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Abstract. We study the irregularity sheaves attached to the A-hypergeometric
D-module MA(β) introduced by I.M. Gel’fand et al. [GGZ87, GZK89], where
A ∈ Zd×n is pointed of full rank and β ∈ Cd. More precisely, we investigate
the slopes of this module along coordinate subspaces.

In the process we describe the associated graded ring to a positive semi-
group ring for a filtration defined by an arbitrary weight vector L on torus-
equivariant generators. To this end we introduce the (A, L)-umbrella, a cell
complex determined by A and L, and identify its facets with the components
of the associated graded ring.

We then establish a correspondence between the full (A, L)-umbrella and
the components of the L-characteristic variety of MA(β). We compute in com-
binatorial terms the multiplicities of these components in the L-characteristic
cycle of the associated Euler–Koszul complex, identifying them with certain
intersection multiplicities.

We deduce from this that slopes of MA(β) are combinatorial, independent
of β, and in one-to-one correspondence with jumps of the (A, L)-umbrella.
This confirms a conjecture of Sturmfels and gives a converse of a theorem of
R. Hotta [Hot98, Ch. II, §6.2, Thm.]: MA(β) is regular if and only if A defines
a projective variety.
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1. Introduction and overview

The solutions f of an ordinary linear differential equation P • f(x) = 0 where

P = pm(x)∂m
x + pm−1(x)∂m−1

x + · · · + p1(x)∂x + p0(x)

form a C-vector bundle of dimension m away from the zero locus of pm. At
pm(x0) = 0, two types of singularities may occur: at a regular singular point x0,
the (multivalued) solutions have polynomial growth for x → x0 while in all other
cases x0 is called irregular. By Fuchs’ Theorem, P is regular at the origin if and
only if the Newton polygon N(P ) of P is a quadrant (see [Inc44]). The slopes (or
critical indices) of P are just the slopes of N(P ); they represent a refined notion
of irregularity (see [Lau85]) and indicate the growth of solutions near the critical
point. Regularity at x0 is equivalent to equality of formal and convergent solutions
at x0.

The concept of regularity in higher dimension is considerably more involved. De-
note by OX the structure sheaf of the complex manifold X and by O dX|Y

the comple-

tion of OX along the submanifold Y . For any coherent DX -module M, Z. Mebkhout
introduced the irregularity complex IrrY (M) = RHomDX

(M,O dX|Y
/OX|Y ), OX|Y

being the restriction of OX to Y [Meb89]. This intrinsically analytic notion is in-
spired by earlier work of B. Malgrange on regularity in the univariate case [Mal74],
but quite difficult to use.
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On the other hand, Y. Laurent [Lau87] gave a generalization for the concept of
a slope to the multivariate case based on more algebraic methods. With X, Y as
above, let V be the Kashiwara–Malgrange filtration along Y , let F be the order
filtration, and put L = pF + qV . Then the rational number p/q > 0 is a slope of

M along Y if the L-characteristic variety ChL(M) = supp(grL(M)) ⊆ T ∗X jumps
(is not locally constant) at p/q.

The theorem of Fuchs generalizes to the multivariate case: by the analytic-
algebraic comparison theorem for slopes [LM99, Thm. 2.4.2], M has no slopes
along Y precisely if IrrY (M) is exact. In fact, the slopes agree with the jumps
of the Gevrey filtration on the irregularity complex which provide a measure of
growth for the solutions of M near Y .

All slopes of M along Y are rational and there are only a finite number of
them, (see [Lau87]). A. Assi, F. Castro, and M. Granger [ACJG96] developed
a Gröbner basis algorithm to compute slopes of algebraic D-modules using the
algebraic counterparts of F , V , and L on the Weyl algebra D. In the process they
proved a comparison theorem: slopes of modules over the Weyl algebra can be
computed without leaving the algebraic category, where rationality and finiteness
follow from the existence of the Gröbner fan (see [ACJG00]). Explicit formulæ for
slopes of D-modules are very rare. The purpose of this article is to describe the
slopes of A-hypergeometric D-modules.

I.M. Gel’fand, M.I. Graev, M.M. Kapranov and A.V. Zelevinskĭı [GGZ87, GZK89]
defined a class of D-modules that includes as particular cases the differential sys-
tems satisfied by the classical hypergeometric functions of Gauß, Appell, and others.
These A-hypergeometric, or GKZ (after Gel’fand, Kapranov, and Zelevinskĭı), sys-
tems are special cases of the equivariant D-modules of R. Hotta and M. Kashiwara
[HK84, Hot98]. A d× n integer matrix A defines an action of a d-torus T := (C∗)d

on T ∗
0 Cn = Cn. Our general hypothesis is that NA is a positive semigroup with

ZA = Zd. The closure of the orbit through (1, . . . , 1) is defined by the toric ideal
IA ⊆ C[∂] =: R where ∂ := ∂1, . . . , ∂n and SA := R/IA = C[NA] is the associated
semigroup ring. The Euler vector fields E = (E1, . . . , Ed) are the pushforwards to
this orbit of the Lie algebra generators t1∂1, . . . , td∂d of T. The A-hypergeometric
system MA(β), depending on the Lie algebra character β ∈ Cd, is the D-module
defined by IA and the Euler operators E − β. It arises in various situations in
algebraic geometry such as in the theory of toric residues (see [CDS01]), the study
of hyperplane arrangements (see [OT01]), and in the Picard–Fuchs equations gov-
erning the variation of Hodge structures for Calabi–Yau toric hypersurfaces (see
[CK99]).

By a theorem of R. Hotta [Hot98, Ch. II, §6.2, Thm.], homogeneous A-hypergeometric
systems are regular and hence have no slopes. In dimension one and in codimen-
sion one, slopes of MA(β) were studied by F. Castro and N. Takayama [CJT03]
and M. Hartillo [HH03, HH05]. Cohen–Macaulayness of the toric rings in question
makes these cases comparatively tractable. In our general situation, a key tool is a
(generalization of a) computation by A. Adolphson [Ado94] identifying candidate
components of the F -characteristic variety with the set of faces not containing 0 of
the convex hull ∆F

A of 0 and the columns a1, . . . ,an of A. In Section 2, L is the
filtration on R defined by an arbitrary weight vector on ∂1, . . . , ∂n. We introduce
in Definition 2.7 the (A, L)-polyhedron ∆L

A as the convex hull in projective space

of 0 and all aL
i := ai/ degL(∂i) for i = 1, . . . , n. Its faces not containing zero form
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the (A, L)-umbrella ΦL
A, a combinatorial object independent of β that encodes all

information regarding the L-characteristic variety of MA(β).

Figure 1. Some (A, L)-umbrellas. (Shaded ∆L
A with fat boundary ΦL

A.)

a3

L = (1, 1, 1, 1)

a3

aL
4

L = (1, 1, 1, 2)

a3

aL
4

L = (1, 1, 1, 5)

✲

✻a1

a2

a4

✲

✻a1

a2

a4

✲

✻a1

a2

a4

Figure 1 shows the (A, L)-umbrella in the example

A =

(
0 1 1 4
3 0 2 1

)

for the family of filtrations L = (1, 1, 1, t) for three parameters resulting in com-
binatorially different umbrellas. In Theorem 2.14, we identify ΦL

A with both the
Zd-graded spectrum of the L-graded toric ring SL

A := grL(SA) and the collection of
torus orbits in Spec(SL

A). In Theorem 2.19, we characterize Cohen–Macaulayness
of SL

A by the corresponding property of its subrings generated by facet cones.
In Section 3, we extend L to the Weyl algebra D = C[x]〈∂〉 in the variables x :=

x1, . . . , xn in such a way that E is L-homogeneous and W := grL(D) is a polynomial
ring. The family of filtrations in Figure 1 may be viewed as the restriction of
L = F + qV to R for the V -filtration along x4 for q = 0, 1, 4. In Proposition 3.8
we show that all components of the L-characteristic variety of MA(β) correspond
to faces τ ∈ ΦL

A: each is the closure C̄τ
A of the conormal space Cτ

A to a torus
orbit in Spec(SL

A). The facet components correspond to orbits in the smooth, and
hence Cohen–Macaulay, locus of SL

A on which the L-symbols of the Euler vector
fields form a regular sequence. From this we conclude in Proposition 3.10 that
the facet components actually occur and their multiplicity is given by an index
formula independent of the parameter β. This shows in particular that p/q is a

slope of MA(β) at the origin whenever ΦpF+qV
A jumps at p/q. We thus obtain a

converse to Hotta’s theorem in Corollary 3.16: regular A-hypergeometric systems
are homogeneous.

Since orbits to nonfacets may be outside the Cohen–Macaulay locus of SL
A, we

consider in Section 4 the full Euler–Koszul complex KA,•(SA; β) from [MMW05].
In order to apply methods of homological algebra, we discuss the basics of good
L-filtrations on R- and D-modules. Using the spectral sequence for the L-filtration
on KA,•(SA; β), we identify its L-characteristic cycle with the intersection cycle
between SL

A and the L-graded Euler ideal grL(〈E〉). In Theorem 4.11, we use
Serre’s Intersection Theorem [Ser65, Ch. V, §C.1, Thm. 1] to show that the L-
characteristic variety of KA,•(SA; β) contains all candidate components. To show
that this also holds for MA(β) = H0(KA,•(SA; β)) we use in Theorem 4.16 results
from [MMW05] and an induction argument on toric modules. In particular (see
Corollary 4.17), the components of the L-characteristic variety of MA(β) are in
one-to-one correspondence to the faces in the (A, L)-umbrella ΦL

A. It follows (see
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Corollary 4.18) that the slopes of MA(β) along coordinate subspaces at the origin

correspond exactly to jump parameters p/q of ΦpF+qV
A , confirming and extending

a conjecture by B. Sturmfels.
The holonomic rank rk(M) := dimC(x)(M ⊗C[x] C(x)) of a D-module M is the

dimension of the C-vector space of its solution space near a regular point. It is a
classical result (see [GZK89, Ado94]) that for generic β the rank of MA(β) equals
the volume of the convex hull ∆F

A of 0 and a1, . . . ,an where the volume of the
unit simplex is normalized to 1. The exceptional set E(A) of A is the set of rank-
jumping parameters: β ∈ E(A) precisely if the rank of MA(β) exceeds the volume.
By [MMW05], E(A) is a finite subspace arrangement. In Theorem 4.21 we give

a general index/volume formula for the multiplicity µL,τ
A of C̄τ

A, τ ∈ ΦL
A, in the

L-characteristic cycle of KA,•(SA; β). We show then that for non-rank-jumping

parameter β, or if τ is a facet, the number µL,τ
A equals the multiplicity µL,τ

A,0(β) of

C̄τ
A in the L-characteristic cycle of MA(β). From [MMW05] it is known that the

rank µF,∅
A,0(β) of MA(β) is upper semicontinuous in the parameter β. Theorem 4.28

generalizes a weaker statement to all L and τ ∈ ΦL
A: the multiplicity µL,τ

A,0(β),

τ ∈ ΦL
A, is always minimal at generic β. We conjecture that µL,τ

A,0(β) is upper
semicontinuous in β.

Remark. In [SW06] we introduce a natural extension of MA(β) to a D-module
MA(β) on the product

∏n
j=1 P1

C by noting that the generators E and IA of the hy-
pergeometric ideal extend to global differential operators. On each standard affine
patch one obtains a D-module that may be viewed as a twisted A-hypergeometric
system.

Based on results in this article we describe in [SW06] the L-characteristic variety
of MA(β) in terms of a combinatorial gadget generalizing the (A, L)-umbrella, and
we determine the multiplicities in the L-characteristic Euler–Koszul cycle for generic
β. In order to discuss the slopes of MA(β) (i.e., the slopes of MA(β) at infinity) one
then needs to understand for each point of

∏n
j=1 P1

C precisely which components of
the L-characteristic variety pass through its cotangent space; we state a conjecture
to this account in [SW06, Conj. 5.18]. The core of this issue seems to be related
to the question whether one can relax the basic condition on A in this article: that
it be pointed. Without pointedness, thus placing the origin in T ∗

0 X outside the
corresponding toric variety, three issues come up: a) the definition of ∆L

A must
be changed; b) Lemma 3.14 fails; c) the arguments in Section 4 need adjustment.
While we have some ideas for a) and our conjecture stated in [SW06] addresses b),
c) is perhaps more involved, but should have interesting answers.

2. Filtrations on the toric ring

2.1. Torus action and toric ring.

Notation 2.1. By Q+ we mean the nonnegative rational numbers and we include
0 in N.

Let A = (ai,j) ∈ Zd×n be an integer matrix of rank d whose columns a1, . . . ,an ∈
Zd are nonzero. We assume that NA is a positive (see [BH93, §6.1]) (or pointed, see
[MMW05, §1]) semigroup with ZA = Zd. We write τ ⊆ A if τ is a subset of the
column set of A and consider it both as a submatrix of A and a subset of the set
of column indices {1, . . . , n}. Then the dimension dim(τ) is dimQ(Qτ) − 1. For a
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vector or collection with index set {1, . . . , n}, a lower index τ denotes the subvector
or subcollection with indices in τ . We abbreviate τ := {1, . . . , n} r τ . For any set
τ , its cardinality is denoted |τ |.

We shall frequently denote by C̄ the Zariski closure of a set C.
For u ∈ Zn define u+ by (u+)j = max(0,uj) and put u− = u+ − u. For

u,v ∈ Nn write min(u,v) for the vector whose j-th entry is min(uj ,vj). For any
vector u we mean by u > 0 that u is componentwise positive: ui > 0 for all i.

The base space in this note is X := Spec(C[x]) = Cn where x := x1, . . . , xn. Let
R := C[∂] be the polynomial ring in n variables ∂ := ∂1, . . . , ∂n. Identifying ∂i with
the partial derivation ∂/∂xi, Spec(R) becomes the conormal space T ∗

0 X of X at
0. The d-torus T := (C∗)d = Spec(C[t±1

1 , . . . , t±1
d ]) with coordinates t := t1, . . . , td

acts on Spec(R)

(2.1.1) (t, ξ) �

// t · ξ := (ta1ξ1, . . . , t
anξn) .

This induces a Zd-grading on R by deg(∂i) = ai. For a Zd-graded R-module N , we
denote by deg(N) the set of its Zd-degrees.

Definition 2.2. We denote the orbit T · ξ through ξ ∈ T ∗
0 X by Orb(ξ). Let τ be

a subset of columns of A. We define 1τ
A ∈ {0, 1}n by

(1τ
A)j :=

{
1 if aj ∈ τ,

0 if aj /∈ τ,

and denote by Oτ
A the orbit of 1τ

A.
The toric ideal Iτ ⊆ Rτ := C[∂τ ] of τ is the Zd-graded prime ideal generated by

all �u = ∂u+ − ∂u− where u ∈ Z|τ | such that τ · u = 0. We set Iτ
A := RIτ + Jτ

where Jτ is the R-ideal generated by {∂i | i 6∈ τ}. Based on the following lemma,
the semigroup ring of τ is

Sτ := C[Nτ ] =
⊕

a∈Nτ

C · ta =
∑

u∈N|τ|

C · (∂u

τ mod Iτ ) ⊆ SA,

The normalization of SA is the Cohen–Macaulay ring S̃A =
⊕

a∈(Q+A∩Zd) C · ta.

Lemma 2.3. For τ ⊆ A, Iτ
A = {f ∈ R | f(Oτ

A) = 0} and Sτ = Rτ/Iτ = R/Iτ
A. �

2.2. L-filtration on the toric ring. Let L = (L∂1
, . . . , L∂n

) ∈ Qn be a weight
vector. It induces an increasing filtration L of C-vector spaces on R via [∂u ∈
LkR] ⇔ [L·u ≤ k]. Note that L has a rational discrete index set. If f ∈ LkRrL<kR

then k =: degL(f) is the L-degree of f . Let σL : R → grL(R) be the L-symbol

map defined by σL(f) = f mod L<kR if degL(f) = k. An element f ∈ R is
L-homogeneous if f =

∑
L·u=k fu∂u for some k ∈ Q where fu ∈ C. By abuse

of notation, we identify R and grL(R) via the C-linear isomorphism induced by
f 7→ σL(f) for L-homogeneous f in right-normal form.

For any τ ⊆ A, L induces a filtration on Sτ by

LkSτ :=
∑

degL(∂u

τ )≤k

C · (∂u

τ mod Iτ ).

With IL
τ denoting the Zd-graded ideal grL(Iτ ), we abbreviate

SL
τ := grL(Sτ ) ∼= R/IL

τ .

The following is a mild extension of [Stu96, Cor. 4.4] (see also [Ado94, Lem. 4.11]).
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Lemma 2.4. One has the identity IL
A = R〈σL(�u) | u ∈ Zn, A · u = 0〉.

Proof. Form a matrix B by adding the row L on top, and then a column (1, 0, . . . , 0)
on the left of A. Then IB is the L-homogenization of IA relative to the new variable
∂0. By [Stu96, Cor. 4.4], for any term order that eliminates ∂0, IB has a Gröbner
basis that consists of L-homogenizations of binomials ∂u+ − ∂u− with A · u = 0.
Dehomogenization leads to an L-Gröbner basis for IA and the claim follows. �

In this section we study the geometry of SL
A in terms of A and L. Since the

Gröbner fan of any R-ideal is defined over Q, the study of real weights can be
reduced to the case L ∈ Qn (see [MS05, §7.4] for a discussion in the case where
L > 0 defines a term order).

2.3. The (A, L)-umbrella. We consider the embedding of the affine space Qd ⊇ A
into the rational projective d-space

Pd
Q = PQ(Qd × Q)

via the map q 7→ (q : 1). Denote ∞ := Pd
Q r Qd the hyperplane at infinity.

In Pd
Q, any two distinct points a,b ∈ Pd

Q are joined by two line segments. If H is

a hyperplane in Pd
Q containing neither a nor b then there is a unique line segment

joining the points and not meeting H . This is exactly the convex hull of a and b

in the affine space Pd
Q r H .

Definition 2.5. Let H ⊆ Pd
Q be a hyperplane and let UH := Pd

Q r H be its

complement. For B ⊆ UH , the convex hull of B relative to H is the set convH(B)
defined as the convex hull of B in the affine space UH .

Note that, for varying H , convH(B) changes exactly when H is moved through
a point of B. Within Qd, elements of convex hulls are linear combinations with
nonnegative coefficients that add to unity. Convex hulls relative to H 6= ∞, with
coordinates from Qd ⊆ Pd

Q, obey slightly different rules. Let h ∈ HomQ(Qd, Q) be

a linear form such that H is the closure of h−1(0) in Pd
Q. The line through 0 and

a ∈ Qd r {0} meets ∞ in a point that we denote a/0. For q ∈ Q let sign(q) be the
usual signum function:

sign(q) =






−1 if q < 0;

0 if q = 0;

1 if q > 0.

Lemma 2.6. Let B = {b1, . . . ,bn} ⊆ UH with B ∩ ∞ = {bm+1, . . . ,bn} and
pick {b′

m+1, . . . ,b
′
n} ⊆ Qd ∩ UH such that bj = b′

j/0 for m < j ≤ n. If b ∈

convH(B) ∩ Qd then in coordinates of Qd there is an equation b =
∑m

j=1 εjbj +∑n
j=m+1 ε′jb

′
j where

∑m
j=1 εj = 1, sign(εjh(bj)) = sign(h(b)) for all j with εj 6= 0,

and sign(ε′jh(b′
j)) = sign(h(b)) for all j with ε′j 6= 0.

Proof. Let B+ (resp. B−) be the subsets of B r∞ on which h evaluates positively
(resp. negatively), and put B∞ = B ∩∞, B′ = {b′

m+1, . . . ,b
′
n}. A general element

b ∈ convH(B) is the convex combination of three points: b+ ∈ convH(B+), b− ∈
convH(B−), and b∞ ∈ convH(B∞).

Clearly, b+ =
∑

bj∈B+
εjbj where εj ≥ 0 and

∑
bj∈B+

εj = 1. A similar state-

ment holds for b−. Now convH(b+,b−)∩Qd is the union of rays {λ+b+ + λ−b− |
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λ+ + λ− = 1, λ+λ− ≤ 0}. Thus, if b0 ∈ convH(b+,b−) then sign(λ+h(b+)) =
sign(b0) = sign(λ−h(b−)).

It suffices to show the lemma if h(B′) > 0. Then b∞ is of the form b′/0
with b′ ∈ convH(B′), and points of convH(B′) are of the form

∑
b′

j∈B′ εjb
′
j with

∑
b′

j∈B′ εj = 1 and all εj ≥ 0. We are thus reduced to considering convH({b0,b∞})

with b∞ = b′/0 and h(b′) > 0. If h(b0) > 0 then convH({b0,b∞}) is the ray
{b0 + λ′b′ | λ′ ≥ 0}, while if h(b0) < 0 then it is the ray {b0 + λ′b′ | λ ≤ 0}. The
condition on λ′ can, if λ′ 6= 0, be packaged as sign(λ′h(b′)) = sign(h(b0)). The
lemma follows. �

We view the columns a1, . . . ,an ∈ Zd of A as points in Qd = Pd
Q \ ∞. By

assumption, NA is positive and hence h ∈ HomQ(Qd, Q) can be chosen such that
h(aj) > 0 for all j. For any λ ∈ Q, set Hλ := h−1(−λ) and Uλ := Pd

Q r Hλ.

Definition 2.7. Choose h ∈ HomQ(Qd, Q) such that h(aj) > 0 for all j, and let ε
be such that 0 < ε < |h(aj)/L∂j

| whenever L∂j
6= 0. We set aL

j := aj/L∂j
and call

∆L
A := convHε

({0,aL
1 , . . . ,aL

n}) ⊆ Pd
Q the (A, L)-polyhedron.

Let the (A, L)-umbrella be the set ΦL
A of faces of ∆L

A which do not contain 0. In
particular, ΦL

A contains the empty face. Whenever it suits us, we identify τ ∈ ΦL
A

with {j | aL
j ∈ τ}, or with {aj | aL

j ∈ τ}, or with the corresponding submatrix of

A. By ΦL,k
A ⊆ ΦL

A, we denote the subset of faces of dimension k.

By ΓL
A :=

⋃
ΦL

A (resp. ΓL,k
A :=

⋃
ΦL,k

A ), we denote the underlying point set

of ΦL
A (resp. ΦL,k

A ). Note that ΓL
A is a piecewise linear manifold with boundary,

homeomorphic to the (d − 1)-disk. If a ∈ ∆L
A r {0} then the line through 0 and a

meets ΓL
A in ΓL

A(a).
The matrix A is called L-homogeneous if all aL

j lie on a common hyperplane

of Pd
Q. Every A is 0-homogeneous and we call Φ0

A the A-umbrella. If A is L-

homogeneous then IL
A = IA under the identification of grL(R) with R. Note that

Φ0

A can be identified with the lattice of nonempty faces of the polyhedral cone Q+A
via the face lattice of a cross-section Q+A ∩ h−1(1).

Figure 2. More (A, L)-umbrellas. (Shaded ∆L
A with fat boundary ΦL

A.)

L = (1, 1, 1, 0) aL
4

L = (1, 1, 1,−1)
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Figure 2 shows the intersection with Qd of the (A, L)-umbrella for L = (1, 1, 1, t)

and t ≤ 0 in the example from the introduction, A =

(
0 1 1 4
3 0 2 1

)
.

2.4. Monomials in the graded toric ideal. The following result generalizes
Lemma 3.1 and 3.2 in [Ado94].

Lemma 2.8. If aL
k1

, . . . ,aL
km

∈ ΓL
A do not lie in a common τ ∈ ΦL,d−1

A then

∂k1
· · · ∂km

∈
√

IL
A.

Proof. We abbreviate v := L∂.
Assume first that vk1

6= 0 and ΓL
A(ak1

) = ak1
/0 ∈ ∞. In particular, vk1

> 0 by
Definition 2.7. The polyhedron ∆L

A ∩∞ is the convex hull of the points aL
i = ai/0

with vi = 0, and of the intersection points (aL
i − aL

j )/0 with ∞ of line segments

from aL
i to aL

j with vi > 0 > vj . Therefore

aL
k1

=
∑

vi=0

ηiai +
∑

vi>0>vj

ηi,j

(
aL

i − aL
j

)

for some 0 ≤ ηi, ηi,j ∈ Q. This equality gives rise to an element

� = ∂
s/vk

k1
−
∏

vi=0

∂sηi

i

∏

vi>0>vj

∂
sηi,j/vi

i ∂
−sηi,j/vj

j ∈ IA

where s ∈ N is chosen to clear all denominators. The L-degree of the left monomial

is positive while that of the right one is zero. Thus σL(�) = ∂
s/vk

k1
∈ grL(IA) and

the claim follows in this case.
We now keep the assumption vk1

6= 0 but assume that ΓL
A(ak1

) 6∈ ∞. By
hypothesis there is a ∈ conv(aL

k1
, . . . ,aL

km
) in the interior of ∆L

A. By continuity of

the function a 7→ ΓL
A(a), choosing a sufficiently close to aL

k1
implies that ΓL

A(a) 6∈ ∞.

As a lies in the interior of ∆L
A and since ΓL

A(a) /∈ ∞, there is 0 6= t ∈ Q with
ΓL

A(a) = ta ∈ ΓL
A and hence either sign(th(a)) = 1 and t > 1, or sign(th(a)) = −1

and 0 < t < 1. In either case, t sign(th(a)) > sign(th(a)). Using Lemma 2.6, we
can write

(2.4.1) a =
∑

vkj
6=0

εkj
aL

kj
+
∑

vkj
=0

εkj
akj

for some εkj
∈ Q with

∑
vkj

6=0 εkj
= 1, sign(εkj

/vkj
) = sign(h(a)) if εkj

vkj
6= 0, and

sign(εkj
) = sign(h(a)) if εkj

6= 0 = vkj
. Again by Lemma 2.6 and Definition 2.7,

we can write

(2.4.2) ta =
∑

vi 6=0

ηia
L
i +

∑

vi=0

ηiai

for some ηi ∈ Q where
∑

vi 6=0 ηi = 1, sign(ηi/vi) = sign(th(a)) if ηivi 6= 0, and

sign(ηi) = sign(th(a)) if ηi 6= 0 = vi. Combining equations (2.4.1) and (2.4.2) we
find an element

(2.4.3) � =
∏

vkj
6=0

∂
s|tεkj

/vkj
|

kj

∏

vkj
=0

∂
s|tεkj

|

kj
−
∏

vi 6=0

∂
s|ηi/vi|
i

∏

vi=0

∂
s|ηi|
i ∈ IA
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where s ∈ N chosen to clear all denominators. From

degL
( ∏

vkj
6=0

∂
s|tεkj

/vkj
|

kj

∏

vkj
=0

∂
s|tεkj

|

kj

)
= s|t|

∑

vkj
6=0

εkj
sign(εkj

/vkj
)(2.4.4)

= st
∑

vkj
6=0

εkj
sign(th(a)) = st sign(th(a)) > s sign(th(a))

= s
∑

vi 6=0

sign(ηi/vi)ηi = s
∑

vi 6=0

|ηi/vi|vi = degL
(∏

vi 6=0

∂
s|ηi/vi|
i

∏

vi=0

∂
s|ηi|
i

)
,

we conclude that the L-leading term of � is the left of the two monomials in (2.4.3).
The claim follows in the case where at least one vkj

is nonzero.

Suppose finally that vkj
= 0 and hence aL

kj
∈ ∞ for all j = 1, . . . , m. By

assumption and Definition 2.7 we can pick an element a′ ∈ conv(aL
k1

, . . . ,aL
km

) r

∂∆L
A ⊆ conv(aL

k1
, . . . ,aL

km
) r ΓL

A. Then a′ = a/0 with a ∈ conv(ak1
, . . . ,akm

). It
follows that there is an equation of type (2.4.1) with conditions as indicated there.
By construction, ΓL

A(a′) 6= a′ ∈ ∞ and so ΓL
A(a′) 6∈ ∞. Hence, there is a positive

t ∈ Q with ΓL
A(a′) = ta and so there is an equation of type (2.4.2) with conditions as

indicated there. As t sign(th(a)) = −t > 0 > −1 = sign(th(a)) we get an equation
of type (2.4.4), and the claim follows as in the previous case. �

2.5. Homogeneity in the graded toric ideal.

Definition 2.9. Let τ be a set of columns of A. For u ∈ Zn, we write supp(u) ⊆ τ
if ui 6= 0 implies ai ∈ τ . For f ∈ R, we write supp(f) ⊆ τ if supp(u) ⊆ τ for all
monomials ∂u of f .

Lemma 2.10. Let τ ∈ ΦL
A and pick u ∈ Zn such that A · u = 0.

(1) If supp(�u) ⊆ τ then σL(�u) = �u. In particular, the toric ideal Iτ is
L-homogeneous.

(2) If supp(∂u±) ⊆ τ and supp(∂u∓) 6⊆ τ then σL(�u) = ∓∂u∓.

Proof. We abbreviate v := L∂.

Consider first the case where the facet τ ∈ ΦL,d−1
A lies entirely in ∞. Then

aL
i ∈ τ implies vi = 0 and hence supp(�u) ⊆ τ implies that �u is L-homogeneous

of degree zero. Suppose supp(u+) ⊆ τ but supp(u−) 6⊆ τ . As τ ⊆ ∞ is a facet of
∆L

A and by Definition 2.7, the interior of ∆L
A meets neither ∞ nor Hε. Hence ∆L

A is
completely contained in the Pd

Q-closure of one of the regions {t ∈ Qd | h(t) ≥ −ε}

and {t ∈ Qd | h(t) ≤ −ε}. Since 0 ∈ ∆L
A, it must be the former. Moreover,

by definition of ε, h(aL
j ) 6∈ [−ε, 0] for all vj 6= 0, whence vj ≥ 0 in all cases.

Thus degL(∂u+) = 0 and degL(∂u−) > 0, hence σL(�u) = −∂u− . The case
supp(u−) ⊆ τ 6⊇ supp(u+) is similar.

Now let τ ∈ ΦL
A be not contained in ∞, or let τ ∈ ΦL

A rΦL,d−1
A be a nonfacet face

contained in ∞. Then there is a linear form hτ ∈ HomQ(Qd, Q) such that the closure
of h−1

τ (1) in Pd
Q meets ∆L

A precisely in τ , and for which sign(vi)hτ (aL
i ) ≤ sign(vi)

whenever vi 6= 0.
For all aL

i ∈ τ with vi = 0 the line through 0 and ai meets τ in aL
i ∈ ∞. This

means that ai is parallel to h−1
τ (1) and so hτ (ai) = 0. Thus, A ·u = 0 implies that

0 = hτ (A · u) = hτ

(
n∑

i=1

uiai

)
=

∑

ui>06=vi

uivihτ (aL
i ) −

∑

ui<06=vi

(−ui)vihτ (aL
i ).
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If supp(�u) ⊆ τ and uivi 6= 0 then hτ (aL
i ) = 1 and hence degL(∂u+) = degL(∂u−).

Now suppose supp(∂u+) ⊆ τ 6⊇ supp(∂u−). Hence hτ (aL
i ) = 1 if ui > 0 6= vi,

sign(vi)hτ (aL
i ) ≤ sign(vi) if ui < 0 6= vi, and sign(vi)hτ (aL

i ) < sign(vi) for at least
one ui < 0. Thus,

degL(∂u+) =
∑

ui>0

viui =
∑

ui>06=vi

viuihτ (aL
i )

=
∑

ui<06=vi

vi(−ui)hτ (aL
i ) <

∑

ui<06=vi

vi(−ui) = degL(∂u−).

The case supp(u−) ⊆ τ 6⊇ supp(u+) is similar. �

2.6. Minimal associated prime ideals. We now identify the components of the
L-graded toric ring SL

A.

Definition 2.11. For u ∈ Zn let

τL
u =

⋂

supp(u)⊆τ∈ΦL
A

τ

be the smallest element of ΦL
A containing supp(u) and put τL

u = A if there is none.
Note that [∂u ∈ Jτ ] ⇒ [τL

u 6⊆ τ ] for τ ⊆ A and u ∈ Nn.

Recall that IA, Iτ
A, and Jτ are Zd-graded prime ideals.

Lemma 2.12. Let ĨL
A ⊆ R be generated by all elements of the following types:

(1) ∂k1
· · · ∂km

where aL
k1

, . . . ,aL
km

do not lie in a common facet τ ∈ ΦL,d−1
A ;

(2) �u where u ∈ Zn, A · u = 0, and τL
u
6= A.

Then ĨL
A =

⋂
τ∈ΦL,d−1

A

Iτ
A.

Proof. Let I =
⋂

τ∈ΦL,d−1

A

Iτ
A. We show first that ĨL

A ⊆ I. Let I0 denote the ideal

of R generated by the elements from (1). Then clearly I0 ⊆ Jτ ⊆ Iτ
A for any

τ ∈ ΦL,d−1
A . Pick �u as in (2). By part (1) of Lemma 2.10, σL(�u) = �u. Let

τ ∈ ΦL,d−1
A and suppose �u /∈ Jτ . Then (without loss of generality) supp(u+) ⊆ τ .

By part (2) of Lemma 2.10, since σL(�u) = �u, supp(u−) ⊆ τ as well. Hence

�u ∈ Iτ ⊆ Iτ
A and so ĨL

A ⊆ I.
For the converse inclusion suppose now m ∈ I. We write m = m0 +

∑
τ∈ΦL

A
mτ

where m0 ∈ I0, and

mτ =
∑

τL
u

=τ

cu∂u ∈ C[∂τ ]

collects the monomials in m minimally supported in τ . Since I0 ⊆ ĨL
A ⊆ I we

may assume that m0 = 0. Now pick any τ ∈ ΦL
A. Then m = m̂τ + mτ where

m̂τ =
∑

τ ′⊆τ mτ ′ are the terms in m supported in τ . Since mτ ∈ Jτ ⊆ Iτ
A and

m ∈ I ⊆ Iτ
A, m̂τ = m − mτ ∈ Iτ

A ∩ C[∂τ ] = Iτ ⊆ ĨL
A in view of (2). Since every m̂τ

is in ĨL
A , so is every mτ , and hence m ∈ ĨL

A as well. �

Lemma 2.13. The radical ideal ĨL
A from Lemma 2.12 equals

√
IL
A.

Proof. By Lemma 2.8, the elements in 2.12.(1) are in
√

IL
A . By part (1) of Lemma 2.10,

all elements from 2.12.(2) are in IL
A. Hence ĨL

A ⊆
√

IL
A .
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By Lemmas 2.4 and 2.12, it suffices to show conversely that, for any u ∈ Zn

with A · u = 0, σL(�u) ∈ Iτ
A for all τ ∈ ΦL,d−1

A . Pick such u and let τ ∈ ΦL,d−1
A .

If τL
u

⊆ τ then by part (1) of Lemma 2.10, σL(�u) = �u ∈ Iτ ⊆ Iτ
A. If τL

u+
⊆ τ

but τL
u−

6⊆ τ then by part (2) of Lemma 2.10, σL(�u) = −∂u− ∈ Jτ ⊆ Iτ
A.

Similarly, σL(�u) ∈ Iτ
A if τL

u−
⊆ τ but τL

u+
6⊆ τ . Finally, if τL

u+
6⊆ τ 6⊇ τL

u−
then

σL(�u) ∈ Jτ ⊆ Iτ
A. �

The following consequence of Lemmas 2.3, 2.12, and 2.13 generalizes [Ado94,
Lem. 3.2].

Theorem 2.14. The set of Zd-graded prime ideals of R containing IL
A equals {Iτ

A |
τ ∈ ΦL

A} and hence the (A, L)-umbrella encodes the geometry of SL
A:

Spec(SL
A) = Var(IL

A) =
⋃

τ∈ΦL,d−1

A

Ōτ
A =

⊔

τ∈ΦL
A

Oτ
A.

Adjacencies of orbit strata correspond to inclusions in the (A, L)-umbrella:
[
Oτ ′

A ⊆ Ōτ
A

]
⇔ [τ ′ ⊆ τ ] . �

In particular, Theorem 2.14 identifies the Zd-graded prime ideals containing
IA = I0

A with the elements of Φ0

A from Definition 2.7.

2.7. Index formula for multiplicities. By Theorem 2.14, there is a composition
chain of Zd-graded R-modules

(2.7.1) 0 = N0 ( N1 ( · · · ( Nl−1 ( Nl = SL
A

with Ni/Ni−1
∼= Sτi

(−ui) for some τi ∈ ΦL
A and ui ∈ Zd. As Zd-graded vector

spaces SL
A = SA and the Zd-graded Hilbert function of both rings has values in

{0, 1}. Thus, the composition chain (2.7.1) induces a partition of Zd-degrees

(2.7.2) deg(SL
A) = deg(SA) = NA =

l⊔

i=1

(ui + Nτi) =

l⊔

i=1

deg(Sτi
(−ui)).

Definition 2.15. If τ ∈ ΦL,d−1
A is a facet then the number νL,τ

A of indices i in the
chain (2.7.1), and hence in the partition (2.7.2), with τi = τ is the multiplicity of

SL
A along Ōτ

A. Note that νL,τ
A is the length of the localization of SL

A at Iτ
A and hence

independent of the particular composition chain.

Proposition 2.16. For all τ ∈ ΦL,d−1
A , νL,τ

A = [Zd : Zτ ]. In particular, the degree

of IL
A equals

∑
τ∈ΦL,d−1

A

νL,τ
A =

∑
τ∈ΦL,d−1

A

[Zd : Zτ ].

Proof. Fix τ ∈ ΦL,d−1
A . For disjoint u+Nτ and v+Nτ , u−v 6∈ Zτ since Nτ contains

a shifted copy of its normalization Q+τ ∩Zτ . This means that νL,τ
A ≤ [Zd : Zτ ] and

it remains to show that
⊔

τi=τ (ui + Nτi) meets every coset of Zd/Zτ . Pick u ∈ Nτ

outside Q+τ ′ for all τ ′ ∈ ΦL
A with τ ′ ( τ . Since NA contains a shifted copy of its

normalization Q+A ∩ Zd, for k ≫ 0

ku + (Q+τ ∩ Zd) ⊆ ku + (Q+A ∩ Zd) ⊆ NA = deg(SL
A) =

l⊔

i=1

deg(Sτi
(−ui)).
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By Lemma 2.17 below, for k ≫ 0

ku + (Q+τ ∩ Zd) ⊆
⊔

τi=τ

(ui + Nτi)

and the left hand side meets every coset of Zd/Zτ . This yields νL,τ
A ≥ [Zd : Zτ ]. �

Lemma 2.17. Let τ ∈ ΦL,d−1
A and suppose u ∈ Nτ r Q+τ ′ for all τ ′ ∈ ΦL

A with
τ ′ ( τ . Fix u′ ∈ Zd and τ ′ ∈ ΦL

A such that τ ′ 6= τ . Then for k ≫ 0

(ku + Q+τ) ∩ (u′ + Q+τ ′) = ∅.

Proof. Suppose that ku + v = u′ + v′ with v ∈ Q+τ and v′ ∈ Q+τ ′. Pick a
linear form 0 6= hτ,τ ′ ∈ HomQ(Qd, Q) with hτ,τ ′(τ) ≥ 0, hτ,τ ′(τ ′) ≤ 0. Then, by
hypothesis, hτ,τ ′(u) > 0. But khτ,τ ′(u) + hτ,τ ′(v) = h(u′) + hτ,τ ′(v′) implies that
khτ,τ ′(u) ≤ h(u′) which is impossible for k ≫ 0. �

2.8. Newton filtration and Cohen–Macaulayness. Until the end of this sec-
tion, we fix a weight vector L with L∂i

> 0 for all i. Let V =
⊕

a∈NA Va be a

Zd-graded vector space. Then the Newton filtration N = NL
A on V with respect to

∆L
A is defined by

NiV =
⊕

a∈i·∆L
A

Va.

Note that grN (V ) = V as Zd-graded vector spaces. For τ ∈ ΦL
A or τ = A, we

denote V (τ) =
⊕

a∈Q+τ Va. Generalizing [Kou76, Prop. 2.6], there is a complex

(2.8.1) 0 // Vd−1
// Vd−2

// · · · // V0
// 0

where the Zd-graded vector space Vi is the direct sum of all V (τ) for which τ ∈ ΦL,i
A

is not contained in the boundary of ΓL
A (see Definition 2.7). The cohomology of

this complex is concentrated in homological degree d − 1 and equal to V .
Now assume that V is a Zd-graded C-algebra. Then grN (V )(τ) = V (τ) as C-

algebras for τ ∈ ΦL
A. For τ, τ ′ ∈ ΦL

A (or τ = A) with τ ⊇ τ ′, the maps

γτ,τ ′ : grN (V )(τ) // // grN (V )(τ ′)

in the complex (2.8.1) for grN (V ) are natural projections of C-algebras. In partic-
ular, (2.8.1) is a complex of grN (V )-modules.

Lemma 2.18. For all τ ∈ ΦL
A and all k > 0, C[N · k · (τ ∩ ΦL,0

A )] ⊆ SL
A(τ) is a

module-finite ring extension for all τ ∈ ΦL
A.

Proof. One can construct a Zd-graded composition chain of SL
A as in (2.7.1) such

that the resulting partition (2.7.2) refines the partition Q+A = Q+τ⊔(Q+ArQ+τ),
and hence deg(Sτi

(−ui)) meets Q+τ only if τi ⊆ τ . Namely, given any chain as in
(2.7.1) we refine it at any index i ∈ {1, . . . , l} for which deg(Sτi

(−ui)) = ui + Nτi

meets both Q+τ and Q+A r Q+τ . Let ℓ ∈ HomQ(Qd, Q) be a separating linear
form, ℓ(τ) ≥ 0 and ℓ(τi) ≤ 0. If τi ⊆ τ (and hence ui /∈ Q+τ), we chose u′

i ∈
(ui + Nτi)∩Q+τ . The submodule Sτi

(−u′
i) of Sτi

(−ui) has its Zd-degrees entirely
in Q+τ , and the cokernel of the inclusion has smaller dimension. If conversely
τi 6⊆ τ , choose ℓ ∈ HomQ(Qd, Q) above such that ℓ(τi) 6= 0 and pick u′

i ∈ ui + Nτi

with ℓ(u′
i) < 0. Then Sτi

(−u′
i) ⊆ Sτi

(−ui) and has degrees completely outside of
Q+τ .
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Iterating this procedure we arrive at a composition chain as claimed. Then,
however, the statement of the lemma is obvious: for each i ∈ {1, . . . , l} with
deg(Sτi

(−ui)) ∩ Q+τ 6= ∅, τi ⊆ τ , and (Sτi
(−ui))(τ) ∼= Sτi

is even module-finite

over the subring C[N · k · (τi ∩ ΦL,0
A )] of C[N · k · (τ ∩ ΦL,0

A )]. �

Theorem 2.19. If SL
A(τ) is Cohen–Macaulay for all τ ∈ ΦL

A not contained in the
topological boundary of ΓL

A then SL
A is Cohen–Macaulay.

Proof. There is an integer k > 0 such that k · ΓL
A has vertex set k · ΓL,0

A ⊆ NA.
Within the space of sequences f1, . . . , fd in SL

A for which each fi is a sum of terms

whose Zd-degrees are in k · ΓL,0
A , choose one sequence that is generic.

Each fi is homogeneous with respect to N = NL
A and can hence be identified

with its N -symbol in grN (SL
A). By Lemma 2.18, the vector space spanned by

γA,τ (f1), . . . , γA,τ (fd) ∈ C[Nτ ] contains a system of parameters on SL
A(τ) for all

τ ∈ ΦL
A. This system of parameters is a regular sequence by the Cohen–Macaulay

hypothesis. By the (spectral sequence) argument in [Kou76, §2.12], the Koszul
complex induced by f1, . . . , fd on the complex (2.8.1) with V = SL

A is a resolution.
It follows that the Koszul complex induced by f1, . . . , fd on grN (SL

A), and hence on
SL

A, is a resolution as well. Therefore, f1, . . . , fd is a regular sequence on SL
A and

the claim follows. �

3. Characteristic variety of the hypergeometric system

3.1. Characteristic varieties and slopes. The Weyl algebra D = C[x]〈∂〉 in n
variables x = x1, . . . , xn is the ring of C-linear differential operators on X = Cn

and contains R as a commutative subring. The Zd-grading on R extends to D by
setting − deg(xi) = ai = deg(∂i).

With Lx = (Lx1
, . . . , Lxn

) and L∂ = (L∂1
, . . . , L∂n

), L = (Lx, L∂) ∈ Q2d is a
weight vector on D if Lx + L∂ ≥ 0. Fix any such weight vector L; it defines an
increasing filtration L on D by [xu∂v ∈ LkD] ⇔ [L · (u,v) ≤ k]. Since the Gröbner
fan of any D-ideal is defined over Q (see [ACJG00]), the study of real weights can

be reduced to the present rational case. If P ∈ LkD r L<kD then k =: degL(P ) is
the L-degree of P . The multiplicative, but not additive, L-symbol map

σL : D // grL(D) =: W

is defined by σL(P ) = P mod L<kR if degL(P ) = k. An element of the form
P =

∑
L·(u,v)=k Pu,vxu∂v ∈ D with Pu,v ∈ C is L-homogeneous. By abuse of

notation, we identify L-homogeneous elements in D with their image under σL in
W . We restrict ourselves to the case Lx + L∂ > 0 in which case W ∼= C[x, ∂] can
be considered as the ring of polynomial functions on the cotangent space T ∗X

The definition of the characteristic variety of a D-module is based on the concept
of good filtrations discussed in more detail in Section 4 and [Sch85, Ch. II, §§1.1–
1.3]. Let F be a filtration on a ring T . Then G is called a good F -filtration on a
T -module N (see [Sch85, Ch. II, Def. 1.1.1]), if there are generators n1, . . . , nm of
N and u ∈ Zm such that for all k one has

GkN =

m∑

i=1

Fk+ui
T · ni.
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Note that good F -filtrations on N exist if and only if N is T -finite. From the
definition follows the fact that all good F -filtrations on N are equivalent in the
sense that for all k, l ∈ N there are kl, lk ∈ N with GkN ⊆ G′

lk
N and G′

l ⊆ Gkl
.

Definition 3.1. The L-characteristic variety ChL(M) of a finite D-module M on
X is the support of grL(M) in T ∗X for some good L-filtration on M . A finite

D-module M is L-holonomic if dimChL(M) = n.

The independence of ChL(M) of the choice of the good L-filtration on M follows
from [Sch85, Ch. II, Prop. 1.3.1.a]. The following algebraic statement is a special
case of a result by G.G. Smith [Smi01, Thm. 1.1].

Theorem 3.2. The dimension of any component of ChL(M) is at least n. �

Important special cases of filtrations on D are the the order filtration F =
(Fx, F∂) = (0,1) and the V -filtration V = (Vx, V∂) along the coordinate variety

(3.1.1) Y := Var(xV) ⊆ X, V ⊆ {1, . . . , n},

defined by −Vxi
= 1 = V∂i

for i ∈ V and Vxi
= 0 = V∂i

for i /∈ V. The notion of
slopes along Y (see Definition 3.4) involves the family of intermediate filtrations L
between F and V defined by the linear combination of weight vectors

(3.1.2) L = pF + qV, p/q ∈ Q>0 ∪ {∞}.

Note that Lx + L∂ > 0 since p > 0. If p′/q′ = p/q then the filtrations L and L′ are
identical, up to a dilation in the index: Lp′k = L′

pk. By abuse of notation, we shall

frequently identify the filtration L with the number p/q. For Y ⊆ X closed and
reduced, let T ∗

Y X be (the closure of) the conormal bundle of (the smooth points
of) Y in X . With notation as in (3.1.1) and (3.1.2), the ring W = grL(D) can be
considered as the ring of polynomial functions on the cotangent space T ∗T ∗

Y X of
T ∗

Y X . For i ∈ V, −xi can be interpreted as the partial derivative with respect to
the variable ∂i. This sets up an explicit isomorphism between T ∗T ∗

Y X and T ∗X .

Remark 3.3. For L = pF + qV as in (3.1.2), ChL(M) is the global algebraic version
of Y. Laurent’s microcharacteristic variety Σr

Λ(M) of type r = p/q +1 in T ∗Λ with
Λ = T ∗

Y X (see [Lau87, §3.2]). Our algebraic L-filtration corresponds to the filtration
on the sheaf of analytic differential operators on X along Y induced by Y. Laurent’s
microlocal filtration FΛ,r along Λ (see [Lau87, Def. 3.2.1]). By a flatness argument,
A. Assi et al. [ACJG96, Lem. 1.1.2] show that the analytification functor commutes
with the grading by these two corresponding filtrations. Thus, the components of
our ChL(M) which meet the preimage of Y in T ∗X correspond to the components
of Σr

Λ(M).

The preceding remark motivated the following algebraic version of Y. Laurent’s
critical indices (see [Lau87, §3.4]) which are also called slopes.

Definition 3.4. For L = pF + qV as in (3.1.2), we mean by f(L′) jumps at L′ = L
that the set-valued function

Q ∋ p′/q′ �

// L′ = p′F + q′V 7→ f(L′)

is not locally constant at p/q. A slope of a finite D-module M at y ∈ Y along Y

is a value L = p/q such that the set of components of ChL′

(M) which meet T ∗
y X

jumps at L′ = L.
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It follows from the existence of the Gröbner fan (see [ACJG00]) that a fixed
D-module has only finitely many and only rational slopes along all coordinate
varieties. Y. Laurent proved this finiteness and rationality along general varieties
in the microlocal setting in [Lau87, Thm. 3.4.1]. He also showed that Σr

Λ(M) is
involutive (see [Lau87, Prop. 3.5.2]) and Lagrangian for holonomic M (see [Lau87,

Cor. 4.1.2.(ii)]). In view of Remark 3.3, this implies for holonomic M that ChL(M)
is purely n-dimensional for L = pF + qV as in (3.1.2).

3.2. Hypergeometric system and candidate components. We now define
our main object of interest, the hypergeometric D-module MA(β), introduced in
[GGZ87, GZK89].

Definition 3.5. The Euler vector fields E = (E1, . . . , Ed) of A are defined by
Ei :=

∑
j ai,jxj∂j for i = 1, . . . , d. The A-hypergeometric (or GKZ ) system defined

by A and a complex parameter vector β ∈ Cd is the D-module

MA(β) := D/D〈IA, E − β〉

on X defined by the toric ideal IA and the Euler operators E − β.

The A-hypergeometric system is always holonomic (see [Ado94]). Our goal is to
understand its L-characteristic varieties and slopes under the assumption that

(3.2.1) Lx + L∂ = (c, . . . , c) =: c for some rational c > 0.

This guarantees that W is a polynomial ring and E is L-homogeneous of positive
L-degree. Note that MA(β) is L-homogeneous if A is L-homogeneous as defined in
Definition 2.7. The following statement is a consequence of Buchberger’s algorithm.

Lemma 3.6. One has the identity grL(DIA) = WIL
A. �

The vector fields t1∂t1 , . . . , td∂td
span the tangent space at any point of the

torus T = (C∗)d. Hence, for any ξ ∈ T ∗
0 X , the tangent space of the orbit Orb(ξ)

is spanned by the pushforwards ET
i :=

∑
j ai,j∂j(−xj) of ti∂ti

under the map

T → T ∗
0 X , t 7→ t ·ξ from (2.1.1). Since Ei is L-homogeneous of positive degree with

σL(Ei) = −σL(ET
i ), the equations σL(E − β) = 0 impose the conormal condition

to the orbit Orb(ξ) ⊆ T ∗
0 X in T ∗T ∗

0 X = T ∗X . In what follows we abuse notation
by writing σL(E) = E.

Definition 3.7. For a subset τ of {1, . . . , n}, we denote by Cτ
A ⊆ T ∗X the conormal

space to the orbit Oτ
A ⊆ T ∗

0 X from Definition 2.2. We denote by PC ⊆ W the
defining ideal of any irreducible variety C ⊆ T ∗X and abbreviate PCτ

A
by Pτ .

Proposition 3.8. The L-characteristic variety of MA(β) is

ChL(MA(β)) =
⋃

τ∈φL
A(β)

C̄τ
A =

⊔

τ∈φL
A(β)

Cτ
A

for some subset φL
A(β) ⊆ ΦL

A. In particular, the hypergeometric system MA(β) is
L-holonomic for any L.

Proof. By definition, ChL(MA(β)) ⊆ Var(W 〈IL
A , E〉). By Theorem 2.14 and the

preceding arguments,

(3.2.2) Var(W 〈IL
A , E〉) =

⊔

τ∈ΦL
A

Cτ
A =

⋃

τ∈ΦL
A

C̄τ
A.
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Then Theorem 3.2 assures that ChL(MA(β)) is purely n-dimensional and hence a
union of closures of conormals Cτ

A for certain τ ∈ ΦL
A. �

3.3. Existence of facet components. In this subsection, we use an elementary
localization argument to give an index formula for the multiplicity of components in
the characteristic cycle CCL(MA(β)) (see Definition 4.4) corresponding to facets in
the (A, L)-umbrella. It shows in particular that these multiplicities are independent

of β and positive, and that all facet components occur in ChL(MA(β)). We deduce
from this a converse to R. Hotta’s Theorem: regular A-hypergeometric systems are
homogeneous in the usual sense.

Definition 3.9. We denote by µL,C
A,0 (β) the multiplicity of grL(MA(β)) along C.

(The reason for the appearance of the subscript “0” will become apparent in Section

4.) This is the length of the WPC
-module grL(MA(β))⊗W WPC

. We write µL,τ
A,0(β)

if C = C̄τ
A.

Theorem 3.10. For all β ∈ Cd and all τ ∈ ΦL,d−1
A ,

µL,τ
A,0(β) = νL,τ

A = [Zd : Zτ ].

In particular, ΦL,d−1
A ⊆ φL

A(β) for all β ∈ Cd.

Proof. Let τ ∈ ΦL,d−1 and relabel columns such that aL
1 , . . . ,aL

d ∈ τ and such that

a1, . . . ,ad are linearly independent. We have to show that Cτ
A ⊆ ChL(MA(β)).

First, we verify that E is a regular sequence on W [∂−1
τ ]/W [∂−1

τ ]IL
A . After Gauss

reduction on E and multiplying Ei by ∂−1
i , Ei ≡ xi modulo terms independent of

xj for all j ≤ d. After a change of the coordinates x1, . . . , xd in W [∂−1
τ ], leaving IL

A

invariant, Ei = xi. As IL
A does not involve the variables x1, . . . , xd, E is a regular

sequence modulo W [∂−1
τ ]IL

A as claimed.
Since W [∂−1

τ ]IL
A = grL(D[∂−1

τ ]IA) by Lemma 3.11 below, grL(D[∂−1
τ ]〈IA, E − β〉) =

grL(D[∂−1
τ ]IA) + grL(D[∂−1

τ ]〈E〉) by the argument in [SST00, Thm. 4.3.5]. Again
by Lemma 3.11,

grL(MA(β))[∂−1
τ ] = W [∂−1

τ ]/W [∂−1
τ ]〈IL

A , E〉.

Since ∂j /∈ Pτ for all j ∈ τ , this yields

grL(MA(β))Pτ
= WPτ

/WPτ
〈IL

A , E〉 ∼= (RIτ
A
/IL

A)(xd+1, . . . , xn)

with the ring isomorphism defined by the above coordinate change, and hence

µL,τ
A,0(β) = ℓ(grL(MA(β))Pτ

) = ℓ(RIτ
A
/IL

A) = νL,τ
A .

Then Proposition 2.16 finishes the proof. �

Lemma 3.11. For I ⊆ D and τ ⊆ {1, . . . , n}, grL(D[∂−1
τ ]I) = grL(D[∂−1

τ ]) grL(I).
In particular, grL((D/I)[∂−1

τ ]) = (grL(D/I))[∂−1
τ ].

Proof. The inclusion grL(D[∂−1
τ ]I) ⊇ grL(D[∂−1

τ ]) grL(I) holds trivially. For Q ∈
D[∂−1

τ ], ∂u
τ Q ∈ D for some u ∈ N|τ |. If {Pi} is a finite set of generators for I then

the opposite inclusion follows from

σL
(∑

i

QiPi

)
= ∂−u

τ σL
(∑

i

∂u

τ QiPi

)
∈ grL(D[∂−1

τ ]) grL(I)
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with a common u for the finitely many Qi ∈ D[∂−1
τ ]. In particular,

grL((D/I)[∂−1
τ ]) = grL(D[∂−1

τ ]/D[∂−1
τ ]I) = grL(D[∂−1

τ ])/ grL(D[∂−1
τ ]) grL(I)

= W [∂−1
τ ]/W [∂−1

τ ] grL(I) = (W/ grL(I))[∂−1
τ ] = (grL(D/I))[∂−1

τ ]. �

Example 3.12. Let A be as in Figure 1; we consider L = F + tV where V is the
V -filtration along Var(x4), induced by the weight vector (0, 0, 0,−1, 0, 0, 0, 1). We
consider specifically t ∈ {0, 1, 4}. As these weights are generic, for all τ ⊆ {1, . . . , 4}
the conormal closures C̄τ

A are coordinate subspaces Var(xτ , ∂τ ). The facets in ΦL
A

for these values of t are shown in Figure 1.

For t = 0 one finds µ
L,{1,4}
A,0 (β) = 12 and µ

L,{2,4}
A,0 (β) = 1 with sum 13 =

volZd(∆F
A) (for relevant notation and more information, see Definition 4.19 and the

continuation in Example 4.24). For t = 1 one finds three facets, with µ
L,{1,3}
A,0 (β) =

3, µ
L,{3,4}
A,0 (β) = 7 and µ

L,{2,4}
A,0 (β) = 1. On the other hand, t = 4 yields two facets

only, with µ
L,{1,3}
A,0 (β) = 3 and µ

L,{2,3}
A,0 (β) = 2. The respective sums, 3 + 7 + 1 and

3 + 2, are the degrees of the L-graded toric ideals (see Proposition 2.16).

Lemma 3.13. The map L′ 7→ ΦL′,d−1
A jumps at L′ = L if and only if the map

L′ 7→ ΦL′

A jumps at L′ = L.

Proof. The “only if” part in the statement follows trivially from ΦL′,d−1
A ⊆ ΦL′

A .

Assume that ΦL′,d−1
A is locally constant at L and let τ ∈ ΦL

A. Then there is a

τ ′ ∈ ΦL,d−1
A such that τ is a face of τ ′. By assumption, τ ′ ∈ ΦL′,d−1

A for L′ close

to L. Since τ ′ is not contained in a hyperplane through origin and since the aL′

j

depend on L′ only by scaling, τ remains a face of τ ′ for L′ close to L. In particular,
τ ∈ ΦL′

A for L′ close to L and hence ΦL′

A is locally constant at L. �

Theorem 3.10 and Lemma 3.13 yield the existence of slopes of MA(β) corre-
sponding to jumps of the (A, L)-umbrella with L as in (3.1.2). The following result

on the candidate components C̄τ
A of ChL(MA(β)) allows us to show that all these

slopes occur at the origin.

Lemma 3.14. For all τ ∈ ΦL
A, the candidate component C̄τ

A meets T ∗
0 X.

Proof. Since the ideal W 〈IL
A , E〉 is homogeneous in the x-variables, this holds also

for its associated prime ideals Pτ where τ ∈ ΦL
A. Thus C̄τ

A = Var(Pτ ) meets T ∗
0 X

as claimed. �

Corollary 3.15. For L = pF + qV as in (3.1.2), if ΦL
A jumps at L = L′ then

L′ = p′/q′ is a slope of MA(β) along Y at 0 ∈ Y . �

In particular, we obtain the following converse to a Theorem by R. Hotta [Hot98,
Ch. II, §6.2, Thm.].

Corollary 3.16. Regular A-hypergeometric systems are homogeneous with respect
to the order filtration F .

Proof. The polytope conv(A) is an intersection of closed half-spaces and 0 /∈ conv(A)
by positivity of NA. Thus there is a facet τ of conv(A) and a linear form ℓ ∈

HomQ(Qd, Q) such that ℓ(ai) ≥ 1 with equality equivalent to i ∈ τ . If τ ∈ ΦF,d−1
A

then τ is a facet of ∆F
A = conv({0,a1, . . . ,an}). But then 0 ∈ ∆F

A and ℓ(0) = 0 < 1
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implies that ℓ(ai) ≤ 1 and hence ℓ(ai) = 1 for i = 1, . . . , n. So in this case A is

F -homogeneous. Assume now that τ 6∈ ΦF,d−1
A and let L = F + q

pV where V = τ

in (3.1.1). For i ∈ τ , aL
i = ai and hence ℓ(aL

i ) = 1. But for i /∈ τ and p/q → 0,

aL
i → 0 and hence eventually ℓ(aL

i ) < 1. Thus, τ ∈ ΦL,d−1
A for p/q → 0 while

τ 6∈ ΦF,d−1
A and hence L 7→ ΦL

A can not be constant. Then, by Corollary 3.15,
MA(β) has slopes. By [LM99, Thm. 2.4.2], MA(β) is hence irregular. �

We will see later in Corollary 4.18 that Corollary 3.15 actually gives a complete
list of all slopes along coordinate varieties at the origin.

Remark 3.17. For generic β, the equivalence of the regularity of MA(β) with the
homogeneity of A was already obtained in [SST00, Thm. 2.4.11].

4. Characteristic cycle of the Euler–Koszul complex

In this section we assume that Lx + L∂ = c is a constant positive vector as in
(3.2.1). By way of a dilation we further may, and do, assume that the index set of
the L-filtration is Z.

By Proposition 3.8, all components of the L-characteristic variety of MA(β) are
of the form C̄τ

A where τ ∈ ΦL
A. In this section we prepare the way for Corollary 4.17

which ascertains the presence of every such candidate component. The approach
is to consider MA(β) as the 0-th homology of a Koszul type complex by operators
E−β on the D-module D⊗R N for the Zd-graded R-module N = SA. For modules
N having a composition series with quotients of type Sθ, θ ∈ Φ0

A, we can apply
results in Sections 2 and 3 combined with homological algebra. For basic results
on filtered rings and modules we refer to [Sch85, Ch. II, §§1.1-1.3].

4.1. Good filtrations and toric modules. In order to combine homological
methods with good L-filtrations on D-modules, we need the L-filtration on D to
be Noetherian, which means the following.

The Rees ring of a ring T with a Z-indexed filtration F is the graded ring

ReesF (T ) =
⊕

i∈Z

Fi(T )ti ⊆ T [t, t−1]

and F is called Noetherian if ReesF (T ) is Noetherian.

Lemma 4.1. The filtrations L on D and L∂ on R are Noetherian.

Proof. Let us write (u,v) := (Lx, L∂), then u + v = c > 0 by hypothesis. The

elements of ReesL(D) are of the form
∑

k∈Z

∑
u·u′+v·v′≤k cu′,v′,kxu

′

∂v
′

tk. Apply

the change of variables xi 7→ xit
−ui , ∂i 7→ ∂it

ui and set m = k +u · (v′ −u′). Then

the elements are transformed to
∑

m∈Z

∑
(v+u)·v′≤m xu

′

∂v
′

tm. Thus, ReesL(D) ∼=

ReesF ′

(D) where F ′ := (0,v + u) = (0, c), which is Noetherian by [Sch85, Ch. II,
Prop. 1.1.8] since F ′

0D = C[x] is Noetherian. Similarly, a change of variables

∂i 7→ ∂it
1−vi shows that ReesL∂ (R) ∼= ReesF∂ (R) is Noetherian. �

The Rees module of a T -module N with an F -filtration G is the graded ReesF (T )-
module

ReesG(N) =
⊕

i∈Z

Gi(N)ti ⊆ N [t, t−1].
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For Noetherian F , G is a good F -filtration on N in the sense of Subsection 3.1 if and
only if ReesG(N) is Noetherian over ReesF (T ), (see [Sch85, Ch. II, Prop. 1.1.7]).
The advantage of this new definition is the following. Consider a short exact se-
quence of T -modules

(4.1.1) 0 // N ′ // N // N ′′ // 0 ,

a good F -filtration G on N , and the induced F -filtrations G′ on N ′ and G′′ on N ′′.
Then the associated Rees sequence

0 // ReesG′

(N ′) // ReesG(N) // ReesG′′

(N ′′) // 0

is exact and hence G′ and G′′ are good according to the new definition. By definition
of G′ and G′′, the maps in the sequence (4.1.1) are strict and hence

0 // grG′

(N ′) // grG(N) // grG′′

(N ′′) // 0

is exact.
For D-modules of the type M = D ⊗R N where N is an R-module, a good

L∂-filtration on N induces a good L-filtration on M by

(4.1.2) Lk(D ⊗R N) =
∑

i+j=k

(Lx)iC[x] ⊗C (L∂)jN.

Here, (Lx)iC[x] denotes the level-i piece of the filtration Lx on C[x]. For many
purposes, we can replace a given good L-filtration on M by that in (4.1.2) and then
Lemma 3.6 generalizes as follows.

Lemma 4.2. For any R-module N , grL(D⊗R N) = W ⊗R grL∂ (N) as W -modules.
�

The following definition (see [MMW05, Def. 4.5]) describes a class of R-modules
that arise naturally in the study of A-hypergeometric systems. Recall that, by
Theorem 2.14, the Zd-graded prime ideals containing IA are of the form Iθ

A for
θ ∈ Φ0

A.

Definition 4.3. A Zd-graded R-module N is toric if it has a toric filtration

0 = N0 ( N1 ( · · · ( Nl−1 ( Nl = N

which means that for all i, Ni/Ni−1 = Sθi
(ui) for some θi ∈ Φ0

A and some ui ∈ Zd.
The minimal such l is called the toric length of N . A toric morphism is a Zd-graded
R-linear map between toric modules.

4.2. Characteristic cycle and Euler–Koszul homology. Recall that by Theo-
rem 3.2 any component of the L-characteristic variety ChL(M) of a finite D-module
M is at least n-dimensional.

Definition 4.4. The L-characteristic cycle of an L-holonomic D-module M is the
formal sum of n-dimensional irreducible varieties in T ∗X

CCL(M) :=
∑

C

µL,C(M) · C, µL,C(M) := ℓ
(
grL(M)PC

)
,

for some good L-filtration on M .
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A bounded complex of D-modules K• is called homologically L-holonomic if all
its homology modules Hi(K•) are L-holonomic. The L-characteristic cycle of a
homologically L-holonomic complex of finite D-modules K• is

CCL(K•) :=
∑

i∈Z

(−1)i CCL(Hi(K•)) =
∑

C

µL,C(K•) · C,

where

µL,C(K•) :=
∑

i∈Z

(−1)iµL,C
i (K•), µL,C

i (K•) := ℓ
(
grL(Hi(K•))PC

)
.

For an L-holonomic D-module M considered as a complex with trivial differential
concentrated in homological degree zero, the two definitions of CCL(M) coincide.

A D-module is holonomic in the usual sense if it is L-holonomic for L = F . The
independence of CCL(M) of the particular choice of the good L-filtration follows
from [Sch85, Ch. II, Prop. 1.3.1.a]. Essentially by definition, the L-characteristic

variety ChL(M) of an L-holonomic M in Definition 3.1 is the union

ChL(M) =
⋃

µL,C(M)>0

C.

For L = pF + qV as in (3.1.2), CCL(M) is the global algebraic version of Y. Lau-

rent’s microcharacteristic cycle Σ̃r
Λ(M) of type r = p/q + 1 in T ∗Λ with Λ =

T ∗
Y X whose support is Σr

Λ(M) (see Remark 3.3). Lemma 4.1 and [Sch85, Ch. II,
Prop. 1.3.1.b] yield the following statement.

Lemma 4.5. The L-characteristic cycle CCL is additive. �

Our main technical tool for the study of CC(MA(β)) is the Euler–Koszul functor
from [MMW05]. For a Zd-graded left D-module M and a Zd-homogeneous y ∈ M ,

(4.2.1) (Ei − βi) ◦ y := (Ei − βi + degi(y))y

defines d commuting D-linear endomorphisms E − β of M .

Definition 4.6. Let N be a Zd-graded R-module and β ∈ Cd. The Euler–Koszul
complex KA,•(N ; β) is the Koszul complex of the endomorphisms E −β on the left
D-module D ⊗R N . Its i-th homology HA,i(N ; β) := Hi(KA,•(N ; β)) is the i-th
Euler–Koszul homology of N .

To a good L∂-filtration on a Zd-graded R-module N we associate a good L-
filtration on KA,•(N ; β) by setting for i1 < · · · < ik the L-degree of the (i1, . . . , ik)-

th unit vector in KA,k(R; β) = D(n
k) equal to

∑k
t=1 degL(Eit

), and using equa-
tion (4.1.2). Then Lemma 4.2 implies that

(4.2.2) grL(KA,•(N ; β)) = W ⊗R K•(grL(N); E),

by which, abusing notation, we mean the usual Koszul complex induced by the
L-symbols of E on W ⊗R grL(N).

By [MMW05, Thm. 5.1], KA,•(N ; β) is homologically F -holonomic for all toric
modules N . Using Proposition 3.8 and Lemma 4.5, one shows by induction on the
toric length of N combined with a spectral sequence argument as in the proof of
Theorem 4.11 that KA,•(N ; β) is homologically L-holonomic for all toric modules
N and for all L.
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Definition 4.7. For a toric module N , we call

CCL(N) := CCL(KA,•(N ; β)) =

d∑

i=0

(−1)i CCL(HA,i(N ; β))

the L-characteristic Euler–Koszul cycle of N . Recall Definition 3.9. We denote the
i-th Euler–Koszul L-multiplicity and the Euler–Koszul L-characteristic of N along
C by

µL,C
A,i (N ; β) := µL,C

i (KA,•(N ; β)), µL,C
A (N) := µL,C(KA,•(N ; β)).

If N = SA we skip the argument N , while if C = C̄τ
A we write τ rather than C̄τ

A as
upper index.

The independence of β suggested by the notation µL,C
A (N) will be established

in Theorem 4.11 below. Lemma 4.5 and the long exact Euler–Koszul homology
sequence imply the following statement.

Lemma 4.8. The Euler–Koszul L-characteristic µL,C
A along C is additive. �

4.3. Euler–Koszul characteristic and intersection multiplicity. We now in-

terpret µL,τ
A as an intersection multiplicity (see [Ser65, Ch. V, §B]). That will lead

to an explicit formula in Theorem 4.21.

Definition 4.9. For two W -modules M and M ′ and a variety C ⊆ Spec(W ) not
strictly contained in an irreducible component of supp(M ⊗W M ′), the intersection
multiplicity of M and M ′ along C is the alternating sum

χC(M, M ′) :=
∑

i

(−1)iℓ
(
Tor

WPC

i (MPC
, M ′

PC
)
)

of lengths of WPC
-modules. If C = C̄τ

A we write τ rather than C̄τ
A as upper index.

Lemmas 4.1 and 4.2 and [Sch85, Ch. II, Prop. 1.3.1.b] yield the following state-
ments.

Lemma 4.10. Fix a W -module M and a variety C ⊆ Spec(W ). Whenever defined,
the quantity χC(M, W ⊗RgrL(N)) is independent of the choice of a good L-filtration
on the R-module N and additive in N . �

Theorem 4.11. For any toric module N and all β ∈ Cd,

µL,C
A (N) = χC(W/W 〈E〉, W ⊗R grL(N))

and is hence independent of β. For any i ∈ N, µL,C
A,i (N ; β) > 0 only if C = C̄τ

A for

some τ ∈ ΦL
A, while µL,C

A (N) > 0 if and only if dim(N) = d and C = C̄τ
A for some

τ ∈ ΦL
A.

Proof. We consider K• = KA,•(N ; β) and fix a variety C for which µL,C
A (N) is

defined. By Corollary A.2 and equation (4.2.2), there is a sequence of homologically
graded WPC

-modules K1, . . . , Kr with WPC
-linear endomorphisms di : Ki → Ki

such that
K1 = WPC

⊗R K•(grL(N); E),

Ki+1 = H(Ki, di) for i = 1, . . . , r − 1, and Kr = grL(HA,•(N ; β))PC
as homolog-

ically graded modules. Thus for all β ∈ Cd, µL,C
A (N) = χ(Kr) = · · · = χ(K1)

is independent of β by additivity of χ(K) :=
∑

i(−1)iℓ(Hi(K, d)). Since E is a
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regular sequence in W , Koszul homology against E computes Tor over both W and
WPC

and hence

χ(K1) =

d∑

i=1

(−1)iℓ
(
Tor

WPC

i (WPC
/WPC

〈E〉, WPC
⊗R grL(N))

)

= χC(W/W 〈E〉, W ⊗R grL(N)).

By Lemmas 4.8 and 4.10 we may assume now that N = Sθ for some θ ∈ Φ0

A

with the standard good L∂-filtration induced by the single generator 1 ∈ Sθ. Then
the complex K1 above is the Koszul complex of E on WPC

⊗R SL
θ . By [BH93,

Prop. 1.6.5], its homology is annihilated by both grL(Iθ
A) = R · IL

θ + Jθ ⊇ IL
A

and E. Then equation (3.2.2) shows that µL,C
A,i (Sθ; β) > 0 for some i implies that

C = C̄τ
A is an irreducible component of Spec(W/W 〈E〉 ⊗R SL

A) with θ ⊇ τ ∈ ΦL
A.

By Theorem 2.14,

codim(W/W 〈E〉) + codim(W ⊗R SL
θ ) = d + n − dim(Sθ) ≥ n = codim(C̄τ

A).

So Serre’s Intersection Theorem [Ser65, Ch. V, §C.1, Thm. 1] shows that µL,τ
A (Sθ) >

0 if and only if dim(Sθ) = d, which is to say θ = A. �

In the special case L = F , Theorem 4.11 yields the holonomicity of Euler–Koszul
homology of toric modules proved in [MMW05, Thm. 5.1].

In order to discuss CCL(MA(β)) we need more information about µL,τ
A,0(β): The-

orem 4.11 does not state that µL,τ
A,0(β) > 0. We show next that for generic β this

inequality does indeed hold. In Subsections 4.4 and 4.6 we will show that the
genericity assumption is not necessary and in fact identify a global combinatorial

lower bound for µL,τ
A,0(β), similar to classical statements about the holonomic rank

of MA(β) in [GZK89].

Corollary 4.12. For generic (more precisely, not rank-jumping) β ∈ Cd

µL,τ
A,0(β) = µL,τ

A = χτ (W/W 〈E〉, W ⊗R SL
A) > 0

for all τ ∈ ΦL
A. In particular, ChL(MA(β)) =

⋃
τ∈ΦL

A
C̄τ

A.

Proof. By assumption on β and [MMW05, Thm. 6.6], the Euler–Koszul complex

KA,•(SA; β) is a resolution of MA(β). Hence CCL(KA,•(SA; β)) = CCL(MA(β))

and µL,τ
A,0(β) = µL,τ

A > 0 by Theorem 4.11. So the last claim follows from Proposi-
tion 3.8. �

Recall that S̃A is the normalization of SA. In Section 4.4, we show that µL,τ
A,0(β) >

0 for all β. This is done by reducing to S̃A and applying the following statement.

Corollary 4.13. For all τ ∈ ΦL
A,

µL,τ
A,0(S̃A; β) = µL,τ

A (S̃A) = µL,τ
A = χτ (W/W 〈E〉, W ⊗R SL

A) > 0.

Proof. Since S̃A is a Cohen–Macaulay module of full dimension over SA, its Euler–
Koszul complex is a resolution of HA,0(S̃A; β) by [MMW05, Thm. 6.6]. Hence

µL,τ
A,i (S̃A; β) = 0 for all i > 0 which proves the first equality. There is a short exact

sequence

(4.3.1) 0 // SA
// S̃A

// Q // 0
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where dim(Q) < d and the rest of the claim follows from Theorem 4.11 and Corol-
lary 4.12. �

4.4. Rigidity of Euler–Koszul multiplicities. In this section we show in The-

orem 4.16 that the strict positivity of µL,τ
A,0(β) in Corollary 4.12 holds without the

genericity assumption. As a consequence, we obtain a complete description of the
L-characteristic variety and the slopes of the A-hypergeometric system along coor-
dinate varieties at the origin.

Definition 4.14. Let τ be a subset of the column set of A. We set Wτ = C[xτ , ∂τ ]
so that W/WIτ

A = C[xτ ] ⊗C (Wτ ⊗Rτ
Sτ ).

Let g ∈ Gl(Z, d) and put A′ = gA and β′ = gβ. Then note that SA =
SA′ and E′ − β′ = g(E − β). Hence, the Euler–Koszul complexes KA,•(SA; β)
and KA′,•(SA′ ; β′) are homotopy equivalent. In particular, when investigating
homotopy-invariant properties of KA,•(SA; β) one may replace A by gA.

Lemma 4.15. Let θ ∈ Φ0

A and assume that the top dim(θ) rows A′ of θ are a
lattice basis for the Z-row span of θ. Then, for all τ ∈ ΦL

A,

µL,τ
A,i (Sθ; β) =

{
µL′,τ ′

A′,i (Sθ′ ; β′) if τ ⊆ θ;

0 if τ 6⊆ θ;

where L′ = (LxA′ , L∂A′ ), τ = τ ′, θ′ = A′, and β′ := (β1, . . . , βdim(θ)).

Proof. By [MMW05, Lem. 4.8], HA,i(Sθ; β) = C[xθ] ⊗C HA′,i(Sθ′ ; β′) and hence

grL(HA,i(Sθ; β)) = C[xθ] ⊗C grL′

(HA′,i(Sθ′ ; β′)).

For j ∈ τ r θ, ∂j is both annihilator and unit on grL(HA,i(Sθ; β))Pτ
and hence

τ ⊆ θ if µL,τ
A,i (Sθ; β) 6= 0. Assume now that τ ⊆ θ. Then

WPτ
⊗W grL(HA,i(Sθ; β)) = C(xθ) ⊗C

(
(WA′)Pτ

⊗WA′ grL′

(HA′,i(Sθ′ ; β′))
)

where the symbol Pτ is used for the two ideals in WA and WA′ from Definition 3.7 in-
duced by τ ∈ ΦL

A and τ ∈ ΦL′

A′ . In particular, the length of WPτ
⊗W grL(HA,i(Sθ; β))

over WPτ
is the same as the length of (WA′ )Pτ

⊗WA′ grL′

(HA′,i(Sθ′ ; β′)) over
(WA′)Pτ

. �

Theorem 4.16. For any toric module N and for every parameter β ∈ Cd, if

µL,τ
A,i (N ; β) > 0 for some i > 0 then µL,τ

A,0(N ; β) > 0.

Proof. Suppose there is a counterexample (A, β, L, τ, N) to the theorem. This

means that µL,τ
A,i (N ; β) 6= 0 for some i > 0 while µL,τ

A,0(N ; β) = 0. We choose a
minimal counterexample in the sense that

1. A has minimal number of columns,
2. for a fixed such A, dim(N) is minimal, and
3. no quotient of N is part of such a counterexample.

This last choice can be made since toric modules are Noetherian. Let θ ∈ Φ0

A such
that Iθ

A is an associated prime of N . Then there is a short exact sequence

0 // Sθ(−a) // N // N ′ // 0

where a ∈ Zd is the degree of the image of 1 ∈ Sθ within N . The long exact Euler–
Koszul homology sequence shows that HA,0(N

′; β) is a quotient of HA,0(N ; β).
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Recall that by Lemma 4.1 the L-characteristic cycle is additive. Since by hypothesis

µL,τ
A,0(N ; β) = 0, we conclude that µL,τ

A,0(N
′; β) = 0 as well.

By assumption, (A, β, L, τ, N ′) is not a counterexample and so µL,τ
A,i (N

′; β) = 0

for all i. It follows that the µL,τ
A,i -vanishing patterns of N and of Sθ(−a) coincide. In

particular, Sθ(−a) is a counterexample. Since dim(Sθ) ≤ dim(N), and since Sθ is
a domain, Sθ(−a) is actually a minimal counterexample. Since HA,i(Sθ(−a); β) =
HA,i(Sθ; β − a) up to a Zd-shift we may assume that N = Sθ. But if θ 6= A then
Lemma 4.15 yields a counterexample whose matrix A′ has strictly fewer columns
than A. Therefore θ = A by minimality of A and (A, β, L, τ, SA) is a minimal
counterexample.

By Corollary 4.13, µL,τ
A,0(S̃A; β) > 0 where S̃A is the normalization of SA. For

appropriate a ∈ Zd, there is a short exact sequence

0 // S̃A(−a) // SA
// Q // 0

where Q is not a counterexample as dim(Q) < d. By additivity of the L-characteristic

cycle, µL,τ
A,0(SA; β) = 0 implies µL,τ

A,0(Q; β) = 0 and so, as Q is not a counterexample,

µL,τ
A,i (Q; β) = 0 for all i. This yields µL,τ

A,i (SA; β) = µL,τ
A,i (S̃A; β) for all i which is a

contradiction for i = 0. �

Finally, from Theorem 4.16, Corollary 4.12 and Theorem 4.11, we obtain the
L-characteristic variety of the A-hypergeometric system and, as a consequence, the
slopes of the A-hypergeometric system along coordinate varieties at the origin.

Corollary 4.17. For all τ ∈ ΦL
A and β ∈ Cd, µL,τ

A,0(β) > 0. In consequence, the

L-characteristic variety of MA(β) consists for every β precisely of all conormal
closures of the torus orbits indexed by the faces in the (A, L)-umbrella:

ChL(MA(β)) =
⋃

τ∈ΦL
A

C̄τ
A. �

Corollary 4.18. For L = pF + qV as in (3.1.2), L′ = p′/q′ is a slope of MA(β)
along Y at 0 ∈ Y if and only if ΦL

A jumps at L = L′. �

4.5. Euler–Koszul characteristic and volume. In this section we develop an

explicit combinatorial formula for the Euler–Koszul characteristic µL,τ
A for all τ ∈

ΦL
A, Theorem 4.21 below. For generic β, this formula determines the characteristic

cycle of MA(β) as stated in Corollary 4.17 below, but in general it provides only a
lower bound.

Note that rk(MA(β)) = µF,∅
A,0(β), and that µL,τ

A,0(β) = µL,τ
A if β is not a rank-

jumping parameter by [MMW05, Thm. 6.6]. It is a classical result that rk(MA(β)) =
volZd(∆F

A) for generic β (see [GZK89, Ado94]). Theorem 4.21 below contains this
result as a special case when τ = ∅ and L = F . Our generalization of the fact that
generic rank equals volume reads

µL,∅
A = volZd




⋃

τ∈ΦL,d−1

A

(∆F
0 r conv(τ))


 .
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This paragraph outlines our strategy towards Theorem 4.21. By Theorem 4.11,

µL,τ
A is an intersection multiplicity and hence additive. Applying µL,τ

A to the com-
position chain (2.7.1) of SL

A yields

µL,τ
A = χτ (W/〈E〉, SL

A) =
l∑

i=1

χτ (W/〈E〉, Sτi
)(4.5.1)

=
∑

τ⊆τ ′∈ΦL,d−1

A

νL,τ ′

A · χτ (W/〈E〉, Sτ ′)

=
∑

τ⊆τ ′∈ΦL,d−1

A

[Zd : Zτ ′] · µL,τ
A (Sτ ′).

For the third equality note that (R/Iτ ′

A )Iτ
A

= 0 unless τ ⊆ τ ′, and then use
dim(Sτ ′) = dim(τ ′) + 1 in Theorem 4.11. Proposition 2.16 gives the last equal-

ity. By equation (4.5.1) it is sufficient to know the multiplicities µL,τ
A (Sτ ′) for

τ ⊆ τ ′ ∈ ΦL,d−1
A . To determine these we first reduce to τ ′ = A and then to τ = ∅

while controlling the appropriate intersection multiplicity. Finally, we give a com-
binatorial description in that case. Some of our arguments are similar to [GZK89,
§§2.3–2.4] and [Ado94, §5].

Let ΦL
A ∋ τ ⊆ τ ′ ∈ ΦL,d−1

A and abbreviate µ := µL,τ
A (Sτ ′) = χτ (W/〈E〉, Sτ ′).

Since E is a regular sequence in W , µ can be computed from the Koszul complex
of E on WPτ

⊗R Sτ ′ . Since ∂τ ′ is zero on Sτ ′ one can erase the ∂τ -terms in E. Now
the (canonical basis of the) ambient lattice Zd = ZA can be replaced by (a lattice
basis of) Zτ ′; this leaves the quantities W , 〈E〉, Iτ and Sτ ′ invariant. We have thus
reduced the problem to the case τ ′ = A.

We now reduce to the case τ = ∅. By the Fourier transform we may use ∂ as
base variables and identify −xj ∈ W with the (symbol of the) partial derivation
along ∂j . Since χτ is determined at a generic point of Cτ

A, we may replace W by
W ′ = W [∂−1

τ ] whose spectrum T ∗U is the cotangent space of U = Spec(R[∂−1
τ ]).

We now modify the pair (τ ′, τ) into a more convenient one, while keeping track
of µ. A row operation (τ̂ ′, τ̂) = g(τ ′, τ) defined by g ∈ Gl(Z, d) amounts to a basis

change in the d-torus T, so µ = µL,τ̂
τ̂ ′ (Sτ̂ ′). On the other hand, for a triple j ∈ τ ′,

i ∈ τ , m ∈ Z, the elementary column operation âj = aj + mai transforming τ ′ into

τ̂ ′ corresponds to the automorphism ∂̂j = ∂j∂
m
i of U . The induced map on W ′

obviously transforms Iτ ′ into Iτ̂ ′ . Note that xi∂i = x̂i∂̂i + mx̂j ∂̂j and xk∂k = x̂k∂̂k

for k 6= i. Thus, µ = µL,τ̂
τ̂ ′ (Sτ̂ ′). In other words, all elementary column operations

aj 7→ aj + mai with i ∈ τ , all column switches ai ↔ aj with i, j ∈ τ or i, j 6∈ τ ,
and all Z-invertible row operations leave µ invariant.

After a suitable sequence of such transformations, we may assume that

τ =

(
I 0
0 0

)
, I =




k1 0
. . .

0 ke




where ki ∈ N r {0}. Note that the product k1 · · ·ke is the index [(Zτ ′ ∩ Qτ) : Zτ ]
of Zτ in Zτ ′ ∩ Qτ .

We next consider the k1-fold covering space κ1 : U → U induced by ∂̂k1

1 = ∂1.
Let (τ̂ , τ̂ ′) be the matrices obtained from (τ, τ ′) by dividing the first column by k1
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and let Ê be the Euler vector fields of τ̂ . As one checks, x̂1∂̂1 = k1x1∂1 and so
κ1(Var(Ê)) = Var(E), κ1(Var(Iτ̂ ′)) = Var(Iτ ′), and κ1(C

τ̂
A) = Cτ

A. Moreover, the
degree of κ1 is equal to k1 on Cτ

A, and equal to 1 on both Var(E) and Var(Iτ ′). By
Example 8.2.5 in [Ful98],

µ = k1 · χ
τ̂ (W/〈Ê〉, Sτ̂ ′).

Analogous transformations for k2, . . . , ke followed by suitable elementary column
operations as above yield

τ̂ =

(
I 0
0 0

)
, τ̂ ′ =

(
I 0 0
0 0 τ̌

)
, I =




1 0
. . .

0 1


 ,

where now

µ = k1 · · ·ke · χ
τ̂ (W/Eτ̂ ′ , Sτ̂ ′) = [(Zτ ′ ∩ Qτ) : Zτ ] · χτ̂ (W/Eτ̂ ′ , Sτ̂ ′).

Note that τ̌ is pointed since τ is a face of τ ′. Let Ě be the Euler vector fields

of τ̌ . Then on T ∗U , 〈E〉 = 〈x̂1∂̂1, . . . , x̂e∂̂e, Ě〉 = 〈x̂1, . . . , x̂e, Ě〉 as well as Iτ̂ ′ =

〈∂̂e+1, . . . , ∂̂|τ |〉 + Iτ̌ . This establishes the announced reduction to the case τ = ∅,

µ = [(Zτ ′ ∩ Qτ) : Zτ ] · χ∅(W/〈Ě〉, Sτ̌ ) = [(Zτ ′ ∩ Qτ) : Zτ ] · µL,∅
τ̌ (Sτ̌ ).

The constructed lattice Zτ̌ ⊆ Zτ ′ ⊆ Zd corresponds to a splitting of the natural
projection

πτ,τ ′ : Zτ ′ // // Zτ ′/(Zτ ′ ∩ Qτ)

which identifies the positive semigroups Nτ̌ and πτ,τ ′(Nτ ′).

Definition 4.19. In a lattice Λ, the volume function volΛ is normalized so that
the unit simplex of Λ has volume 1. We abbreviate volτ,τ ′ := volπτ,τ′(Zτ ′).

We continue under the assumption that τ = ∅, τ̌ = τ ′ = A, and compute
the intersection multiplicity of Var(E) with Var(IA) along C∅

A = X inside T ∗U =
Spec(W ′),

µ̌ := µL,∅
τ̌ (Sτ̌ ) = χ∅(W/〈Ě〉, Sτ̌ ).

Since for y ∈ (C∗)|τ̌ | the linear polynomials x1 − y1, . . . , x|τ̌ | − y|τ̌ | form a regular

sequence on W/〈E〉, on Sτ̌ and on W/P∅, we may replace W by R, Ei by Ēi :=∑
j ai,jyj∂j , and C∅

A by {0} = Var(∂τ̌ ). By the sequence (4.3.1), we may further

replace Sτ̌ by its normalization S̃τ̌ . Thus, we have reduced to computing

µ̌ = χ{0}(R/〈Ē〉, S̃τ̌ ).

For generic y, the function on Spec(S̃τ̌ )

f :=

|τ̌ |∑

j=1

yj∂j =

|τ̌ |∑

j=1

yjt
aj

is by [Kou76, Thm. 6.1] and its proof Newton nondegenerate at the origin. We can

interpret Ē as functions on Spec(S̃τ̌ ),

Ēi = ti
∂f

∂ti
.
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Let mτ̌ ⊆ Sτ̌ and m̃τ̌ ⊆ S̃τ̌ be the maximal ideals at 0. In the special case where τ̌ is
the unit matrix, and where hence S̃τ̌ is a polynomial ring, [Kou76, Thm. 2.8] states

that the Koszul complex of Ē on S̃τ̌ is acyclic in positive dimension when completed
at m̃τ̌ . The mτ̌ - and m̃τ̌ -adic topologies on S̃τ̌ are equivalent and completion at m̃τ̌

can be replaced by completion at mτ̌ . By faithful flatness of completion this implies
that the Koszul complex of Ē on (S̃τ̌ )mτ̌

is acyclic in positive dimension and hence

µ̌ = dimC((S̃τ̌ )mτ̌
/〈Ē〉).

Since this dimension is finite, localization can be replaced by completion at mτ̌ or
equivalently at m̃τ̌ . Then [Kou76, Thm. A.I] states that this dimension equals

µ̌ = volZτ̌ (Γ−(f)), Γ−(f) = conv(τ̌ ∪ {0}) r conv(τ̌ ).

One checks that Kouchnirenko’s result applies to a general normal semigroup ring
S̃τ̌ for which τ̌ is pointed (see [Kou76, §2.12]). The following definition serves to
interpret this volume in terms of the original matrix A, and mirrors the one given
in [GZK89, §2.1].

Definition 4.20. For ΦL
A ∋ τ ⊆ τ ′ ∈ ΦL,d−1

A , define the polyhedra

Pτ,τ ′ := conv(πτ,τ ′(τ ′ ∪ {0})), Qτ,τ ′ := conv(πτ,τ ′(τ ′ r τ)).

We are now ready to give the promised multiplicity formula.

Theorem 4.21. For all τ ∈ ΦL
A, the multiplicity of C̄τ

A in CCL(KA,•(SA; β)) is

µL,τ
A =

∑

τ⊆τ ′∈ΦL,d−1

A

[Zd : Zτ ′] · [(Zτ ′ ∩ Qτ) : Zτ ] · volτ,τ ′(Pτ,τ ′ r Qτ,τ ′). �

Corollary 4.22. If τ = ∅, then the local degree of SL
A at the origin equals

µL,∅
A = volZd




⋃

τ ′∈ΦL,d−1

A

(
∆F

τ ′ r conv(τ ′)
)


 ≤ volZd(∆F
A).

Proof. Let τ ′ ∈ ΦL,d−1
A . For τ = ∅, volτ,τ ′ = volZτ ′ , Pτ,τ ′ = ∆F

τ ′ , and Qτ,τ ′ =
conv(τ ′). Clearly, [(Qτ ∩ Zτ ′) : Zτ ] = 1 and volZτ ′(∆F

τ ′) = volZd(∆F
τ ′)/[Zd : Zτ ′].

Then Theorem 4.21 implies the equality while the inequality is obvious. �

Remark 4.23. If all facets τ ′ of the (A, L)-umbrella are F -homogeneous then the
volumes volZd(conv(τ ′)) are zero and one obtains

µL,∅
A = volZd




⋃

τ ′∈ΦL,d−1

A

∆F
τ ′



 .

In particular, µF,∅
A = volZd(∆F

A).

Example 4.24. We continue Example 3.12 and investigate characteristic cycles. The
following table, whose rows are indexed by the three weight vectors L = F + tV

considered in Example 3.12, lists in its columns the nonzero multiplicities µL,τ
A,0(β)

for generic β. Genericity implies that µL,τ
A,i (β) = 0 for i > 0, so that µL,τ

A,0(β) = µL,τ
A .

The matrix A permits two rank-jumping parameters, E(A) = {(2, 1), (3, 1)}. In
both cases, HA,1(SA; β) ∼= D/〈∂1, . . . , ∂n〉 while HA,2(SA; β) ∼= 0. As 〈∂〉 = P∅,
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Figure 3. Euler–Koszul multiplicities in Example 4.24

t
τ

∅ {1} {2} {3} {4} {1,3} {1,4} {2,3} {2,4} {3,4}

0 13 12 1 13 12 1
1 11 3 1 10 8 3 1 7
4 5 3 2 5 3 2

with β ∈ E(A) one has µL,τ
A,1(β) = 1 if τ = ∅, and µL,τ

A,1(β) = 0 otherwise. (This

holds for all L ∈ Q2n as long as Lx +L∂ > 0 since grL(〈∂1, . . . , ∂n〉) is independent

of L). In accordance with Corollary 4.13, the multiplicities µL,τ
A,0(β) for β ∈ E(A)

are given by the data in the table above, with µL,∅
A,0(β) incremented by one. This

behavior is typical in dimension two as the following proposition shows.

Proposition 4.25. If d = 2 then for every rank-jumping β and for all L with

Lx + L∂ > 0 one has µL,τ
A,1(β) = 1 if τ = ∅ and µL,τ

A,1(β) = 0 otherwise.

Proof. Recall that S̃A is the Cohen–Macaulay SA-module
⊕

a∈Q+A∩Zd ta. We first

construct the minimal toric submodule of S̃A that contains SA and satisfies Serre’s
condition S2. To that end, apply the local cohomology functor H•

m
(−) to the

sequence (4.3.1); we obtain H0
m(Q) = H1

m(SA). Let C be the (toric) preimage of

H0
m
(Q) under the projection S̃A → Q; as C ⊆ S̃A we have H0

m
(C) = 0. Applying

H•
m(−) to

(4.5.2) 0 // SA
// C // H0

m(Q) // 0

we find an exact piece 0 → H0
m(H0

m(Q)) → H1
m(SA) → H1

m(C) → H1
m(H0

m(Q)) = 0.
As the second arrow is an isomorphism by construction, the two-dimensional module
C has depth two and is hence Cohen–Macaulay.

Application of the Euler–Koszul functor to the short exact sequence (4.5.2) shows
that HA,1(SA; β) ∼= HA,2(H

0
m

(Q); β). Since H0
m

(Q) is a toric Artinian quotient of
C, it has a toric filtration whose quotients are of the form R/〈∂1, . . . , ∂n〉 · tβ where
β ∈ E(A) and each such β occurs exactly once (see [MMW05, Thm. 6.6,Thm .9.1]).
Hence, HA,1(SA; β) ∼= D/〈∂1, . . . , ∂n〉 if β ∈ E(A) and zero otherwise. It follows as
in the example above that grL(HA,1(SA; β)) ∼= W/〈∂1, . . . , ∂n〉 in the nonvanishing
case. �

Remark 4.26. (1) The module C constructed in the above proof is actually a
ring, the ideal transform of SA relative to m from [BS98, Thm. 2.2.4].

(2) It is suggestive, particularly in the light of Example 4.24, to view µL,∅
A as

“L-rank”. Specifically, one might speculate whether the L-rank detects rank jumps

in the sense that µL,∅
A,i(β) = 0 for all i > 0 implies that β is not rank-jumping. We

think that this is plausible.

4.6. Generic Euler–Koszul homology. In [GZK89], I.M. Gel’fand, M.M. Kapra-
nov and A.V. Zelevinskĭı proved that in the projective case the rank of MA(β) is

always at least equal to volZd(∆F
A) = µF,∅

A , cf. Remark 4.23; this was generalized
by A. Adolphson in [Ado94]. In this section, we prove that every Euler–Koszul

multiplicity µL,τ
A,0(β) is bounded from below by the Euler–Koszul characteristic µL,τ

A

for all β. This yields some evidence for the following conjecture.
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Conjecture 4.27. For fixed A, L and τ , µL,τ
A,0(β) is upper semicontinuous in β.

A proof of this would generalize [MMW05, Thm. 2.6, Thm. 7.5] which corre-
spond to τ = ∅ and L = F . However, we do not know how to approach this
question since it involves a flat deformation in combination with a specialization.
The case where τ = ∅ and L = F is much easier since there one may skip the
computation of the graded by the Cauchy–Kovalevskaya–Kashiwara Theorem (see
[SST00, Thm. 1.4.14, Thm. 1.4.19]).

Theorem 4.28. For any τ ∈ ΦL
A and β ∈ Cd, µL,τ

A,0(β) ≥ µL,τ
A . Equality holds if β

is generic (more precisely, not rank-jumping).

Proof. The sequence (4.3.1) yields a four-step exact sequence

0 // HA,1(Q; β) // HA,0(SA; β) // HA,0(S̃A; β) // HA,0(Q; β) // 0 .

By Corollary 4.13 and Lemma 4.29 below,

µL,τ
A,0(SA; β) ≥ µL,τ

A,0(S̃A; β) = µL,τ
A .

The second claim is part of Corollary 4.12. �

Lemma 4.29. For any toric module N with dim(N) < d, τ ∈ ΦL
A, and β ∈ Cd,

µL,τ
A,0(N ; β) ≤ µL,τ

A,1(N ; β).

Proof. Let (A′, β′) = (gA, gβ) for some g ∈ Gl(Z, d). Then the Euler–Koszul com-
plexes KA,•(N ; β) and KA′,•(N ; β′) are homotopic for any toric module N . Hence
we may replace (A, β) by (A′, β′) and choose g generic. Fix the toric module N of
dimension less than d. Then the Koszul complex KA,•(N ; β′) of the endomorphisms
E′ − β′ := (E1 − β1, . . . , Ed−1 − βd−1) on the Zd-graded left D-module D ⊗R N ,
defined as in Definition 4.6, is homologically L-holonomic. To see this it is by the
long Euler–Koszul homology sequence enough to consider a length-one toric module
N = Sθ for some θ ∈ Φ0

A. Then, using Proposition 3.8, genericity of g assures that

W 〈IL
θ , E′〉 is an n-dimensional ideal and hence dim ChL(HA,i(N ; β′)) ≤ n by the

spectral sequence

Hi(grL(KA,•(N ; β′))) =⇒ grL(HA,i(N ; β′)).

We interpret KA,•(N ; β) as the complex induced by Ed −βd on KA,•(N ; β′) and
abbreviate Hi := HA,i(N ; β) and H ′

i := HA,i(N ; β′). There is a double complex
spectral sequence abutting to H• with E1-term H ′

• and differential d1 induced by
Ed − βd which collapses at the E2-term. In particular, H0 = H ′

0/(Ed − βd)H
′
0 and

there is a short exact sequence of holonomic D-modules

0 // kerH′
0
(Ed − βd) // H1 → H ′

1/(Ed − βd)H
′
1

// 0 .

Using the exact sequence

0 // kerH′
0
(Ed − βd) // H ′

0

Ed−βd
// H ′

0
// H ′

0/(Ed − βd)H
′
0

// 0

it follows that

CCL(H0) = CCL(H ′
0/(Ed − βd)H

′
0)

= CCL(kerH′
0
(Ed − βd))

= CCL(H1) − CCL(H ′
1/(Ed − βd)H

′
1).
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We conclude that CCL(H1) − CCL(H0) = CCL(H ′
1/(Ed − βd)H

′
1) is nonnegative

which implies the claim. �

Appendix A. On spectral sequences

Let (K•, d) be a complex of groups equipped with a descending filtration F of
subgroups such that d(F pK•) ⊆ F pK•+1. We stress that there are no bounded-
ness conditions on the filtration. We abbreviate gr = grF and freely use induced
filtrations on subgroups and quotient groups.

By [God58, Ch. I, Thm. 4.2.1, Thm. 4.2.2] there is an associated spectral se-
quence involving the following data:

Zp,q
r = F pKp+q ∩ d−1(F p+rKp+q+1),

Bp,q
r = F pKp+q ∩ d(F p−rKp+q−1),

Ep,q
r = grp d−1(F p+rKp+q+1)

d(F p−r+1Kp+q−1)
= grp Zp,q

r

Bp,q
r−1

= Zp,q
r /

(
Zp+1,q−1

r−1 + Bp,q
r−1

)
.(A.1)

Note that Zp,q
r ∩ F p+1Kp+q = Zp+1,q−1

r−1 , d(Zp−r,q+r−1
r ) = Bp,q

r , Ep,q
0 = grp Kp+q,

and Ep,q
1 = Hp+q(grp(K•), grp(d)).

For all p, q and r, d induces a group homomorphism dp,q
r : Ep,q

r → Ep+r,q−r+1
r

such that dp,q
r ◦ dp−r,q+r+1

r = 0. More explicitly,

(A.2) dp,q
r

(
z mod (Zp+1,q−1

r−1 + Bp,q
r−1)

)
= d(z) mod (Zp+1+r,q−r

r−1 + Bp+r,q−r+1
r−1 )

and Ep,q
r = (ker dp,q

r )/(im dp−r,q+r−1
r ). Let

Zp,q
∞ = F pKp+q ∩ d−1(0),

Bp,q
∞ = F pKp+1 ∩ d(Kp+q−1),

Ep,q
∞ = grp Hp+q(K•) = grp Zp,q

∞

Bp,q
∞

= Zp,q
∞ /(Zp+1,q−1

∞ + Bp,q
∞ ).(A.3)

In general, there is no relation between the terms Ep,q
r for finite r and Ep,q

∞ . The
purpose of this section is to prove the following theorem and its corollary below.

Theorem A.1. Let D be a ring and (K•, d) be a complex of D-modules, both
equipped with a descending filtration F of subgroups subject to the hypotheses:

(a) D is a filtered ring: (F pD) · (F p′

D) ⊆ F p+p′

D.

(b) K• is a filtered D-module: (F pD) · (F p′

Kn) ⊆ F p+p′

Kn.
(c) d is compatible with F : d(F pKp+q) ⊆ F pKp+q+1.
(d) E0 = gr(K•) is a Noetherian gr(D)-module.
(e) F is exhaustive and separated on K•:

⋃
p F pKn = Kn,

⋂
p F pKn = 0.

Then one has the consequences:

(1) dr : Er → Er are graded gr(D)-linear maps of graded gr(D)-modules with

grp′

(D) · Ep,q
r ⊆ Ep+p′,q−p′

r .
(2) Er is Noetherian and dr is the zero map for all sufficiently large r.
(3) The stable value of Er is isomorphic to E∞.

Proof. We abbreviate W = gr(D).
(1) follows from (a), (b), and (c): E0 is a graded W -module by (a) and (b).

By induction, we may assume that Er is a graded W -module and dr−1 is graded
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W -linear. Let δ ∈ F p′

D and c ∈ Zp,q
r represent non zero elements δ̄ ∈ W p′

and
c̄ ∈ Ep,q

r . By (A.2) and (c),

dr(δ̄ · c̄) = dr

(
(δ mod F p′+1D) · (c mod (Zp+1,q−1

r−1 + Bp,q
r−1))

)

= dr

(
δc mod (Zp+p′+1,q−p′−1

r−1 + Bp+p′,q−p′

r−1 )
)

= d(δc) mod (Zp+p′+r+1,q−p′−r−1
r−1 + Bp+p′+r,q−r−p′

r−1 )

= δd(c) mod (Zp+p′+r+1,q−p′−r−1
r−1 + Bp+p′+r,q−r−p′

r−1 )

= (δ mod F p′+1D) ·
(
d(c) mod (Zp+r+1,q−r−1

r−1 + Bp+r,q−r
r−1 )

)

= (δ mod F p′+1D) · dr

(
c mod (Zp+1,q−1

r−1 + Bp,q
r−1)

)

= δ̄ · dr(c̄) ∈ Ep+p′,q−p′

r .

Thus, dr is graded W -linear and ker(dr), im(dr), and Er = ker(dr)/ im(dr) are
graded W -modules.

(2) follows from (d): As a subquotient of Er, Er+1 is Noetherian by induction.
Let πr : ker(dr) → ker(dr)/ im(dr) = Er+1 denote the natural projection. Note
that π−1

r (im(dr+1)) ⊇ π−1
r (0) = im(dr). Then the chain

im(d0) ⊆ π−1
0 (im(d1)) ⊆ π−1

0 (π−1
1 im(d2)) ⊆ · · ·

of submodules of E0 must stabilize at some r0: π−1
r (im(dr+1)) = im(dr) = π−1

r (0)
and hence im(dr+1) = 0 for all r ≥ r0.

(3) follows from (e):

Bp,q
∞ = F pKp+q ∩ d(Kp+q−1) = F pKp+q ∩ d

(
⋃

r

F p−rKp+q−1

)

=
⋃

r

(F pKp+q ∩ d(F p−rKp+q−1)) =
⋃

r

Bp,q
r ,

Zp,q
∞ = F pKp+q ∩ d−1(0) = F pKp+q ∩ d−1

(
⋂

r

F p+rKp+q+1

)

=
⋂

r

(F pKp+q ∩ d−1(F p+rKp+q+1)) =
⋂

r

Zp,q
r .

By (A.2), dr = 0 means that

(A.4) Bp,q
r = d(Zp−r,q+r−1

r ) ⊆ Zp+1,q−1
r−1 + Bp,q

r−1 ⊆ Bp,q
r−1 + F p+1Kp+q

and also

d(Zp,q
r ) ⊆ Zp+r+1,q−r

r−1 + Bp+r,q−r+1
r−1 = Zp+r+1,q−r

r−1 + d(Zp+1,q−1
r−1 )

which implies that

(A.5) Zp,q
r ⊆ Zp,q

r+1 + Zp+1,q−1
r−1 ⊆ Zp,q

r+1 + F p+1Kp+q.

From (A.4) and (A.5) follows grp Bp,q
r = grp Bp,q

r−1 and grp Zp,q
r = grp Zp,q

r+1 for
r ≥ r0. By (A.1) and (A.3) and exactness of gr for induced filtrations, we conclude
that, for r ≥ r0,

Ep,q
r = grp Zp,q

r

Bp,q
r−1

=
grp Zp,q

r

grp Bp,q
r−1

=
grp (

⋂
r Zp,q

r )

grp
(⋃

r Bp,q
r−1

) =
grp Zp,q

∞

grp Bp,q
∞

= grp Zp,q
∞

Bp,q
∞

= Ep,q
∞ .
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�

Corollary A.2. Under the hypotheses of Theorem A.1 assume that W = gr(D) is
commutative, let P ∈ Spec(W ) be a prime ideal and denote by WP the local ring of
Spec(W ) at P . Then there is a spectral sequence

Hp(gr(K•) ⊗W WP ) = ′E1 =⇒ ′E∞ = (gr(Hp(K•))) ⊗W WP .

This spectral sequence collapses eventually and converges: ′Er = ′Er+1 = ′E∞ for
all large r.

Proof. The spectral sequence (Er , dr) of Theorem A.1 is a sequence of W -modules
and W -morphisms. Since localization commutes with the formation of kernels and
cokernels, the objects and morphisms (′Er,

′ dr) = (Er ⊗W WP , dr ⊗W WP ) form
a spectral sequence. Since (Er , dr) collapses, so does (′Er,

′ dr), converging to the
localization of E∞. �

Remark A.3. As far as we can see, the collapse of the sequence is essential for
the corollary. If in general (Er , dr) is a spectral sequence of W -modules and W -
morphisms converging to E∞ in the sense that E∞ =

⋂
r Zr/

⋃
r Br then while

(
⋃

r Br) ⊗W WP =
⋃

r(Br ⊗W WP ), it is not necessarily the case that (
⋂

r Zr)⊗W

WP =
⋂

r(Zr ⊗W WP ). The problem is that infinite intersections (in contrast to
infinite unions) and homomorphisms (such as the localization morphism) are not
necessarily interchangeable.

In the situation of the theorem it is probably not sufficient to replace (d) by the
condition that K• consists of Noetherian D-modules. For example, in [ST04] some
rings appear in the theory of hypergeometric systems that are Noetherian, but the
order filtration leads to non-Noetherian associated graded rings.
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Sci. École Norm. Sup. (4) 20 (1987), no. 3, 391–441. MR MR925721 (89k:58282)
[LM99] Yves Laurent and Zoghman Mebkhout, Pentes algébriques et pentes analytiques d’un
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