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In this survey we discuss various aspects of the singularity invariants with differ-17

ential origin derived from the D-module generated by fs. We should like to point18

the reader to some other works: [193] for V -filtration, Bernstein–Sato polynomials,19

multiplier ideals; [49] for all these and Milnor fibers; [216] and [161] for homogeneity20

and free divisors; [208] on details of arrangements, specifically their Milnor fibers,21

although less focused on D-modules.22
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1. Introduction27

Notation 1.1. In this article, X will denote a complex manifold. Unless indicated28

otherwise, X will be Cn.29

Throughout, let R = C[x1, . . . , xn] be the ring of polynomials in n variables30

over the complex numbers. We denote by D = R〈∂1, . . . , ∂n〉 the Weyl algebra.31
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In particular, ∂i denotes the partial differentiation operator with respect to xi. If32

X is a general manifold, OX (the sheaf of regular functions) and DX (the sheaf of33

C-linear differential operators on OX) take the places of R and D.34

If X = Cn we use Roman letters to denote rings and modules; in the general35

case we use calligraphic letters to denote corresponding sheaves.36

By the ideal Jf we mean the OX -ideal generated by the partial derivatives37

∂f
∂x1

, . . . , ∂f∂xn
; this ideal varies with the choice of coordinate system in which we38

calculate. In contrast, the Jacobian ideal Jac(f) = Jf + (f) is independent.39

The ring D (resp. the sheaf DX) is coherent, and both left- and right-Noetherian;40

it has only trivial two-sided ideals [26, Thm. 1.2.5]. Introductions to the theory of41

D-modules as we use them here can be found in [120, 24, 26, 25].42

The ring D admits the order filtration induced by the weight xi → 0, ∂i → 1.43

The order filtration (and other good filtrations) leads to graded objects gr(0,1)(−),44

see [199]. The graded objects obtained from ideals are ideals in the polynomial45

ring C[x, ξ], homogeneous in the symbols of the differentiation operators; their46

radicals are closed under the Poisson bracket, and thus the corresponding varieties47

are involutive [116, 121]. For a D-module M and a component C of the support of48

gr(0,1)(M), attach to the pair (M,C) the multiplicity µ(M,C) of gr(0,1)(M) along49

C. The characteristic cycle of M is charC(M) =
∑
C µ(M,C) ·C, an element of the50

Chow ring on T ∗Cn. The module is holonomic if it is zero or if its characteristic51

variety is of dimension n, the minimal possible value.52

Throughout, f will be a regular function on X, with divisor Var(f). We distin-53

guish several homogeneity conditions on f :54

• f is locally (strongly) Euler-homogeneous if for all p ∈ Var(f) there is a55

vector field θp defined near p with θp • (f) = f (and θp vanishes at p).56

• f is locally (weakly) quasi-homogeneous if near all p ∈ Var(f) there is a local57

coordinate system {xi} and a positive (resp. non-negative) weight vector58

a = {a1, . . . , an} with respect to which f =
∑n
i=1 aixi∂i(f).59

• We reserve homogeneous and quasi-homogeneous for the case when X = Cn60

and f is globally homogeneous or quasi-homogeneous.61

To any non-constant f ∈ R, one can attach several invariants that measure the62

singularity structure of the hypersurface f = 0. In this article, we are primarily63

interested in those derived from the (parametric) annihilator annD[s](f
s) of fs:64

Definition 1.2. Let s be a new variable, and denote by Rf [s] · fs the free module65

generated by fs over the localized ring Rf [s] = R[f−1, s]. Via the chain rule66

∂i • (
g

fk
fs) = ∂i • (

g

fk
)fs +

sg

fk+1
· ∂f
∂xi

fs(1.1)

for each g(x, s) ∈ R[s], Rf [s] · fs acquires the structure of a left D[s]-module.67

Denote by68

annD[s](f
s) = {P ∈ D[s] | P • fs = 0}

the parametric annihilator, and by69

Mf (s) = D[s]/ annD[s](f
s)

the cyclic D[s]-module generated by 1 · fs ∈ Rf [s] · fs.70
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Bernstein’s functional equation [23] asserts the existence of a differential operator71

P (x, ∂, s) and a nonzero polynomial bf,P (s) ∈ C[s] such that72

P (x, ∂, s) • fs+1 = bf,P (s) · fs,(1.2)

i.e. the existence of the element P · f − bf,P (s) ∈ annD[s](f
s). Bernstein’s result73

implies that D[s] • fs is D-coherent (while Rf [s]fs is not).74

Definition 1.3. The monic generator of the ideal in C[s] generated by all bf,P (s)75

appearing in an equation (1.2) is the Bernstein–Sato polynomial bf (s). Denote76

ρf ⊆ C the set of roots of bf (s).77

Note that the operator P in the functional equation is only determined up to78

annD[s](f
s). See [25] for an elementary proof of the existence of bf (s). Alternative79

(and more general) proofs are given in [120]; see also [24, 151, 169].80

The C[s]-module Mf (s)/Mf (s + 1) is precisely annihilated by bf (s). It is an81

interesting problem to determine for any q(s) ∈ C[s] the ideals af,q(s) = {g ∈ R |82

q(s)gfs ∈ D[s]•fs+1} from [230]. By [146], af,s+1 = R∩(annD[s](f
s)+D[s]·(f, Jf )).83

Question 1.4. Is af,s+1 = Jf + (f)?84

A positive answer would throw light on connections between bf (s) and cohomol-85

ogy of Milnor fibers.86

Remark 1.5. At the 1954 International Congress of Mathematics in Amsterdam,87

I.M. Gel’fand asked the following question. Given a real analytic function f : Rn →88

R, the assignment (s ∈ C)89

f(x)s+ =

{
f(x)s if f(x) > 0,
0 if f(x) ≤ 0

is continuous in x and analytic in s where the real part of s is positive. Can one90

analytically continue f(x)s+? Sato introduced bf (s) in order to answer Gel’fand’s91

question; Bernstein [23] established their existence in general.92

Remark 1.6. Let m ∈M be a nonzero section of a holonomic D-module. General-93

izing the case 1 ∈ R there is a functional equation94

P (x, ∂, s) • (mfs+1) = bf,P ;m(s) ·mfs

with bf,P ;m(s) ∈ C[s] nonzero. The monic generator of the ideal {bf,P ;m(s)} is the95

b-function bf ;m(s), [117].96

2. Parameters and numbers97

For any complex number γ, the expression fγ represents, locally outside Var(f),98

a multi-valued analytic function. Via the chain rule as in (1.1), the cyclic Rf -module99

Rf · fγ becomes a left D-module, and we set100

Mf (γ) = D • fλ ∼= D/ annD(fγ).

There are natural D[s]-linear maps101

evf (γ) : Mf (s)→Mf (γ), P (x, ∂, s) • fs 7→ P (x, ∂, γ) • fγ ,

and D-linear inclusions102

incf (s) : Mf (s+ 1)→Mf (s), P (x, ∂, s) • fs+1 7→ P (x, ∂, s) · f • fs
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with cokernel Nf (s) = Mf (s)/Mf (s+ 1) ∼= D[s]/(annD[s](f
s) +D[s]f), and103

incf (γ) : Mf (γ + 1)→Mf (γ), P (x, ∂) • fλ+1 7→ P (x, ∂) · f • fλ

with cokernel Nf (γ) = Mf (γ)/Mf (γ + 1) ∼= D/(annD(fγ) +D · f).104

The kernel of the morphism evf (γ) contains the (two-sided) ideal D[s](s − γ);105

the containment can be proper, for example if γ = 0. If {γ−1, γ−2, . . .} is disjoint106

from the root set ρf then ker evf (γ) = D[s] · (s− γ), [117]. If γ 6∈ ρf then incf (γ)107

is an isomorphism because of the functional equation; if γ = −1, or if bf (γ) = 0108

while ρf does not meet {γ − 1, γ − 2, . . .} then incf (γ) is not surjective [230].109

Question 2.1. Does incf (γ) fail to be an isomorphism for all γ ∈ ρf?110

In contrast, the induced maps Mf (s)/(s− γ − 1)→Mf (s)/(s− γ) are isomor-111

phisms exactly when γ 6∈ ρf , [26, 6.3.15]. The morphism incf (s) is never surjective112

as s+ 1 divides bf (s). One sets113

b̃f (s) =
bf (s)

s+ 1
.

By [217, 4.2], the following are equivalent for a section m 6= 0 of a holonomic114

module:115

• the smallest integral root of bf ;m(s) is at least −`;116

• (D •m)⊗R R[f−1] is generated by m/f ` = m⊗ 1/f `;117

• (D •m)⊗R R[f−1]/D • (m⊗ 1) is generated by m/f `;118

• D[s] •mfs → (D •m) ⊗R R[f−1], P (s) • (mfs) 7→ P (−`) • (m/f `) is an119

epimorphism with kernel D[s] · (s+ `)mfs.120

Definition 2.2. We say that f satisfies condition121

• (A1) (resp. (As)) if annD(1/f) (resp. annD(fs)) is generated by operators122

of order one;123

• (B1) if Rf is generated by 1/f over D.124

Condition (A1) implies (B1) in any case [214]. Local Euler-homogeneity, (As)125

and (B1) combined imply (A1) [216], and for Koszul free divisors (see Definition 4.7126

below) this implication can be reversed [214].127

Condition (A1) does not imply (As): f = xy(x+y)(x+yz) is free (see Definition128

4.1), and locally Euler-homogeneous and satisfies (A1) and (B1) [60, 61, 59, 67, 214],129

but annD[s](f
s) and annD(fs) require a second order generator.130

Condition (A1) implies local Euler-homogeneity if f has isolated singularities131

[213], or if it is Koszul-free or of the form zn − g(x, y) for reduced g [214]. In [73]132

it is shown that for certain locally weakly quasi-homogeneous free divisors Var(f),133

(A1) holds for high powers of f , and even for f itself by [161, Rem. 1.7.4].134

For an isolated singularity, f has (A1) if and only if it has (B1) and is quasi-135

homogeneous [213]. For example, a reduced plane curve (has automatically (B1)136

and) has (A1) if and only if it is quasi-homogeneous. See [201] for further results.137

Condition (B1) is equivalent to incf (−2), incf (−3), . . . all being isomorphisms,138

and also to−1 being the only integral root of bf (s), [117]. Locally quasi-homogeneous139

free divisors satisfy condition (B1) at any point, [66].140

3. V -filtration and Bernstein–Sato polynomials141

3.1. V -filtration. The articles [191, 145, 47, 49] are recommended for material on142

V -filtrations.143
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3.1.1. Definition and basic properties. Let Y be a smooth complex manifold (or144

variety), and let X be a closed submanifold (or -variety) of Y defined by the ideal145

sheaf I . The V -filtration on DY along X is, for k ∈ Z, given by146

V k(DY ) = {P ∈ DY | P •I k′ ⊆ I k+k′ ∀k′ ∈ Z}

with the understanding that I k′ = OY for k′ ≤ 0. The associated graded sheaf147

of rings grV (DY ) is isomorphic to the sheaf of rings of differential operators on the148

normal bundle TX(Y ), algebraic in the fiber of the bundle.149

Suppose that Y = Cn × C with coordinate function t on C, and let X be the150

hyperplane t = 0. Then V k(DY ) is spanned by {xu∂vta∂bt | a − b ≥ k}. Given a151

coherent holonomic DY -module M with regular singularities in the sense of [122],152

Kashiwara and Malgrange [147, 114] define an exhaustive decreasing rationally153

indexed filtration on M that is compatible with the V -filtration on DY and has the154

following properties:155

(1) each V α(M) is coherent over V 0(DY ) and the set of α with nonzero grαV (M) =156

V α(M)/V >α(M) has no accumulation point;157

(2) for α� 0, V 1(DY )V α(M) = V α+1(M);158

(3) t∂t − α acts nilpotently on grαV (M).159

The V -filtration is unique and can be defined in somewhat greater generality [47].160

Of special interest is the following case considered in [147, 114].161

Notation 3.1. Denote Rx,t the polynomial ring R[t], t a new indeterminate, and162

let Dx,t be the corresponding Weyl algebra. Fix f ∈ R and consider the regular163

Dx,t-module164

Bf = H1
f−t(R[t]),

the unique local cohomology module of R[t] supported in f−t. Then Bf is naturally165

isomorphic as Dx,t-module to the direct image (in the D-category) i+(R) of R under166

the graph embedding167

i : X → X × C, x 7→ (x, f(x)).

Moreover, extending (1.1) via168

t • (g(x, s)fs−k) = g(x, s+ 1)fs+1−k; ∂t • (g(x, s)fs−k) = −sg(x, s− 1)fs−1−k,

the module Rf [s]⊗fs becomes a Dx,t-module extending the D[s]-action where −∂tt169

acts as s.170

The existence of the V -filtration on Bf = i+(R) is equivalent to the existence171

of generalized b-functions bf ;η(s) in the sense of [117], see [118, 147]. In fact, one172

can recover one from the other:173

V α(Bf ) = {η ∈ Bf | [bf ;η(−c) = 0]⇒ [α ≤ c]}
and the multiplicity of bf ;η(s) at α is the degree of the minimal polynomial of s−α174

on grαV (D[s]ηfs/D[s]ηfs+1), [182]. For more on this “microlocal approach” see175

[191].176

3.2. The log-canonical threshold. By [125], see also [135, 235], the absolute177

value of the largest root of bf (s) is the log-canonical threshold lct(f) given by the178

supremum of all numbers s such that the local integrals179 ∫
U3p

|dx|
|f |2s
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converge for all p ∈ X and all small open U around p. Smaller lct corresponds to180

worse singularities; the best one can hope for is lct(f) = 1 as one sees by looking181

at a smooth point. The notion goes back to Arnol’d, who called it (essentially) the182

complex singular index [10].183

The point of multiplier ideals is to force the finiteness of the integral by allowing184

moderating functions in the integral:185

I (f, λ)p = {g ∈ OX |
g

fλ
is L2-integrable near p ∈ Var(f)}

for λ ∈ R. By [90], there is a finite collection of jumping numbers for f of rational186

numbers 0 = α0 < α1 < · · · < α` = 1 such that I (f, α) is constant on [αi, αi+1)187

but I (f, αi) 6= I (f, αi+1). The log-canonical threshold appears as α1. These188

ideas had appeared previously in [137, 139].189

Generalizing Kollar’s approach, each αi is a root of bf (s), [90]. In [193, Thm. 4.4]190

a partial converse is shown for locally Euler-homogeneous divisors. Extending the191

idea of jumping numbers to the range α > 1 one sees that α is a jumping number192

if and only if α + 1 is a jumping number, but the connection to the Bernstein–193

Sato polynomial is lost in general. For example, if f(x, y) = x2 + y3 then jumping194

numbers are {5/6, 1}+ N while bf (s) = (s+ 5/6)(s+ 1)(s+ 7/6).195

3.3. Bernstein–Sato polynomial. The roots of bf (s) relate to an astounding196

number of other invariants, see for example [125] for a survey. However, besides197

the functional equation there is no known way to describe ρf .198

3.3.1. Fundamental results. Let p ∈ Cn be a closed point, cut out by the maximal
ideal m ⊆ R. Extending R to the localization Rm (or even the ring of holomorphic
functions at p) one arrives at potentially larger sets of polynomials bf,P (s) that
satisfy a functional equation (1.2) with P (x, ∂, s) now in the correspondingly larger
ring of differential operators. The local (resp. local analytic) Bernstein–Sato poly-
nomial bf,p(s) (resp. bf,pan(s)) is the generator of the resulting ideal generated by
the bf,P (s) in C[s]. We denote by ρf,p (resp. ρ̃f,p) the root set of bf,pan(s) (resp.
bf,pan(s)/(s+ 1)). From the definitions and [143, 38, 36]

bf,pan(s)
∣∣bf,p(s)∣∣bf (s) = lcmp∈Var(f) bf,p(s) = lcmp∈Var(f) bf,pan(s),(3.1)

and the function Cn 3 p 7→ Var(bf (s)), counting with multiplicity, is upper semi-199

continuous in the sense that for p′ sufficiently near p one has bf,p′(s)|bf,p(s). The200

underlying reason is the coherence of D.201

The Bernstein–Sato polynomial bf (s) factors over Q into linear factors, ρf ⊆ Q,202

and all roots are negative [146, 117]. The idea is to use resolution of singularities203

over C in order to reduce to simple normal crossing divisors, where rationality and204

negativity of the roots is evident. For this Kashiwara proves a comparison theorem205

[117, Thm. 5.1] that establishes bf (s) as a divisor of a shifted product of the least206

common multiple of the local Bernstein–Sato polynomials of the pullback of f under207

the resolution map. There is a refinement by Lichtin [135] for plane curves. The208

roots of bf (s), besides being negative, are always greater than −n, n being the209

minimum number of variables required to express f locally analytically [221, 191].210

3.3.2. Constructible sheaves from fs. Let V = V (n, d) be the vector space of all211

complex polynomials in x1 . . . , xn of degree at most d. Consider the function β : V 3212

f 7→ bf (s). By [143, 36], there is an algebraic stratification of V such that on each213
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stratum the function β is constant. For varying n, d these stratifications can be214

made to be compatible.215

3.3.3. Special cases. If p is a smooth point of Var(f) then f can be used as an216

analytic coordinate near p, hence bf,pan(s) = s + 1, and so bf (s) = s + 1 for all217

smooth hypersurfaces. By Proposition 2.6 in [35], an extension of [37], the equation218

bf (s) = s+1 implies smoothness of Var(f). Explicit formulæ for the Bernstein–Sato219

polynomial are rare; here are some classes of examples.220

• f =
∏
xaii : P =

∏
∂aii up to a scalar, bf (s) =

∏
i

∏ai
j=1(s+ j/aj).221

• f (quasi-)homogeneous with isolated singularity at zero: b̃f (s) = lcm(s +222

deg(gdx)
deg(f) , where g runs through a (quasi-)homogeneous standard basis for223

Jf by work of Kashiwara, Sato, Miwa, Malgrange, Kochman [146, 235,224

215, 124]. Note that the Jacobian ring of such a singularity is an Artinian225

Gorenstein ring, whose duality operator implies symmetry of ρf .226

• f = det(xi,j)
n
1 : P = det(∂i,j)

n
1 , bf (s) = (s+ 1) · · · (s+ n). This is attrib-227

uted to Cayley, but see the comments in [63].228

• For some hyperplane arrangements, bf (s) is known, see [230, 56].229

• There is a huge list of examples worked out in [235].230

If V is a complex vector space, G a reductive group acting linearly on V with open231

orbit U such that V rU is a divisor Var(f), Sato’s theory of prehomogeneous vectors232

spaces [198, 156, 197, 234] yields a factorization for bf (s). For reductive linear free233

divisors, [97, 203] discuss symmetry properties of Bernstein–Sato polynomials. In234

[162] this theme is taken up again, investigating specifically symmetry properties235

of ρf when D[s] • fs has a Spencer logarithmic resolution (see [66] for definitions).236

This covers locally quasi-homogeneous free divisors, and more generally free divisors237

whose Jacobian is of linear type. The motivation is the fact that roots of bf (s) seem238

to come in strands, and whenever roots can be understood the strands appear to239

be linked to Hodge-theory.240

There are several results on ρf for other divisors of special shape. Trivially,241

if f(x) = g(x1, . . . , xk) · h(xk+1, . . . , xn) then bf (s) | bg(s) · bh(s); the question242

of equality appears to be open. In contrast, bf (s) cannot be assembled from the243

Bernstein–Sato polynomials of the factors of f in general, even if the factors are244

hyperplanes and one has some control on the intersection behavior, see Section 8245

below. If f(x) = g(x1, . . . , xk) + h(xk+1, . . . , xn) and at least one is locally Euler-246

homogeneous then there are Thom–Sebastiani type formulæ [191]. In particular,247

diagonal hypersurfaces are completely understood.248

3.3.4. Relation to intersection homology module. Suppose Y = Var(f1, . . . , fk) ⊆ X249

is a complete intersection and denote by H k
Y (OX) the unique (algebraic) local co-250

homology module of OX along Y . Brylinski–Kashiwara [42, 43] defined L (Y,X) ⊆251

H k
Y (OX), the intersection homology DX-module of Y , the smallest DX -module252

equal to H k
Y (OX) in the generic point. See also [19]. The module L (X,Y ) con-253

tains the fundamental class of Y in X [20].254

Question 3.2. When is L (X,Y ) = H k
Y (OX)?255

Equality is equivalent to H k
Y (OX) being generated by the cosets of ∆/

∏k
i=1 fi256

over DX where ∆ is the ideal generated by the k-minors of the Jacobian matrix of257

f1, . . . , fk. A necessary condition is that 1/
∏k
i=1 fi generates H k

Y (OX), but this258
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is not sufficient: consider xy(x + y)(x + yz), where ρf = −{1/2, 3/4, 1, 1, 1, 5/4}.259

Indeed, by [217], equality can be characterized in terms of functional equations, as260

the following are equivalent at p ∈ X:261

(1) L (X,Y ) = H k
Y (OX) in the stalk;262

(2) ρ̃f,p ∩ Z = ∅;263

(3) 1 is not an eigenvalue of the monodromy operator on the reduced cohomol-264

ogy of the Milnor fibers near p.265

If 1/
∏k
i=1 fi generates R[1/

∏
fi] and 1/

∏k
i=1 fi ∈ L (X,Y ) then b̃f (−1) 6= 0,266

[217]. It seems unknown whether (irrespective of 1/
∏k
i=1 fi generating R[1/

∏
fi])267

the condition b̃f (−1) 6= 0 is equivalent to 1/
∏k
i=1 fi being in L (X,Y ). See also268

[149] for a topological viewpoint (by the Riemann–Hilbert correspondence of Kashi-269

wara and Mebkhout [119, 150], L (X,Y ) corresponds to the intersection cohomol-270

ogy complex of Y on X [42] and H k
Y (OX) to CY [n − k], [102, 117, 152]; equality271

then says: the link is a rational homology sphere). In [21], Barlet characterizes272

property (3) above in terms of currents for complexified real f . Equivalence of (1)273

and (3) for isolated singularities can be derived from [155, 39]; the general case can274

be shown using [189, 4.5.8] and the formalism of weights. For the case k = 1, (1)275

requires irreducibility; in the general case, there is a criterion in terms of b-functions276

[217, 1.6, 1.10].277

4. LCT and logarithmic ideal278

4.1. Logarithmic forms. Let X = Cn be the analytic manifold, f a holomorphic279

function on X, and Y = Var(f) a divisor in X with j : U = X r Y ↪→ X the280

embedding. Let Ω•X(∗Y ) denote the complex of differential forms on X that are (at281

worst) meromorphic along Y . By [102], Ω•X(∗Y )→ Rj∗CU is a quasi-isomorphism.282

A form ω is logarithmic along Y if fω and fdω are holomorphic; these ω form the283

logarithmic de Rham complex Ω•X(log Y ) on X along Y . The complex Ω•X(log Y )284

was first used with great effect by Deligne [83] on normal crossing divisors in order285

to establish mixed Hodge structures, and later by Esnault and Viehweg in order to286

prove vanishing theorems [91]. A major reason for the success of normal crossings287

is that in that case ΩiX(log Y ) is a locally free module over OX . The logarithmic288

de Rham complex was introduced in [187].289

4.2. Free divisors.290

Definition 4.1. A divisor Var(f) is free if (locally) Ω1
X(log f) is a free OX -module.291

For a non-smooth locally Euler-homogenous divisor, freeness is equivalent to the292

Jacobian ring OX/Jf being a Cohen–Macaulay OX -module of codimension 2; in293

general, freeness is equivalent to the Tjurina algebra R/(f, ∂f∂x1
, . . . , ∂f∂xn

) being of294

projective dimension 2 or less over R. See [187, 2] for relations to determinantal295

equations. Free divisors have rather big singular locus, and are in some ways at296

the opposite end of the singularity zoo from isolated singularities. If Ω1
X(log f)297

is (locally) free, then ΩiX(log f) ∼=
∧i

ΩiX(log f) and also (locally) free, [187]. A298

weakening is299

Definition 4.2. A divisor Var(f) is tame if, for all i ∈ N, (locally) ΩiX(log f) has300

projective dimension at most i as a OX -module.301
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Plane curves are trivially free; surfaces in 3-space are trivially tame. Normal302

crossing divisors are easily shown to be free. Discriminants of (semi)versal defor-303

mations of an isolated complete intersection singularity (and some others) are free,304

[2, 3, 141, 188, 77, 44]. Unitary reflection arrangements are free [212].305

Definition 4.3. The logarithmic derivations Der(− log f) along Y = Var(f) are306

the C-linear derivations θ ∈ Der(OX ;C) that satisfy θ • f ∈ (f).307

A derivation θ is logarithmic along Y if and only it is so along each component308

of the reduced divisor to Y [187]. The modules Der(− log f) and Ω1(log f) are309

reflexive and mutually dual over R. Moreover, Ωi(log f) and Ωn−i(log f) are dual.310

4.3. LCT.311

Definition 4.4. If312

Ω•X(log Y )→ Ω•X(∗Y )(4.1)

is a quasi-isomorphism, we say that LCT holds for Y .313

We recommend [161].314

Remark 4.5. (1) This “Logarithmic Comparison Theorem”, a property of a di-315

visor, is very hard to check explicitly. No general algorithms are known, even in C3
316

(but see [74] for n = 2).317

(2) LCT fails for rather simple divisors such as f = x1x2 + x3x4.318

(3) If Y is a reduced normal crossing divisor, Deligne proved (4.1) to be a fil-319

tered (by pole filtration) quasi-isomorphism [82]; this provided a crucial step in the320

development of the theory of mixed Hodge structures [83].321

(4) Limiting the order of poles in forms needed to capture all cohomology of U322

started with the seminal article [99] and continues, see for example [81, 87, 113].323

(5) The free case was studied for example in [72]. But even in this case, LCT is324

not understood.325

(6) If f is quasi-homogeneous with an isolated singularity at the origin, then326

LCT for f is equivalent to a topological condition (the link of f at the origin being327

a rational homology sphere), as well as an arithmetic one on the Milnor algebra328

of f , [104]. In [202], using the Gauß–Manin connection, this is extended to a list329

of conditions on an isolated hypersurface singularity, each one of which forces the330

implication [D has LCT] ⇒ [D is quasi-homogeneous].331

(7) For a version regarding more general connections, see [58].332

A plane curve satisfies LCT if and only it is locally quasi-homogeneous, [61].333

By [72], free locally quasi-homogeneous divisors satisfy LCT in any dimension. By334

[95], in dimension three, free divisors with LCT must be locally Euler-homogeneous.335

Conjecturally, LCT implies local Euler-homogeneity [61]. The converse is false, see336

for example [69]. The classical example of rotating lines with varying cross-ratio337

f = xy(x+ y)(x+ yz) is free, satisfies LCT and is locally Euler-homogeneous, but338

only weakly quasi-homogeneous, [61]. In [73], the effect of the Spencer property339

on LCT is discussed in the presence of homogeneity conditions. For locally quasi-340

homogeneous divisors (or if the non-free locus is zero-dimensional), LCT implies341

(B1), [66, 216]. In particular, LCT implies (B1) for divisors with isolated singular-342

ities. In [96] quasi-homogeneity of isolated singularities is characterized in terms of343

a map of local cohomology modules of logarithmic differentials.344
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A free divisor is linear free if the (free) module Der(− log f) has a basis of linear345

vector fields. In [93], linear free divisors in dimension at most 4 are classified, and for346

these divisors LCT holds at least on global sections. In the process, it is shown that347

LCT is implied if the Lie algebra of linear logarithmic vector fields is reductive. The348

example of n×n invertible upper triangular matrices acting on symmetric matrices349

[93, Ex. 5.1] shows that LCT may hold without the reductivity assumption. Linear350

free divisors appear naturally, for example in quiver representations and in the351

theory of prehomogeneous vector spaces and castling transformations [45, 196, 94].352

Linear freeness is related to unfoldings and Frobenius structures [79].353

Denote by Der0(− log f) the derivations θ with θ • f = 0. In the presence of354

a global Euler-homogeneity E on Y there is a splitting Der(− log f) ∼= R · E ⊕355

Der0(− log f). Reading derivations as operators of order one, Der0(− log f) ⊆356

annD(fs). We write S for gr(0,1)(D); if yi is the symbol of ∂i then we have S = R[y].357

Definition 4.6. The inclusion Der0(− log f) ↪→ annD(fs), via the order filtration,358

defines a subideal of gr(0,1)(annD(fs)) ⊆ gr(0,1)(D) = S called the logarithmic ideal359

Lf of Var(f).360

Note that the symbols of Der(− log f) are in the ideal R · y, which has height n.361

Definition 4.7. If Der(− log f) has a generating set (as an R-module) whose sym-362

bols form a regular sequence on S, then Y is called Koszul free.363

As Der(− log f) has rank n, a Koszul free divisor is indeed free. Divisors in the364

plane [187] and locally quasi-homogeneous free divisors [59, 57] are Koszul free. In365

the case of normal crossings, this has been used to make resolutions for D[s] • fs366

and D[s]/D[s](annD[s] f
s, f), [101]. A way to distill invariants from resolutions of367

D[s] • fs is given in [9]. The logarithmic module M̃ log f = D/D · Der(− log f) has368

in the Spencer case (see [66, 62]) a natural free resolution of Koszul type.369

For Koszul-free divisors, the ideal D · Der(− log f) is holonomic [60]. By [93,370

Thm. 7.4], in the presence of freeness, the Koszul property is equivalent to the371

local finiteness of Saito’s logarithmic stratification. This yields an algorithmic way372

to certify (some) free divisors as not locally quasi-homogeneous, since free locally373

quasi-homogeneous divisors are Koszul free. Based on similar ideas, one may devise374

a test for strong local Euler-homogeneity [93, Lem. 7.5]. See [60] and [216, §2] for375

relations of Koszul freeness to perversity of the logarithmic de Rham complex.376

Castro-Jiménez and Ucha established conditions for Y = Var(f) to have LCT377

in terms of D-modules [67, 66, 68] for certain free f . For example, LCT is equiva-378

lent to (A1) for Spencer free divisors. Calderón-Moreno and Narváez-Macarro [62]379

proved that free divisors have LCT if and only if the natural morphism DX⊗LV 0(DX)380

OX(Y ) → OX(∗Y ) is a quasi-isomorphism, OX(Y ) being the meromorphic func-381

tions with simple pole along f . For Koszul free Y , one has at least DX ⊗LV 0(DX)382

OX(Y ) ∼= DX ⊗V 0(DX) OX(Y ). A similar condition ensures that the logarithmic de383

Rham complex is perverse [60, 62]. The two results are related by duality between384

logarithmic connections on DX and the V -filtration [66, 62, 75].385

It is unknown how LCT is related to (A1) in general, but for quasi-homogeneous386

polynomials with isolated singularities the two conditions are equivalent, [216].387

4.4. Logarithmic linearity.388

Definition 4.8. We say that f ∈ R satisfies (Ls) if the characteristic ideal of389

annD(fs) is generated by symbols of derivations.390
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Condition (Ls) holds for isolated singularities [235], locally quasi-homogeneous391

free divisors [59], and locally strongly Euler-homogeneous tame divisors [231]. Also,392

(Ls) plus (B1) yields (A1) for locally Euler-homogeneous f by [117], see [216].393

The logarithmic ideal supplies an interesting link between Ω•(log f) and annD(fs)394

via approximation complexes: if f is strongly locally Euler-homogeneous and also395

tame then the complex (Ω•(log f)[y], y dx) is a resolution of the logarithmic ideal396

Lf , and S/Lf is a Cohen–Macaulay domain of dimension n+ 1; if f is in fact free,397

S/Lf is a complete intersection [161, 231].398

Question 4.9. For locally Euler-homogeneous divisors, is annD(fs) related to the399

cohomology of (Ω•(log f)[y], y dx)?400

5. Characteristic variety401

For f ∈ R let Uf be the open set defined by df 6= 0 6= f . By [117], Mf (s)402

is coherent over D (by [23] there is a functional equation, so s has a minimal403

polynomial modulo f), and the restriction of charV(D[s] • fs) to Uf is404

(5.1)

{
(ξ, s

df(ξ)

f(ξ)
) | ξ ∈ Uf , s ∈ C

}Zariski

,

an (n+ 1)-dimensional involutive subvariety of T ∗Uf , [120]. Ginsburg [92] gives a405

formula for the characteristic cycle of D[s]•mfs in terms of an intersection process406

for holonomic sections m.407

In favorable cases, more can be said. By [59], if the divisor is reduced, free and lo-408

cally quasi-homogeneous then annD[s](f
s) is generated by derivations, both Mf (s)409

and Nf (s) have Koszul–Spencer type resolutions, and in particular the characteris-410

tic varieties are complete intersections. In the more general case where f is locally411

strongly Euler-homogeneous and tame, annD(fs) is still generated by order one412

operators and the ideal of symbols of annD(fs) (and hence the characteristic ideal413

of Mf (s) as well) is a Cohen–Macaulay prime ideal, [231]. Under these hypotheses,414

the characteristic ideal of Nf (s) is Cohen–Macaulay but not prime.415

5.1. Stratifications. By [115], the resolution theorem of Hironaka can be used to416

show that there is a stratification of Cn such that for each holonomic D-module417

M , charC(M) =
⊔
σ∈Σ µ(M,σ)T ∗σ where T ∗σ is the closure of the conormal bundle418

of the smooth stratum σ in Cn and µ(M,σ) ∈ N.419

For D[s] • fs/D[s] • fs+1 Kashiwara proved that if one considers a Whitney420

stratification S for f (for example the “canonical” stratification in [78]) then the421

characteristic variety of the D-module Nf (s) is the union of the conormal varieties422

of the strata σ ∈ S, [235].423

If one slices a pair (X,D) of a smooth space and a divisor with a hyperplane,424

various invariants of the divisor will behave well provided that the hyperplane is not425

“special”. A prime example are Bertini and Lefschetz theorems. For D-modules,426

Kashiwara defined the notion of non-characteristic restriction: the smooth hyper-427

surface H is non-characteristic for the D-module M if it meets each component of428

the characteristic variety of M transversally (see [177] for an exposition). The con-429

dition assures that the inverse image functor attached to the embedding H ↪→ X430

has no higher derived functors for M . In [86] these ideas are used to show that the431

V -filtration, and hence the multiplier ideals as well as nearby and vanishing cycle432

sheaves, behave nicely under non-characteristic restriction.433
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5.2. Deformations. Varchenko proved, via establishing constancy of Hodge num-434

bers, that in a µ-constant family of isolated singularities, the spectrum is constant435

[223]. In [86] it is shown that the formation of the spectrum along the divisor Y ⊆ X436

commutes with the intersection with a hyperplane transversal to any stratum of a437

Whitney regular stratification of D. Moreover, they derived a weak generalization438

of Varchenko’s constancy results for certain deformations of non-isolated singulari-439

ties.440

In contrast, the Bernstein–Sato polynomial may not be constant along µ-constant441

deformations. Suppose f(x) + λg(x) is a 1-parameter family of plane curves with442

isolated singularities at the origin. If the Milnor number dimC(R/J(f+λg)) is con-443

stant in the family, the singularity germs in the family are topologically equiv-444

alent [218]; for discussion see [88, §2]. However, in such a family, bf (s) may445

vary, it is a differential invariant: f + λg = x4 + y5 + λxy4 has constant Mil-446

nor number 20, but the general curve (not quasi-homogeneous in any coordi-447

nate system, as ρf+λg is not symmetric about −1, see Subsection 3.3 above) has448

−ρf+λg = {1} ∪ 1
20{9, 11, 13, 14, 17, 18, 19, 21, 22, 23, 26, 27} while the special curve449

has −ρf = −ρf+λg ∪ {−31/20}r {−11/20}. See [64] for details and similar exam-450

ples based on Newton polytope considerations, and [205] for deformations of plane451

diagonal curves.452

6. Milnor fiber and monodromy453

6.1. Milnor fibers. Let B(p, ε) denote the ε-ball around p ∈ Var(f) ⊆ Cn. Milnor454

[155] proved that the diffeomorphism type of the open real manifold455

Mp,t0,ε = B(p, ε) ∩Var(f − t0)

is independent of ε, t0 as long as 0 < |t0| � ε � 1. For 0 < τ � ε � 1 denote by456

Mp the fiber of the bundle B(p, ε) ∩ {q ∈ Cn | 0 < |f(q)| < τ} → f(q).457

The direct image functor for D-modules to the projection Cn×C→ C, (x, t) 7→458

t turns the Dx,t-module Bf into the Gauß-Manin system Hf . The D-module459

restriction of Hk(Hf ) to t = t0 is the k-th cohomology of the Milnor fibers along460

Var(f) for 0 < |t0| < τ .461

Fix a k-cycle σ ∈ Hp(Var(f − t0)) and choose η ∈ Hk(Hf ). Deforming σ to a462

k-cycle over t using the Milnor fibration, one can evaluate
∫
σt
η. The Gauß–Manin463

system has Fuchsian singularities and these periods are in the Nilsson class [148].464

For example, the classical Gauß hypergeometric function saw the light of day the465

first time as solution to a system of differential equations attached to the variation466

of the Hodge structure on an elliptic curve (expressed as integrals of the first and467

second kind) [41]. In [177] this point of view is taken to be the starting point. The468

techniques explained there form the foundation for many connections between fs469

and singularity invariants attached to Var(f).470

In [46], a bijection (for 0 < α ≤ 1) is established between a subset of the jumping471

numbers of f at p ∈ Var(f) and the support of the Hodge spectrum [207]472

Sp(f) =
∑
α∈Q

nα(f)tα,

with nα(f) determined by the size of the α-piece of Hodge component of the coho-473

mology of the Milnor fiber of f at p. See also [190, 221], and [206] for a survey on474

Hodge invariants. We refer to [49, 194] for many more aspects of this part of the475

story.476
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6.2. Monodromy. The vector spaces Hk(Mp,t0,ε,C) form a smooth vector bun-477

dle over a punctured disk C∗. The linear transformation µf,p,k on Hk(Mp,t0,ε,C)478

induced by p 7→ p · exp(2πiλ) is the k-th monodromy of f at p. Let χf,p,k(t) denote479

the characteristic polynomial of µf,p,k, set480

ef,p,k = {γ ∈ C | γ is an eigenvalue of µf,p,k}

and put ef,p =
⋃
ef,p,k.481

For most (in a quantifiable sense) divisors f with given Newton diagram, a combi-482

natorial recipe can be given that determines the alternating product
∏

(χf,p,k(t))(−1)k
483

[222], similarly to A’Campo’s formula in terms of an embedded resolution [1].484

6.3. Degrees, eigenvalues, and Bernstein–Sato polynomial. By [147, 114],485

the exponential function maps the root set of the local analytic Bernstein–Sato486

polynomial of f at p onto ef,p. The set exp(−2πiρ̃f,p) is the set of eigenvalues of487

the monodromy on the Grothendieck–Deligne vanishing cycle sheaf φf (CX,p). This488

was shown in [191] by algebraic microlocalization.489

If f is an isolated singularity, the Milnor fiber Mf is a bouquet of spheres, and490

Hn−1(Mf ,C) can be identified with the Jacobian ring R/Jf . Moreover, if f is491

quasi-homogeneous, then under this identification R/Jf is a Q[s]-module, s acting492

via the Euler operator, and ρ̃f is in bijection with the degree set of the nonzero493

quasi-homogeneous elements in R/Jf . For non-isolated singularities, most of this494

breaks down, since R/Jf is not Artinian in that case. However, for homogeneous495

f , consider the Jacobian module496

H0
m(R/Jf ) = {g + Jf | ∃k ∈ N,∀i, xki g ∈ Jf}

and the canonical (n− 1)-form497

η =
∑
i

xidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

Every class in Hn−1(Mf ;C) is of the form gη for suitable g ∈ R, [230]. Moreover, let498

g 6= 0 by a homogeneous element in the Jacobian module H0
m(R/Jf ) and suppose499

that its degree deg(gη) = deg(g) +
∑
i deg(xi) is between d and 2d. Then, by500

[230, 231], gη represents a nonzero cohomology class in Hn−1(Mf ,C) and there is a501

filtration on Hn−1(Mf ,C) induced by integration of Bf along ∂1, . . . , ∂n, with the502

following property: if g ∈ R is the smallest degree homogeneous polynomial such503

that gη represents a chosen element of Hn−1(Mf ,C) then bf (−(deg(gη))/ deg(f)) =504

0.505

6.4. Zeta functions. The zeta function Zf (s) attached to a divisor f ∈ R is the506

rational function507

Zf (s) =
∑
I⊆S

χ(E∗I )
∏
i∈I

1

Nis+ νi

where π : (Y,
⋃
I Ei)→ (Cn,Var(f)) is an embedded resolution of singularities, and508

Ni (resp. νi − 1) are the multiplicities of Ei in π∗(f) (resp. in the Jacobian of π).509

By results of Denef and Loeser [84], Zf (s) is independent of the resolution.510

Conjecture 6.1 (Topological Monodromy Conjecture).511

(SMC) Any pole of Zf (s) is a root of the Bernstein–Sato polynomial bf (s).512

(MC) Any pole of Zf (s) yields under exponentiation an eigenvalue of the mon-513

odromy operator at some p ∈ Var(f).514
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The strong version (SMC) implies (MC) by [146, 114]. Each version allows a515

generalization to ideals.516

(SMC), formulated by Igusa [110] and Denef–Loeser [84] holds for517

• reduced curves by [138] with a discussion on the nature of the poles by Veys518

[226, 225, 227];519

• certain Newton-nondegenerate divisors by [140];520

• some hyperplane arrangements (see Section 8);521

• monomial ideals in any dimension by [106].522

Additionally, Conjecture (MC) holds for523

• bivariate ideals by Van Proeyen and Veys [220];524

• all hyperplane arrangements by [54, 56];525

• some partial cases: [11, 127] some surfaces; [13] quasi-ordinary power series;526

[136, 140] in certain Newton non-degenerate cases; [109, 123] for invariants527

of prehomogeneous vector spaces; [126] for nondegenerate surfaces.528

Strong evidence for (MC) for n = 3 is procured in [228]. The articles [180, 164]529

explore what (MC) could mean on a normal surface as ambient space and gives530

some results and counterexamples to naive generalizations. See also [85] and the531

introductions of [31, 32] for more details in survey format.532

A root of bf (s), a monodromy eigenvalue, and a pole of Zf (s) may have mul-533

tiplicity; can the monodromy conjecture be strengthened to include multiplicities?534

This version of (SMC) was proved for reduced bivariate f in [138]; in [153, 154] it535

is proved for certain nonreduced bivariate f , and for some trivariate ones.536

A different variation, due to Veys, of the conjecture is the following. Vary the537

definition of Zf (s) to Zf ;g(s) =
∑
I⊆S χ(E∗I )

∏
i∈I

1
Nis+ν′

i
where ν′i is the multiplic-538

ity of Ei in the pullback along π of some differential form g. (The standard case539

is when g is the volume form). Two questions arise: (1) varying over a suitable540

set G of forms g, can one generate all roots of bf (s) as poles of the resulting zeta541

functions? And if so, can one (2) do this such that the pole sets of all zeta functions542

so constructed are always inside ρf , so that543

ρf = {α | ∃g ∈ G, lim
s→α

Zf ;g(s) =∞} ?

Némethi and Veys [163, 164] prove a weak version: if n = 2 then monodromy544

eigenvalues are exponentials of poles of zeta functions from differential forms.545

The following is discussed in [30]. For some ideals with n = 2, (1) is false for546

the topological zeta function (even for divisors: consider xy5 + x3y2 + x4y). For547

monomial ideals with two generators in n = 2, (1) is correct; with more than two548

generators it can fail. Even in the former case, (2) can be false.549

7. Multi-variate versions550

If f = (f1, . . . , fr) defines a map f : Cn → Cr, several b-functions can be defined:551

(1) The univariate Bernstein–Sato polynomial bf (s) attached to the ideal (f) ⊆552

R from [51].553

(2) The multi-variate Bernstein–Sato polynomials bf,i(s) of all b(s) ∈ C[s1, . . . , sr]554

such that there is an equation P (x, ∂, s) • fifs = b(s)fs in multi-index notation.555

(3) The multi-variate Bernstein–Sato ideal Bf,µ(s) for µ ∈ Nr of all b(s) ∈556

C[s1, . . . , sr] such that there is an equation P (x, ∂, s) • fs+µ = b(s)fs in multi-557

index notation. The most interesting case is µ = 1 = (1, . . . , 1).558
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(4) The multi-variate Bernstein–Sato ideal Bf,Σ(s) of all b(s) ∈ C[s1, . . . , sr]559

that multiply fs into
∑
D[s]fif

s in multi-index notation.560

The Bernstein–Sato polynomial in (1) above has been studied in the case of a561

monomial ideal in [52] and more generally from the point of view of the Newton562

polygon in [53]. While the roots for monomial ideals do not depend just on the563

Newton polygon, their residue classes modulo Z do.564

Non-triviality of the quantities in (2)-(4) have been established in [184, 185, 183],565

but see also [17]. The ideals Bf,µ(s) and Bf,Σ(s) do not have to be principal,566

[219, 18]. In [184, 103] it is shown that Bf,µ(s) contains a polynomial that factors567

into linear forms with non-negative rational coefficients and positive constant term.568

Bahloul and Oaku [18] show that these ideals are local in the sense of (3.1).569

The following would generalize Kashiwara’s result in the univariate case as well570

as the results of Sabbah and Gyoja above.571

Conjecture 7.1 ([48]). The Bernstein–Sato ideal Bf,µ(s) is is generated by prod-572

ucts of linear forms
∑
αisi + a with αi, a non-negative rational and a > 0.573

For n = 2, partial results by Cassou-Noguès and Libgober exist [65]. In [48]574

it is further conjectured that the Malgrange–Kashiwara result, exponentiating ρf,p575

gives ef,p, generalizes: monodromy in this case is defined in [224], and Sabbah’s576

specialization functor ψf from [186] takes on the rôle of the nearby cycle functor,577

and conjecturally exponentiating the variety of Bf,p(s) yields the uniform support578

(near p) of Sabbah’s functor. The latter conjecture would imply Conjecture 7.1.579

Similarly to the one-variable case, if V (n, d,m) is the vector space of (ordered) m-580

tuples of polynomials in x1, . . . , xn of degree at most d, there is an algebraic stratifi-581

cation of V (n, d,m) such that on each stratum the function V 3 f = (f1, . . . , fm) 7→582

bf (s) is constant. Corresponding results for the Bernstein–Sato ideal Bf,1(s) hold583

by [38].584

8. Hyperplane arrangements585

A hyperplane arrangement is a divisor of the form586

A =
∏
i∈I

αi

where each αi is a polynomial of degree one. We denote Hi = Var(αi). Essentially587

all information we are interested in is of local nature, so we assume that each αi588

is a form so that A is central. If there is a coordinate change in Cn such that A589

becomes the product of polynomials in disjoint sets of variables, the arrangement590

is decomposable, otherwise it is indecomposable.591

A flat is any (set-theoretic) intersection
⋂
i∈J Hi where J ⊆ I. The intersection592

lattice L(A ) is the partially ordered set consisting of the collection of all flats, with593

order given by inclusion.594

8.1. Numbers and parameters. Hyperplane arrangements satisfy (B1) every-595

where [230]. Arrangements satisfy (A1) everywhere if they decompose into a union596

of a generic and a hyperbolic arrangement [214], and if they are tame [231]. Terao597

conjectured that all hyperplane arrangements satisfy (A1); some of them fail (As),598

[231].599

Apart from recasting various of the previously encountered problems in the world600

of arrangements, a popular study is the following: choose a discrete invariant I of601
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a divisor. Does the function A 7→ I(A ) factor through the map A 7→ L(A )?602

Randell showed that if two arrangements are connected by a one-parameter family603

of arrangements which have the same intersection lattice, the complements are604

diffeomorphic [178] and the isomorphism type of the Milnor fibration is constant605

[179]. Rybnikov [181, 12] showed on the other hand that there are arrangements606

(even in the projective plane) with equal lattice but different complement. In607

particular, not all isotopic arrangements can be linked by a smooth deformation.608

8.2. LCT and logarithmic ideal. The most prominent positive result is by609

Brieskorn: the Orlik–Solomon algebra OS(A ) ⊆ Ω•(log A ) generated by the forms610

dαi/αi is quasi-isomorphic to Ω•(∗A ), hence to the singular cohomology algebra of611

UA , [40]. The relation with combinatorics was given in [175, 176]. For a survey on612

the Orlik–Solomon algebra, see [237]. The best known open problem in this area is613

Conjecture 8.1 ([211]). OS(A )→ Ω•(log A ) is a quasi-isomorphism.614

While the general case remains open, Wiens and Yuzvinsky [232] proved it for615

tame arrangements, and also if n ≤ 4. The techniques are based on [72].616

8.3. Milnor fibers. There is a survey article by Suciu on complements, Milnor617

fibers, and cohomology jump loci [208], and [49] contains further information on618

the topic. It is not known whether L(A ) determines the Betti numbers (even less619

the Hodge numbers) of the Milnor fiber of an arrangement. The first Betti number620

of the Milnor fiber MA at the origin is stable under intersection with a generic621

hyperplane (if n > 2). But it is unknown whether the first Betti number of an622

arrangement in 3-space is a function of the lattice alone. By [89], this is so for623

collections of up to 14 lines with up to 5-fold intersections in the projective plane.624

See also [134] for the origins of the approach. By [50], a lower combinatorial bound625

for the λ-eigenspace of H1(MA ) is given under favorable conditions on L. If L626

satisfies stronger conditions, the bound is shown to be exact. In any case, [50] gives627

an algebraic, although perhaps non-combinatorial, formula for the Hodge pieces in628

terms of multiplier ideals.629

By [174], the Betti numbers of MA are combinatorial if A is generic. See also630

[76].631

8.4. Multiplier ideals. Mustaţă gave a formula for the multiplier ideals of ar-632

rangements, and used it to show that the log-canonical threshold is a function of633

L(A ). The formula is somewhat hard to use for showing that each jumping number634

is a lattice invariant; this problem was solved in [55]. Explicit formulas in low di-635

mensional cases follow from the spectrum formulas given there and in [236]. Teitler636

[210] improved Mustaţă’s formula for multiplier ideals to not necessarily reduced637

hyperplane arrangements [158].638

8.5. Bernstein–Sato polynomials. By [230], ρA ∩ Z = {−1}; by [192], ρA ⊆639

(−2, 0). There are few classes of arrangements with explicit formulæ for their640

Bernstein–Sato polynomial:641

• Boolean (a normal crossing arrangement, locally given by x1 · · ·xk);642

• hyperbolic (essentially an arrangement in two variables);643

• generic (central, and all intersections of n hyperplanes equal the origin).644



ON THE D-MODULE fs 17

The first case is trivial, the second is easy, the last is [230] with assistance from645

[193]. Some interesting computations are in [56], and [48] has a partial confirmation646

of the multi-variable Kashiwara–Malgrange theorem.647

8.6. Zeta functions. Budur, Mustaţă and Teitler [54] show: (MC) holds for ar-648

rangements, and in order to prove (SMC), it suffices to show the following conjec-649

ture.650

Conjecture 8.2. For all indecomposable central arrangements with d planes in651

n-space, bA (−n/d) = 0.652

The idea is to use the resolution of singularities obtained by blowing up the dense653

edges from [200]. The corresponding computation of the zeta function is inspired654

from [107, 108]. The number −n/d does not have to be the log-canonical threshold.655

By [54], Conjecture 8.2 holds in a number of cases, including reduced arrangements656

in dimension 3. By [231] it holds for tame arrangements.657

Examples of Veys (in 4 variables) show that (SMC) may hold even if Conjec-658

ture 8.2 were false in general, since −n/d is not always a pole of the zeta function659

[56]. However, in these examples, −n/d is in fact a root of bf (s).660

For arrangements, each monodromy eigenvalue can be captured by zeta functions661

in the sense of Némethi and Veys, see Subsection 6.4, but not necessarily all of ρA662

(Veys and Walther, unpublished).663

9. Positive characteristic664

Let here F denote a field of characteristic p > 0. The theory of D-modules665

is rather different in positive characteristic compared to their behavior over the666

complex numbers. There are several reasons for this:667

(1) On the downside, the ring Dp of F-linear differential operators on Rp =668

F[x1, . . . , xn] is no longer finitely generated: as an F-algebra it is generated669

by the elements ∂(α), α ∈ Nn, which act via ∂(α) • (xβ) =
(
β
α

)
xβ−α.670

(2) As a trade-off, one has access to the Frobenius morphism xi 7→ xpi , as well671

as the Frobenius functor F (M) = R′⊗RM where R′ is the R−R-bimodule672

on which R acts via the identity on the left, and via the Frobenius on673

the right. Lyubeznik [142] created the category of F -finite F -modules and674

proved striking finiteness results. The category includes many interesting675

Dp-modules, and all F -modules are Dp-modules.676

(3) Holonomicity provides certain difficulties, see [29].677

A most surprising consequence of Lyubeznik’s ideas is that in positive character-678

istic the property (B1) is meaningless: it holds for every f ∈ Rp, [6]. The proof679

uses in significant ways the difference between Dp and the Weyl algebra. In par-680

ticular, the theory of Bernstein–Sato polynomials is rather different in positive681

characteristic. In [159] a sequence of Bernstein–Sato polynomials is attached to a682

polynomial f assuming that the Frobenius morphism is finite on R (e.g., if F is683

finite or algebraically closed); these polynomials are then linked to test ideals, the684

finite characteristic counterparts to multiplier ideals. In [28] variants of our mod-685

ules Mf (γ) are introduced and [168] shows that simplicity of these modules detects686

the F -thresholds from [160]. These are cousins of the jumping numbers of mul-687

tiplier ideals and related to the Bernstein–Sato polynomial via base-p-expansions;688

see also [233]. The Kashiwara–Brylinski intersection homology modules in positive689
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characteristic was shown to exist in positive characteristic by Blickle in his thesis,690

[27].691

10. Appendix: Computability (by A. Leykin)692

Computations around fs can be carried out by hand in special cases. Generally,693

the computations are enormous and computers are required (although not often694

sufficient). One of the earliest such approaches are in [34, 4], but at least implic-695

itly Buchberger’s algorithm in a Weyl algebra was discussed as early as [70]. An696

algorithmic approach to the isolated singularities case [144] preceded the general697

algorithms based on Gröbner bases in a non-commutative setting outlined below.698

10.1. Gröbner bases. The monomials xα∂β with α, β ∈ Nn form a C-basis of699

D; expressing p ∈ D as linear combination of monomials leads to its normal form.700

The monomial orders on the commutative monoid [x, ∂] for which for all i ∈ [n]701

the leading monomial of ∂ixi = xi∂i + 1 is xi∂i, can be used to run Buchberger’s702

algorithm in D. Modifications are needed in improvements that exploit commuta-703

tivity, but the näıve Buchberger’s algorithm works without any changes. See [112]704

for more general settings in polynomial rings of solvable type. Surprisingly, the705

worst case complexity of Gröbner bases computations in Weyl algebras is not worse706

than in the commutative polynomial case: it is doubly exponential in the number707

of indeterminates [14, 100].708

10.2. Characteristic variety. A weight vector (u, v) ∈ Zn × Zn with u + v ≥ 0709

induces a filtration of D,710

Fi = C · {xα∂β | u · α+ v · β ≤ i}, i ∈ Z.

The (u, v)-Gröbner deformation of a left ideal I ⊆ D is711

in(u,v)(I) = C · {in(u,v)(P ) | P ∈ I} ⊆ gr(u,v)D,

the ideal of initial forms of elements of I with respect to the given weight in the712

associated graded algebra. It is possible to compute Gröbner deformations in the713

homogenized Weyl algebra714

Dh = D〈h〉/〈∂ixi − xi∂i − h2, xih− hxi, ∂ih− h∂i, | 1 ≤ i ≤ n〉

see [71, 172]. Gröbner deformations are the main topic of [195].715

10.3. Annihilator. Recall the construction appearing in the beginning of §6.1:716

Dx,t acts on D[s]fs; in particular, the operator −∂tt acts as multiplication by s.717

It is this approach that lead Oaku to an algorithm for annD[s](f
s), annD(fs) and718

bf (s), [170]. We outline the ideas.719

Malgrange observed that

annD[s](f
s) = annDx,t

(fs) ∩D[s],(10.1)

with annDx,t
(fs) = 〈t− f, ∂1 + ∂f

∂x1
∂t, . . . , ∂n + ∂f

∂xn
∂t〉 ⊆ Dx,t.(10.2)

The former can be found from the latter by eliminating t and ∂t from the ideal720

(10.3) 〈s+ t∂t〉+ annDx,t(f
s) ⊆ Dx,t〈s〉;

of course s = −∂tt does not commute with t, ∂t here.721
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Oaku’s method for annD[s](f
s) accomplished the elimination by augmenting two

commuting indeterminates:

annD[s](f
s) = I ′f ∩D[s],

I ′f = 〈t− uf, ∂1 + u ∂f
∂x1

∂t, . . . , ∂n + u ∂f
∂xn

∂t, uv − 1〉 ⊆ Dx,t[u, v].
(10.4)

Now outright eliminate u, v. Note that I ′f is quasi-homogeneous if the weights are722

t, u  −1 and ∂t, v  1, all other variables having weight zero. The homogeneity723

of the input and the relation [∂t, t] = 1 assures the termination of the computation.724

The operators of weight 0 in the output (with −∂tt replaced by s) generate I ′f∩D[s].725

A modification given in [33] and used, e.g., in [219], reduces the number of
algebra generators by one. Consider the subalgebra D〈s, ∂t〉 ⊂ Dx,t; the relation
[s, ∂t] = ∂t shows that it is of solvable type. According to [33],

annD[s](f
s) = I ′′f ∩D[s],

I ′′f = 〈s+ f∂t, ∂1 + ∂f
∂x1

∂t, . . . , ∂n + ∂f
∂xn

∂t〉 ⊂ D〈s, ∂t〉.
(10.5)

Note that I ′′f = annDx,t
(fs)∩D〈s, ∂t〉. The elimination step is done as in [170]; the726

decrease of variables usually improves performance. An algorithm to decide (A1)727

for arrangements is given in [5].728

10.4. Algorithms for the Bernstein–Sato polynomial. As the minimal poly-729

nomial of s on Nf (s), bf (s) can be obtained by means of linear algebra as a syzygy730

for the normal forms of powers of s modulo annD[s](f
s) + D[s] · f with respect to731

any fixed monomial order on D[s]. Most methods follow this path, starting with732

[170]. Variations appear in [229, 171, 173]; see also [195].733

A slightly different approach is to compute bf (s) without recourse to annD[s](f
s),734

via a Gröbner deformation of the ideal If = annDx,t
(fs) in (10.2) with respect to the735

weight (−w,w) with w = (0n, 1) ∈ Nn+1: 〈bf (s)〉 = in(−w,w)(If ) ∩ Q[−∂tt]. Here736

again, computing the minimal polynomial using linear algebra tends to provide737

some savings in practice.738

In [128] the authors give a method to check specific numbers for being in ρf . A739

method for bf (s) in the prehomogeneous vector space setup is in [157].740

10.5. Stratification from bf (s). The Gröbner deformation in(−w,w)(If ) in §10.4741

can be refined as follows, see [22, Thm. 2.2]. Let b(x, s) be nonzero in the polynomial742

ring C[x, s]. Then b(x, s) ∈ (in(−w,w) If )∩C[x, s] if and only if there exists P ∈ D[s]743

satisfying the functional equation b(x, s)fs = Pffs. From this one can design an744

algorithm not only for computing the local Bernstein–Sato polynomial bf,p(s) for745

p ∈ Var(f), but also the stratification of Cn according to local Bernstein–Sato746

polynomials; see [165, 22] for various approaches. Moreover, one can compute the747

stratifications from Subsection 3.3.2, see [131].748

For the ideal case, [8] gives a method to compute an intersection of a left ideal of749

an associative algebra over a field with a subalgebra, generated by a single element.750

An application is a method for the computation of the Bernstein-Sato polynomial751

of an ideal. Another such was given by Bahloul in [15], and a version on general752

varieties in [16].753

10.6. Multiplier ideals. Consider polynomials f1, . . . , fr ∈ C[x], let f stand for754

(f1, . . . , fr), s for s1, . . . , sr, and fs for
∏r
i=1 f

si
i . In this subsection, let Dx,t =755

C〈x, t, ∂x, ∂t〉 be the (n+ r)-th Weyl algebra.756
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Consider Dx,t(s) • fs ⊆ Rx,t[f−1, s]fs and put

tj • h(x, s1, . . . , sj , . . . , sr)f
s = h(x, s1, . . . , sj + 1, . . . , sr)fjf

s,

∂tj • h(x, s1, . . . , sj , . . . , sr)f
s = −sjh(x, s1, . . . , sj − 1, . . . , sr)f

−1
j fs,

for h ∈ C[x][f−1, s], generalizing the univariate constructions.757

The generalized Bernstein–Sato polynomial bf,g(σ) of f at g ∈ C[x] is the monic
univariate polynomial b of the lowest degree for which there exist Pk ∈ Dx,t such
that

b(σ)gfs =

r∑
k=1

Pkgfkf
s, σ = −

(
r∑
i=1

∂titi

)
.(10.6)

An algorithm for bf,g(σ) is an essential ingredient for the algorithms in [204, 22]758

that compute the jumping numbers and corresponding multiplier ideals for I =759

〈f1, . . . , fr〉. That bf,g(σ) is related to multiplier ideals was worked out in [51].760

There are algorithms for special cases: monomial ideals [105], hyperplane ar-761

rangements [158], and determinantal ideals [111]. A Macaulay2 package Multipli-762

erIdeals by Teitler collects all available (in Macaulay2) implementations. See also763

[47].764

10.7. Software. Algorithms for computing Bernstein–Sato polynomials have been765

implemented in kan/sm1 [209], Risa/Asir [167], dmod lib library [130] for Singu-766

lar [80], and the D-modules package [133] for Macaulay2 [98]. The best source of767

information of these is documentation in the current versions of the corresponding768

software. A relatively recent comparison of the performance for several families of769

examples is given in [129].770

The following are articles by developers discussing their implementations: [166,771

165, 171, 7, 130, 132, 22].772
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The classification of critical points, caustics and wave fronts, Translated from the Russian800

by Ian Porteous and Mark Reynolds. 3.2801

[11] E. Artal Bartolo, P. Cassou-Noguès, I. Luengo, and A. Melle Hernández. Monodromy con-802

jecture for some surface singularities. Ann. Sci. École Norm. Sup. (4), 35(4):605–640, 2002.803
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Funkcional. Anal. i Priložen., 6(4):26–40, 1972. 1, 1.5, 5834

[24] Jospeh Bernstein. Lecture notes on the theory of D-modules. unpublished, mimeographed835

notes. 1, 1836

[25] J.-E. Björk. Rings of differential operators, volume 21 of North-Holland Mathematical Li-837

brary. North-Holland Publishing Co., Amsterdam, 1979. 1, 1838

[26] Jan-Erik Björk. Analytic D-modules and applications, volume 247 of Mathematics and its839

Applications. Kluwer Academic Publishers Group, Dordrecht, 1993. 1, 2840

[27] Manuel Blickle. The intersection homology D-module in finite characteristic. Math. Ann.,841

328(3):425–450, 2004. 9842
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stein. In Singularities—Sapporo 1998, volume 29 of Adv. Stud. Pure Math., pages 79–95.868

Kinokuniya, Tokyo, 2000. 3.3.1, 7869

[39] Egbert Brieskorn. Die Monodromie der isolierten Singularitäten von Hyperflächen.870
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24ème année (1971/1972), Exp. No. 401, pages 21–44. Lecture Notes in Math., Vol. 317.873

Springer, Berlin, 1973. 8.2874

[41] Egbert Brieskorn and Horst Knörrer. Ebene algebraische Kurven. Birkhäuser Verlag, Basel,875
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[52] Nero Budur, Mircea Mustaţǎ, and Morihiko Saito. Combinatorial description of the roots904

of the Bernstein–Sato polynomials for monomial ideals. Comm. Algebra, 34(11):4103–4117,905

2006. 7906
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[54] Nero Budur, Mircea Mustaţă, and Zach Teitler. The monodromy conjecture for hyperplane910

arrangements. Geom. Dedicata, 153:131–137, 2011. 6.4, 8.6, 8.6911



ON THE D-MODULE fs 23

[55] Nero Budur and Morihiko Saito. Jumping coefficients and spectrum of a hyperplane ar-912

rangement. Math. Ann., 347(3):545–579, 2010. 8.4913

[56] Nero Budur, Morihiko Saito, and Sergey Yuzvinsky. On the local zeta functions and the914

b-functions of certain hyperplane arrangements. J. Lond. Math. Soc. (2), 84(3):631–648,915

2011. With an appendix by Willem Veys. 3.3.3, 6.4, 8.5, 8.6916
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2005. 91160
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[182] C. Sabbah. D-modules et cycles évanescents (d’après B. Malgrange et M. Kashiwara). In1211
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