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Algorithmic Determination of the Rational Cohomology of
Complex Varieties via Differential Forms

Uli Walther

ABSTRACT. We give algorithms for the computation of the algebraic de Rham
cohomology of open and closed algebraic sets inside projective space or other
smooth complex toric varieties. The methods, which are based on Groébner
basis computations in rings of differential operators, can also be used to com-
pute the cohomology of intersections of smooth closed and open subsets, and
in certain situations the cup-product structure.

We give some examples which were carried out with the help of Macaulay
2.
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1. Introduction

The determination of the cohomology of topological spaces has been, and con-
tinues to be, a question of interest going back to (at least) Poincaré. This is
documented by the beautiful work of Hopf, Leray, Serre, and Milnor, to name just
a few.

The advent of reasonably fast computers brought with it a variety Grobner
basis driven algorithms performing a multitude of computations in algebraic and
combinatorial settings. This development did not bypass singular cohomology. In
the landmark paper [8] techniques are presented that compute the dimensions of
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Hi(U;C) where U is the complement of an arbitrary algebraic hypersurface in C*.
These methods were refined in [12] in order to deal with a general Zariski-open set
U C C". By [13] one can also compute the ring structure of H*(U; C).

In this note we extend the algorithms from [8, 12, 13] to the computation of
cohomology data on more general types of algebraic sets. These include

1. singular rational cohomology groups of open sets in projective space,

2. singular rational cohomology of projective varieties,

3. compactly supported rational cohomology of locally closed varieties in pro-
jective space,

4. singular rational cohomology of open subsets of smooth projective varieties,

5. the ring structure in situation 1.

It follows an overview to the paper.

We shall first give a short review of some known algorithms. The basic idea
of these algorithms is the Grothendieck-Deligne isomorphism theorem and work by
Hartshorne, which assure that on complex algebraic spaces de Rham cohomology
can be computed in the algebraic category, and that the singular theory coincides
with the algebraic de Rham theory. At the end of this section we explain some of
the bottlenecks of the algorithms.

We next consider the special case of projective space. From there we move on to
general open sets in projective space and then, via Alexander duality, to projective
varieties. For open sets, the cup product structure can be determined.

Duality can also be used on other spaces, and that gives access to cohomol-
ogy of open subsets of smooth projective varieties, and, as a corollary, compactly
supported cohomology of locally closed sets in projective space.

All the presented methods apply equally well to subvarieties of smooth toric
varieties (as opposed to varieties embedded in projective space). Some of these
ideas are expanded in the final section.

NoOTATION 1.1. K will be a computable field of characteristic zero contained in
C. Although we will work over C, we shall assume (without stating this explicitly
every time) that all input data for our algorithms are defined over K. This is to
guarantee that we can manipulate the input and recognize vanishing of expressions
with the Turing machine.

Whenever a group is pronounced to be “finite dimensional” we will mean it to
be a finite dimensional G-vector space. Cosets of elements in a quotient space we

usually denote by a bar: a. We write R, for the ring of polynomials Clz1, ... ,x,],
and D,, for the Weyl algebra C{x1,0:,... ,%n,0,). We use multi-index notation:
298 will mean the monomial % ... z% -87* ... .- 8%, Also, |o| denotes in that

context a; + ...+ a,.

If fo,...,fr € Rpand I C{0,...,r} we write Fy for [],.; fi and |I| for the
cardinality of I.

If ¢ : K®* — C* is a chain map of two chain complexes of modules over the ring
S we write K® =g C*® if ¢ is a quasi-isomorphism over S.

2. Review of the affine case

The purpose of this section is to review an algorithm that leads to the determi-
nation of the singular cohomology groups with rational coefficients and their ring
structure for the complement of an affine complex variety.
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2.1. Let Y C X = Spec(R,,) be defined by the equations fy,..., f. in R,.
Then one has associated to U = X \ 'Y a reduced Cech complex

(2.1)

C.:C’.(foa"';fr): 0— @Rn[F[il]—)—) @ Rn[Flil]—>0
[T|=1 |I|=r+1

degree 0 degree r

If U = X, then we set C* to be the complex concentrated in degree zero whose
entry C° is R,,.

One can think of C'* as the appropriate object for various purposes that replaces
the ring of global sections on U if U is not affine.

C*(fo,--., fr) is a complex of (left) D,-modules and the maps in the complex
are Dy-linear [5, 7, 11]. It makes therefore sense to speak of bounded complexes
A® of free finitely generated (left) D,,-modules that are D,,-quasi-isomorphic to the
Cech complex.

2.2. For our purposes we will need a special type of resolutions, those that
are Vy,-strict [8, 9, 12]. This means that the filtration F*(A') induced by the
grading on D,, defined by x; — 1,0; — —1 for all i is preserved by the maps in
the complex, and that the formation of associated graded objects commutes with
taking homology in A®:

gr(H'(A%[ma]) = H'(gr(A®[m]).

It is worth pointing out that this can only be achieved by shifting some of the
modules in A® appropriately, as in the case of graded resolutions over a commutative
graded ring. Even with the shifts, (A°[m,]) may not be graded as the Cech complex
may not be homogeneous.

It has been shown that for given fy, ..., fr such a V,,-strict resolution of C® =
C*(fo,.-., fr) is in fact computable. This relies on Grobner basis techniques,
[9, 10, 12, 13].

Complexes A®[m,] =p, C* that are V,-strict enjoy a rather stunning property
which we describe now. Consider the Euler operator E = 10, + ...+ £,0,. Then
E is V,,-homogeneous of degree 0 and hence acts on F°(A%[m;])/F~'(A*[m;]). Since
the maps in A®[m,] preserve the filtration, E acts in fact on FO(H?)/F~'(H"') where
H' = H'(A®) with the filtration inherited from A*[m;]. The operator (—E—n) has a
minimal nonzero polynomial b;(s) on this quotient. (We remark that this holds not
only if A* =, C* but more generally whenever A® has holonomic cohomology,
see [12].) We write EA-[m.](s) for the least common multiple of all these b;(s).
The polynomial IN)A-[m.](S) is called the b-function for integration of A®[m,] along
01,...,0,. To describe a certain property of ?)A-[m.](s) we introduce the right
module Q@ = D, /(01,...,0,) - Dy. The functor Q ®f (—) is called integration.

We say that a cohomology class 1 ® a in H(Q ®p, A®[m,]) lives in the k-th
level of the filtration if T® a has a representative in 1 ® F¥(A4*[m;]) but none in

T® F*1(A[m;]). The amazing fact is that the roots of b;(s) limit the possible
levels of nonzero cohomology classes in } ®p, A®[me]. Namely, a nonzero class
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living in level k£ and in cohomological degree ¢ can only occur if IN)]' (k) = 0 for some
J =t

Note that there are only a finite dimensional vector space of cohomology classes
1 ® a that live in the k-th level of the filtration because all monomials z*8? of V,,-
degree at most m — 1 in D,,[m] are right multiples of some ;. From this one can
compute the cohomology of Q ®p, A®[m,] explicitly because one may simply check
all classes of V,,-degree at most equal to the largest root of I;A.[m.](s).

In a nutshell, this gives the following main steps in an algorithm to compute
the cohomology of Q ®@p, A®[m,.] ([8, 9, 12]):

ALcoriTHM 2.1 (Integration of the Cech complex).
InpuT: fo,...,fr € Ry, t €N
Outrput: dime(HY(Q ®p, A®[m,])) where A® =p  C*(fo,. .., f.) and A®[m,] is
D,,-free and V,,-strict.

1. Compute a V,-strict complex A*[me] =p, C(fo,..., f-) ([9, 10, 12]).

2. Replace each copy of D,, in A® by Q = Clzy,... ,zy].

3. Find the b-functions b;(s) for the integration of H(A*[m,]) along d\, ... ,dp,

and let k; be the largest integral root of their product ([9]).
4. Truncate Q®p, A®[m,] to the complex of finite dimensional C-vector spaces
F¥(Q®p, A*[m,]) with C-linear maps.
5. Take the i-th cohomology and return its dimension.

End.

2.3. Now we explain what such a computation has to do with cohomology
of varieties. Let Q° be the Koszul complex on D,, induced by left multiplication
by 81, .. ,0,. Then Q®p, A®[m,] and Q°* @p, C*(fo,... , f») are naturally quasi-
isomorphic up to a cohomological shift by n. This is because Q° is a right D,-
resolution of © and computing the Tor-functor can be done by resolving either
factor.

Inspection of the tensor product shows now that it computes algebraic de Rham
cohomology of U. The start of this “inspection” is the identification of the complex
Q* ®@p, C* in the case r = 0 with the algebraic de Rham functor of [3] on X
applied to the Ox-module i,Oy = Ox[f;'], where i : U < X. This is why we
call Q* ®p, C* the algebraic Cech-de Rham complex of U. The Grothendieck-
Deligne comparison theorem and various other ones imply that H*(Q® ®p_ C*) =¢
HZ"(U;C) =¢ Hé;:é(U ;C), the two latter spaces denoting de Rham and singular
cohomology with complex coefficients respectively.

The essence of the above can be summarized in the following theorem.

THEOREM 2.2 (de Rham cohomology in affine space [8, 12]). If fo,..., f. are
given polynomials in R, then there exists an algorithm that produces a finite set
of cocycles of differential forms {w; }ii in the algebraic Cech-de Rham complex
Q* @p, C* on U = C" \ Var(fo,..., fr) such that {w; }s span Hiy(U;C) for all
i.

Proor. Use Algorithm 2.1 to obtain a set of generators (over C) for the coho-
mology of Q®p, A*[m,]. Then use Theorem 2.5 of [13] to convert these generators
into cohomology generators for Q® ®p C® whose elements are identified with the
cochains in the algebraic Cech-de Rham complex on U. |
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Now let us give some bibliographical references. In [9, 11] algorithms for the
presentation of localizations and more generally the Cech complex are discussed.
In [8, 9, 10, 12] the V, -filtration is discussed in varying detail. There it is also
explained how to construct the complex A®[m,] from C*®. The article [9] gives details
to the computation of the b-function and finally [13] shows how one translates
cohomology classes from Q ®p, A® to classes in Q® @p, C*, thus creating actual
(algebraic) differential forms.

2.4. It is useful to make some comments about the computational complexity
of the constructions that take place in the execution of Algorithm 2.1. The first
major computation is to find a presentation of the Cech complex as a complex of
free D,,-modules (Step 1). This computation relies on an algorithm by T. Oaku
for determining the Bernstein-Sato polynomial of fy - ... f,. Computing this
polynomial is quite expensive if deg(fo - ...- f-) > 5. Faster computers will not
be of substantial help here because the complexity of Grobner basis computations
usually grows considerably faster than linearly in the input (the worst possible is
doubly exponentially). Thus, in order to make substantial computational progress,
better algorithms for the Bernstein-Sato polynomial are needed.

The next potentially hard step in Algorithm 2.1 is to make the complex V-
strict. The author does at this moment not know how big a problem this is.

A true bottleneck however is the computation of the b-functions b;(s), which
appears to be somewhat more complex than the Bernstein-Sato polynomial. But
at this time we cannot really make any asymptotic statements. On the positive
side, due to the similarity in nature of b;(s) and Bernstein-Sato polynomials one
can hope that progress on one results in progress on the other.

Step 4 consists of (huge problems in) linear algebra. The author thinks that
this is the least troublesome part of the algorithm, but whether this is so will much
depend on the construction of small V,,-strict resolutions.

The algorithms to be described in the sequel use Algorithm 2.1 as a basic
building block. None of them involves computations that make a combinatorial
explosion likely to occur. Unfortunately, however, the current limitations on what
examples can be done with Algorithm 2.1 restrict us to rather small examples to
illustrate our algorithms.

3. Chern classes in projective space

In this section we investigate how the cohomology of projective space can be
captured by our formalism. It will turn out that it is important to achieve the
following.

LeEMMA 3.1. Let fo,...,fr € Ry be given polynomials, and let {w;}i o be
given cochains of algebraic differential forms of degree i on U = X \ Var(fo,..., fr)
(i.e., wiy € (Q* @p, C*)?). There exists an algorithm that produces a finite di-
mensional subcomplex C* of the algebraic Cech-de Rham complex Q® @p, C* on U
such that C* =¢ Q® @p, C* and wii € CF Vi, 7.

PROOF. Let us sketch a proof of the lemma. By Theorem 2.2 it is possible
to find a finite dimensional subcomplex of the algebraic de Rham complex that
captures all the cohomology (namely, just take all the cohomology generators, with
zero differential). However, this may not include the given forms w; ;. Thus,



6 ULI WALTHER

as a first approximation C}? of the desired complex C*® we take the union of the
cohomology generators, the given forms w; ; and their boundaries d(w; ).

This is a complex, but the cohomology may be too big. (It is at least as big
as the actual de Rham cohomology but we may have added extra kernel elements.)
We must find forms that reduce the cohomology.

By an ezhaustion of a D,-module M we mean a sequence of C-subspaces
{D*(M)}ren such that D*¥(M) C D¥*1 (M), U, D¥(M) = M and each D*(M)
is finite-dimensional as a C-vector space. If M is finitely generated over D,, then
one may produce an exhaustion for M from one for D,.

ALGORITHM 3.2. .
INnpuT: C7, the subcomplex of Q* ®p, C* spanned by

e the output of the algorithm of Theorem 2.2,

e forms {wm-z }i,i’ with Wi, i € (Q. ®Dn C.)i, and their boundaries {d(wiyil)}iﬂ'r .
OUTPUT: A finite dimensional complex C* =¢ Q® ®p, C* containing C? and all
Wi ir »

1. Initialization: set [ = 1.
2. Let ip = max{i : dim(HR (U;C)) # dim(H*(Cp))}. If ip < —1, return Cp

and exit.
3. Let D¥ = D¥(D,,) be an exhaustion of D,,. For example, let D* = {z%9” :
la + 3] < k}.

4. Derive an exhaustion D*((Q® ®p, C*)~!) of the finitely generated left

D,-module (Q®* ®p, C®)o~"t.
5. For £ = 0,1,2,... test by trial and error whether there is an element in
DE((Q* ®p, C*)°~') that maps onto a nonzero element in H®(Cp). As
soon as such an element is found, add it to Cliofl, call the enlarged complex
CPp 1, replace [ by [ + 1 and move to Step 6.
If dim(H., (U;C)) # dim(H™(Cp)), reenter at Step 5.

7. Reenter at Step 2.

End.

o

a

EXAMPLE 3.3. Let r = 0, n = 1, 2, = z and f, = x. We compute C* =
(Ri[z™']) positioned in cohomological degree 0. Moreover, the de Rham cohomol-
ogy of U = C' \ Var(z) is generated by 1 in degree 0, and df in degree 1.

Suppose we have the cochain w;; = x 73 dz which for some reason we would

like to be part of our finite dimensional subcomplex C*® of 2®* ®@p, C*.
Then C7 looks like this:

d d
0-C-1-C-Zoc-Z 5o,
xr €Z

because d(z~3dz) = 0. Clearly H*(C}) and H} (U;C) do not agree. Thus ig = 1
and we have to build an exhaustion for (Q* ®p, C*)° = Q° ®p, C° = Ri[z7] =
Di e % Take the exhaustion 0 C D° ¢ D' C --- on D; given by D¥ = C -
{z%9® : a +b < k}. Then D° is spanned by {1}, D! by {1,z,0} and D? by
{62,0,20,1,x,4°}. So the exhaustion D*(Q* @p, C*)° on (Q* ®p, C*)° =D, e
in level 0 is spanned by {%}, in level 1 by {;—2, %, 1} etc. One easily sees that the
complex C? U D°(Q° @p, C°) Ud(D°(Q° ®p, C°)) has the same first cohomology
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as Ct while H*(Cr UD' (Q° ®p, C°)Ud(D*(Q° ®p, C°))) is one dimensional. The
cause for the drop is - = 0 e 1 with d(J5) = =Fd.

Set Cs =Cy U{C- z%} Then C3 =¢ Q ®p, C* and the algorithm stops.

NoOTE 3.4. We need to decide linear dependence of a set of given cochains of
differential forms in order to make Algorithm 3.2 run. This can be achieved by
clearing denominators for example.

For the remainder of the section we shall consider the case of projective space,
which at the same time can be viewed as a warm-up for general open subsets of
P" and as a necessary step for the computation of the cohomology of (closed)
projective varieties.

The major difficulty that arises when going from affine to projective space is
that open sets in projective space are usually not open subsets of an affine space.
This means there is no uniform Weyl algebra our computations would be done over.
Thus we need to do patching work and use the Mayer-Vietoris principle.

Recall that the cone cone(g) of a chain map ¢ is essentially the total complex
induced by the chain map ([14], page 18).

LEMMA 3.5. Let C7 and C3 be two chain complezes of S-modules and let K7
and K3 be two subcomplezes which are quasi-isomorphic:

KrSScer, K3SSc.
Let ¢ : C? — C3 be a chain map that sends K7 into K3. Then the cone over ¢ is
independent (modulo quasi-isomorphy) of the choice of the complexes:
cone(K? -2 K3) =g cone(C? -2 C3).

PROOF. The inclusions K? <5 CF, K3 <5 C3 induce a map cone(K? -2

K3) — cone(C? N C3). To see that this is a quasi-isomorphism consider the
induced map between the long exact sequences

H'(C3) — H'(cone(CY < C3)) — H'(CP[-1])) — H'(C3)
= = =

H'(K3) —» H'(cone(K? - K3)) — H'(K}[-1]) — H"'(K3)

and recall the five-lemma. O

Why do we need this lemma? Let us look at P*. We cover it by the two open
sets Uy = Spec C[z] and U, = Spec Clz~! | which intersect in U » = Spec Clz, z7].
By Theorem 2.2 we know how to compute differential forms on each of the three
open sets that span the cohomology of the corresponding open set. These would
be {1v, },{1v,}, {lu,, and (£)y, ,}. The restriction maps on the Cech-de Rham
complex level give us restriction maps pJ : 1y, = 1y, ,, lv, = —1v, ,. (The minus
sign is owed to the general theme of Mayer-Vietoris type complexes.)
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One would like to infer that the cohomology of the projective line is the coho-
mology of the complex
C- 10,
57}
C- 1v

0 dx
C- lu,, — C- (?)Ul,z
which equals C - (1¢,, 1p,) in degree 0 and (£2)y, , in degree 2.
The reason that this is indeed so is Lemma 3.5, which assures us that the
cohomology of

Q¥, ®p, C7,)° Q¥, ®p, C,)'
&) . — &) ;
Qy, ®p, CL,) 7, ®p, CF,)
0 0
Po £1

(@0, @0, €8, )" — (U, , @0, CFy )"
agrees with the one from the picture above.

EXAMPLE/NOTATION 3.6. In this example we investigate projective space X =
P = Proj(Clzg,...,z,]). Since X is covered by the n + 1 open sets P; =
Spec(Clzog, ... ,zp, m;l]o), the cohomology and suitable representatives can be com-
puted from the combinatorics of this cover.

We write I for a subset of {0,... ,n} and set P; = (;c; P;. Then Py is the set of
points in P" where 2 := [];.; #; is nonzero. If ig = min;c;{i} then P; C P;; = A2
is a (|I| — 1)-fold torus, and its cohomology is captured by a complex

(3.1)
T = (0—)@-1—) @ C.M_)..._)(C. H M_)[)),

io<icl i/Tio io<i€l i/Tio

where each differential is zero. Here, the term in cohomological degree k is

@ o I “el

;[T
ig€JCI ig<i€J z/ o
| Jl=kt1

We note that there are several choices for how to write this complex, because Py is
not only an open subset of P;, but also of all other P; with ¢ € I. For computing
HR (P™;C) we want to glue all these complexes together, for varying I. Then we
need to translate differential forms from the chart x; # 0 to those on the chart

€Zj 7é 0.
Fact 3.7. The conversion of differential forms on P; N Pj from the j-chart P;
to the zj-chart Pj is obtained as follows.

- flz /zj/7...7wm/7...,zn/zj/)
° f(xo/:L‘j,... ,:L'j/;L‘j,..- ,In/xj): ° (zj/x;)deg(f) ’
o for all i # j,j' we have d(w;/z;) = [} — LRty

—d(x; ]
o d(zj /) = (xiz/iw/f)’z)
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All these expressions are regular on P; N Py = Spec(K|zo, ... ,Zn, mj_l, mj_,l]o).
Note that by Fact 3.7, the space TF is formally invariant under the change of
charts j — 7.
Since the de Rham cohomology of P" is the cohomology of the total complex of
the global sections of the Cech-de Rham complexes on the open tori, we conclude by
Lemma 3.5 that the cohomology is captured by the total complex of the complexes

(3.1).
For n = 2 this looks like this:
C-1
©®
C-1
©®
C-1 pg- )
c1 cotgm
[a5) S7]
C1 — C- 4
D @
C-1 L dy/z)
C- % pi-
Y-

[z y/z (x/2)(y/2)

Here, the rows correspond to the subcomplexes (3.1) of the algebraic Cech-de Rham
complexes on Py, Ps, P3 (top block), Py 2, P13, P» 3 (middle block) and P; 23 (bot-

C.1—+C. d(z/z) o C d(y/z) . C. d(z/z) Nd(y/z)

1 1 0
tom line). All maps are zero in horizontal direction, and pj = -1 0 1 ,
0 -1 -1
1 -1 0
ptl):(]ﬂ_]-:]-) and p% = -1 0 1

One can see (here, as well as in general) that the cohomology of P" is one-
dimensional in even degree 2k, generated by the k-cocycle of k-forms

(3.2) o = 3 II dzi/zi,)

I={ip<...<ix }C{0,... ,n} io<i€l i/ Tig

where the displayed summand is defined on the k + 1-fold intersection Py = P™ \
Var(zg, - ...z, )-
The ¢y are, up to a constant, the Chern classes of projective space.

The example gives an indication how more general open sets will be attacked,
namely by an open cover, used in conjunction with the translation formulae from
Fact 3.7.

4. Open sets in projective space

Let U be the open set of P" defined by the non-vanishing of fy,...,f, € S =
Klzg,...,zp]. In this section we describe an algorithm to compute the rational
cohomology of U using the algebraic Cech-de Rham complex on an open cover by
the sets Ur = U N Pr where the P are the open sets from 3.2 covering P".



10 ULI WALTHER

Let I C{0,...,n} and j = min;e; (7). We consider Uy as the open set in P; =

Spec(C[”;—‘;, e ,fg—;‘]) whose complement is the variety of {%fz(””—?, . ,’”—:) T
.'l]] T xr

We denote by Dy the Weyl algebra associated to the ring (C[%:_, cee z—:] and by Q7

the Koszul complex of right D;-modules induced by 0, /¢, -+ 0, /a; -

Algorithm 2.1 in combination with Theorem 2.2 produces for each such I a
finite number of cocycles of differential forms which generate the algebraic de Rham
cohomology H3y (Ur; C).

We can think of these classes for fixed I as a subcomplex of the algebraic Cech-
de Rham complex on U; with zero differential, having the same cohomology as
the whole algebraic de Rham complex on U;. Our goal is to glue these complexes
according to the open cover, and compute cohomology.

Unfortunately, the natural maps of differential forms induced by the inclusions
UnN PN P; = UnN P; may not be carried by these subcomplexes. Since we need
this to happen in order to form a total complex from the subcomplexes and to use
Lemma 3.5 we need to enlarge the subcomplexes suitably.

The strategy is to start with the complex on U N P;, 0 < j < n, and work
our way up to higher and higher intersections. What we need to achieve is a set
of finite dimensional complexes C} on U N Py such that if ¢ € C} then its natural
image in the algebraic Cech-de Rham complex on U N P; is in C}Uj for all 1,j.
(This natural image is of course for each differential form given by exactly the same
form, considered as a form on an open subset.)

Let us give an outline for how to do one such step. Take C7 and C}; where
the former was obtained from the integration if |[I| = 1 and from the inductive step
otherwise, while the latter comes from Theorem 2.2.

Execute Algorithm 3.2 with the following input and output variables. For C}
we take CI.Uj' The set {w; i }i is for each i a set of vector space generators for
C%. The output C* is quasi-isomorphic to C'I'Uj, contains C}, and replaces the old
(input) complex C7;.

Iterating over |I| from 1 to n we get a collection of finite dimensional complexes
Cy of differential forms whose k-th cohomology is exactly H%, (Uy;C), and CF —
Q7 ®p, C7 = Q7; @by, Cfy; factors through CF; — Q7 ; ®p,y; C7y;- By
Lemma 3.5 the total complex composed of the complexes C7} is quasi-isomorphic
to the algebraic Cech-de Rham complex on U relative to the cover U;. We hence
have

ALGORITHM 4.1 (Cohomology of open sets).
INnpuT: Homogeneous polynomials fy, ..., f. in Klzg,...,z,].
OutrpuT: The cohomology groups of U = P¢ \ Var(fo,-.., fr).

1. For each I C {0, ... ,n} compute a finite dimensional subcomplex C7 of the
Cech-de Rham complex on Uy = U N P; with C} 2¢ Q} ®p, C7 (Theorem
2.2).

2. For k=1,2,3,... ,ndo
e forall |I|=k,I C{0,...,n} do
—forall j € {0,...,n}\ I do
run Algorithm 3.2 with
* Input:
- {wi i} 1= a set of vector space generators for C%;
- COF = CYy;
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* Output C* replacing C7;.
3. Set up the total complex Cf; induced by the maps C7 < C},;.
4. Compute the cohomology of Cf; which equals the singular (or de Rham)
cohomology of PZ \ Var(fo,..., fr).

End.

The elements, and hence the cohomology, of C7; are Cech cochains of differential
forms for the cover U = Uy<;<,, Uj-

We remark that similarly to the affine case the complex C{; carries not quite
enough information to compute the cup product structure of U, but that also like
in the affine case this can be fixed by further enlarging C7;:

ALGORITHM 4.2 (Cup products on open sets).
INpPUT: Homogeneous polynomials fo,. .. , fr in K[zg,... ,zp].
OutrpuT: A multiplication table for H3, (U;C).

1. Run Algorithm 4.1 to get the complex Cf;.

2. Compute explicit generators (cocycles of differential forms) for the cohomol-
ogy of C.

3. Multiply these forms in the Cech-de Rham complex on U according to the
usual rules for multiplying Cech cochains, see for example [13], Theorem
4.1.

4. Enlarge C7; so that it contains all these products (using Algorithm 3.2).

5. Determine a presentation of the cosets of the products in terms of the chosen
representatives for the cohomology of C7; to get a multiplication table.

End.

5. An example

In this section we will go through one example in detail: the curve C' = Var(z?+
yz) in P2, This is of course a rather specific example, but more interesting examples
are too large to be useful for an illustration of the general technique (and, as outlined
in the introduction, examples of substantial interest are out of reach at the moment).

On the three coordinate patches of P?, the complement of C is given by the
non-vanishing of 1+ (z/xz)(y/x), (z/y)? + z/y and (z/z)* + y/z. We shall call
Ui, Us,Us the corresponding coordinate patches of P?\ C, and Ui 2, U; 3, U2 3 and
Ui 2,3 their intersections.

First we determine a finite set of (exact) differential forms on each of the Uy such
that the inclusion of the complex C7 generated by these forms (with trivial differen-
tial) into the algebraic Cech-de Rham complex 7 ®p, C’} is a quasi-isomorphism.
Later we shall consider the natural maps Q} ®p, C3 — Q70 Oy, C'I‘Uj obtained
from the inclusions Uyy; < Uj.
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With Macaulay 2 one computes that the de Rham cohomology groups of the
various Uy are generated by the following elements.

U HY 1
T /G A TG ) AGT )
ol I S o
_ y xr z/x y xr z/x
H | ha = (F(u/e)(/2))?
Us HY 1
o — I CIDTICT)
H | e = EYMEEZEIM)
Us HY 1
1 —_ d(y/z)+2(x/z)d(z/z)
H | esn = — GLPTGlE
U | H° 1
. T GGG LG GG
H | erpn = (@I @)
€1,2:2 = ﬁ
> —— TG AT
H™ | tiea = (/) + Gl @y )?
Uis H° 1
) T GG A= LG W A7)
H™ | ersn = (@I =6l
e1,32 = 7fj§
3 — GTG7E) 4G A7)
H™ | tisa = (OBEEIB) DL
Us 2 H° 1
T T /A TG @] AWl
H | espn = (Gl =) (072)?
€322 = (yy B
> — W/l A/ d]?)
H™| ts2n = (EIBLETE T
U3 H° 1
T — DR CIDR BBk
H Jeinsn = (/=) /) /=)
olane = 20/ /D) d/2) /) w2 /)
2,8 /2024y ) (@] 2)(u]2)2
o . _ dy/2)
1,2,3:3 - (y/2)
> — W/ @/2)° A/ dw/)
H™ | tipsn = (/=) 2+ (/=) (&/)(y/2))?
tona = (/)% (2/2) d(x/2) d(y/2)
2.3 (/22 /) /)

In this table, e;.;, is the k-th generator of H* (Ur; C) while ¢y is the k-th generator
of H?(Uy; C). For example, the commands for Us are

load "../m2/Dloadfile.m2"
R=QQ[s,t] -- s=x/z, t=y/z
f=s"2+t

deRhamAl11(f)

The first line loads the D-module library [6]. From 3.7,

dz/y) = (y/z)td(z/z) — (z/2)(y/z) 2d(y/=),
d(z/y) = —(y/z)2d(y/=).

This holds of course for any permutation of the variables z,y, z as well. Set g, . =

(x/2)%(y/2) _ (x/2)(y/2) _ (x/y)(z/)
Gt/ Yo = Gt/ @rm) Jev = [@im2+(z/y)/y) nd note that
9r,y = 9o,z = 1-— 9y,z-
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With these rules and abbreviations one computes the following identifications
representing the maps from 0-cochains to 1-cochains and from 1-cochains to 2-
cochains.

€1 = —ezz1+ezz2+d(gy,:) =2e132—2e1,31 +d(gs,z)
€21 = —ez31 —ezz2+d(gy,:) =2e1,22—2e12:1 +d(ga,y)
er;1 = —2e131 = —2e12:1
ti1 = t131 = —t121
€231 = €123
€232 = €123:3
t23:1 = t1,2,3:1
1
e1,3:1 = —561,2,3:2
1 1
L3z = €123 T 561232 + d(gy,-)
ti31 = —t12.3:2
e1,2:1 = —2e1,2,3:2
1 1
e1,2:2 = —561,2,3:1 — 561,2,3:2 +e12,33+d(gy,:)

Then the following forms generate finite dimensional complexes C} that are quasi-
isomorphic by the inclusion to the Cech-de Rham complex on Uy.

U1 1 €1:1 tl:l

U, 1 €2:1

Us 1 es:1

U2 | 1,92,y e1,2:1,€1,2:2,d(ga,y) t1,2:1
Uiz | 1,9z, €1,3:1,€1,3:2,d(ge,z2) t1,3:1
Us3z | 1,9y, €2,3:1,€2,3:2,d(gy ) t2,3:1
Ui2s | 1,9y,: €1,2,3:11,€1,2,3:2,€1,2,3:3,d(gy,z)  t1,2,3:1,¢1,2,3:2

The forms g, y, gz, and gy . and their boundaries are needed to assure that C} C
Tu; forall I € {1,2,3} and all j € {1,2,3}\ L.
By Lemma 3.5 the Cech-de Rham complex on U = P? \ C is quasi-isomorphic
to the total complex composed of the C7.
Let Uy = {U1,Us,Us}, Up) = {U1,2,U2,3,U1 3}. Then the total complex C;
made from the C} has

e three terms in degree zero (the three constants on U(y)),

e nine terms in degree 1 (three constants from U(y), three H L_generators from
U1y and the three O-forms gy, gz 2, gy,- on U(y)),

e twelve terms in degree 2 (one H? generator from Us, six H'-generators from
U(2), the constants from U, 2 3, the differentials of the extra 0-forms on U(y)
and an additional 0-form on Uj 2 3),

e seven terms in degree 3 (three H2-generators from U(2), three H L_generators
from U, 2,3 and the differential of the additional O-form on Uj 2 3),

e two terms in degree 4 (the H?-generators on Uj 2 3).

Since this is a finite-dimensional complex, we can compute its cohomology by linear
algebra. This determines Cech-de Rham cochains of differential forms in the Cech-
de Rham complex on U that carry the de Rham cohomology of U. With Macaulay
2 again one computes the cohomology of this complex to be zero in all degrees but
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in H° where the cohomology is isomorphic to C, generated by the cochain (1,1,1)
of 0-forms on Uy.

6. Closed and locally closed subsets

6.1. Closed varieties in P”. In this subsection we consider what information
can be obtained of the cohomology of the closed sets Y = Var(fo,..., fr)-
We first note that there is a long exact sequence of sheaf cohomology

.-+ — H{(P™;,C) — HY(P™;C) — H*(U;C) - HE(P™C) — -+

Here C denotes the constant sheaf. Furthermore, since P is a manifold of dimension
2n, we can use Alexander duality [4]. Hence

Hy (P",C) = H""*(Y;0),

the latter denoting the vector space dual of cohomology with compact supports.
Since Y is a compact space however, cohomology with compact supports agrees
with the usual cohomology. Considering the structure of the cohomology groups
on P™ (zero in odd degree) there are exact sequences

0 — H*=YU;C) — H"2*(Y;C)* — H?**(P";C)
- H**(U;C) - H*" 7 1(YV;0)" - 0
for all i > 0 and an exact sequence
0— H**(Y;C)* - H°(P™;C) - H°(U;C) - H* (Y;0)* -0

where the star denotes the vector space dual. It is not hard to understand the
maps H*(P";C) — H*(U;C) algorithmically. In Section 3 we found generators for
the cohomology of P". Since the inclusion U — P" induces the maps H*(P"; C) —
H*(U;C), the forms ¢;, € H**(IP"; C) are simply interpreted as forms on U. In order
to find the kernel and the cokernel of H*(P";C) — H*(U;C) it is sufficient to find
a subcomplex C* ¢ C7; of the algebraic Cech-de Rham complex on U = | J(P;NU)
that contains each ¢, because of Lemma 3.5. Such a complex can be constructed

from Algorithm 3.2.
Hence we have the following algorithm:

AvLcoriTHM 6.1 (Cohomology of projective varieties).
INnpuT: Homogeneous polynomials fy, ..., f. in Clzg,... ,z,].
OutPUT: The cohomology groups of Var(fo,..., fr) in Pg.
Let U =P™\ Var(fo,..., fr)-
1. Compute Cy;, a finite dimensional complex of differential forms on U =
Ui—o(U N P;) from Algorithm 4.1 that computes the de Rham cohomology
of U.
2. Use Algorithm 3.2 to enlarge C7; so that it contains for all k the cocycles ¢
from (3.2).
3. H*"~2k=1(Yy;C) is isomorphic to the cokernel of the map

H**(P";C) — H**(U;0).
The dimension of this space agrees with dim¢ H?*(U; C) if ¢ represents the
zero class in H2*(U;C); else it is dimc H?¥(U;C) — 1. The vanishing of ¢
in H?*(U;C) is equivalent to ¢ being an image in C.
4. dimg¢ H*"2k(Y;C) equals dim¢ H2*~Y(U;C) if ¢ = 0 in H**(U;C) and
dimgc H**~1(U;C) + 1 otherwise.
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End.

REMARK 6.2. Since Chern classes are preserved under pullbacks, if U is some
open set in P" then the images on U of the generators for H2*(P"; C) from (3.1) are
the Chern classes of U. This shows how one can determine vanishing of the rational
Chern classes on U. Y and U have the same cohomology dimensions except for
a difference of 1 or —1. This difference is dictated by the vanishing of the Chern
classes of U.

ExAMPLE 6.3. Consider the variety defined by 22 + zy in P2. Section 5 shows
that the corresponding U has no cohomology but for H°(U;C) = C. Hence
H°(Y;C) = C corresponding to the second Chern class on P? H?*(Y;C) = C
corresponding to the first Chern class on P2, and all other cohomology groups of Y’
vanish.

EXAMPLE 6.4. We consider the curve C' = Var(z?y + y?z + 2%z) in P2, P? is
covered by Uy = SpecCly/z, z/z|, Uy = Clz/y, z/y] and Us = Clz/z,y/z]. We take
as coordinates s = x/z,t = y/z on Us, U1 3, Uz 3 and Ui 2 3; s = y/x,t = z/x on
Uy and Uy 2; s = x/y,t = z/y on Us. We have the following dehomogenizations for

f

R=QQ[s,t]

fl=s+s™2*%t+t"2
£2=s"2+t+s*t"2
£3=s"2%t+t"2+s

Moreover, on two- and threefold intersections U N Py is defined by the nonvanishing
of

£12=(s+s8"2%t+t"2) *s
£13=(s"2%t+t"2+s) *s
£23=(s"2%t+t"2+s) *t
£123=(s"2%t+t"2+s) *s*t

With Macaulay 2 one computes with the command
deRhamAll(g)

the following cohomology generator table where g is one of f1,..., fi2,3-
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U, H 2st +1
s2+ 2t
H*? 1 t s
2 S
U2 Hl t ;2
2si41
2 f t
H ]
Us H* 2st +1
s+ 2t
H? 1 t s
U, H? 2% + 5 BIEEEE
—s> — 2st 0
H? t t 1 P
U3 H! I sSSt+t2+ s
s> + 2st 0
H? t t? 1 52
Us.s H! 0 —2st2—t
’ 3
2 2 —t°+
, —st—t“—s 1 =
H 1 t st t
Ul H! 1252 _ 43 2t ;»st _sztz+2t +st
3t + 2st? _St4+sz 0
H? t* s t s7t | 1

In this table the generators for H'(Uy;C) correspond to columns where the el-
ements of the top row have to be multiplied with % and those of the bottom

with %. So for example H!(U; 2 3;C) has three generators, the first of which is

(t%52 —t3)ds+ (st +2st2)dt
fi,2,3

tiplied with d;dt and then are generators for H2(U;; C). So for example H?(Us; C)

I
has three generators the last of which is Lssdt.

. Similarly, the polynomials listed next to H? are to be mul-

We denote these classes by ej.i (Hl—generator in column k) and .k (Hz—
generator in column k') where T is the index of the open set in question (for example,

{1,3} for Uy 3). Thus, t;12 3.2 is the class —‘}fi‘it_

As always for a connected set, the group H°(U;C) is a one-dimensional vector
space, and it is here generated by the cocycle (1, 1,1) of 0-forms. The 0-forms make
no further contribution to the cohomology of U.

Using the transformation rules (for example from U; to Uy g they say s —
s7lt,ds — —s%tds + s 1dt and t — s7!,dt — s~2ds) one computes that

e31 = e131+2e1,32 = —ez31 — 4e23:2,
el:1 = e131 —er32 = —er21 +4e1 2>,
ex1 = e231 —2e232= —561,2:1 —e1,2:2,
€1,3:1 = €1,2,3:1 + 2€1,2,3:3,
e1,3:2 = —2e1,2,3:3,
€231 = —e1231 —4e1,23.2 — 2e1,2,3:3,
€2,3:2 = €1,2,3:2 1+ €1,2,3:3,
e1,2:1 = e1,2,31+ 8e1,23:2 +4e1 233,
1
e1,2:2 = —e€1,2,31 + 2€1,23:2 + 2€1,2,3:3.

2



COMPUTING COHOMOLOGY OF COMPLEX VARIETIES 17

This shows that the 1-forms form a complex of vector spaces with entries of dimen-
sions 1 +1+1, 242+ 2 and 3 where the matrices have ranks 3 and 3 respectively.
Hence the 1-forms make no contribution to the cohomology of U.

Finally, applying the conversion rules to the 2-forms on the various U; one
obtains a complex that has three entries (on one-, two- and threefold intersections
of open sets) with matrices My, : C2*3 — C*** and My, : C**3 — C'*®. These
matrices turn out to have ranks 7 and 5 respectively. Hence the 2-forms contribute
2 generators of H?(U;C) and nothing to H3(U;C) or H*(U;C).

So U has cohomology only in degrees 0 and 2, and H?(U;C) is of dimension
2. It is noteworthy that the first Chern class of U must be torsion, because it is
the pullback from P? of a 1-cocycle of 1-forms and we saw that 1-forms make no
contribution to the rational cohomology of U.

From the Alexander duality exact sequence we see that the complementary
curve C has either Betti numbers 1,2,1 or 1,1,0. The latter case can occur only
if the first Chern class of U is nonzero. Since we know it vanishes, C' has a two
dimensional H! and a one-dimensional H2. As one can check on a local chart, C
is smooth and therefore topologically S! x S!.

6.2. Compact Cohomology. If Y is an affine variety ¥ C X = A", then
one can compute the cohomology groups with compact support from Alexander
duality on the affine space.

EXAMPLE 6.5. Let f = 23 +y3 + 23. Then the de Rham cohomology groups
on U = C?*\ Var(f) have dimensions 1, 1, 2 and 2, which we computed by Macaulay
2 with

R=QQ[x,y,z]
deRhamAll(x"3+y~3+z"3)
From Alexander duality one concludes that (since C* has real dimension 6 and is
contractible)
(H{Y;0)" = Hy '(X;C) = HS~71(U;0)

for i < 5 and Hi(Y;C) = 0 for i > 4. Thus the cohomology groups H!(Y;C) with
compact support of Y have dimensions 0, 0, 2, 2, 1 for i = 0,...,4 and are zero
otherwise.

One can push the computations a little further in nice situations.

ExampLE 6.6. If Y = Var(f) C P" is smooth, then the (usual) cohomology of
Var(f)NPy (an affine chart of Var(f)) can be computed. For example, if f = 22 +yz,
consider the closed subset Z of Y given by z = 0. This is a 2 point set. Let us now
compute the cohomology of Y N Py = Y \ Z = Var(1 + yz) C A%2. By Alexander
duality on Y, H*'"4(Z;C) = H,(Y;C)*. Set V. =P?\ Z and U = P2\ Y. Then
the long exact sequence of sheaf cohomology on Y gives (with duality incorporated)

0— H*(Z;C)* - H°(Y;C) - H°(VNY;C)
— HY(Z;0)* - H'(V;C) - H'(V NnY;C)
— H°(Z;0)* —» H*(Y;C) - H*(VNY;C) — 0.
The map H27%(Z;C)* — H¥(Y;C) = H?>*k(Y;C)* (by Poincaré duality) is in-

duced by Alexander duality and really should be thought of as the dual of the
map H¥(Y;C) — H*(Z;C) induced by Z — Y. Alexander duality shows that
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H?>"%(Z;0)* — H**(Y;0)* is equivalent to Hy 2TF(P%,C) — Hy > (P%;C)
(i.e., Alexander duality gives a quasi-isomorphism of the 2-term sequences).
Counsider the commutative diagram

HZn—k(Pn7(C) . HZn—k(V7(C) . Hén—k+l(Pn7(C) . H2n—k+l(Pn;(C) . H2n—k+l(v;(c)

2n—k 2n—k+1
= Pu,v Pu,v

H—2n7k(Pn;(C) . H2n7k(U; (C) . H—}2/n7k+l(Pn;(C) . H—2n7k+l(Pn;(C) . H—2n7k+l(U; (C)
Inspection shows that ker(H5 ™ (P C) — HEtH(P™;C)) is isomorphic to
ker(H*(V;C) — H*(U;C))
im(H*(P~;C) - H*(V;C)) Nker(H*(V;C) — H*(U;C))

(and zero in the case k = 0). This dimension can be computed by our methods

on the level of differential forms, by repeatedly applying Algorithm 3.2. It follows
that we can evaluate the dimensions of the kernel and cokernel of HZ *(P?;C) —
HZ7*(P?;C) and hence the dimensions of H*(V NY7;C). In our example, U has no
nontrivial cohomology as pointed out, V = P?\ two points. We get the following
table of dimensions of cohomology groups:
k=0|k
HF(P% C) 1

—
B

Ol ool
V]
E

olol~lolololola|l~|olll
o
>~

olo|olo|~|o|ro|a|—|
S

ker(H*(V;C) — H*(U;Q))
im(H*(P?,C) — H*(V;0))
H*Y \ Z;C)

[l Ke=l ol Renl [ O Ranll B o

—lo|lololololololalalll

—_

EXAMPLE 6.7. We continue Example 6.4 from the previous subsection. There
we found that C' = Var(z?y +y?z + z%z) has Betti numbers 1,2 and 1. We consider
now the open set V' in C' defined by the nonvanishing of z. On the open set P; of
IP? this set is the cubic curve defined by s%t +t? + s. It is easy to see that C' meets
z =01in 2 points, Z = {(0,1,0),(1,0,0)}.

The long exact sequence for the pair (C, Z) gives

0— H*(Z;C)* - H°(C;C) — H°(V;C) —
- HY(Z;C)* - H'(C;C) - H"(V;C) =
— H°(Z;C)* — H*(C;C) —» H*(V;C) = 0

Of course H°(V;C) = C and H?(V;C) is zero because V is topologically a non-
closed surface. Hence the known data imply that H'(V;C) = C3.

7. Toric varieties

The principles outlined in the previous sections also apply to open and closed
sets within smooth toric varieties. We shall demonstrate this with an example.
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EXAMPLE 7.1. Let X be the second Hirzebruch surface F, (see [1]) defined by
the complete fan A in the plane whose rays are the vectors (1,0), (0,1), (—1,2),
(0,—1). We denote the 4 maximal cones by A,...,D, the rays by AB,... ,DA
and the trivial cone by ABCD. We write O, for the ring of regular functions
on the affine variety defined by the cone o. One finds easily that O4 = k[(z/z) =
54, (y22/w) = ta], O = K[(2/2) = s, (y2*/w) = L], Oc = k{(2/x) = 50, (w/ya?)
tc], Op = kl(z/z) = sp, (w/yz?) = tp).

Let us first compute the cohomology of X. (This is of course well known
from combinatorial methods, see [1].) On each maximal cone, a complex quasi-
isomorphic to the Cech-de Rham complex is simply given by (C - 1) concentrated
in degree zero. The intersections of neighboring cones lead to spaces isomorphic to
C x C*, so they have a Cech-de Rham complex quasi-isomorphic to the complex

((C 1-C- ‘?—f) where f is an appropriately chosen divisor (corresponding to the

ray of intersection). For example, the intersection of the cones B and C' leads to

the divisor {c and a corresponding de Rham cohomology generator %.

The intersection of cones A and C, and B and D, and all higher intersections
are 2-tori with Cech-de Rham complex quasi-isomorphic to the complex C -1 —
d dt dsa dt
ComwelC 20 T
We combine the 4 + 6 + 4 + 1 Cech-de Rham complexes to a complex which
computes the cohomology of X in terms of Cech cochains of differential forms.
The de Rham cohomology of X is then generated in degree 0 by the 0-cocycle
(1a,1B,1¢,1p) (which means that on each 2-dimensional cone the chosen function
is identically 1). The group H?(X;C) is of rank two and generated by the 1-cocycles
_ (dsa d dsc d _ (2dsa —2dta —dta dtc dt
of 1-forms o = (55, 53,0,0, 52, 57) and f = (52, =, =02, G2, 5£,0)
where these are the 6 components corresponding to the 6 intersections of the 2-
cones, ordered lexicographically. Finally, H*(X;C) can be seen to be generated by
the 2-cocycle of 2-forms (424dla dsadis dsadly dsadln) op the triple intersections.
All other cohomology groups are zero.

EXAMPLE 7.2. Now we consider the cohomology of the complement of the di-
visor f = w — x?y + 2%y in the surface X of the previous example. To that end
we compute generators for the de Rham cohomology for the complement on each
affine piece determined by a cone of A. This is done by Macaulay 2 and we use the
following notation.

Cone Variables Ring Divisor of f

A sa=1x/z, tAzyzQ/w klsa,ta] fa=1—s%ta+ta

B sp = z/z, tB=yar:2/w k[sB,tB] fB:1—tB+s2BtB

4% so = z/w, to = w/ya’ k[sc,to] fo=tc—1+s¢

D sp =z/z, tD:w/yz2 k[sp,tp] fo=tp—shHh+1

AB sa=1x/z, tAzyzQ/w k[sA,tA,szl] fAB:(l—sitA—i—tA)sA
BC s = Z/.’D, tc = w/ywz k[so,tc,t&l] fBc = (t(; -1+ S%)t(;
CD sc =z/x, tc = w/yav2 k[sc,to, 561] fop = (tc — 1+ s&)sc
DA sa=ux/z ta =y w klsa,sa,t,"] fap = (1 — shta +ta)t

all others | sa = x/z, ta = yz°/w | k[sa,ta, s, t4"] | fapop = (1 — s%ta +ta)st
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In these local variables, we have the following generators for the cohomology
of the various open sets:

H° H! H?
A 1 2sAtAdsA;—(s?4—l)th = A, dsf}th = Ay,
4 sAds::th —A
s = Ae
B 1 2sptp dst-',-(s2B—l)dtB = B, dspdtp _ By
- : — :
dsp dt
bl - p,,
2sc dsc+dt — ]
C 1 —Lufp Cia
D 1 —2sp dst+dtD — Dl-l
N T :
AB 1 —(2ta+2)dsg—(s5 —sa)dta — AB.. dsadta _ 4B,
( ., f?B b 1:1 f‘;B 2:1
salA—ta— SA _AB SAGSA _AB
fan - 1:2 AB 2:2
shdsa A
fap — B3
BC 1 7(3%""'}0_1)“0 = BCia —dsfc dic — BCy.
BC i BC |
2s¢tedscttcdic _ per, . scdscdte _ prr, .
fEC - 1:2 fEC - 2:2
CcD 1 (2—=2tc)dsg+scg dic — CD1.a dscdtc _ CDs.1
(2 fep ¥ : fep :
sc+tcfl sc _CD
—Jep =D
AD 1 725Atf4dsA7th :ADI-I tadsadty :ADZ-I
R fAD2 : fap :
_2sAtAdsA—+}(—SAtA+tA)th :AD1-2 sAtAfdsAth :AD2-2
AD . AD .
—2t% —2tp)dsq—s4 dt
ABCD | 1 | EazZaddazsadia _ ABCD,, deadls = ABCD,4
252 t2 ds g +s4 dt tadsydt
FAAZATALL = ABCD tadeadls — ABCD,.
ZSitidsA—;(sAtA—sAtA)th — ABCD,.3 sAthdsAth = ABCDo.5
ABCD ) ABCD :
2tadsadt
A = ABCD,

The map of 0-cochains to 1-cochains of 1-forms is given by the following chart.

A1n1 — (=ABi11 +2AB;12)+ (AC13) — (AD1,2)

Bi1  — (=AB11 +2AB12)—(BC11+BC1,2) — (BD13)
‘1,1 = (mAC11) = (BC1,2) + (CD1,1 +2CDq2)

Dy1 =  (—=ADi,1) + (BDi1,2) — (CD11).

,

On the other hand, the map from 1-cochains to 2-cochains is as follows.

ABi1 — (ABC1,1 + ABC1,2 — ABC1,3) + (ABDy11 + ABD; 2 — ABD1 3)

ABj 2 — (%ABC’l‘l +%A301)2)+(%A3D1)1+%ABD1‘2)
AC11 —  (—ABCi,1)+ (ACD11)

AC12  — (—ABCi;2)+ (ACDq2)

AC13  — (—ABCi3)+ (ACDq13)

AD11 = (ABDi;2) + (ACD;2)

ADi 2 — (ABDi3)+ (ACD;13)

BCi1,1 — (ABCi,1+ ABC1,3)+ (BCD11 + BCDy 3)

BCi,2 — (ABC1,1)+ (BCDq )

BD1y  —  (ABDi,1) — (BCD11)

BDy1> — (ABDi;2) — (BCD1,2)

BDy3 — (ABD;3)) — (BCDy3)

CDi11 — (—ACD;y,2) = (BCD1,2)

CDi2 — (%ACD1,1+%ACD1,2)+(%BCD1,1 +%BCD1,2)
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Finally, the map to 3-cochains is given by the following table.

ABCD,1 | ABCD;; | ABCD. 3
0
1

ABCy .
ABCy 5
ABCi 3
ABD;
ABD; »
ABD; 3
ACD;
ACD; 5
ACD; 3
BCD;
BCD; 5
BCD; 3

—
-
-

—
-

‘OO)—‘OO‘ [eNeiE N eNe]

-

Taking cohomology (in Macaulay 2 for example with the commands ker, image,
gens and %) we see that H2(U;C) is generated by the 1-cocycle of 1-forms o =
(—ABLQ, _%ACLI — %ACL2, 0,0, %BDl,l + %BD172, CD172) (thiS is the same « that
was a cohomology generator on X, now expressed in terms of the cochains on U).
This is the only contribution 1-forms make to the cohomology of U.
On the 2-forms we have the following maps for Cech cocycles from single to

double intersections:
(7.1)

A1 — (AB22) + (AC2,3) + (AD3 1)

Az 2 = (AB23) + (AC2,4) + (AD22)

Bz,1 = (ABz,2) — (BC2,1) + (BD2,3)

Ba,2 = (ABz2,1) — (BC2,2) + (BDz2,2)

The matrix for 2-forms from double to triple intersections can be obtained (we omit
the obvious maps from AC and BD to any triple intersection) from the equations
ABy, = BCyp = —ABCDy 5,

AB3 5 = ADy 1 = BCa1 = ABCD> 3,

ABy g = ADg 5 = ABCDy 4,

CDs 3 = ABCDs 3.

Linear algebra shows that the 2-forms do not contribute to the cohomology of U.
Thus, H°(U;C) = H?(U;C) = C and all other cohomology groups are zero.

It follows from the long exact sequence in 6.1 relating the open set and the
variety of f that Var(f) has its cohomology concentrated in degree 0 and 2 and
both are one-dimensional. This is because H?(X;C) — H?(U;C) is not the zero
map since @ # 0 in H?(U;C). On the other hand, the cocycle 2a — 3 that generates
cohomology on X is zero on U: as

1 1 1 1
= (—ABip, —5140171 - 5A01,2;0;0; iBDl,l + §BD172;CD1,2);

= (=2AB1,,AC1 3 —AC12,AD11 — ADy»,BC11,BD11 + BD, 3,0).

one sees that 2a — f = d(—A11 + B11 + C11 + Dy,1). Hence 2a — § is the zero
class in H?(U;C).
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