Note that setting xm+1 = xm+2 = · · · = xn = 1 in (2.4), we obtain the kth generator of the
normalized Horn system nHorn(B, κ), since bjk < 0 implies j > m. This shows that nHorn(B, κ)
is contained in the intersection (2.2) after setting xm+1 = xm+2 = · · · = xn = 1.

Now suppose that P is an element of the intersection (2.2). In particular, P belongs to I(B) +
〈E − β〉, so there are P1, P2, . . . , Pm, Q1, Q2, . . . , Qd ∈ DX such that

P =
m∑
k=1

Pk(∂
(bk)+
x − ∂(bk)−x ) +

d∑
i=1

Qi(Ei − βi).

If we multiply P on the left by a monomial in xm+1, xm+2, . . . , xn and set xm+1 = xm+2 = · · · =
xn = 1, the result is the same as if we set xm+1 = xm+2 = · · · = xn = 1 on P directly. Thus we
choose an appropriate monomial η such that a monomial µk as above can be pulled through to the
right of each Pk, as follows:

ηP =
m∑
k=1

ηPk(∂
(bk)+
x − ∂(bk)−x ) + η

d∑
i=1

Qi(Ei − βi)

=
m∑
k=1

P̃kµk(∂
(bk)+
x − ∂(bk)−x ) + η

d∑
i=1

Qi(Ei − βi)

for some operators P̃1, P̃2, . . . , P̃m. An appropriate monomial η here is

η =
n∏

j=m+1

x
ωj+σ
j ,

where
ωj ..= max{order of ∂j in P` | 1 ≤ ` ≤ m} for each 1 ≤ j ≤ m

and σ ..= max{degree of µk | m+ 1 ≤ k ≤ n} = max{|bjk| | m+ 1 ≤ k ≤ n}.
But now, the result of setting xm+1 = xm+2 = · · · = xn = 1 on ηP (the same as if this were done
to P ) is a combination of the generators of nHorn(B, κ). Thus, we have shown that the intersection
(2.2) after setting xm+1 = xm+2 = · · · = xn = 1 is contained in nHorn(B, κ). We conclude that
r∗(DZ/H(B, κ)) = DZ/nHorn(B, κ). �

3. LATTICE BASIS D-MODULES

The ringDX is Zd-graded by setting deg(∂xi) = − deg(xi) = ai, where a1, . . . , an are the columns
of the matrix A from Definition 1.2. This grading, which is also inherited by the polynomial ring
C[∂x] ..= C[∂x1 , ∂x2 , . . . , ∂xn ], is known as the A-grading. An A-homogeneous binomial C[∂x]-
ideal I is an ideal generated by A-homogeneous elements of the form ∂ux −λ∂vx. (In this definition,
λ = 0 is allowed; in other words, monomials are admissible generators in a binomial ideal.)
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Note thatH(B, κ) isA-homogeneous, so that the lattice basis binomialDX-modules areA-graded.
It is this grading that can be used to determine the set of parameters κ for which the module
DX/H(B, κ) is holonomic (Theorem 3.3). We need the notion of quasidegrees of a module,
originally introduced in [MMW05].

Definition 3.1. Let M be an A-graded C[∂x]-module. The set of true degrees of M is

tdeg(M) = {β ∈ Cd |Mβ 6= 0}.
The set of quasidegrees of M , denoted qdeg(M), is the Zariski closure in Cd of tdeg(M). 7

Definition 3.2 ([DMM10a, Definition 4.3], [DMM10b, Definitions 1.11 and 6.9]). Let A be as in
Definition 1.2, and let I be an A-homogeneous binomial C[∂x]-ideal. By [ES96], any associated
prime of I is of the form C[∂x] · J + 〈xj | j /∈ σ〉, where σ ⊂ {1, 2, . . . , n} and J ⊂ C[∂xi | i ∈ σ]
is a prime binomial ideal containing no monomials. Such an associated prime is called toral if the
dimension of C[∂xi | i ∈ σ]/J equals the rank of the submatrix of A consisting of the columns
indexed by σ. An associated prime of I which is not toral is called Andean.

Consider a primary decomposition I =
⋂N
`=1C`, where C1, C2, . . . , CK are the primary compo-

nents corresponding to Andean associated primes and CK+1, CK+2, . . . , CN are the components
corresponding to toral associated primes. The Andean arrangement of I is

ZAndean(I) ..=
K⋃
`=1

qdeg (C[∂x]/C`) . 7

The name Andean refers to an intuitive picture of the grading of an Andean module (see [DMM10b,
Remark 5.3]).

Since Andean primes may be embedded, the definition of the Andean arrangement seems a priori
to depend on the specific primary decomposition; however, [DMM10b, Theorem 6.3] shows that
this is not the case. We will make use of the following Theorem 3.3, whose first part is a special
case of [DMM10b, Theorem 6.3], while its second part is proved in [CF12].

We recall that the holonomic rank of a D-module is the dimension of its space of germs of holo-
morphic solutions at a generic (nonsingular) point.

Theorem 3.3. Use the notation from Definitions 1.2 and 3.2. The following are equivalent.
(1) The DX-module DX/H(B, κ) has finite holonomic rank.
(2) The DX-module DX/H(B, κ) is holonomic.
(3) Aκ /∈ ZAndean(H(B, κ)).

In addition, DX/H(B, κ) is regular holonomic if and only if it is holonomic and the rows of B
sum to 0m. �

We need one more result in order to prove Corollary 1.5. Let Z∗ = (C∗)n, and consider its ring
of differential operators DZ∗ ..= C[z±11 , . . . , z±1m ] ⊗C[z1,z2,...,zm] DZ . The saturated Horn system
corresponding to B and κ is sHorn(B, κ) ..= DZ∗ · Horn(B, κ) ∩DZ .

Theorem 3.4 ([BMW19, Corollary 7.2]). The DX-module DX/H(B, κ) is (regular) holonomic if
and only if the DZ-module DZ/sHorn(B, κ) is (regular) holonomic. �

Proof of Corollary 1.5. If DX/H(B, κ) is (regular) holonomic, then so is DZ/nHorn(B, κ) by
Theorem 1.4, since restrictions preserve (regular) holonomicity. For the converse, if DX/H(B, κ)
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is not (regular) holonomic, then neither isDZ/sHorn(B, κ) by Theorem 3.4. Since nHorn(B, κ) ⊆
sHorn(B, κ), and the category of (regular) holonomic DZ-modules is closed under quotients of
DZ-modules, DZ/nHorn(B, κ) also fails to be (regular) holonomic. �
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