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Abstra
t. We give algorithms for the 
omputation of the algebrai
 de Rham


ohomology of open and 
losed algebrai
 sets inside proje
tive spa
e or other

smooth 
omplex tori
 varieties. The methods, whi
h are based on Gr�obner

basis 
omputations in rings of di�erential operators, 
an also be used to 
om-

pute the 
ohomology of interse
tions of smooth 
losed and open subsets, and

in 
ertain situations the 
up-produ
t stru
ture.

We give some examples whi
h were 
arried out with the help of Ma
aulay
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1. Introdu
tion

The determination of the 
ohomology of topologi
al spa
es has been, and 
on-

tinues to be, a question of interest going ba
k to (at least) Poin
ar�e. This is

do
umented by the beautiful work of Hopf, Leray, Serre, and Milnor, to name just

a few.

The advent of reasonably fast 
omputers brought with it a variety Gr�obner

basis driven algorithms performing a multitude of 
omputations in algebrai
 and


ombinatorial settings. This development did not bypass singular 
ohomology. In

the landmark paper [8℄ te
hniques are presented that 
ompute the dimensions of

1991 Mathemati
s Subje
t Classi�
ation. 14Q15, 14F40.
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H

i

(U ; C ) where U is the 
omplement of an arbitrary algebrai
 hypersurfa
e in C

n

.

These methods were re�ned in [12℄ in order to deal with a general Zariski-open set

U � C

n

. By [13℄ one 
an also 
ompute the ring stru
ture of H

�

(U ; C ).

In this note we extend the algorithms from [8, 12, 13℄ to the 
omputation of


ohomology data on more general types of algebrai
 sets. These in
lude

1. singular rational 
ohomology groups of open sets in proje
tive spa
e,

2. singular rational 
ohomology of proje
tive varieties,

3. 
ompa
tly supported rational 
ohomology of lo
ally 
losed varieties in pro-

je
tive spa
e,

4. singular rational 
ohomology of open subsets of smooth proje
tive varieties,

5. the ring stru
ture in situation 1.

It follows an overview to the paper.

We shall �rst give a short review of some known algorithms. The basi
 idea

of these algorithms is the Grothendie
k-Deligne isomorphism theorem and work by

Hartshorne, whi
h assure that on 
omplex algebrai
 spa
es de Rham 
ohomology


an be 
omputed in the algebrai
 
ategory, and that the singular theory 
oin
ides

with the algebrai
 de Rham theory. At the end of this se
tion we explain some of

the bottlene
ks of the algorithms.

We next 
onsider the spe
ial 
ase of proje
tive spa
e. From there we move on to

general open sets in proje
tive spa
e and then, via Alexander duality, to proje
tive

varieties. For open sets, the 
up produ
t stru
ture 
an be determined.

Duality 
an also be used on other spa
es, and that gives a

ess to 
ohomol-

ogy of open subsets of smooth proje
tive varieties, and, as a 
orollary, 
ompa
tly

supported 
ohomology of lo
ally 
losed sets in proje
tive spa
e.

All the presented methods apply equally well to subvarieties of smooth tori


varieties (as opposed to varieties embedded in proje
tive spa
e). Some of these

ideas are expanded in the �nal se
tion.

Notation 1.1. K will be a 
omputable �eld of 
hara
teristi
 zero 
ontained in

C . Although we will work over C , we shall assume (without stating this expli
itly

every time) that all input data for our algorithms are de�ned over K. This is to

guarantee that we 
an manipulate the input and re
ognize vanishing of expressions

with the Turing ma
hine.

Whenever a group is pronoun
ed to be \�nite dimensional" we will mean it to

be a �nite dimensional C -ve
tor spa
e. Cosets of elements in a quotient spa
e we

usually denote by a bar: a. We write R

n

for the ring of polynomials C [x

1

; : : : ; x

n

℄,

and D

n

for the Weyl algebra C hx

1

; �

1

; : : : ; x

n

; �

n

i. We use multi-index notation:

x

�

�

�

will mean the monomial x

�

1

1

� : : : x

�

n

n

� �

�

1

1

� : : : � �

�

n

n

. Also, j�j denotes in that


ontext �

1

+ : : :+ �

n

.

If f

0

; : : : ; f

r

2 R

n

and I � f0; : : : ; rg we write F

I

for

Q

i2I

f

i

and jI j for the


ardinality of I .

If � : K

�

! C

�

is a 
hain map of two 
hain 
omplexes of modules over the ring

S we write K

�

�

=

S

C

�

if � is a quasi-isomorphism over S.

2. Review of the aÆne 
ase

The purpose of this se
tion is to review an algorithm that leads to the determi-

nation of the singular 
ohomology groups with rational 
oeÆ
ients and their ring

stru
ture for the 
omplement of an aÆne 
omplex variety.
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2.1. Let Y � X = Spe
(R

n

) be de�ned by the equations f

0

; : : : ; f

r

in R

n

.

Then one has asso
iated to U = X n Y a redu
ed

�

Ce
h 
omplex

(2.1)

�

C

�

=

�

C

�

(f

0

; : : : ; f

r

) =

0

B

B

B

B

B

�

0!

M

jIj=1

R

n

[F

I

�1

℄

| {z }

degree 0

! : : :!

M

jIj=r+1

R

n

[F

I

�1

℄

| {z }

degree r

! 0

1

C

C

C

C

C

A

:

If U = X , then we set

�

C

�

to be the 
omplex 
on
entrated in degree zero whose

entry

�

C

0

is R

n

.

One 
an think of

�

C

�

as the appropriate obje
t for various purposes that repla
es

the ring of global se
tions on U if U is not aÆne.

�

C

�

(f

0

; : : : ; f

r

) is a 
omplex of (left) D

n

-modules and the maps in the 
omplex

are D

n

-linear [5, 7, 11℄. It makes therefore sense to speak of bounded 
omplexes

A

�

of free �nitely generated (left) D

n

-modules that are D

n

-quasi-isomorphi
 to the

�

Ce
h 
omplex.

2.2. For our purposes we will need a spe
ial type of resolutions, those that

are

~

V

n

-stri
t [8, 9, 12℄. This means that the �ltration

~

F

�

(A

l

) indu
ed by the

grading on D

n

de�ned by x

i

! 1; �

i

! �1 for all i is preserved by the maps in

the 
omplex, and that the formation of asso
iated graded obje
ts 
ommutes with

taking homology in A

�

:

gr(H

i

(A

�

[m

�

℄)

�

=

H

i

(gr(A

�

[m

�

℄):

It is worth pointing out that this 
an only be a
hieved by shifting some of the

modules in A

�

appropriately, as in the 
ase of graded resolutions over a 
ommutative

graded ring. Even with the shifts, (A

�

[m

�

℄) may not be graded as the

�

Ce
h 
omplex

may not be homogeneous.

It has been shown that for given f

0

; : : : ; f

r

su
h a

~

V

n

-stri
t resolution of

�

C

�

=

�

C

�

(f

0

; : : : ; f

r

) is in fa
t 
omputable. This relies on Gr�obner basis te
hniques,

[9, 10, 12, 13℄.

Complexes A

�

[m

�

℄

�

=

D

n

�

C

�

that are

~

V

n

-stri
t enjoy a rather stunning property

whi
h we des
ribe now. Consider the Euler operator E = x

1

�

1

+ : : :+ x

n

�

n

. Then

E is

~

V

n

-homogeneous of degree 0 and hen
e a
ts on

~

F

0

(A

i

[m

i

℄)=

~

F

�1

(A

i

[m

i

℄). Sin
e

the maps in A

�

[m

�

℄ preserve the �ltration, E a
ts in fa
t on

~

F

0

(H

i

)=

~

F

�1

(H

i

) where

H

i

= H

i

(A

�

) with the �ltration inherited from A

i

[m

i

℄. The operator (�E�n) has a

minimal nonzero polynomial

~

b

i

(s) on this quotient. (We remark that this holds not

only if A

�

�

=

D

n

�

C

�

but more generally whenever A

�

has holonomi
 
ohomology,

see [12℄.) We write

~

b

A

�

[m

�

℄

(s) for the least 
ommon multiple of all these

~

b

i

(s).

The polynomial

~

b

A

�

[m

�

℄

(s) is 
alled the b-fun
tion for integration of A

�

[m

�

℄ along

�

1

; : : : ; �

n

. To des
ribe a 
ertain property of

~

b

A

�

[m

�

℄

(s) we introdu
e the right

module 
 = D

n

=(�

1

; : : : ; �

n

) �D

n

. The fun
tor 



L

D

n

(�) is 
alled integration.

We say that a 
ohomology 
lass 1
 a in H

i

(
 


D

n

A

�

[m

�

℄) lives in the k-th

level of the �ltration if 1
 a has a representative in 1 
 F

k

(A

i

[m

i

℄) but none in

1 
 F

k�1

(A

i

[m

i

℄). The amazing fa
t is that the roots of

~

b

j

(s) limit the possible

levels of nonzero 
ohomology 
lasses in 
 


D

n

A

�

[m

�

℄. Namely, a nonzero 
lass
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living in level k and in 
ohomologi
al degree i 
an only o

ur if

~

b

j

(k) = 0 for some

j � i.

Note that there are only a �nite dimensional ve
tor spa
e of 
ohomology 
lasses

1
 a that live in the k-th level of the �ltration be
ause all monomials x

�

�

�

of

~

V

n

-

degree at most m � 1 in D

n

[m℄ are right multiples of some �

i

. From this one 
an


ompute the 
ohomology of 



D

n

A

�

[m

�

℄ expli
itly be
ause one may simply 
he
k

all 
lasses of

~

V

n

-degree at most equal to the largest root of

~

b

A

�

[m

�

℄

(s).

In a nutshell, this gives the following main steps in an algorithm to 
ompute

the 
ohomology of 



D

n

A

�

[m

�

℄ ([8, 9, 12℄):

Algorithm 2.1 (Integration of the

�

Ce
h 
omplex).

Input: f

0

; : : : ; f

r

2 R

n

, i 2 N.

Output: dim

C

(H

i

(
 


D

n

A

�

[m

�

℄)) where A

�

�

=

D

n

�

C

�

(f

0

; : : : ; f

r

) and A

�

[m

�

℄ is

D

n

-free and

~

V

n

-stri
t.

1. Compute a

~

V

n

-stri
t 
omplex A

�

[m

�

℄

�

=

D

n

�

C(f

0

; : : : ; f

r

) ([9, 10, 12℄).

2. Repla
e ea
h 
opy of D

n

in A

�

by 


�

=

C [x

1

; : : : ; x

n

℄.

3. Find the b-fun
tions

~

b

i

(s) for the integration of H

i

(A

�

[m

�

℄) along �

1

; : : : ; �

n

,

and let k

1

be the largest integral root of their produ
t ([9℄).

4. Trun
ate 



D

n

A

�

[m

�

℄ to the 
omplex of �nite dimensional C -ve
tor spa
es

~

F

k

1

(



D

n

A

�

[m

�

℄) with C -linear maps.

5. Take the i-th 
ohomology and return its dimension.

End.

2.3. Now we explain what su
h a 
omputation has to do with 
ohomology

of varieties. Let 


�

be the Koszul 
omplex on D

n

indu
ed by left multipli
ation

by �

1

; : : : ; �

n

. Then 



D

n

A

�

[m

�

℄ and 


�




D

n

�

C

�

(f

0

; : : : ; f

r

) are naturally quasi-

isomorphi
 up to a 
ohomologi
al shift by n. This is be
ause 


�

is a right D

n

-

resolution of 
 and 
omputing the Tor-fun
tor 
an be done by resolving either

fa
tor.

Inspe
tion of the tensor produ
t shows now that it 
omputes algebrai
 de Rham


ohomology of U . The start of this \inspe
tion" is the identi�
ation of the 
omplex




�




D

n

�

C

�

in the 
ase r = 0 with the algebrai
 de Rham fun
tor of [3℄ on X

applied to the O

X

-module i

�

O

U

= O

X

[f

�1

0

℄, where i : U ,! X . This is why we


all 


�




D

n

�

C

�

the algebrai


�

Ce
h-de Rham 
omplex of U . The Grothendie
k-

Deligne 
omparison theorem and various other ones imply that H

i

(


�




D

n

�

C

�

)

�

=

C

H

i�n

dR

(U ; C )

�

=

C

H

i�n

Sing

(U ; C ), the two latter spa
es denoting de Rham and singular


ohomology with 
omplex 
oeÆ
ients respe
tively.

The essen
e of the above 
an be summarized in the following theorem.

Theorem 2.2 (de Rham 
ohomology in aÆne spa
e [8, 12℄). If f

0

; : : : ; f

r

are

given polynomials in R

n

, then there exists an algorithm that produ
es a �nite set

of 
o
y
les of di�erential forms f!

i;i

0

g

i;i

0

in the algebrai


�

Ce
h-de Rham 
omplex




�




D

n

�

C

�

on U = C

n

nVar(f

0

; : : : ; f

r

) su
h that f!

i;i

0

g

i

0

span H

i

dR

(U ; C ) for all

i.

Proof. Use Algorithm 2.1 to obtain a set of generators (over C ) for the 
oho-

mology of 



D

n

A

�

[m

�

℄. Then use Theorem 2.5 of [13℄ to 
onvert these generators

into 
ohomology generators for 


�




D

n

�

C

�

whose elements are identi�ed with the


o
hains in the algebrai


�

Ce
h-de Rham 
omplex on U . 2
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Now let us give some bibliographi
al referen
es. In [9, 11℄ algorithms for the

presentation of lo
alizations and more generally the

�

Ce
h 
omplex are dis
ussed.

In [8, 9, 10, 12℄ the

~

V

n

-�ltration is dis
ussed in varying detail. There it is also

explained how to 
onstru
t the 
omplex A

�

[m

�

℄ from

�

C

�

. The arti
le [9℄ gives details

to the 
omputation of the b-fun
tion and �nally [13℄ shows how one translates


ohomology 
lasses from 
 


D

n

A

�

to 
lasses in 


�




D

n

�

C

�

, thus 
reating a
tual

(algebrai
) di�erential forms.

2.4. It is useful to make some 
omments about the 
omputational 
omplexity

of the 
onstru
tions that take pla
e in the exe
ution of Algorithm 2.1. The �rst

major 
omputation is to �nd a presentation of the

�

Ce
h 
omplex as a 
omplex of

free D

n

-modules (Step 1). This 
omputation relies on an algorithm by T. Oaku

for determining the Bernstein-Sato polynomial of f

0

� : : : � f

r

. Computing this

polynomial is quite expensive if deg(f

0

� : : : � f

r

) > 5. Faster 
omputers will not

be of substantial help here be
ause the 
omplexity of Gr�obner basis 
omputations

usually grows 
onsiderably faster than linearly in the input (the worst possible is

doubly exponentially). Thus, in order to make substantial 
omputational progress,

better algorithms for the Bernstein-Sato polynomial are needed.

The next potentially hard step in Algorithm 2.1 is to make the 
omplex

~

V

n

-

stri
t. The author does at this moment not know how big a problem this is.

A true bottlene
k however is the 
omputation of the b-fun
tions

~

b

i

(s), whi
h

appears to be somewhat more 
omplex than the Bernstein-Sato polynomial. But

at this time we 
annot really make any asymptoti
 statements. On the positive

side, due to the similarity in nature of

~

b

i

(s) and Bernstein-Sato polynomials one


an hope that progress on one results in progress on the other.

Step 4 
onsists of (huge problems in) linear algebra. The author thinks that

this is the least troublesome part of the algorithm, but whether this is so will mu
h

depend on the 
onstru
tion of small

~

V

n

-stri
t resolutions.

The algorithms to be des
ribed in the sequel use Algorithm 2.1 as a basi


building blo
k. None of them involves 
omputations that make a 
ombinatorial

explosion likely to o

ur. Unfortunately, however, the 
urrent limitations on what

examples 
an be done with Algorithm 2.1 restri
t us to rather small examples to

illustrate our algorithms.

3. Chern 
lasses in proje
tive spa
e

In this se
tion we investigate how the 
ohomology of proje
tive spa
e 
an be


aptured by our formalism. It will turn out that it is important to a
hieve the

following.

Lemma 3.1. Let f

0

; : : : ; f

r

2 R

n

be given polynomials, and let f!

i;i

0

g

i;i

0

be

given 
o
hains of algebrai
 di�erential forms of degree i on U = X nVar(f

0

; : : : ; f

r

)

(i.e., !

i;i

0

2 (


�




D

n

�

C

�

)

i

). There exists an algorithm that produ
es a �nite di-

mensional sub
omplex C

�

of the algebrai


�

Ce
h-de Rham 
omplex 


�




D

n

�

C

�

on U

su
h that C

�

�

=

C




�




D

n

�

C

�

and !

i;i

0

2 C

i

8i; i

0

.

Proof. Let us sket
h a proof of the lemma. By Theorem 2.2 it is possible

to �nd a �nite dimensional sub
omplex of the algebrai
 de Rham 
omplex that


aptures all the 
ohomology (namely, just take all the 
ohomology generators, with

zero di�erential). However, this may not in
lude the given forms !

i;i

0

. Thus,
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as a �rst approximation C

�

1

of the desired 
omplex C

�

we take the union of the


ohomology generators, the given forms !

i;i

0

and their boundaries d(!

i;i

0

).

This is a 
omplex, but the 
ohomology may be too big. (It is at least as big

as the a
tual de Rham 
ohomology but we may have added extra kernel elements.)

We must �nd forms that redu
e the 
ohomology.

By an exhaustion of a D

n

-module M we mean a sequen
e of C -subspa
es

fD

k

(M)g

k2N

su
h that D

k

(M) � D

k+1

(M),

S

k

D

k

(M) = M and ea
h D

k

(M)

is �nite-dimensional as a C -ve
tor spa
e. If M is �nitely generated over D

n

then

one may produ
e an exhaustion for M from one for D

n

.

Algorithm 3.2.

Input: C

�

1

, the sub
omplex of 


�




D

n

�

C

�

spanned by

� the output of the algorithm of Theorem 2.2,

� forms f!

i;i

0

g

i;i

0

with !

i;i

0

2 (


�




D

n

�

C

�

)

i

, and their boundaries fd(!

i;i

0

)g

i;i

0

.

Output: A �nite dimensional 
omplex C

�

�

=

C




�




D

n

�

C

�


ontaining C

�

1

and all

!

i;i

0

.

1. Initialization: set l = 1.

2. Let i

0

= maxfi : dim(H

i

dR

(U ; C )) 6= dim(H

i

(C

�

l

))g. If i

0

� �1, return C

�

l

and exit.

3. Let D

k

= D

k

(D

n

) be an exhaustion of D

n

. For example, let D

k

= fx

�

�

�

:

j�+ �j � kg.

4. Derive an exhaustion D

k

((


�




D

n

�

C

�

)

i

0

�1

) of the �nitely generated left

D

n

-module (


�




D

n

�

C

�

)

i

0

�1

.

5. For k = 0; 1; 2; : : : test by trial and error whether there is an element in

D

k

((


�




D

n

�

C

�

)

i

0

�1

) that maps onto a nonzero element in H

i

0

(C

�

l

). As

soon as su
h an element is found, add it to C

i

0

�1

l

, 
all the enlarged 
omplex

C

�

l+1

, repla
e l by l + 1 and move to Step 6.

6. If dim(H

i

0

dR

(U ; C )) 6= dim(H

i

0

(C

�

l

)), reenter at Step 5.

7. Reenter at Step 2.

End.

2

Example 3.3. Let r = 0, n = 1, x

1

= x and f

0

= x. We 
ompute

�

C

�

=

(R

1

[x

�1

℄) positioned in 
ohomologi
al degree 0. Moreover, the de Rham 
ohomol-

ogy of U = C

1

nVar(x) is generated by 1 in degree 0, and

dx

x

in degree 1.

Suppose we have the 
o
hain !

1;1

= x

�3

dx whi
h for some reason we would

like to be part of our �nite dimensional sub
omplex C

�

of 


�




D

1

�

C

�

.

Then C

�

1

looks like this:

0! C � 1! C �

dx

x

� C �

dx

x

3

! 0;

be
ause d(x

�3

dx) = 0. Clearly H

1

(C

�

1

) and H

1

dR

(U ; C ) do not agree. Thus i

0

= 1

and we have to build an exhaustion for (


�




D

n

�

C

�

)

0

= 


0




D

n

�

C

0

�

=

R

1

[x

�1

℄ =

D

1

�

1

x

. Take the exhaustion 0 � D

0

� D

1

� � � � on D

1

given by D

k

= C �

fx

a

�

b

: a + b � kg. Then D

0

is spanned by f1g, D

1

by f1; x; �g and D

2

by

f�

2

; �; x�; 1; x; x

2

g. So the exhaustion D

�

(


�




D

n

�

C

�

)

0

on (


�




D

n

�

C

�

)

0

= D

1

�

1

x

in level 0 is spanned by f

1

x

g, in level 1 by f

1

x

2

;

1

x

; 1g et
. One easily sees that the


omplex C

�

1

[D

0

(


0




D

n

�

C

0

) [ d(D

0

(


0




D

n

�

C

0

)) has the same �rst 
ohomology
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as C

�

1

while H

1

(C

�

1

[D

1

(


0




D

n

�

C

0

)[d(D

1

(


0




D

n

�

C

0

))) is one dimensional. The


ause for the drop is

1

x

2

= � �

1

x

with d(

1

x

2

) =

�2

x

3

dx.

Set C

�

2

= C

�

1

[ fC �

1

x

2

g. Then C

�

2

�

=

C





D

n

�

C

�

and the algorithm stops.

Note 3.4. We need to de
ide linear dependen
e of a set of given 
o
hains of

di�erential forms in order to make Algorithm 3.2 run. This 
an be a
hieved by


learing denominators for example.

For the remainder of the se
tion we shall 
onsider the 
ase of proje
tive spa
e,

whi
h at the same time 
an be viewed as a warm-up for general open subsets of

P

n

, and as a ne
essary step for the 
omputation of the 
ohomology of (
losed)

proje
tive varieties.

The major diÆ
ulty that arises when going from aÆne to proje
tive spa
e is

that open sets in proje
tive spa
e are usually not open subsets of an aÆne spa
e.

This means there is no uniform Weyl algebra our 
omputations would be done over.

Thus we need to do pat
hing work and use the Mayer-Vietoris prin
iple.

Re
all that the 
one 
one(�) of a 
hain map � is essentially the total 
omplex

indu
ed by the 
hain map ([14℄, page 18).

Lemma 3.5. Let C

�

1

and C

�

2

be two 
hain 
omplexes of S-modules and let K

�

1

and K

�

2

be two sub
omplexes whi
h are quasi-isomorphi
:

K

�

1

�

=

S

,! C

�

1

; K

�

2

�

=

S

,! C

�

2

:

Let � : C

�

1

! C

�

2

be a 
hain map that sends K

�

1

into K

�

2

. Then the 
one over � is

independent (modulo quasi-isomorphy) of the 
hoi
e of the 
omplexes:


one(K

�

1

�

�! K

�

2

)

�

=

S


one(C

�

1

�

�! C

�

2

):

Proof. The in
lusions K

�

1

�

=

S

,! C

�

1

;K

�

2

�

=

S

,! C

�

2

indu
e a map 
one(K

�

1

�

�!

K

�

2

) ! 
one(C

�

1

�

�! C

�

2

). To see that this is a quasi-isomorphism 
onsider the

indu
ed map between the long exa
t sequen
es

H

i

(C

�

2

)

-

H

i

(
one(C

�

1

�

�! C

�

2

))

-

H

i

(C

�

1

[�1℄)

-

H

i+1

(C

�

2

)

H

i

(K

�

2

)

�

=

S

6

-

H

i

(
one(K

�

1

�

�! K

�

2

))

6

-

H

i

(K

�

1

[�1℄)

�

=

S

6

-

H

i+1

(K

�

2

)

�

=

S

6

and re
all the �ve-lemma. 2

Why do we need this lemma? Let us look at P

1

. We 
over it by the two open

sets U

1

= Spe
 C [x℄ and U

2

= Spe
 C [x

�1

℄ whi
h interse
t in U

1;2

= Spe
 C [x; x

�1

℄.

By Theorem 2.2 we know how to 
ompute di�erential forms on ea
h of the three

open sets that span the 
ohomology of the 
orresponding open set. These would

be f1

U

1

g; f1

U

2

g, f1

U

1;2

and (

dx

x

)

U

1;2

g. The restri
tion maps on the

�

Ce
h-de Rham


omplex level give us restri
tion maps �

0

0

: 1

U

1

! 1

U

1;2

, 1

U

2

! �1

U

1;2

. (The minus

sign is owed to the general theme of Mayer-Vietoris type 
omplexes.)
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One would like to infer that the 
ohomology of the proje
tive line is the 
oho-

mology of the 
omplex

C � 1

U

1

�

C � 1

U

2

�

�

�

�

�

0

0

R

C � 1

U

1;2

0

-

C � (

dx

x

)

U

1;2

whi
h equals C � (1

U

1

; 1

U

2

) in degree 0 and (

dx

x

)

U

1;2

in degree 2.

The reason that this is indeed so is Lemma 3.5, whi
h assures us that the


ohomology of

(


�

U

1




D

n

�

C

�

U

1

)

0

�

(


�

U

2




D

n

�

C

�

U

2

)

0

-

(


�

U

1




D

n

�

C

�

U

1

)

1

�

(


�

U

2




D

n

�

C

�

U

2

)

1

�

�

�

�

�

0

0

R

�

�

�

�

�

0

1

R

(


�

U

1;2




D

n

�

C

�

U

1;2

)

0

-

(


�

U

1;2




D

n

�

C

�

U

1;2

)

1

agrees with the one from the pi
ture above.

Example/Notation 3.6. In this example we investigate proje
tive spa
eX =

P

n

= Proj(C [x

0

; : : : ; x

n

℄). Sin
e X is 
overed by the n + 1 open sets P

j

=

Spe
(C [x

0

; : : : ; x

n

; x

�1

j

℄

0

), the 
ohomology and suitable representatives 
an be 
om-

puted from the 
ombinatori
s of this 
over.

We write I for a subset of f0; : : : ; ng and set P

I

=

T

i2I

P

i

. Then P

I

is the set of

points in P

n

where x

I

:=

Q

i2I

x

i

is nonzero. If i

0

= min

i2I

fig then P

I

� P

i

0

�

=

A

n

C

is a (jI j � 1)-fold torus, and its 
ohomology is 
aptured by a 
omplex

(3.1)

T

�

I

=

 

0! C � 1!

M

i

0

<i2I

C �

d(x

i

=x

i

0

)

x

i

=x

i

0

! � � � ! C �

Y

i

0

<i2I

d(x

i

=x

i

0

)

x

i

=x

i

0

! 0

!

;

where ea
h di�erential is zero. Here, the term in 
ohomologi
al degree k is

M

i

0

2J�I

jJj=k+1

C �

Y

i

0

<i2J

d(x

i

=x

i

0

)

x

i

=x

i

0

:

We note that there are several 
hoi
es for how to write this 
omplex, be
ause P

I

is

not only an open subset of P

i

0

but also of all other P

i

with i 2 I . For 
omputing

H

�

dR

(P

n

; C ) we want to glue all these 
omplexes together, for varying I . Then we

need to translate di�erential forms from the 
hart x

j

6= 0 to those on the 
hart

x

j

0

6= 0.

Fa
t 3.7. The 
onversion of di�erential forms on P

j

\ P

j

0

from the j-
hart P

j

to the x

j

0

-
hart P

j

0

is obtained as follows.

� f(x

0

=x

j

; : : : ;

\

x

j

=x

j

; : : : ; x

n

=x

j

) =

f(x

0

=x

j

0

;::: ;

\

x

j

0

=x

j

0

;::: ;x

n

=x

j

0

)

(x

j

=x

0

j

)

deg(f)

,

� for all i 6= j; j

0

we have d(x

i

=x

j

) =

d(x

i

=x

j

0

)

(x

j

=x

j

0

)

�

(x

i

=x

j

0

)d(x

j

=x

j

0

)

(x

j

=x

j

0

)

2

,

� d(x

j

0

=x

j

) =

�d(x

j

=x

j

0

)

(x

j

=x

j

0

)

2

.
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All these expressions are regular on P

j

\ P

j

0

= Spe
(K[x

0

; : : : ; x

n

; x

�1

j

; x

�1

j

0

℄

0

).

Note that by Fa
t 3.7, the spa
e T

k

I

is formally invariant under the 
hange of


harts j ! j

0

.

Sin
e the de Rham 
ohomology of P

n

is the 
ohomology of the total 
omplex of

the global se
tions of the

�

Ce
h-de Rham 
omplexes on the open tori, we 
on
lude by

Lemma 3.5 that the 
ohomology is 
aptured by the total 
omplex of the 
omplexes

(3.1).

For n = 2 this looks like this:

C � 1

�

C � 1

�

C � 1

�

�

�

�

�

0

0

�

R

C � 1

�

C � 1

�

C � 1

-

C �

d(x=y)

x=y

�

C �

d(x=z)

x=z

�

C �

d(y=z)

y=z

�

�

�

�

�

0

1

�

R

�

�

�

�

�

1

1

�

R

C � 1

-

C �

d(x=z)

x=z

� C �

d(y=z)

y=z

-

C �

d(x=z) ^ d(y=z)

(x=z)(y=z)

Here, the rows 
orrespond to the sub
omplexes (3.1) of the algebrai


�

Ce
h-de Rham


omplexes on P

1

; P

2

; P

3

(top blo
k), P

1;2

; P

1;3

; P

2;3

(middle blo
k) and P

1;2;3

(bot-

tom line). All maps are zero in horizontal dire
tion, and �

0

0

=

0

�

1 1 0

�1 0 1

0 �1 �1

1

A

,

�

0

1

= (1;�1; 1) and �

1

1

=

�

1 �1 0

�1 0 1

�

.

One 
an see (here, as well as in general) that the 
ohomology of P

n

is one-

dimensional in even degree 2k, generated by the k-
o
y
le of k-forms




k

=

X

I=fi

0

<:::<i

k

g�f0;::: ;ng

Y

i

0

<i2I

d(x

i

=x

i

0

)

x

i

=x

i

0

:(3.2)

where the displayed summand is de�ned on the k + 1-fold interse
tion P

I

= P

n

n

Var(x

i

0

� : : : x

i

k

).

The 


k

are, up to a 
onstant, the Chern 
lasses of proje
tive spa
e.

The example gives an indi
ation how more general open sets will be atta
ked,

namely by an open 
over, used in 
onjun
tion with the translation formul� from

Fa
t 3.7.

4. Open sets in proje
tive spa
e

Let U be the open set of P

n

de�ned by the non-vanishing of f

0

; : : : ; f

r

2 S =

K[x

0

; : : : ; x

n

℄. In this se
tion we des
ribe an algorithm to 
ompute the rational


ohomology of U using the algebrai


�

Ce
h-de Rham 
omplex on an open 
over by

the sets U

I

= U \ P

I

where the P

I

are the open sets from 3.2 
overing P

n

.
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Let I � f0; : : : ; ng and j = min

i2I

(i). We 
onsider U

I

as the open set in P

j

=

Spe
(C [

x

0

x

j

; : : : ;

x

n

x

j

℄) whose 
omplement is the variety of f

x

I

x

j

jIj

f

i

(

x

0

x

j

; : : : ;

x

n

x

j

)g

r

i=1

.

We denote by D

I

the Weyl algebra asso
iated to the ring C [

x

0

x

j

; : : : ;

x

n

x

j

℄ and by 


�

I

the Koszul 
omplex of right D

I

-modules indu
ed by �

x

0

=x

j

; : : : ; �

x

n

=x

j

.

Algorithm 2.1 in 
ombination with Theorem 2.2 produ
es for ea
h su
h I a

�nite number of 
o
y
les of di�erential forms whi
h generate the algebrai
 de Rham


ohomology H

�

dR

(U

I

; C ).

We 
an think of these 
lasses for �xed I as a sub
omplex of the algebrai


�

Ce
h-

de Rham 
omplex on U

I

with zero di�erential, having the same 
ohomology as

the whole algebrai
 de Rham 
omplex on U

I

. Our goal is to glue these 
omplexes

a

ording to the open 
over, and 
ompute 
ohomology.

Unfortunately, the natural maps of di�erential forms indu
ed by the in
lusions

U \ P

I

\ P

j

,! U \ P

I

may not be 
arried by these sub
omplexes. Sin
e we need

this to happen in order to form a total 
omplex from the sub
omplexes and to use

Lemma 3.5 we need to enlarge the sub
omplexes suitably.

The strategy is to start with the 
omplex on U \ P

j

, 0 � j � n, and work

our way up to higher and higher interse
tions. What we need to a
hieve is a set

of �nite dimensional 
omplexes C

�

I

on U \ P

I

su
h that if 
 2 C

�

I

then its natural

image in the algebrai


�

Ce
h-de Rham 
omplex on U \ P

I

is in C

�

I[j

for all I; j.

(This natural image is of 
ourse for ea
h di�erential form given by exa
tly the same

form, 
onsidered as a form on an open subset.)

Let us give an outline for how to do one su
h step. Take C

�

I

and C

�

I[j

where

the former was obtained from the integration if jI j = 1 and from the indu
tive step

otherwise, while the latter 
omes from Theorem 2.2.

Exe
ute Algorithm 3.2 with the following input and output variables. For C

�

1

we take C

�

I[j

. The set f!

i;i

0

g

i

0

is for ea
h i a set of ve
tor spa
e generators for

C

i

I

. The output C

�

is quasi-isomorphi
 to C

�

I[j

, 
ontains C

�

I

, and repla
es the old

(input) 
omplex C

�

I[j

.

Iterating over jI j from 1 to n we get a 
olle
tion of �nite dimensional 
omplexes

C

�

I

of di�erential forms whose k-th 
ohomology is exa
tly H

k

dR

(U

I

; C ), and C

�

I

,!




�

I




D

I

�

C

�

I

! 


�

I[j




D

I[j

�

C

�

I[j

fa
tors through C

�

I[j

,! 


�

I[j




D

I[j

�

C

�

I[j

. By

Lemma 3.5 the total 
omplex 
omposed of the 
omplexes C

�

I

is quasi-isomorphi


to the algebrai


�

Ce
h-de Rham 
omplex on U relative to the 
over U

I

. We hen
e

have

Algorithm 4.1 (Cohomology of open sets).

Input: Homogeneous polynomials f

0

; : : : ; f

r

in K[x

0

; : : : ; x

n

℄.

Output: The 
ohomology groups of U = P

n

C

nVar(f

0

; : : : ; f

r

).

1. For ea
h I � f0; : : : ; ng 
ompute a �nite dimensional sub
omplex C

�

I

of the

�

Ce
h-de Rham 
omplex on U

I

= U \ P

I

with C

�

I

�

=

C




�

I




D

I

�

C

�

I

(Theorem

2.2).

2. For k = 1; 2; 3; : : : ; n do

� for all jI j = k; I � f0; : : : ; ng do

{ for all j 2 f0; : : : ; ng n I do

run Algorithm 3.2 with

� Input:

� f!

i;i

0

g

i

0

:= a set of ve
tor spa
e generators for C

i

I

;

� C

�

1

:= C

�

I[j
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� Output C

�

repla
ing C

�

I[j

.

3. Set up the total 
omplex C

�

U

indu
ed by the maps C

�

I

,! C

�

I[j

.

4. Compute the 
ohomology of C

�

U

whi
h equals the singular (or de Rham)


ohomology of P

n

C

nVar(f

0

; : : : ; f

r

).

End.

The elements, and hen
e the 
ohomology, of C

�

U

are

�

Ce
h 
o
hains of di�erential

forms for the 
over U =

S

0�j�n

U

j

.

We remark that similarly to the aÆne 
ase the 
omplex C

�

U


arries not quite

enough information to 
ompute the 
up produ
t stru
ture of U , but that also like

in the aÆne 
ase this 
an be �xed by further enlarging C

�

U

:

Algorithm 4.2 (Cup produ
ts on open sets).

Input: Homogeneous polynomials f

0

; : : : ; f

r

in K[x

0

; : : : ; x

n

℄.

Output: A multipli
ation table for H

�

dR

(U ; C ).

1. Run Algorithm 4.1 to get the 
omplex C

�

U

.

2. Compute expli
it generators (
o
y
les of di�erential forms) for the 
ohomol-

ogy of C

�

U

.

3. Multiply these forms in the

�

Ce
h-de Rham 
omplex on U a

ording to the

usual rules for multiplying

�

Ce
h 
o
hains, see for example [13℄, Theorem

4.1.

4. Enlarge C

�

U

so that it 
ontains all these produ
ts (using Algorithm 3.2).

5. Determine a presentation of the 
osets of the produ
ts in terms of the 
hosen

representatives for the 
ohomology of C

�

U

to get a multipli
ation table.

End.

5. An example

In this se
tion we will go through one example in detail: the 
urve C = Var(x

2

+

yz) in P

2

. This is of 
ourse a rather spe
i�
 example, but more interesting examples

are too large to be useful for an illustration of the general te
hnique (and, as outlined

in the introdu
tion, examples of substantial interest are out of rea
h at the moment).

On the three 
oordinate pat
hes of P

2

, the 
omplement of C is given by the

non-vanishing of 1 + (z=x)(y=x), (x=y)

2

+ z=y and (x=z)

2

+ y=z. We shall 
all

U

1

; U

2

; U

3

the 
orresponding 
oordinate pat
hes of P

2

nC, and U

1;2

, U

1;3

, U

2;3

and

U

1;2;3

their interse
tions.

First we determine a �nite set of (exa
t) di�erential forms on ea
h of the U

I

su
h

that the in
lusion of the 
omplex C

�

I

generated by these forms (with trivial di�eren-

tial) into the algebrai


�

Ce
h-de Rham 
omplex 


�

I




D

I

�

C

�

I

is a quasi-isomorphism.

Later we shall 
onsider the natural maps 


�

I




D

I

�

C

�

I

! 


�

I[j




D

I[j

�

C

�

I[j

obtained

from the in
lusions U

I[j

,! U

I

.
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With Ma
aulay 2 one 
omputes that the de Rham 
ohomology groups of the

various U

I

are generated by the following elements.

U

1

H

0

1

H

1

e

1:1

=

(y=x)(z=x)

2

d(y=x)+(y=x)

2

(z=x)d(z=x)

(1+(y=x)(z=x))

2

H

2

t

1:1

=

(y=x)(z=x)d(y=x) d(z=x)

(1+(y=x)(z=x))

2

U

2

H

0

1

H

1

e

2:1

=

d(z=y)+2(x=y)d(x=y)

(x=y)

2

+(z=y)

U

3

H

0

1

H

1

e

3:1

=

d(y=z)+2(x=z)d(x=z)

(x=z)

2

+(y=z)

U

1;2

H

0

1

H

1

e

1;2:1

=

(x=y)(z=y)

2

d(x=y)�

1

2

(x=y)

2

(z=y)d(z=y)

(((x=y)

2

+(z=y))(x=y))

2

e

1;2:2

=

d(x=y)

(x=y)

H

2

t

1;2:1

=

(x=y)(z=y)d(x=y) d(z=y)

(((x=y)

2

+(z=y))(x=y))

2

U

1;3

H

0

1

H

1

e

1;3:1

=

(x=z)(y=z)

2

d(x=z)�

1

2

(x=z)

2

(y=z)d(y=z)

(((x=z)

2

+(y=z))(x=z))

2

e

1;3:2

=

d(x=z)

(x=z)

H

2

t

1;3:1

=

(x=z)(y=z)d(x=z) d(y=z)

(((x=z)

2

+(y=z))(x=z))

2

U

3;2

H

0

1

H

1

e

3;2:1

=

�2(y=z)

2

(x=z)

3

d(x=z)+(y=z)(x=z)

4

d(y=z)

(((x=z)

2

+(y=z))(y=z))

2

e

3;2:2

=

d(y=z)

(y=z)

H

2

t

3;2:1

=

(y=z)(x=z)

3

d(x=z) d(y=z)

(((x=z)

2

+(y=z))(y=z))

2

U

1;2;3

H

0

1

H

1

e

1;2;3:1

=

�2(y=z)

2

(x=z)

5

d(x=z)+(y=z)(x=z)

6

(((x=z)

2

+(y=z))(x=z)(y=z))

2

e

1;2;3:2

=

�2(y=z)

4

(x=z)d(x=z)+(y=z)

3

(x=z)

2

d(y=z)

(((x=z)

2

+(y=z))(x=z)(y=z))

2

e

1;2;3:3

=

d(y=z)

(y=z)

H

2

t

1;2;3:1

=

(y=z)(x=z)

5

d(x=z) d(y=z)

(((x=z)

2

+(y=z))(x=z)(y=z))

2

t

1;2;3:2

=

(y=z)

3

(x=z)d(x=z) d(y=z)

(((x=z)

2

+(y=z))(x=z)(y=z))

2

In this table, e

I:k

is the k-th generator of H

1

(U

I

; C ) while t

I:k

is the k-th generator

of H

2

(U

I

; C ). For example, the 
ommands for U

3

are

load "../m2/Dloadfile.m2"

R=QQ[s,t℄ -- s=x/z, t=y/z

f=s^2+t

deRhamAll(f)

The �rst line loads the D-module library [6℄. From 3.7,

d(x=y) = (y=z)

�1

d(x=z)� (x=z)(y=z)

�2

d(y=z);

d(z=y) = �(y=z)

�2

d(y=z):

This holds of 
ourse for any permutation of the variables x; y; z as well. Set g

y;z

=

(x=z)

2

(y=z)

((x=z)

2

+(y=z))(y=z)

, g

x;z

=

(x=z)(y=z)

((x=z)

2

+(y=z))(x=z)

, g

x;y

=

(x=y)(z=y)

((x=y)

2

+(z=y))(x=y)

and note that

g

x;y

= g

x;z

= 1� g

y;z

.
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With these rules and abbreviations one 
omputes the following identi�
ations

representing the maps from 0-
o
hains to 1-
o
hains and from 1-
o
hains to 2-


o
hains.

e

3:1

= �e

2;3:1

+ e

2;3:2

+ d(g

y;z

) = 2e

1;3:2

� 2e

1;3:1

+ d(g

x;z

)

e

2:1

= �e

2;3:1

� e

2;3:2

+ d(g

y;z

) = 2e

1;2:2

� 2e

1;2:1

+ d(g

x;y

)

e

1:1

= �2e

1;3:1

= �2e

1;2:1

t

1:1

= t

1;3:1

= �t

1;2:1

e

2;3:1

= e

1;2;3:1

e

2;3:2

= e

1;2;3:3

t

2;3:1

= t

1;2;3:1

e

1;3:1

= �

1

2

e

1;2;3:2

e

1;3:2

=

1

2

e

1;2;3:1

�

1

2

e

1;2;3:2

+ d(g

y;z

)

t

1;3:1

= �t

1;2;3:2

e

1;2:1

= �2e

1;2;3:2

e

1;2:2

= �

1

2

e

1;2;3:1

�

1

2

e

1;2;3:2

+ e

1;2;3:3

+ d(g

y;z

):

Then the following forms generate �nite dimensional 
omplexes C

�

I

that are quasi-

isomorphi
 by the in
lusion to the

�

Ce
h-de Rham 
omplex on U

I

.

U

1

1 e

1:1

t

1:1

U

2

1 e

2:1

U

3

1 e

3:1

U

1;2

1; g

x;y

e

1;2:1

; e

1;2:2

; d(g

x;y

) t

1;2:1

U

1;3

1; g

x;z

e

1;3:1

; e

1;3:2

; d(g

x;z

) t

1;3:1

U

2;3

1; g

y;z

e

2;3:1

; e

2;3:2

; d(g

y;z

) t

2;3:1

U

1;2;3

1; g

y;z

e

1;2;3:1

; e

1;2;3:2

; e

1;2;3:3

; d(g

y;z

) t

1;2;3:1

; t

1;2;3:2

The forms g

x;y

; g

x;z

and g

y;z

and their boundaries are needed to assure that C

�

I

�

C

�

I[j

for all I � f1; 2; 3g and all j 2 f1; 2; 3g n I .

By Lemma 3.5 the

�

Ce
h-de Rham 
omplex on U = P

2

n C is quasi-isomorphi


to the total 
omplex 
omposed of the C

�

I

.

Let U

(1)

= fU

1

; U

2

; U

3

g, U

(2)

= fU

1;2

; U

2;3

; U

1;3

g. Then the total 
omplex C

�

U

made from the C

�

I

has

� three terms in degree zero (the three 
onstants on U

(1)

),

� nine terms in degree 1 (three 
onstants from U

(2)

, three H

1

-generators from

U

(1)

and the three 0-forms g

x;y

, g

x;z

, g

y;z

on U

(2)

),

� twelve terms in degree 2 (one H

2

generator from U

3

, six H

1

-generators from

U

(2)

, the 
onstants from U

1;2;3

, the di�erentials of the extra 0-forms on U

(1)

and an additional 0-form on U

1;2;3

),

� seven terms in degree 3 (three H

2

-generators from U

(2)

, three H

1

-generators

from U

1;2;3

and the di�erential of the additional 0-form on U

1;2;3

),

� two terms in degree 4 (the H

2

-generators on U

1;2;3

).

Sin
e this is a �nite-dimensional 
omplex, we 
an 
ompute its 
ohomology by linear

algebra. This determines

�

Ce
h-de Rham 
o
hains of di�erential forms in the

�

Ce
h-

de Rham 
omplex on U that 
arry the de Rham 
ohomology of U . With Ma
aulay

2 again one 
omputes the 
ohomology of this 
omplex to be zero in all degrees but
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in H

0

where the 
ohomology is isomorphi
 to C , generated by the 
o
hain (1; 1; 1)

of 0-forms on U

(1)

.

6. Closed and lo
ally 
losed subsets

6.1. Closed varieties in P

n

. In this subse
tion we 
onsider what information


an be obtained of the 
ohomology of the 
losed sets Y = Var(f

0

; : : : ; f

r

).

We �rst note that there is a long exa
t sequen
e of sheaf 
ohomology

� � � ! H

k

Y

(P

n

; C ) ! H

k

(P

n

; C ) ! H

k

(U ; C ) ! H

k+1

Y

(P

n

; C ) ! � � �

Here C denotes the 
onstant sheaf. Furthermore, sin
e P

n

is a manifold of dimension

2n, we 
an use Alexander duality [4℄. Hen
e

H

k

Y

(P

n

; C )

�

=

H

2n�k




(Y ; C )

�

;

the latter denoting the ve
tor spa
e dual of 
ohomology with 
ompa
t supports.

Sin
e Y is a 
ompa
t spa
e however, 
ohomology with 
ompa
t supports agrees

with the usual 
ohomology. Considering the stru
ture of the 
ohomology groups

on P

n

(zero in odd degree) there are exa
t sequen
es

0! H

2k�1

(U ; C ) ! H

2n�2k

(Y ; C )

�

! H

2k

(P

n

; C )

! H

2k

(U ; C ) ! H

2n�2k�1

(Y ; C )

�

! 0

for all i > 0 and an exa
t sequen
e

0! H

2n

(Y ; C )

�

! H

0

(P

n

; C ) ! H

0

(U ; C ) ! H

2n�1

(Y ; C )

�

! 0

where the star denotes the ve
tor spa
e dual. It is not hard to understand the

maps H

k

(P

n

; C ) ! H

k

(U ; C ) algorithmi
ally. In Se
tion 3 we found generators for

the 
ohomology of P

n

. Sin
e the in
lusion U ! P

n

indu
es the maps H

k

(P

n

; C ) !

H

k

(U ; C ), the forms 


k

2 H

2k

(P

n

; C ) are simply interpreted as forms on U . In order

to �nd the kernel and the 
okernel of H

k

(P

n

; C ) ! H

k

(U ; C ) it is suÆ
ient to �nd

a sub
omplex C

�

�

=

C

C

�

U

of the algebrai


�

Ce
h-de Rham 
omplex on U =

S

(P

i

\U)

that 
ontains ea
h 


k

, be
ause of Lemma 3.5. Su
h a 
omplex 
an be 
onstru
ted

from Algorithm 3.2.

Hen
e we have the following algorithm:

Algorithm 6.1 (Cohomology of proje
tive varieties).

Input: Homogeneous polynomials f

0

; : : : ; f

r

in C [x

0

; : : : ; x

n

℄.

Output: The 
ohomology groups of Var(f

0

; : : : ; f

r

) in P

n

C

.

Let U = P

n

nVar(f

0

; : : : ; f

r

).

1. Compute C

�

U

, a �nite dimensional 
omplex of di�erential forms on U =

S

r

i=0

(U \ P

i

) from Algorithm 4.1 that 
omputes the de Rham 
ohomology

of U .

2. Use Algorithm 3.2 to enlarge C

�

U

so that it 
ontains for all k the 
o
y
les 


k

from (3.2).

3. H

2n�2k�1

(Y ; C ) is isomorphi
 to the 
okernel of the map

H

2k

(P

n

; C ) ! H

2k

(U ; C ):

The dimension of this spa
e agrees with dim

C

H

2k

(U ; C ) if 


k

represents the

zero 
lass in H

2k

(U ; C ); else it is dim

C

H

2k

(U ; C ) � 1. The vanishing of 


k

in H

2k

(U ; C ) is equivalent to 


k

being an image in C

�

U

.

4. dim

C

H

2n�2k

(Y ; C ) equals dim

C

H

2k�1

(U ; C ) if 


k

= 0 in H

2k

(U ; C ) and

dim

C

H

2k�1

(U ; C ) + 1 otherwise.
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End.

Remark 6.2. Sin
e Chern 
lasses are preserved under pullba
ks, if U is some

open set in P

n

then the images on U of the generators for H

2k

(P

n

; C ) from (3.1) are

the Chern 
lasses of U . This shows how one 
an determine vanishing of the rational

Chern 
lasses on U . Y and U have the same 
ohomology dimensions ex
ept for

a di�eren
e of 1 or �1. This di�eren
e is di
tated by the vanishing of the Chern


lasses of U .

Example 6.3. Consider the variety de�ned by x

2

+ zy in P

2

. Se
tion 5 shows

that the 
orresponding U has no 
ohomology but for H

0

(U ; C )

�

=

C . Hen
e

H

0

(Y ; C )

�

=

C 
orresponding to the se
ond Chern 
lass on P

2

, H

2

(Y ; C )

�

=

C


orresponding to the �rst Chern 
lass on P

2

, and all other 
ohomology groups of Y

vanish.

Example 6.4. We 
onsider the 
urve C = Var(x

2

y + y

2

z + z

2

x) in P

2

. P

2

is


overed by U

1

= Spe
 C [y=x; z=x℄, U

2

= C [x=y; z=y℄ and U

3

= C [x=z; y=z℄. We take

as 
oordinates s = x=z; t = y=z on U

3

, U

1;3

, U

2;3

and U

1;2;3

; s = y=x; t = z=x on

U

1

and U

1;2

; s = x=y; t = z=y on U

2

. We have the following dehomogenizations for

f :

R=QQ[s,t℄

f1=s+s^2*t+t^2

f2=s^2+t+s*t^2

f3=s^2*t+t^2+s

Moreover, on two- and threefold interse
tions U \P

I

is de�ned by the nonvanishing

of

f12=(s+s^2*t+t^2)*s

f13=(s^2*t+t^2+s)*s

f23=(s^2*t+t^2+s)*t

f123=(s^2*t+t^2+s)*s*t

With Ma
aulay 2 one 
omputes with the 
ommand

deRhamAll(g)

the following 
ohomology generator table where g is one of f

1

; : : : ; f

1;2;3

.
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U

1

H

1

2st+ 1

s

2

+ 2t

H

2

1 t s

U

2

H

1
t

2

+2s

2

2st+1

2

H

2

1 t s

U

3

H

1

2st+ 1

s

2

+ 2t

H

2

1 t s

U

1;2

H

1

2t

2

+ s

s

2

t+t

2

+s

2

�s

3

� 2st 0

H

2

t t

2

1 s

2

U

1;3

H

1

�2t

2

� s s

2

t+ t

2

+ s

s

3

+ 2st 0

H

2

t t

2

1 s

2

U

2;3

H

1

0

�2st

2

�t

4

�s

2

t� t

2

� s

�t

2

+s

4

H

2

1 t

2

st t

U

1;2;3

H

1

t

2

s

2

� t

3

2t

3

+st

4

�

s

2

t

2

+t

3

+st

2

s

3

t+ 2st

2
�st

2

+s

2

4

0

H

2

t

2

s t s

2

t 1

In this table the generators for H

1

(U

I

; C ) 
orrespond to 
olumns where the el-

ements of the top row have to be multiplied with

ds

f

I

and those of the bottom

with

dt

f

I

. So for example H

1

(U

1;2;3

; C ) has three generators, the �rst of whi
h is

(t

2

s

2

�t

3

)ds+(s

3

t+2st

2

)dt

f

1;2;3

. Similarly, the polynomials listed next to H

2

are to be mul-

tiplied with

ds dt

f

I

and then are generators for H

2

(U

I

; C ). So for example H

2

(U

3

; C )

has three generators the last of whi
h is

s ds dt

f

3

.

We denote these 
lasses by e

I:k

(H

1

-generator in 
olumn k) and t

I:k

0

(H

2

-

generator in 
olumn k

0

) where I is the index of the open set in question (for example,

f1; 3g for U

1;3

). Thus, t

1;2;3:2

is the 
lass

s ds dt

f

1;2;3

.

As always for a 
onne
ted set, the group H

0

(U ; C ) is a one-dimensional ve
tor

spa
e, and it is here generated by the 
o
y
le (1; 1; 1) of 0-forms. The 0-forms make

no further 
ontribution to the 
ohomology of U .

Using the transformation rules (for example from U

1

to U

1;3

they say s !

s

�1

t; ds! �s

�2

t ds+ s

�1

dt and t! s

�1

; dt! s

�2

ds) one 
omputes that

e

3:1

= e

1;3:1

+ 2e

1;3:2

= �e

2;3:1

� 4e

2;3:2

;

e

1:1

= e

1;3:1

� e

1;3:2

= �e

1;2:1

+ 4e

1;2:2

;

e

2:1

= e

2;3:1

� 2e

2;3:2

= �

1

2

e

1;2:1

� e

1;2:2

;

e

1;3:1

= e

1;2;3:1

+ 2e

1;2;3:3

;

e

1;3:2

= �2e

1;2;3:3

;

e

2;3:1

= �e

1;2;3:1

� 4e

1;2;3:2

� 2e

1;2;3:3

;

e

2;3:2

= e

1;2;3:2

+ e

1;2;3:3

;

e

1;2:1

= e

1;2;3:1

+ 8e

1;2;3:2

+ 4e

1;2;3:3

;

e

1;2:2

=

1

2

e

1;2;3:1

+ 2e

1;2;3:2

+ 2e

1;2;3:3

:
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This shows that the 1-forms form a 
omplex of ve
tor spa
es with entries of dimen-

sions 1+1+1, 2+ 2+ 2 and 3 where the matri
es have ranks 3 and 3 respe
tively.

Hen
e the 1-forms make no 
ontribution to the 
ohomology of U .

Finally, applying the 
onversion rules to the 2-forms on the various U

I

one

obtains a 
omplex that has three entries (on one-, two- and threefold interse
tions

of open sets) with matri
es M

2:1

: C

3�3

! C

3�4

and M

2:2

: C

4�3

! C

1�5

. These

matri
es turn out to have ranks 7 and 5 respe
tively. Hen
e the 2-forms 
ontribute

2 generators of H

2

(U ; C ) and nothing to H

3

(U ; C ) or H

4

(U ; C ).

So U has 
ohomology only in degrees 0 and 2, and H

2

(U ; C ) is of dimension

2. It is noteworthy that the �rst Chern 
lass of U must be torsion, be
ause it is

the pullba
k from P

2

of a 1-
o
y
le of 1-forms and we saw that 1-forms make no


ontribution to the rational 
ohomology of U .

From the Alexander duality exa
t sequen
e we see that the 
omplementary


urve C has either Betti numbers 1,2,1 or 1,1,0. The latter 
ase 
an o

ur only

if the �rst Chern 
lass of U is nonzero. Sin
e we know it vanishes, C has a two

dimensional H

1

and a one-dimensional H

2

. As one 
an 
he
k on a lo
al 
hart, C

is smooth and therefore topologi
ally S

1

� S

1

.

6.2. Compa
t Cohomology. If Y is an aÆne variety Y � X = A

n

, then

one 
an 
ompute the 
ohomology groups with 
ompa
t support from Alexander

duality on the aÆne spa
e.

Example 6.5. Let f = x

3

+ y

3

+ z

3

. Then the de Rham 
ohomology groups

on U = C

3

nVar(f) have dimensions 1, 1, 2 and 2, whi
h we 
omputed by Ma
aulay

2 with

R=QQ[x,y,z℄

deRhamAll(x^3+y^3+z^3)

From Alexander duality one 
on
ludes that (sin
e C

3

has real dimension 6 and is


ontra
tible)

(H

i




(Y ; C ))

�

�

=

H

6�i

Y

(X ; C )

�

=

H

6�i�1

(U ; C )

for i < 5 and H

i




(Y ; C ) = 0 for i > 4. Thus the 
ohomology groups H

i




(Y ; C ) with


ompa
t support of Y have dimensions 0, 0, 2, 2, 1 for i = 0; : : : ; 4 and are zero

otherwise.

One 
an push the 
omputations a little further in ni
e situations.

Example 6.6. If Y = Var(f) � P

n

is smooth, then the (usual) 
ohomology of

Var(f)\P

0

(an aÆne 
hart of Var(f)) 
an be 
omputed. For example, if f = x

2

+yz,


onsider the 
losed subset Z of Y given by x = 0. This is a 2 point set. Let us now


ompute the 
ohomology of Y \ P

0

= Y n Z = Var(1 + yz) � A

2

. By Alexander

duality on Y , H

2�1�i

(Z; C ) = H

i

Z

(Y ; C )

�

. Set V = P

2

n Z and U = P

2

n Y . Then

the long exa
t sequen
e of sheaf 
ohomology on Y gives (with duality in
orporated)

0! H

2

(Z; C )

�

! H

0

(Y ; C ) ! H

0

(V \ Y ; C )

! H

1

(Z; C )

�

! H

1

(Y ; C ) ! H

1

(V \ Y ; C )

! H

0

(Z; C )

�

! H

2

(Y ; C ) ! H

2

(V \ Y ; C ) ! 0:

The map H

2�k

(Z; C )

�

! H

k

(Y ; C )

�

=

H

2�k

(Y ; C )

�

(by Poin
ar�e duality) is in-

du
ed by Alexander duality and really should be thought of as the dual of the

map H

k

(Y ; C ) ! H

k

(Z; C ) indu
ed by Z ,! Y . Alexander duality shows that
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H

2�k

(Z; C )

�

! H

2�k

(Y ; C )

�

is equivalent to H

4�2+k

Z

(P

2

; C ) ! H

4�2+k

Y

(P

2

; C )

(i.e., Alexander duality gives a quasi-isomorphism of the 2-term sequen
es).

Consider the 
ommutative diagram

H

2n�k

(P

n

; C )

-

H

2n�k

(V ; C )

-

H

2n�k+1

Z

(P

n

; C )

-

H

2n�k+1

(P

n

; C )

-

H

2n�k+1

(V ; C )

H

2n�k

(P

n

; C )

=

?

-

H

2n�k

(U ; C )

�

2n�k

U;V

?

-

H

2n�k+1

Y

(P

n

; C )

?

-

H

2n�k+1

(P

n

; C )

=

?

-

H

2n�k+1

(U ; C )

�

2n�k+1

U;V

?

Inspe
tion shows that ker(H

k+1

Z

(P

n

; C ) ! H

k+1

Y

(P

n

; C )) is isomorphi
 to

ker(H

k

(V ; C ) ! H

k

(U ; C ))

im(H

k

(P

n

; C ) ! H

k

(V ; C )) \ ker(H

k

(V ; C ) ! H

k

(U ; C ))

(and zero in the 
ase k = 0). This dimension 
an be 
omputed by our methods

on the level of di�erential forms, by repeatedly applying Algorithm 3.2. It follows

that we 
an evaluate the dimensions of the kernel and 
okernel of H

2�k

Z

(P

2

; C ) !

H

2�k

Y

(P

2

; C ) and hen
e the dimensions of H

k

(V \Y ; C ). In our example, U has no

nontrivial 
ohomology as pointed out, V = P

2

n two points. We get the following

table of dimensions of 
ohomology groups:

k = 0 k = 1 k = 2 k = 3 k = 4

H

k

(P

2

; C ) 1 0 1 0 1

H

k

(V ; C ) 1 0 1 1 0

H

k

(U ; C ) 1 0 0 0 0

H

k

Z

(P

2

; C ) 0 0 0 0 2

H

k

(Z; C ) 2 0 0 0 0

H

k

Y

(P

2

; C ) 0 0 1 0 1

H

k

(Y ; C ) 1 0 0 0 0

ker(H

k

(V ; C ) ! H

k

(U ; C )) 0 0 1 1 0

im(H

k

(P

2

; C ) ! H

k

(V ; C )) 1 0 1 0 0

H

k

(Y n Z; C ) 1 1 0 0 0

Example 6.7. We 
ontinue Example 6.4 from the previous subse
tion. There

we found that C = Var(x

2

y+y

2

z+ z

2

x) has Betti numbers 1,2 and 1. We 
onsider

now the open set V in C de�ned by the nonvanishing of z. On the open set P

3

of

P

2

this set is the 
ubi
 
urve de�ned by s

2

t+ t

2

+ s. It is easy to see that C meets

z = 0 in 2 points, Z = f(0; 1; 0); (1; 0; 0)g.

The long exa
t sequen
e for the pair (C;Z) gives

0! H

2

(Z; C )

�

! H

0

(C; C ) ! H

0

(V ; C ) !

! H

1

(Z; C )

�

! H

1

(C; C ) ! H

1

(V ; C ) !

! H

0

(Z; C )

�

! H

2

(C; C ) ! H

2

(V ; C ) ! 0

Of 
ourse H

0

(V ; C )

�

=

C and H

2

(V ; C ) is zero be
ause V is topologi
ally a non-


losed surfa
e. Hen
e the known data imply that H

1

(V ; C )

�

=

C

3

.

7. Tori
 varieties

The prin
iples outlined in the previous se
tions also apply to open and 
losed

sets within smooth tori
 varieties. We shall demonstrate this with an example.
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Example 7.1. Let X be the se
ond Hirzebru
h surfa
e F

2

(see [1℄) de�ned by

the 
omplete fan � in the plane whose rays are the ve
tors (1; 0), (0; 1), (�1; 2),

(0;�1). We denote the 4 maximal 
ones by A; : : : ; D, the rays by AB; : : : ; DA

and the trivial 
one by ABCD. We write O

�

for the ring of regular fun
tions

on the aÆne variety de�ned by the 
one �. One �nds easily that O

A

= k[(x=z) =

s

A

; (yz

2

=w) = t

A

℄, O

B

= k[(z=x) = s

B

; (yz

2

=w) = t

B

℄, O

C

= k[(z=x) = s

C

; (w=yx

2

) =

t

C

℄, O

D

= k[(x=z) = s

D

; (w=yz

2

) = t

D

℄.

Let us �rst 
ompute the 
ohomology of X . (This is of 
ourse well known

from 
ombinatorial methods, see [1℄.) On ea
h maximal 
one, a 
omplex quasi-

isomorphi
 to the

�

Ce
h-de Rham 
omplex is simply given by (C � 1) 
on
entrated

in degree zero. The interse
tions of neighboring 
ones lead to spa
es isomorphi
 to

C � C

�

, so they have a

�

Ce
h-de Rham 
omplex quasi-isomorphi
 to the 
omplex

�

C � 1! C �

df

f

�

where f is an appropriately 
hosen divisor (
orresponding to the

ray of interse
tion). For example, the interse
tion of the 
ones B and C leads to

the divisor t

C

and a 
orresponding de Rham 
ohomology generator

d(t

C

)

t

C

.

The interse
tion of 
ones A and C, and B and D, and all higher interse
tions

are 2-tori with

�

Ce
h-de Rham 
omplex quasi-isomorphi
 to the 
omplex C � 1 !

C �

ds

A

s

A

� C �

dt

A

t

A

! C �

ds

A

dt

A

s

A

t

A

.

We 
ombine the 4 + 6 + 4 + 1

�

Ce
h-de Rham 
omplexes to a 
omplex whi
h


omputes the 
ohomology of X in terms of

�

Ce
h 
o
hains of di�erential forms.

The de Rham 
ohomology of X is then generated in degree 0 by the 0-
o
y
le

(1

A

; 1

B

; 1

C

; 1

D

) (whi
h means that on ea
h 2-dimensional 
one the 
hosen fun
tion

is identi
ally 1). The groupH

2

(X ; C ) is of rank two and generated by the 1-
o
y
les

of 1-forms � = (

ds

A

s

A

;

ds

A

s

A

; 0; 0;

ds

C

s

C

;

ds

C

s

C

) and � = (

2ds

A

s

A

;

�2dt

A

t

A

;

�dt

A

t

A

;

dt

C

t

C

;

dt

C

t

C

; 0)

where these are the 6 
omponents 
orresponding to the 6 interse
tions of the 2-


ones, ordered lexi
ographi
ally. Finally, H

4

(X ; C ) 
an be seen to be generated by

the 2-
o
y
le of 2-forms (

ds

A

dt

A

s

A

t

A

;

ds

A

dt

A

s

A

t

A

;

ds

A

dt

A

s

A

t

A

;

ds

A

dt

A

s

A

t

A

) on the triple interse
tions.

All other 
ohomology groups are zero.

Example 7.2. Now we 
onsider the 
ohomology of the 
omplement of the di-

visor f = w � x

2

y + z

2

y in the surfa
e X of the previous example. To that end

we 
ompute generators for the de Rham 
ohomology for the 
omplement on ea
h

aÆne pie
e determined by a 
one of �. This is done by Ma
aulay 2 and we use the

following notation.

Cone Variables Ring Divisor of f

A s

A

= x=z, t

A

= yz

2

=w k[s

A

; t

A

℄ f

A

= 1� s

2

A

t

A

+ t

A

B s

B

= z=x, t

B

= yx

2

=w k[s

B

; t

B

℄ f

B

= 1� t

B

+ s

2

B

t

B

C s

C

= z=x, t

C

= w=yx

2

k[s

C

; t

C

℄ f

C

= t

C

� 1 + s

2

C

D s

D

= x=z, t

D

= w=yz

2

k[s

D

; t

D

℄ f

D

= t

D

� s

2

D

+ 1

AB s

A

= x=z, t

A

= yz

2

=w k[s

A

; t

A

; s

�1

A

℄ f

AB

= (1� s

2

A

t

A

+ t

A

)s

A

BC s

C

= z=x, t

C

= w=yx

2

k[s

C

; t

C

; t

�1

C

℄ f

BC

= (t

C

� 1 + s

2

C

)t

C

CD s

C

= z=x, t

C

= w=yx

2

k[s

C

; t

C

; s

�1

C

℄ f

CD

= (t

C

� 1 + s

2

C

)s

C

DA s

A

= x=z, t

A

= yz

2

=w k[s

A

; s

A

; t

�1

A

℄ f

AD

= (1� s

2

A

t

A

+ t

A

)t

all others s

A

= x=z, t

A

= yz

2

=w k[s

A

; t

A

; s

�1

A

; t

�1

A

℄ f

ABCD

= (1� s

2

A

t

A

+ t

A

)st
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In these lo
al variables, we have the following generators for the 
ohomology

of the various open sets:

H

0

H

1

H

2

A 1

2s

A

t

A

ds

A

+(s

2

A

�1)dt

A

f

A

= A

1;1

ds

A

dt

A

f

A

= A

2:1

s

A

ds

A

dt

A

f

A

= A

2:2

B 1

2s

B

t

B

ds

B

+(s

2

B

�1)dt

B

f

B

= B

1:1

ds

B

dt

B

f

B

= B

2:1

s

B

ds

B

dt

B

f

B

= B

2:2

C 1

2s

C

ds

C

+dt

C

f

C

= C

1:1

D 1

�2s

D

ds

D

+dt

D

f

D

= D

1:1

AB 1

�(2t

A

+2)ds

A

�(s

3

A

�s

A

)dt

A

f

AB

= AB

1:1

ds

A

dt

A

f

AB

= AB

2:1

(s

2

A

t

A

�t

A

�1)ds

A

f

AB

= AB

1:2

s

A

ds

A

f

AB

= AB

2:2

s

2

A

ds

A

f

AB

= AB

2:3

BC 1

(s

2

C

+t

C

�1)dt

C

f

BC

= BC

1:1

ds

C

dt

C

f

BC

= BC

2:1

2s

C

t

C

ds

C

+t

C

dt

C

f

BC

= BC

1:2

s

C

ds

C

dt

C

f

BC

= BC

2:2

CD 1

(2�2t

C

)ds

C

+s

C

dt

C

f

CD

= CD

1:1

ds

C

dt

C

f

CD

= CD

2:1

(s

2

C

+t

C

�1)ds

C

f

CD

= CD

1:2

AD 1

�2s

A

t

2

A

ds

A

�dt

A

f

AD

= AD

1:1

t

A

ds

A

dt

A

f

AD

= AD

2:1

�2s

A

t

2

A

ds

A

+(�s

2

A

t

A

+t

A

)dt

A

f

AD

= AD

1:2

s

A

t

A

ds

A

dt

A

f

AD

= AD

2:2

ABCD 1

(�2t

2

A

�2t

A

)ds

A

�s

A

dt

A

f

ABCD

= ABCD

1:1

ds

A

dt

A

f

ABCD

= ABCD

2:1

2s

2

A

t

2

A

ds

A

+s

A

dt

A

f

ABCD

= ABCD

1:2

t

A

ds

A

dt

A

f

ABCD

= ABCD

2:2

2s

2

A

t

2

A

ds

A

+(s

3

A

t

A

�s

A

t

A

) dt

A

f

ABCD

= ABCD

1:3

s

A

t

A

ds

A

dt

A

f

ABCD

= ABCD

2:3

s

2

A

t

A

ds

A

dt

A

f

ABCD

= ABCD

2:4

The map of 0-
o
hains to 1-
o
hains of 1-forms is given by the following 
hart.

A

1;1

! (�AB

1;1

+ 2AB

1;2

) + (AC

1;3

)� (AD

1;2

)

B

1;1

! (�AB

1;1

+ 2AB

1;2

)� (BC

1;1

+ BC

1;2

) � (BD

1;3

)

C

1;1

! (�AC

1;1

) � (BC

1;2

) + (CD

1;1

+ 2CD

1;2

)

D

1;1

! (�AD

1;1

) + (BD

1;2

)� (CD

1;1

):

On the other hand, the map from 1-
o
hains to 2-
o
hains is as follows.

AB

1;1

! (ABC

1;1

+ ABC

1;2

� ABC

1;3

) + (ABD

1;1

+ ABD

1;2

� ABD

1;3

)

AB

1;2

! (

1

2

ABC

1;1

+

1

2

ABC

1;2

) + (

1

2

ABD

1;1

+

1

2

ABD

1;2

)

AC

1;1

! (�ABC

1;1

) + (ACD

1;1

)

AC

1;2

! (�ABC

1;2

) + (ACD

1;2

)

AC

1;3

! (�ABC

1;3

) + (ACD

1;3

)

AD

1;1

! (ABD

1;2

) + (ACD

1;2

)

AD

1;2

! (ABD

1;3

) + (ACD

1;3

)

BC

1;1

! (ABC

1;1

+ ABC

1;3

) + (BCD

1;1

+ BCD

1;3

)

BC

1;2

! (ABC

1;1

) + (BCD

1;1)

BD

1;1

! (ABD

1;1

) � (BCD

1;1

)

BD

1;2

! (ABD

1;2

) � (BCD

1;2

)

BD

1;3

! (ABD

1;3)

)� (BCD

1;3

)

CD

1;1

! (�ACD

1;2

) � (BCD

1;2

)

CD

1;2

! (

1

2

ACD

1;1

+

1

2

ACD

1;2

) + (

1

2

BCD

1;1

+

1

2

BCD

1;2

)
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Finally, the map to 3-
o
hains is given by the following table.

ABCD

1;1

ABCD

1;2

ABCD

1;3

ABC

1;1

1 0 0

ABC

1;2

0 1 0

ABC

1;3

0 0 1

ABD

1;1

�1 0 0

ABD

1;2

0 �1 0

ABD

1;3

0 0 �1

ACD

1;1

1 0 0

ACD

1;2

0 1 0

ACD

1;3

0 0 1

BCD

1;1

�1 0 0

BCD

1;2

0 �1 0

BCD

1;3

0 0 �1

Taking 
ohomology (in Ma
aulay 2 for example with the 
ommands ker, image,

gens and %) we see that H

2

(U ; C ) is generated by the 1-
o
y
le of 1-forms � =

(�AB

1;2

;�

1

2

AC

1;1

�

1

2

AC

1;2

; 0; 0;

1

2

BD

1;1

+

1

2

BD

1;2

; CD

1;2

) (this is the same � that

was a 
ohomology generator on X , now expressed in terms of the 
o
hains on U).

This is the only 
ontribution 1-forms make to the 
ohomology of U .

On the 2-forms we have the following maps for

�

Ce
h 
o
y
les from single to

double interse
tions:

(7.1)

A

2;1

! (AB

2;2

) + (AC

2;3

) + (AD

2;1)

A

2;2

! (AB

2;3

) + (AC

2;4

) + (AD

2;2

)

B

2;1

! (AB

2;2

)� (BC

2;1

) + (BD

2;3

)

B

2;2

! (AB

2;1

)� (BC

2;2

) + (BD

2;2

)

The matrix for 2-forms from double to triple interse
tions 
an be obtained (we omit

the obvious maps from AC and BD to any triple interse
tion) from the equations

AB

2;1

= BC

2;2

= �ABCD

2;2

;

AB

2;2

= AD

2;1

= BC

2;1

= ABCD

2;3

;

AB

2;3

= AD

2;2

= ABCD

2;4

;

CD

2;3

= ABCD

2;3

:

Linear algebra shows that the 2-forms do not 
ontribute to the 
ohomology of U .

Thus, H

0

(U ; C )

�

=

H

2

(U ; C )

�

=

C and all other 
ohomology groups are zero.

It follows from the long exa
t sequen
e in 6.1 relating the open set and the

variety of f that Var(f) has its 
ohomology 
on
entrated in degree 0 and 2 and

both are one-dimensional. This is be
ause H

2

(X ; C ) ! H

2

(U ; C ) is not the zero

map sin
e � 6= 0 in H

2

(U ; C ). On the other hand, the 
o
y
le 2��� that generates


ohomology on X is zero on U : as

� = (�AB

1;2

;�

1

2

AC

1;1

�

1

2

AC

1;2

; 0; 0;

1

2

BD

1;1

+

1

2

BD

1;2

; CD

1;2

);

� = (�2AB

1;2

; AC

1;3

�AC

1;2

; AD

1;1

�AD

1;2

; BC

1;1

; BD

1;1

+BD

1;3

; 0):

one sees that 2� � � = d(�A

1;1

+ B

1;1

+ C

1;1

+ D

1;1

). Hen
e 2� � � is the zero


lass in H

2

(U ; C ).
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