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Abstract. Classical Theorems of Gel’fand et al., and recent results of Beuk-

ers show essentially that non-confluent A-hypergeometric systems have re-

ducible monodromy representation if and only if the continuous parameter
is A-resonant.

We remove the confluence conditions.

1. Introduction

1.1. GKZ-systems. Let Zn denote the free Z-module with basis e = e1, . . . , en
and let A = (ai,j) be an integer d × n-matrix of rank d. The additive group ZA
generated by the columns of A is a free group of rank d; let ε = ε1, . . . , εd be a
basis for ZA. We may thus view A both as a map Zn → ZA with respect to the
bases above and as the finite subset {a1, . . . ,an} of ZA consisting of the images of
the ei.

Throughout, we assume that the additive semigroup NA is pointed (i.e., 0 is the
only unit in NA). To this type of data, Gel’fand, Graev, Kapranov and Zelevinskĭı
[GGZ87, GZK89] associated in the 1980’s a class of D-modules today called GKZ-
or A-hypergeometric systems and defined as follows.

Let xA = x1, . . . , xn be the coordinate system on X := Spec(C[Nn]) ∼= Cn
induced by e, and let ∂A = ∂1, . . . , ∂n be the corresponding partial derivative oper-
ators on C[xA]. Then the Weyl algebra

DA = C〈xA, ∂A | [xi, ∂j ] = δi,j , [xi, xj ] = 0 = [∂i, ∂j ]〉
is the ring of algebraic differential operators on X. With u+ = (max(0, uj))j and
u− = u+ − u, write �u for ∂u+ − ∂u− where here and elsewhere we freely use
multi-index notation. The toric relations of A are then

�A := {�u | Au = 0} ⊆ RA := C[∂A],

while the Euler vector fields E = E1, . . . , Ed to A are

(1.1) Ei :=

n∑
j=1

ai,jxi∂j .

Finally, for β ∈ Cd, the A-hypergeometric ideal and module are the left DA-ideal
and -module

HA(β) = DA · 〈E − β,�A〉; MA(β) = DA/HA(β).
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The structure of the solutions to the (always holonomic) modules MA(β) is
tightly interwoven with the combinatorics of the pair (A, β) ∈ (ZA)n×CA, and A-
hypergeometric structures are nearly ubiquitous. Indeed, research of the past two
decades revealed that toric residues, generating functions for intersection numbers
on moduli spaces, and special functions (Gauß, Bessel, Airy, etc.) may all be viewed
as solutions to GKZ-systems. In other directions, varying Hodge structures on
families of Calabi–Yau toric hypersurfaces as well as the space of roots of univariate
polynomials with undetermined coefficients have A-hypergeometric structure. We
refer to [SW08] for a detailed introduction as well as further references.

1.2. Torus action. Consider the algebraic d-torus T = Spec(C[Zd]) with coordi-
nate functions t = t1, . . . , td corresponding to ε = ε1, . . . , εd. One can view the
columns a1, . . . ,an of A, as characters ai(t) = tai on T , and the parameter vector
β ∈ Cd as a character on its Lie algebra via β(ti∂ti) = −βi + 1. A natural tool for
investigating MA(β) is the torus action of T on the cotangent space X∗ = T ∗0X of
X at 0 given by

t · ∂A = (ta1∂1, . . . , t
an∂n).

The coordinate ring RA of X∗ is contains the toric ideal IA = RA · �A. For
1A = (1, . . . , 1) ∈ X, IA is the ideal of the closure of the orbit T · 1A of 1A with
coordinate ring

SA := RA/IA ∼= C[ta1 , . . . , tan ] ∼= C[NA].

If 1 is in the row span of A then A is homogeneous.
The contragredient action of T on RA given by

(t · P )(∂A) = P (t−a1∂1, . . . , t
−an∂n),

for P ∈ RA, defines a ZA-grading on RA and on the coordinate ring C[xA, ∂A] of
T ∗X by

(1.2) −deg(∂j) = aj = deg(xj).

Note that for ZA-homogeneous P ∈ RA the commutator [Ei, P ] equals degi(P )P
where degi(−) is the i-th component of deg(−). As ∂ixi − xi∂i = 1, (1.2) also
defines a ZA-grading on the sheaves of differential operators DX and DX∗ under
which E and �A are homogeneous.

Note that A and β naturally define an algebraic DT -module

(1.3) M (β) := DT /DT 〈∂titi + βi | i = 1, . . . , d〉,

OT -isomorphic to OT but equipped with a twisted DT -module structure expressed
symbolically as

M (β) = OT · t−β−1

on which DT acts via the product rule.
The orbit inclusion

φ : T → T · 1 ↪→ Cn,

when combined with the Fourier transform F , gives rise to a direct image functor
F ◦ φ+ : DT -mods→ DX∗ -mods.
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1.3. Questions, results, techniques. A powerful way of studying MA(β) is to
consider it as a 0-th homology of the Euler–Koszul complex K•(SA, β) of E − β on
DA/DA · �A ∼= C[xA] ⊗C SA. This idea can be traced back to [GZK89] and was
developed into a functor in [MMW05]. Results from [MMW05] show that K•(SA, β)
is a resolution of MA(β) if and only if β is not in the A-exceptional locus EA, a
well-understood (finite) subspace arrangement of Cn describing the parameters β
that exhibit unusual(ly large) solution space for HA(β).

A parameter is non-resonant if it is not contained in the (analytically) locally
finite subspace arrangement of resonant parameters

Res(A) :=
⋃
τ

(ZA+ Cτ) ,

the union being taken over all linear subspaces τ ⊆ Qn that form a boundary
component of the rational polyhedral cone Q+A.

A fundamental theorem of [GKZ90, Thm. 2.11] is that, in the homogeneous
saturated case (i.e., IA defines a projectively normal projective variety), the generic
monodromy representation on the solution space of HA(β) is irreducible for non-
resonant β. The crucial tool for this proof is the Riemann–Hilbert correspondence
of Kashiwara and Mebkhout, relating regular holonomic D-modules to perverse
sheaves.

In Theorems 3.1 and 3.2 we prove that reducibility of the monodromy in a generic
point of a GKZ-system is (essentially) equivalent to resonance of the parameter
defining the GKZ-system. We do not assume IA to be homogeneous, so this gen-
eralizes to the confluent case both the result mentioned above in [GKZ90] (which
assume homogeneity and saturatedness of IA) as well as a recent converse theo-
rem of Beukers [Beu10] (in which homogeneity is still assumed, but non-saturated
semigroups are admitted). Confluence rules out the use of Riemann–Hilbert, but
surprisingly Euler–Koszul arguments provide an approach that is simultaneously
significantly simpler and more widely applicable.

2. Pyramids

Definition 2.1. For any subset F of the columns of A we write F for the comple-
ment Ar F .

A face of A is a subset F ⊂ A subject to the condition that there a linear
functional φF : ZA→ Z that vanishes on F but not on any element of F .

For a given face F we set

IFA := IA +RA · ∂F
and note that RA/I

F
A = SF as RA-module.

Definition 2.2. Let F be a face of A. The parameter β ∈ Cd is F -resonant if
β ∈ ZA+ CG for a proper subface G of F .

If β is G-resonant for all faces properly containing F , but not for F itself, we
call F a resonance center for β.

A resonance center is a minimal face F for which β ∈ ZA+CF . Every parameter
β has a resonance center; A is the only center of resonance for β if and only if β is
non-resonant in the usual sense (i.e., β 6∈ Res(A)).
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It is easy to have several resonance centers for β. For example, consider β =

(1/2, 1) on the quadric cone A =

(
1 1 1
0 1 2

)
; β has both extremal rays as reso-

nance centers.

Remark 2.3. By [MMW05], HA(β) has rank (dimension of the analytic solution
space) equal to volA(A) for β 6∈ EA, and the rank is larger for β ∈ EA. Here
volA(F ) denotes, for F ∈ ZA, the simplicial volume of F taken in the lattice ZA.

Definition 2.4. We say that A is a(n iterated) pyramid over the face F if d =
dimZ(ZA) equals |F |+ dimZ(ZF ).

Remark 2.5. The following are equivalent, cf. [Wal07, Lem. 3.13]:

(1) A is a pyramid over F ;
(2) aj 6∈ C(Ar {aj}) for any j 6∈ F ;
(3) ZA = Zaj ⊕ Z(Ar {aj});
(4) volF (F ) = volA(A);
(5) for every β ∈ CA, the coefficients cj for j 6∈ F in the sum β =

∑
A cjaj ,

are uniquely determined by β;
(6) the generators �A of IA do not involve ∂j for any j ∈ F
(7) SF ⊗C C[∂F ] = SA as RA-modules.

Notation 2.6. Suppose F is any face of A and β ∈ ZF . Viewing F as a subset
of ZF in its own right one then has a GKZ-system MF (β). Note that IF ⊆ IA,
and the Euler operators in HF (β) are the restrictions {

∑
j∈F ai,jxj∂j−βi} of those

appearing in HA(β). We routinely abuse notation and view HF (β) as system of
differential equations on CF as well as on CA, as it suits us.

Suppose now that A is a pyramid over F , and let β ∈ ZA. The splitting 2.5.(3)

induces splittings CA → Caj for j 6∈ F ; write βFj for the image of β. Note that if

β = aj , j 6∈ F , then βFj = 1.

Writing βF for the image of β under the splitting CA→ CF , we have

β = βF +
∑
j∈F

βFj .

Remark 2.7. If A is a pyramid over F then the following conditions hold:

(8) the ideal HA(β) contains xj∂j − βFj for j 6∈ F ;
(9) MF (β)(xA) = MA(β)(xA) for β ∈ CF ;

(10) the solutions of HA(β) are the solutions of HF (βF ), multiplied with the
unique solution to the system

{xj∂j • f = βFj · f}di=1.

Remark 2.8. Let A be a pyramid over F and choose β ∈ CF . Then β ∈ EA precisely
if it is rank-jumping for β ∈ EF . Indeed, EA is the Zariski closure of the degrees of
the homogeneous elements of all Hi

mA
(SA), i < d. But SF [∂F ] = SA by the pyramid

condition. So Hi
mA

(SA) = Hi
mF

(SF )⊗C C[∂F ]. The claim follows for β ∈ CF .

Lemma 2.9. Let β ∈ ZA. If there is a resonance center F for β over which A is
a pyramid then F is the only resonance center for β.
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Proof. Let F be a resonance center for β over which A is a pyramid. Let G be a
second resonance center and suppose G meets the complement of F : ak ∈ G∩ (F ).
Since Zak is a direct summand of ZA, it is also a direct summand of ZG. It follows
that Gr {ak} is a face G′ of A.

As F is a resonance center, β = zkak +
∑
j 6=k zjaj +

∑
F cjaj where zj ∈ Z and

cj ∈ C. Since G is a resonance center, β = c′kak +
∑
j 6=k z

′
jaj +

∑
G′ c
′
jaj , where

z′j ∈ Z, c′j ∈ C. By Remark 2.5, the coefficients for ak in these sums are identical,

c′k = zk ∈ Z. It follows that β =
(
zkak +

∑
j 6=k z

′
jaj

)
+
∑
G′ c
′
jaj ∈ ZA + CG′.

This contradicts G being a center of resonance, and thus G must contain F . But
then G can only be a center of resonance if F = G. �

3. Resonance vs. reducibility

In this section we generalize Theorem 2.11 in [GKZ90], Theorem 3.4 in [Wal07],
and Theorem 1.3 in [Beu10].

Theorem 3.1. Let F be a resonance center for β ∈ ZA. If A is not a pyramid
over F then MA(β) has reducible monodromy.

Proof. We have β ∈ ZA+ CF . Let γ ∈ CF differ from β by an element of ZA. By
[Wal07, Thm. 3.15], we need to show the reducibility of MA(γ).

Consider the surjection MA(γ) � H0(RA/I
F
A , γ) = DA/DA ·(E−β, IFA ) induced

by the surjection SA � SF . It suffices to show that the rank of the target is positive
but less than vol(A).

Consider the GKZ-system MF (γ) given by

MF (γ) = DF /DF · (IF , {EFi − γi})
where EFi =

∑
j∈F ai,jxj∂j is the part of Ei supported in F . Since F is a reso-

nance center for β (and hence for γ as well), MF (γ) is non-resonant. By [Ado94,
Thm. 5.15], rk(MF (γ)) = volF (F ). By Remark 2.5,

rk(MF (γ)) = volF (F ) < volA(A) ≤ rk(MA(γ)).

Finally, note that by [MMW05, Lem. 4.8] we have

C(xA)⊗C[xA] H0(RA/I
A
F , γ) = C(xA)⊗C[xA] C[xA]⊗C[xF ] MF (γ)

= C(xA)⊗C[xF ] MF (γ)

= C(xA)⊗C(xF ) (C(xF )⊗C[xF ] MF (γ))

so that MF (γ) and H0(RA/I
A
F , γ) have the same rank. By [MMW05, Lem. 4.9]

this rank is at least the volume of F and hence positive. �

Theorem 3.2. Let F be a resonance center for β. If A is a pyramid over F then
MA(β) has irreducible monodromy.

Proof. First consider the case F = A. By [SW09, Thm. 3.5] and [SW09, Cor. 3.7],
MA(β) is the unique homology group of K•(SA, β) and MA(β) agrees with the
Fourier transform of the direct image φ+(Mβ).

Now φ can be factored into 1) the identification of the abstract d-torus with
the orbit of 1 ∈ Cn, followed by the inclusion of this orbit into the n-torus (C∗)n,
completed by 3) the inclusion (C∗)n ↪→ Cn.

Step 1 clearly preserves irreducibility, and by Kashiwara equivalence so does Step
2. Step 3 preserves irreducibility as well because D-affinity of both the target and
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the source of the inclusion map allow to detect submodules on global sections, which
agree because we are looking at an open embedding. As Fourier transforms preserve
composition chains, MA(β) is irreducible provided that M (β) is an irreducible DT -
module. But the ideal generated by t∂t − β is the same as the (clearly) maximal
ideal generated by ∂t − β/t.

Suppose now that F is a proper face. Choose γ ∈ CF with β − γ ∈ ZA. Then
HF (γ) is irreducible by the first part of the proof. But the pyramid condition
assures MF (γ)(xA) = MA(γ)(xA), so we are done by [Wal07, Thm. 3.13]. �
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