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Abstra
t. Let Q 2 C [x

1

; : : : ; x

n

℄ be a homogeneous polynomial of degree k >

0. We establish a 
onne
tion between the Bernstein-Sato polynomial b

Q

(s) and

the degrees of the generators for the top 
ohomology of the asso
iated Milnor

�ber. In parti
ular, the integer u

Q

= maxfi 2 Z : b

Q

(�(i+n)=k) = 0g bounds

the top degree (as di�erential form) of the elements in H

n�1

DR

(Q

�1

(1); C). The

link is provided by the relative de Rham 
omplex and D-module algorithms

for 
omputing integration fun
tors.

As an appli
ation we determine the Bernstein-Sato polynomial b

Q

(s) of a

generi
 
entral arrangement Q =

Q

k

i=1

H

i

of hyperplanes. We obtain in turn

information about the 
ohomology of the Milnor �ber of su
h arrangements

related to results of Orlik and Randell who investigated the monodromy.

We also introdu
e 
ertain subs
hemes of the arrangement determined by

the roots of b

Q

(s). They appear to 
orrespond to iterated singular lo
i.

1. Introdu
tion

Let f be a non-
onstant polynomial in n variables. In the 1960s, M. Sato intro-

du
ed a-, b- and 
-fun
tions asso
iated to a prehomogeneous ve
tor spa
e [32, 33℄.

The existen
e of b-fun
tions asso
iated to all polynomials and germs of holomorphi


fun
tions was later established in [2, 3℄.

The simplest interesting 
ase of a b-fun
tion is the 
ase of the quadrati
 form

f(x

1

; : : : ; x

n

) =

P

n

i=1

x

2

i

. Let s be a new variable and denote by f

s

the germ of

the 
omplex power of f(x). One then has an identity

 

n

X

i=1

�

2

�x

i

2

!

� f

s+1

= 4(s+ 1)(s+ n=2)f

s

:

The b-fun
tion to f(x) is here b

f

(s) = (s+1)(s+ n=2). One may for general f use

an equality of the type

P (s) � f

s+1

= b(s)f

s

(1.1)

to analyti
ally 
ontinue f

s

, and it was this appli
ation that initially 
aused I.N. Bern-

stein to 
onsider b

f

(s). Today, the b-fun
tion of a polynomial is usually referred to

as \Bernstein-Sato polynomial" and denoted b

f

(s).
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The Bernstein-Sato polynomial is always a multiple of (s+1), and equality holds

if f is smooth. The roots of b

f

(s) are always negative and rational [17℄. It has been

pointed out �rst in [24, 25℄ that there is an intimate 
onne
tion between the sin-

gularity stru
ture of f

�1

(0) and its Bernstein-Sato polynomial. The roots of b

f

(s)

relate to a variety of algebro-geometri
 data like the stru
ture of the embedded

resolution of the pair (C

n

;Var(f)), Newton polyhedra, Zeta fun
tions, asymptoti


expansions of integrals, Pi
ard-Lefs
hetz monodromy, polar invariants and multi-

plier ideals: see, for example, [7, 16, 20, 22, 23, 37℄. T. Yano systemati
ally worked

out a number of examples [40℄ and some interesting 
omputations are given in [5℄.

A satisfa
tory interpretation of all roots of b

f

(s) for general f remains, however,

outstanding. Indeed, until [28℄ there was not even an algorithm for the 
omputation

of b

f

(s) for an arbitrary polynomial f .

In this note we investigate the Bernstein-Sato polynomial when f de�nes a

generi
 
entral hyperplane arrangement. By that we mean a redu
ed 
olle
tion

of k hyperplanes su
h that ea
h subset of minfk; ng of the hyperplanes 
uts out the

origin. The paper is organized as follows. In this se
tion we introdu
e the relevant

notation. In the next se
tion we �nd an upper bound for the Bernstein-Sato poly-

nomial of a 
entral generi
 arrangement. We shall 
ompute a polynomial b(s) that

satis�es an identity of the type (1.1) using strongly that the arrangement is 
entral

and generi
. In Se
tion 3 we use some 
ounting and Gr�obner type arguments to

obtain information about generators for the top 
ohomology of the Milnor �ber of

su
h arrangements. We prove parts of a 
onje
ture of Orlik and Randell on the


ohomology of the Milnor �ber of a generi
 
entral arrangement. In parti
ular,

we determine in exa
tly whi
h degrees the top 
ohomology lives, and we present a


onje
tured set of generators.

Malgrange [26℄ demonstrated that the Bernstein-Sato polynomial is the minimal

polynomial of a 
ertain operator on the sheaf of vanishing 
y
les. This says in

essen
e that monodromy eigenvalues are exponentials of roots of b

f

(s). In the

fourth se
tion we prove roughly that for homogeneous f the degrees of the top

Milnor �ber 
ohomology are roots of b

f

(s). This 
an in some sense be seen as

a logarithmi
 lift of Malgrange's results. For generi
 
entral arrangements this

links our results from Se
tions 2 and 3 and allows the determination of all roots of

b

f

(s) and (almost) all multipli
ities. We 
lose Se
tion 4 with an example of a non-

generi
 arrangement, and �nish in Se
tion 5 with some statements and 
onje
tures

regarding the stru
ture of the D

n

-modules R

n

[f

�1

℄ and D

n

[s℄ � f

s

.

Notation 1.1. Throughout, we will work over the �eld of 
omplex numbers C . We

should point out that this is mostly for keeping things simple as the Bernstein-Sato

polynomial is invariant under �eld extensions.

In this note, for elements ff

1

; : : : ; f

k

g of any ring A, hf

1

; : : : ; f

k

i denotes the left

ideal generated by ff

1

; : : : ; f

k

g. If we mean a right ideal, we spe
ify it by writing

hf

1

; : : : ; f

k

iA.

By R

n

we denote the ring of polynomials C [x

1

; : : : ; x

n

℄ in n variables over C ,

and by D

n

we mean the ring of C -linear di�erential operators on R

n

, the n-th Weyl

algebra. The ring D

n

is generated by the partial derivative operators �

i

=

�

�x

i

and

the multipli
ation operators x

i

. One may 
onsider R

n

as a subring of D

n

as well

as a quotient of D

n

(by the left ideal h�

1

; : : : ; �

n

i). We denote by � the natural
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a
tion of D

n

on R

n

via this quotient map, as well as indu
ed a
tions of D

n

on

lo
alizations of R

n

.

We will have o

asion to 
onsider D

t

, D

x

and D

x;t

in some instan
es, where D

t

is the Weyl algebra in the variable t, D

x

the one in x

1

; : : : ; x

n

and D

x;t

is the Weyl

algebra in x

1

; : : : ; x

n

and t.

The module of global algebrai
 di�erential n-forms on C

n

is denoted 
; it may be

pi
tured as the quotient D

n

=h�

1

; : : : ; �

n

iD

n

. The left D

n

-Koszul 
omplex on D

n

indu
ed by the 
ommuting ve
tor �elds �

1

; : : : ; �

n

is denoted 


�

; it is a resolution

for 
 as right D

n

-module.

We shall use multi-index notation inR

n

: writing x

�

implies that � = (�

1

; : : : ; �

n

)

and stands for x

�

= x

�

1

1

� � �x

�

n

n

. The same applies to elements of D

n

, both for the

polynomial and the di�erential 
omponents. If � is a multi-index, j�j denotes the

sum of its 
omponents; if I is a set, then jI j is its 
ardinality. Finally, if k; r 2 N

then k j r signi�es that k divides r while k 6 j r indi
ates that this is not the 
ase.

1.1. Bernstein-Sato polynomials.

De�nition 1.2. For f 2 R

n

we de�ne J(f

s

) � D

n

[s℄ to be the annihilator of f

s

via formal di�erentiation, this is a left ideal. We set

M = D

n

[s℄=(J(f

s

) + hfi) = D

n

� f

s

=D

n

� f

s+1

:

By de�nition, the Bernstein-Sato polynomial b

f

(s) of f is the minimal polynomial of

s onM. So b

f

(s) is the moni
 polynomial of smallest degree satisfying a fun
tional

equation of the type (1.1) with P (s) 2 D

n

[s℄.

Let

~

M = D

n

[s℄=(J(f

s

) + hfi + D

n

[s℄ � A) where A � R

n

is the Ja
obian ideal

of f , A =

P

n

i=1

R

n

�

i

� (f). Then

~

M is isomorphi
 to (s + 1)M and sin
e (s + 1)

divides b

f

(s) then the minimal polynomial of s on

~

M is

~

b

f

(s) = b

f

(s)=(s+ 1).

Consider the module D

n

�f

a

for a 2 C and write J(f

a

) for the kernel of the map

D

n

! D

n

�f

a

indu
ed by P 7! P �f

a

. There is a natural map D

n

�f

a+1

,! D

n

�f

a

indu
ed by P �f

a+1

7! Pf �f

a

. Some roots of the Bernstein-Sato polynomial dete
t

the failure of this map to be an isomorphism:

Lemma 1.3. Let a 2 Q be su
h that b

f

(a) = 0 but b

f

(a � n) 6= 0 for all positive

natural numbers n. Then D

n

� f

a

6= D

n

� f

a+1

.

Proof. Suppose that a is as the hypotheses stipulate, and in addition assume that

D

n

� f

a

= D

n

� f

a+1

. We will exhibit a 
ontradi
tion.

Sin
e D

n

� f

a+1

! D

n

� f

a

is an epimorphism, D

n

= hfi+J(f

a

). By the 
hoi
e

of a and Proposition 6.2 in [17℄, J(f

a

) = D

n

\ (J(f

s

) + D

n

[s℄ � (s � a)). Hen
e

D

n

[s℄ = J(f

s

)+ hfi+ hs�ai. Multiplying by b

f

(s)=(s�a) we get hb

f

(s)=(s�a)i �

J(f

s

) + hfi+ hb

f

(s)i. Sin
e b

f

(s) 2 J(f

s

) + hfi,

b

f

(s)

s� a

2 J(f

s

) + hfi:

That, however, 
ontradi
ts the de�nition of b

f

(s) as the minimal polynomial in s


ontained in the sum on the right. �
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1.2. Isolated Singularities.

Suppose that f has an isolated singularity and assume for simpli
ity that the

singularity is at the origin. We give a short overview of what is known about the

Bernstein-Sato polynomial in this 
ase, following [19, 25, 40℄.

The module

~

M is supported only at the origin, so by [17℄ the minimal polynomial

of s on 



D

n

~

M is

~

b

f

(s). If now f is homogeneous of degree k, kf =

P

n

i=1

x

i

�

i

�(f).

Then J(f

s

) 
ontains

P

n

i=1

x

i

�

i

� ks. The a
tion of s on a homogeneous g 2





D

n

~

M

�

=

R

n

=A is easily seen to be multipli
ation by (�n�deg(g))=k. Thus, the

Bernstein-Sato polynomial of a homogeneous isolated singularity en
odes exa
tly

the degrees of non-vanishing elements in R

n

=A.

Consider now the relative de Rham 
omplex 


�

f

asso
iated to the map f : C

n

!

C . We shall denote the 
oordinate on C by t. The 
omplex 


�

f

is the Koszul


omplex indu
ed by left multipli
ation by �

1

; : : : ; �

n

on the D

x;t

-module N =

D

x;t

=J

n+1

(f) where J

n+1

(f) is the left ideal of D

x;t

generated by t � f and the

expressions �

i

+ �

i

� (f)�

t

for 1 � i � n. The 
omplex 


�

f

= 


�




D

n

N is a

representative of the appli
ation of the de Rham fun
tor

R

f

asso
iated to the map

f to the stru
ture sheaf on C

n

, [13℄. Its last nonzero 
ohomology module appears

in degree n, H

n

(


�

f

) = N=f�

1

; : : : ; �

n

g � N . This module is in a natural way a left

D

t

-module. For any � 2 C , the 
ohomology of the derived tensor produ
t of 


�

f

with D

t

=ht��iD

t

is the de Rham 
ohomology of the �ber at �. The identi�
ation

of N=f�

1

; : : : ; �

n

; t � �gD

x;t

with H

n�1

DR

(Var(f � �)) is explained in and before

Lemma 4.11.

So one has an isomorphism

R

n

=A

�

=

(D

t

=ht� �iD

t

)


D

t

H

n

(


�




D

n

N )

�

=

H

n�1

DR

(f

�1

(�); C )

and the roots of b

f

(s) in fa
t represent the degrees of the 
ohomology 
lasses of the

Milnor �ber of f .

For general f , the Bernstein-Sato polynomial is more 
omplex, see Example 4.16

and the following remarks.

2. An upper bound for the Bernstein polynomial

Our goal is Theorem 2.13. We shall mimi
 some of the me
hanism that makes

the isolated singularity 
ase so easy. It is 
lear that a literal translation is not

possible, be
ause R

n

=A has in general elements in in�nitely many di�erent degrees.

However, we now introdu
e 
ertain ideals in R

n

that are intimately related to the

Bernstein-Sato polynomial.

De�nition 2.1. Let q(s) 2 C [s℄. For a �xed f 2 R

n

we de�ne the ideal a

q(s)

� R

n

as the set of elements g 2 R

n

�

g 2 a

q(s)

�

()

�

9P (s) 2 D

n

[s℄ : P (s) � f

s+1

= q(s)gf

s

�

:

We remark that a

q(s)

� a

q(s)q

0

(s)

, and if q

0

(s)g 2 a

q(s)

� R

n

[s℄ then g 2 a

q(s)q

0

(s)

.

The Ja
obian ideal A is 
ontained in a

(s+1)

, and f 2 a

(1)

.

The Bernstein-Sato polynomial of f is evidently the polynomial b

f

(s) of smallest

degree su
h that 1 2 a

b

f

(s)

.

Before we 
ome to the 
omputation of an estimate for b

f

(s) for generi
 arrange-

ments we �rst 
onsider general homogeneous polynomials and then arrangements

in the plane.
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2.1. The homogeneous 
ase.

Assume now that Q 2 R

n

is homogeneous.

1

We shall denote by m the homoge-

neous maximal ideal of R

n

. If g 2 a

q(s)

then by de�nition gQ

s

2 M is annihilated

by q(s). Sin
e b

Q

(s) annihilates all of M, �nding g 2 a

q(s)

is equivalent to �nding

eigenve
tors of s on M to eigenvalues that are zeros of q(s). In the isolated sin-

gularity 
ase one only has to study the residues of a

q(s)

in R

n

=A, and this goes as

follows. Let Æ

Q

= min

k2N

fm

k+1

� Ag. Then the homogeneous polynomial g with

0 6= g 2 R

n

=A is in a

q(s)

if and only if (s + 1)

Q

Æ

Q

i=deg(g)

�

s+

i+n

deg(Q)

�

divides q(s);

this is proved in [40℄ based on results of Kashiwara.

For non-isolated homogeneous singularities Q we have a weak version of this:

Lemma 2.2. If R

n

[s℄�a

q(s)


ontains m

r

g where g = g(s) 2 R

n

[s℄ is homogeneous in

x

1

; : : : ; x

n

then g 2 R

n

[s℄ �a

q

0

(s)

where q

0

(s) = q(s) �

Q

r�1

i=0

(s+ (i+ n+ deg(g))=k).

In parti
ular,

�

m

r

� a

q(s)

�

=)

"

b

Q

(s) j q(s) �

r�1

Y

i=0

�

s+

i+ n

k

�

#

:

Proof. Let m be a monomial of degree r � 1, so x

i

mg 2 R

n

[s℄ � a

q(s)

. Then

n

X

i=1

�

i

� (x

i

mgQ

s

) = mg(�

1

x

1

+ : : :+ �

n

x

n

) �Q

s

+ deg(mg)mgQ

s

= mg(ks+ n+ deg(mg))Q

s

:

As deg(m) = r � 1,

�

s+

r�1+n+deg(g)

k

�

mg 2 a

q(s)

. By de
reasing indu
tion on

deg(m),

r

Y

i=1

�

s+

n+ deg(g) + r � i

k

�

g 2 R

n

[s℄ � a

q(s)

:

The �nal 
laim follows from the de�nition of b

Q

(s). �

Remark 2.3. Suppose that f is w-quasi-homogeneous, i.e., there are nonnegative

numbers w

1

; : : : ; w

n

su
h that with � =

P

n

i=1

w

i

x

i

�

i

one has f = � � (f) and hen
e

� � s 2 J(f

s

). If n � a

q(s)

is a w-homogeneous m-primary ideal then one 
an

show in the same manner that b

f

(s) divides the produ
t of q(s) and the minimal

polynomial of � on R

n

=n evaluated at �s�

P

n

i=1

w

i

. For example, f = x

3

+y

3

+z

2

w

is (1/3,1/3,1/3,1/3)-homogeneous. One has a

(s+1)

= hx

2

; y

2

; z

2

; zwi, whi
h is of

dimension 1, 
orresponding to the line of singularities (0; 0; 0; w). One 
an see that

the tri
k of Lemma 2.2 
an be used to show that a

(s+1)(s+7=3)

= hx

2

; xyz; y

2

; z

2

; zwi

sin
e xyz is in the so
le of R

n

=a

(s+1)

. Going one step further, a

(s+1)(s+7=3)(s+2)

=

hx

2

; xz; y

2

; yz; z

2

; zwi and then z 
an be obtained in a

(s+1)(s+7=3)(s+2)(s+5=3)

=

hx

2

; y

2

; zi. The new fa
tors are always equal to s +

P

4

i=1

(1=3) plus the degree of

the new element in a.

1

Throughout we use Q for an instan
e of a homogeneous polynomial while f is used if no

homogeneity assumptions are in for
e.
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Now, however, nothing is in the so
le and our pro
edure stops. On the other

hand, f is also (1=3; 1=3; 1=2; 0)-homogeneous and this 
an be used to show that

a

(s+1)(s+7=3)(s+2)(s+5=3)(s+11=6)

= hx; y; zi;

a

(s+1)(s+7=3)(s+2)(s+5=3)(s+11=6)(s+7=6)

= R

n

:

In fa
t, b

f

(s) = (s+1)(s+7=3)(s+2)(s+5=3)(s+11=6)(s+7=6) and one 
an see

again how the fa
tors of b

f

(s) enlarge (if taken in the right order) the ideal a, by

either saturating, or dropping dimension.

The tri
k for bounding b

f

(s) is therefore to �nd q(s) su
h that a

q(s)

is zero-

dimensional, and then to get a good estimate on the exponent r of Lemma 2.2 if

g = 1. The importan
e of the relation k � Q �

P

n

i=1

x

i

�

i

in the annihilator of Q

s

for homogeneous Q of degree k justi�es

De�nition 2.4. The Euler operator is E = x

1

�

1

+ : : :+ x

n

�

n

.

2.2. Arrangements in the plane.

One has the following folklore result:

Proposition 2.5. Let fa

i

g

3�i�k

be k�2 pairwise distin
t nonzero numbers. Then

the Bernstein-Sato polynomial of Q = xy(x+ a

3

y) � � � (x+ a

k

y) divides

(s+ 1)

2k�4

Y

i=0

�

s+

i+ 2

k

�

:

Proof. Consider the partial derivatives Q

x

and Q

y

of Q and the homogeneous forms

x

i

y

j

Q

x

and x

i

y

j

Q

y

where i+ j = k. We 
laim that these 2(k + 1) forms of degree

(k+1)+k are linearly independent (and hen
e that hQ

x

; Q

y

i 
ontains all monomials

of degree at least 2k + 1).

To see this, let M = fm

a;b

g

0�a;b�2k+3

be the matrix whose (a; b)-
oeÆ
ient

is the 
oeÆ
ient of x

2k�3�b

y

b

in x

k�2�a

y

a

Q

y

if a � k � 2, and the 
oeÆ
ient

of x

2k�3�b

y

b

in x

2k�3�a

y

a�k+1

Q

x

if a > k � 2. The determinant of M is the

resultant of Q

x

(1; y=x) and Q

y

(1; y=x). These 
annot have a 
ommon root sin
e

hQ

x

(x; y); Q

y

(x; y)i is hx; yi-primary. Hen
e M is of full rank and m

k

hQ

x

; Q

y

i =

m

2k+1

. Sin
e Q

x

; Q

y

2 a

(s+1)

, m

2k+1

� a

(s+1)

. Lemma 2.2 implies the 
laim. �

Of 
ourse, a 
entral arrangement Q of lines in the plane is an isolated singularity.

The interesting question was therefore the pre
ise determination of Æ

Q

.

2.3. Estimates in dimension n > 2.

For the remainder of this se
tion, Q is a generi
 
entral arrangement Q =

Q

k

i=1

H

i

. In order to estimate b

Q

(s) for n > 2; k > n + 1 we will 
onsider a

mix of the two main ideas for n = 2. Namely, we had m

2k+1

� a

(s+1)

. The point

is that admitting (s+ 1) as a fa
tor of b

Q

(s) allowed to 
apture (set-theoreti
ally)

the singular lo
us of the arrangement. This in 
onjun
tion with Lemma 2.2 gave a

bound for the Bernstein-Sato polynomial.

The plan is to devise a me
hanism that starts with hQi � a

1

and uses iterated

multipli
ation with (s+1) to enlarge a

q(s)

. Progress is measured by the dimension

of (the variety of) a

q(s)

. This approa
h works well for generi
 arrangements, while

for non-generi
 arrangements or other singularities better tri
ks seem to be needed.

It is 
ru
ial to understand the di�eren
e between the Ja
obian ideal of Q and

the ideal generated by all (n � 1)-fold produ
ts of distin
t elements in A, and
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more generally the di�eren
e between the ideal of the Ja
obian ideal of the variety

de�ned by all (r + 1)-fold produ
ts of distin
t elements of A and the ideal of all

r-fold produ
ts of distin
t elements of A.

De�nition 2.6. If A = fH

1

; : : : ; H

k

g is a list of linear homogeneous polynomials

and � 2 N

k

we say that

Q

k

i=1

H

i

�

i

is an A-monomial. If ea
h �

i

is either 0 or 1,

we 
all the A-monomial squarefree.

De�nition 2.7. We de�ne polynomials �

J;I;N

(Q) for a given 
entral arrangement

Q = H

1

� � �H

k

. To this end let N = f�

1

; : : : ; �

n

g � f1; : : : ; kg be a set of in-

di
es serving as a 
oordinate system. Let v

�

1

; : : : ; v

�

n

be n appropriate C -linear


ombinations of �

1

; : : : ; �

n

su
h that v

�

i

� (H

�

j

) = Æ

i;j

.

Let I � f1; : : : ; kg with jI j � k�n+1. Set

�

I = f1; : : : ; kg n (I [N),

^

I = I \N ,

H

I

=

Q

i2I

H

i

. Observe that j

^

I j = jI j � k + n+ j

�

I j.

Let �

N

(I) := j

�

I j + 1 � j

^

I j and pi
k J �

^

I with jJ j = �

N

(I). We de�ne

�

J;I;N

(Q) to be the �

N

(I)� �

N

(I)-determinant and linear 
ombination of square-

free A-monomials of degree jI j � 1

�

J;I;N

(Q) = det

0

B

�

v

j

1

� (H

��

1

) � � � v

j

1

� (H

��

j

�

Ij

) v

j

1

� (H

I

)

.

.

.

.

.

.

.

.

.

v

j

jJj

� (H

��

1

) � � � v

j

jJj

� (H

��

j

�

Ij

) v

j

jJj

� (H

I

)

1

C

A

(2.1)

where

�

I = f��

1

; : : : ;��

j

�

Ij

g and J = fj

1

; : : : ; j

jJj

g. If

�

I is empty, �

J;I;N

(Q) is just

�

j

1

(H

I

). We emphasize that �

J;I;N

(Q) is de�ned only if jI j > k � n. For a given

I , let �

I

(Q) be the set of all �

J;I;N

(Q), varying over all possible N , and for ea
h

N over all J satisfying J �

^

I and jJ j = �

N

(I).

Finally, put for r > k � n

�

r

(Q) = h�

J;I;N

(Q) : jI j = ri + hH

I

: jI j = ri

and for all r

�

r

(Q) = hH

I

: jI j = ri:

Remark 2.8. The ideal �

r�1

(Q) des
ribes set-theoreti
ally the lo
us where simul-

taneously k� r+2 of the H

i

vanish (for the 
ase r < k�n+2 see see Lemma 2.9),

while �

r

(Q) is the Ja
obian ideal of the variety to �

r

(Q). It is 
lear that

�

r�1

(Q) � �

r

(Q) = hf�

J;I;N

(Q) : jI j = rgi+�

r

(Q) � �

r

(Q):

The following is easily 
he
ked (sin
e Q is generi
):

Lemma 2.9. If r � k � n+ 1 then �

r

(Q) = m

r

= �

r

(Q). �

We 
an des
ribe the \di�eren
e" of �

r

(Q) and �

r�1

(Q) as follows:

Proposition 2.10. Let k � r � k � n+ 1. Then

ann

R

n

�

�

r�1

(Q)

�

r

(Q)

�

� m

k�n

:

Proof. First let k = n so that n � r � 1. In this 
ase A-monomials and monomials

are the same 
on
epts. Then �

r�1

(Q) is the ideal of all squarefree (A-)monomials

of degree r � 1, and �

r

(Q) is the ideal of all squarefree (A-)monomials of degree

r as well as all partial derivatives of these monomials. Clearly then in this 
ase

�

r

(Q) = �

r�1

(Q).
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We shall prove the 
laim by indu
tion on k � n and we assume now that k > n.

Let H

I

be a squarefree A-monomial of degree r. We must show that mH

I

=H

i

2

�

r

(Q) for all i 2 I and all m 2 m

k�n

.

Pi
k N � f1; : : : ; kg with jN j = n and write m =

P

j2N

m

j

H

j

, m

j

2 m

k�n�1

.

Consider the summands m

j

H

j

H

I

=H

i

in mH

I

=H

i

. If j = i or if j 62 I , then


ertainly H

j

H

I

=H

i

2 �

r

(Q). Thus we are redu
ed to showing that if i 6= j 2 I

then m

j

H

j

H

I

=H

i

2 �

r

(Q).

Note that if k � r � k�n+1 then k�1 � r�1 � k�1�n+1. Sin
e H

I

=H

j

is a

squarefreeAnfH

j

g-monomial of degree (r�1) we may use the indu
tion hypothesis

on the arrangement to Q=H

j

with k � 1 � n fa
tors. Hen
e for i 6= j 2 I there

are q

j

2 �

r�1

(Q=H

j

) su
h that m

j

H

I

=H

i

H

j

= q

j

. Then m

j

H

j

H

I

=H

i

= H

j

2

q

j

so

that it suÆ
es to show that

[q

j

2 �

r�1

(Q=H

j

)℄ =)

�

H

j

2

q

j

2 �

r

(Q)

�

:

It is suÆ
ient to 
he
k this for q

j

being equal to one of the two types of generators

for �

r�1

(Q=H

j

), namelyH

I

0

and the determinants �

J

0

;I

0

;N

0

(Q=H

j

), where as usual

J

0

; I

0

; N

0

� f1; : : : ; kg n fjg, jN

0

j = n and jI

0

j = r � 1. If q

j

= H

I

0

then H

j

2

q

j

=

H

j

H

I

0

[fjg

2 �

r

(Q). So assume that q

j

= �

J

0

;I

0

;N

0

(Q=H

j

).

Multipli
ation of �

J

0

;I

0

;N

0

(Q=H

j

) by H

j

2


an be a
hieved by multiplying the

last 
olumn of the de�ning matrix (2.1) of �

J

0

;I

0

;N

0

(Q=H

j

) by H

j

2

. Let in that


ontext j

t

2 N

0

and v

j

t

be the 
orresponding derivation relative to N

0

. Then

H

j

2

v

0

j

t

� (H

I

0

) = H

j

v

0

j

t

� (H

I

0

[fjg

)�H

I

0

[fjg

v

0

j

t

� (H

j

):

Thus, H

j

2

�

J

0

;I

0

;N

0

(Q=H

j

) = H

j

�

J

0

;I

0

;N

0

(Q) modulo hH

I

0

[fjg

i. As H

I

0

[fjg

2

�

r

(Q), H

j

2

�

r�1

(Q=H

j

) � �

r

(Q). The proposition follows hen
e by indu
tion. �

Re
all that �

I

(Q) is the 
olle
tion of all �

J;I;N

(Q) for �xed I . We now relate the

ideals �

r�1

(Q) and �

r

(Q) to ideals a

q(s)

and give hen
e the latter ideals geometri


meaning.

Lemma 2.11. Fix integers r � k � n+ 2, and t. Suppose m

t

H

I

� a

q(s)

for some

I with jI j = r. Then m

t+1

�

I

(Q) � a

(s+1)q(s)

. In parti
ular,

�

m

t

�

r

(Q) � a

q(s)

�

=)

�

m

t+1

�

r

(Q) � a

(s+1)q(s)

�

:

Proof. Pi
k a spe
i�
 �

J;I;N

(Q) and a monomial m of degree t. In parti
ular, this

means that a 
oordinate system H

�

1

; : : : ; H

�

n

and derivations v

�

1

; : : : ; v

�

n

have

been 
hosen. Consider the e�e
t of v

j

on mH

I

Q

s

for j 2 J (� I \N):

v

j

� (mH

I

Q

s

)

Q

s

=

1

Q

(v

j

� (m)H

I

Q+mQv

j

� (H

I

) + smH

I

v

j

� (Q))

= v

j

� (m)H

I

+ (s+ 1)mv

j

� (H

I

) +

X

i2f1;::: ;kgnI

smH

I

v

j

� (H

i

)

H

i

The sum has only poles of order one. These poles o

ur exa
tly along all hyper-

planes in

�

I sin
e v

j

� (H

i

) = 0 if i 6= j; i 2 N . (Note that j 2 J � I is not index

of a summand.) The j

�

I j + 1 distin
t elements of J give rise to that many expres-

sions of the type shown. Hen
e there is a nontrivial C -linear 
ombination of the

v

j

� (mH

I

Q

s

) without poles; by 
onstru
tion this linear 
ombination is in a

q(s)

. It

is easy to see that the desired expression results in (s+ 1)m�

J;I;N

(Q) + V (m)H

I
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where V (m) is a linear 
ombination in the v

j

�(m). As x

i

v

j

�(m)H

I

2 m

t

H

I

� a

q(s)

,

x

i

m�

J;I;N

(Q) 2 a

(s+1)q(s)

for all i; J;N and so m

t+1

�

I

(Q) � a

(s+1)q(s)

.

To prove the �nal assertion, note that �

r

(Q) is generated by all �

I

(Q), jI j = r

and all H

I

, jI j = r. One then only needs to observe that all H

I

with jI j = r are

already in �

r

(Q). �

One 
an now 
on
lude alternately from 2.10 and 2.11 that

�

k

(Q) � a

1

;

m�

k

(Q) � a

(s+1)

;

m

k�n+1

�

k�1

(Q) � a

(s+1)

;

.

.

.

m

(k�n+1)(n�2)+1

�

k�n+2

(Q) � a

(s+1)

n�1
;

m

(k�n+1)(n�1)

�

k�n+1

(Q) � a

(s+1)

n�1
;

and sin
e �

k�n+1

(Q) = m

k�n+1

, m

(k�n+1)n

� a

(s+1)

n�1
. It is very intriguing how

in the above sequen
e of 
ontainments an extra fa
tor of (s+1) in q(s) allows ea
h

time to redu
e the dimension of a

q(s)

and in fa
t to enlarge a

q(s)

to an ideal with

radi
al equal to the singular lo
us of a

q(s)

. One might 
ompare this to the example

in Remark 2.3.

The remainder of this se
tion is devoted to de
reasing substantially the exponent

of m in the �nal row of the display above.

Proposition 2.12. For all r 2 N with k � n+ 1 � r � k + 1,

m

2k�n�1

\ �

r�1

(Q) � a

(s+1)

k�r+1 :

Proof. We shall pro
eed by de
reasing indu
tion on r. We know that

m

2k�n�1

\ �

k

(Q) � �

k

(Q) = hQi � a

(s+1)

0

:

Assume then that k�n+1 � r � k and that m

2k�n�1

\�

r

(Q) � a

(s+1)

k�r . Sin
e

�

r

(Q) � m is homogeneous of degree r, this implies that

m

2k�n�1�r

� �

r

(Q) � a

(s+1)

k�r :

We need to show that m

2k�n�1

\ �

r�1

(Q) � a

(s+1)

k�r+1 in order to get the

indu
tion going. For this, we 
onsider �

r

(Q). Let � be a generator of �

r

(Q).

Either � = H

I

and jI j = r, in whi
h 
ase � 2 �

r

(Q). Or, � = �

J;I;N

(Q) with

jI j = r. In that 
ase, Lemma 2.11 together with m

2k�n�1�r

� �

r

(Q) � a

(s+1)

k�r

implies that m

2k�n�r

�� � a

(s+1)

k�r+1 . Therefore our hypotheses imply that

m

2k�n�1

\�

r

(Q) � a

(s+1)

k�r+1 :



10 ULI WALTHER

But then,

m

2k�n�1

\ �

r�1

(Q) = m

2k�n�1�(r�1)

�

r�1

(Q)

(�

r�1

(Q) is homogeneously generated in degree r � 1)

= m

k�r

m

k�n

�

r�1

(Q)

� m

k�r

(�

r

(Q) \m

k�n+r�1

)

(by Proposition 2.10)

� m

2k�n�1

\�

r

(Q)

� a

(s+1)

k�r+1
:

�

This proposition says that suÆ
iently high degree parts of the ideal de�ning

the higher iterated singular lo
i of A are 
ontained in 
ertain a

q(s)

. It gives quite

dire
tly a bound for the Bernstein-Sato polynomial:

Theorem 2.13. The Bernstein-Sato polynomial of the 
entral generi
 arrangement

Q = H

1

� � �H

k

divides

(s+ 1)

n�1

2k�n�2

Y

i=0

�

s+

i+ n

k

�

:(2.2)

Proof. The previous proposition shows (with r = k�n+2) thatm

2k�n�1

\�

k�n+1

�

a

(s+1)

n�1
. By Lemma 2.9, �

k�n+1

(Q) = m

k�n+1

. Thus, m

2k�n�1

� a

(s+1)

n�1
. We


on
lude now as in Lemma 2.2. �

In the next two se
tions we show that this estimate is in essen
e the 
orre
t

answer.

3. Remarks on a 
onje
ture by Orlik and Randell

Let Q : C

n

! C be a homogeneous polynomial map, denote by X

�

the preimage

Q

�1

(�) for � 2 C n f0g and let X be the �ber over zero. As Q is homogeneous the

X

�

are all isomorphi
 and smooth. Let

~

C

�

be the universal 
over of C

�

= C n f0g,

and

~

X the �ber produ
t of

~

C

�

and C

n

nX over C

�

. Then (�; x) ! (� + 2�; x) is

a di�eomorphism of

~

X and therefore indu
es an isomorphism � on the 
ohomology

H

�

(X

�

; C ), the Pi
ard-Lefs
hetz monodromy [6, 13, 15℄. If in addition X has an

isolated singularity then X

�

is homotopy equivalent to a bouquet of (n�1)-spheres

[27℄ and so the only (redu
ed) 
ohomology of the �ber is in degree n�1. The roots

of the minimal polynomial a

�

(s) of � are in that 
ase obtained from the roots of

the Bernstein-Sato polynomial of Q by � ! e

2�i�

[25℄. The multipli
ities remain

mysterious, however. If X is not an isolated singularity, the X

�

have 
ohomology in

degrees other than n� 1 and the monodromy a
ts on all these 
ohomology groups.

The monodromy is then not so ni
ely related to the Bernstein-Sato polynomial and

not well understood.

3.1. The 
onje
ture.

The natural proje
tion R

n

!! R

n

=hQ��i indu
es a map of di�erentials 
! 


�

whi
h in turn indu
es a surje
tive map of de Rham 
omplexes � : 


�

!! 


�

�

where




�

are the C -linear di�erentials on R

n

=hQ � �i and 


�

�

is the de Rham 
omplex

on X

�

. It is an interesting and open question to determine expli
it formul� for
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generators of the 
ohomology of 


�

�

, i.e. forms on C

n

that restri
t to generators of

H

i

(


�

�

), i � n � 1. If X has an isolated singularity then the Ja
obian ideal A is

Artinian, the dimension of the ve
tor spa
e R

n

=A equals dim

C

(H

n�1

DR

(X

�

; C )), and

the elements of R

n

=A 
an be identi�ed with the 
lasses in H

n�1

DR

(X

�

; C ). Namely,

g 2 R

n

=A 
orresponds to g! where

! =

n

X

i=1

(�1)

i�1

x

i

dx

1

^ : : : ^




dx

i

^ : : : ^ dx

n

(3.1)

and the hat indi
ates omission.

For the remainder of this se
tion let Q be a redu
ed polynomial des
ribing a


entral generi
 arrangement, Q = H

1

� � �H

k

. We let as before A = fH

1

; : : : ; H

k

g.

In [31℄ (Proposition 3.9) it is proved that every 
ohomology 
lass in H

n�1

(


�

�

) is

of the form �(g!) for some g 2 R

n

, and that

dim

C

(H

n�1

(


�

�

)) =

�

k � 2

n� 2

�

+ k

�

k � 2

n� 1

�

:

The authors make a 
onje
ture whi
h states roughly that g may be 
hosen to

be homogeneous and that Milnor �bers of 
entral generi
 arrangements have a


ohomology des
ription similar to the isolated singularity 
ase.

By (R

n

)

r

we denote the homogeneous elements in R

n

of degree r. The following

ve
tor spa
e is 
entral to the ideas of Orlik and Randell.

De�nition 3.1. We denote by � a subset of A of 
ardinality n� 1. We write then

J

�

(a) with a 2 R

n

for the Ja
obian determinant asso
iated to H

�

1

; : : : ; H

�

n�1

; a.

We also denote by Q

�

the produ
t of all H

i

with i 62 �, its degree is hen
e k�n+1.

In our previous notation, Q

�

was H

I

with I = A n �.

With these notations, let E be the ve
tor spa
e in R

n

generated by all elements

of the form

deg(a)a J

�

(Q

�

)� kQ

�

J

�

(a);(3.2)

varying over all homogeneous a 2 R

n

. It is not an R

n

-ideal.

Conje
ture 3.2 (Orlik-Randell, [31℄). Consider the �ber X

1

= Var(Q� 1). There

is a �nite dimensional homogeneous ve
tor spa
e U � R

n

su
h that

(1) R

n

= E � (C [Q℄ 
 U);

(2) the map U ! H

n�1

(X

1

; C ) given by g ! �(g!) is an isomorphism, and




n�1

�

= �(U!)� d


n�2

�

.

(3) The dimensions u

r

of U

r

, the graded pie
es of U of degree r, are as follows:

u

r

=

8

>

<

>

:

�

r+n�1

n�1

�

for 0 � r � k � n;

�

k�2

n�1

�

for k � n+ 1 � r � k � 1;

�

k�2

n�1

�

�

�

r�k+n�1

n�1

�

for k � r � 2k � n� 2:

In this se
tion we will prove that if k does not divide r�k+n then the dimension

of (R

n

=E)

r

is bounded by

�

k�1

n�1

�

and that stri
t inequality holds if additionally

r > k. In the next se
tion we will see that (R

n

)

r

= E

r

+ hQi

r

for r � 2k � n� 1.

This will imply that (R

n

=(E + hQ� 1i))

r

is nonzero exa
tly if 0 � r � 2k� n� 2,

and that for k � n� 1 � r � k its dimension is exa
tly as the 
onje
ture by Orlik

and Randell predi
ts.
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It is worth pointing out that the ve
tor spa
eE is too small ifQ is an arrangement

that is not generi
. For example, with Q = xyz(x + y)(x + z) as in Example 4.16

one obtains that the dimension of (R

n

=E + hQi)

r

is 2 whenever r is at least 5.

3.2. Generators for U .

We now 
onsider the question of �nding generators for U . By Lemma 2.9,

(R

n

)

k�n+1

is generated by the set of all Q

�

as a ve
tor spa
e. Then (R

n

)

r

is

for r > k�n+1 generated by m

r�k+n�1

��

k�n+1

(Q). We 
laim that we may pi
k

ve
tor spa
e generators G = fg

i

g for (R

n

)

r

, r > k � n+ 1, su
h that

a) ea
h g

i

is an A-monomial,

b) ea
h g

i

is a multiple of some Q

�

.

To see this, observe that (R

n

)

r

=

�

m

r�k+n�1

�

r�k+n�1

� (�

k�n+1

(Q))

k�n+1

. Sin
e

A is essential, Lemma 2.9 
ompletes the argument. We 
all an element of R

n

satisfying these two 
onditions a standard produ
t.

We shall now prove that there are no more than

�

k�2

n�1

�

standard produ
ts ne
-

essary to generate (R

n

=(E + hQ� 1i))

r

. For k � n+ 1 � r < k this is exa
tly the

number stipulated by Conje
ture 3.2. We will do this by showing that the relations

in E may be used to eliminate the majority of all summands in a typi
al element

of (R

n

)

r

=E

r

. In order to do this, we need to study the nature of the relations in

E. To get started, note that

[H

j

2 A n �℄ =) [J

�

(H

j

) 6= 0℄ :

We will now show that every generator (3.2) of E indu
es a syzygy between k�n+1

squarefree A-monomials of degree k � n.

Lemma 3.3. Let a 2 (R

n

)

r

be an A-monomial of positive degree r su
h that k 6 j r,

and pi
k n� 1 distin
t fa
tors � of Q. Consider the 
orresponding element

deg(a)aJ

�

(Q

�

)� kQ

�

J

�

(a)(3.3)

of E. In this expression (using the produ
t rule for 
omputing the Ja
obian) the

�rst term 
ontributes k � n + 1 summands of the form deg(a)a

Q

�

H

i

J

�

(H

i

) where

H

i

runs through the fa
tors of Q

�

. Similarly the se
ond term 
ontributes deg(a)

summands of the form kQ

�

a

a

i

J

�

(a

i

) with a

i

running through the fa
tors of a. We


laim that all nonzero summands in the latter set (apart from 
onstant fa
tors)

appear as nonzero summands in the former set. Moreover, for ea
h summand that

is nonzero on both sides the 
oeÆ
ients are di�erent.

Proof. There are two main 
ases: a

i

2 � and a

i

62 �. If a

i

2 � then J

�

(a

i

) is a

determinant with a repeated 
olumn, and hen
e the summand Q

�

a

a

i

J

�

(a

i

) is zero.

On the other hand, H

i

62 � gives a summand deg(a)a

Q

�

H

i

J

�

(H

i

) 6= 0. So the left

term in (3.3) gives k � n + 1 nonzero A-monomials with nonzero 
oeÆ
ients. If

a

i

62 �, then a

i

= H

j

(say), and

Q

�

H

j

a = Q

�

a

a

i

. Let t be the multipli
ity of H

j

in

a, a = a

0

� H

j

t

. In (3.3) the �rst term 
ontributes deg(a)Q

�

a

H

j

J

�

(H

j

) while the

se
ond yields t times �kQ

�

a

H

j

J

�

(H

j

) by the produ
t rule. So the total number of


opies of

aQ

�

H

j

J

�

(H

j

) in (3.3) is deg(a)� kt.

As k is not a divisor of deg(a) = r, ea
h generator of E

r

gives rise to a relation

between exa
tly k�n+1 of our generators of (R

n

)

r

, 
orresponding to the divisors

of Q

�

. �
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Remark 3.4. Suppose that in a linear 
ombination of A-monomials the previous

lemma is used to eliminate Q

�

a

H

i

J

�

(H

i

). Then the repla
ing A-monomials are of

the form Q

�

a

H

j

J

�

(H

j

) where H

j

62 �.

We now show how to use Lemma 3.3 to limit the dimension of (R

n

)

r

=E

r

.

Proposition 3.5. Let r 2 N, k � n + 1 � r, and k 6 j (r � k + n). The (
osets of)

A-monomials of the form

H

i

1

� � �H

i

k�n�1

H

k�1

H

k

r�k+n

; i

1

< : : : < i

k�n�1

< k � 1(3.4)

span (R

n

=E)

r

and therefore generate

�

H

n�1

DR

(Q

�1

(1); C )

�

r

.

Proof. Let P 2 (R

n

)

r

be a standard produ
t. We prove that it may be repla
ed by

a linear 
ombination of A-monomials of the stipulated form. Here are three ways

of modifying a linear 
ombination of A-monomials modulo E:

(1) If P uses l > k � n+ 1 distin
t fa
tors of A we 
an write P = P

0

Q

�

for a

suitable � and we 
an assume that H

k

2 �. That means that H

k

6 j Q

�

and

the multipli
ity of H

k

in P

0

is of 
ourse at most r � k + n � 1. Let i

0

=

minfi : H

i

62 �g and �

0

= �[fH

i

0

g n fH

k

g, so Q

�

0

= H

k

Q

�

=H

i

0

. Consider

the element of E given by (r � k + n)P

0

H

i

0

J

�

0

(Q

�

0

)� kQ

�

0

J

�

0

(P

0

H

i

0

). It

is a linear dependen
e modulo E between P

0

H

i

0

Q

�

0

=H

k

= P on one side

and terms of the form P

0

H

i

0

Q

�

0

=H

i

= P

0

H

k

Q

�

=H

i

for H

k

6= H

i

2 A n �

0

on the other, with no 
oeÆ
ient equal to zero. It follows that P = P

0

Q

�

may, modulo E, be repla
ed by a linear 
ombination of standard produ
ts

with a higher power of H

k

in ea
h of them than in P and l or l� 1 distin
t

fa
tors. Note that ea
h repla
ing A-monomial has multipli
ity of H

k

at

most r � k + n.

(2) Suppose now that P has exa
tly k � n+ 1 distin
t fa
tors, but that H

k

is

not one of them. Let Q

�

be the produ
t of all distin
t fa
tors of P , and

set P = P

0

Q

�

. Let i

0

= minfi : H

i

62 �g and set �

0

= � [ fH

i

0

g n fH

k

g.

The relation (r � k + n)H

i

0

P

0

J

�

0

(Q

�

0

)� kQ

�

0

J

�

0

(P

0

H

i

0

) allows to repla
e

P by a linear 
ombination of standard produ
ts with k�n+1 or k�n+2

distin
t fa
tors (depending on the multipli
ity of H

i

0

in P

0

) su
h that H

k

divides ea
h of the new standard produ
ts.

(3) Now assume that P is a standard produ
t with exa
tly k � n + 1 distin
t

fa
tors and assume furthermore that H

k

divides P with multipli
ity l <

r � k + n. Let � be su
h that Q

�

divides P . Sin
e the arrangement is

generi
, the n� 1 elements of �, together with H

k

, span the maximal ideal

and thus if i

0

= minfi : H

i

2

jPg then one fa
tor H

i

0

of P may be repla
ed

by an appropriate linear 
ombination in H

k

and the elements of �. This


reates a linear 
ombination of (n � 1) standard produ
ts with k � n + 2

distin
t fa
tors in ea
h summand where H

k

has multipli
ity l, and one

A-monomial with k � n+ 1 fa
tors where the H

k

-degree is l + 1.

Starting with any standard produ
t of degree r, using these steps in appropriate

order will produ
e a linear 
ombination of standard produ
ts with exa
tly k�n+1

fa
tors and multipli
ity r � k + n in H

k

. This is be
ause after every exe
ution of

Step 1 and 2, the degree in H

k

goes up, and after ea
h exe
ution of Step 3 we may

do Step 1 at least on
e on the n� 1 standard produ
ts with k � n+ 1 fa
tors.
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Now let P = H

i

1

� � �H

i

k�n

H

k

r�k+n

with i

1

< i

2

� � � < i

k�n

< k � 1. Let � be

su
h that Q

�

= H

i

1

� � �H

i

k�n

H

k�1

, in parti
ular H

k

2 �. Then

E 3 (r � k + n)H

k

r�k+n

J

�

(Q

�

)� kQ

�

J

�

(H

k

r�k+n

) = (r � k + n)H

k

r�k+n

J

�

(Q

�

)

allows to repla
e P by a sum of A-monomials ea
h of whi
h has k � n+ 1 distin
t

A-fa
tors, and ea
h of whi
h is divisible by H

k�1

H

k

r�k+n

(note that the only term

that might fail to have H

k�1

in it disappears be
ause J

�

(H

k

r�k+n

) = 0 as H

k

2 �).

Thus, modulo E, P is equivalent to a linear 
ombination of A-monomials of type

(3.4).

The 
ondition k 6 j (r � k + n) is needed be
ause otherwise Lemma 3.3 does not

work. �

Remark 3.6. Note that there are exa
tly

�

k�2

k�n�1

�

=

�

k�2

n�1

�

A-monomials of type

(3.4). It follows that dim(R

n

=E)

r

�

�

k�2

n�1

�

unless k divides r � k + n. Also, if

r = k � n the 
onje
ture says that

�

k�2

n�1

�

generators for (R

n

=E)

r

are not enough.

So in a sense this is an optimal estimate. In the following se
tion we will see that

(R

n

)

r

= E

r

along Q

�1

(1) for r > 2k � n� 2. We �nish this se
tion with a lemma

that will be used in the next se
tion to prove that (R

n

)

r

6= E

r

for k � r � 2k�n�2.

Lemma 3.7. If r � k and k 6 j (r � k + n) then dim

C

(R

n

=E + hQi)

r

�

�

k�2

n�1

�

� 1.

Proof. The proof of Proposition 3.5 
ontains a pro
edure to turn QH

k

r�k

into a

sum of A-monomials of the form (3.4). One may do so using only Step 1 of that

proof. In fa
t, if P = H

1

� � �H

k�n�1

H

i

1

� � �H

i

j

H

k�1

H

k

r�k+n�j

for k�n�1 < i

1

<

� � � < i

j

< k� 1, then the relation (3.3) indu
ed by Q

�

= H

1

� � �H

k�n�1

H

i

1

H

k

and

a = P=Q

�

allows to repla
e P by a sum of A-monomials ea
h of whi
h is divisible

by H

k�1

H

k

r�k+n+1�j

, ea
h of whi
h has only H

k

as repeated fa
tor, and pre
isely

one of whi
h is a nonzero multiple of H

1

� � �H

k�n�1

. Therefore rewriting QH

k

r�k

only using Step 1 (and only Q

�

= H

1

� � �H

k�n�1

� H

i

1

H

k

with k � n � i

1

< k)

gives a relation modulo E between the produ
ts of (3.4) where the 
oeÆ
ient for

H

1

� � �H

k�n�1

H

k�1

H

k

r�k+n

is nonzero. Hen
e in parti
ular, (R

n

=E + hQi)

r

has

dimension at most

�

k�2

n�1

�

� 1. �

We have shown that �lteringR

n

=(E+hQ�1i) by degree, the r-th graded pie
e has

dimension at most

�

k�2

n�1

�

�1 unless k divides r�k+n. Moreover, (R

n

=E)

r

= (R

n

)

r

for r � k � n.

4. Integration, Restri
tion and Bernstein-Sato polynomials

If Q is radi
al and des
ribes a generi
 arrangement then we have seen that

� b

Q

(s) is a divisor of (s+ 1)

n�1

Q

2k�n�2

i=0

(s+

i+n

k

);

� dim

C

(R

n

=E + hQi)

r

�

�

k�2

n�1

�

if k 6 j (r � k + n);

� the inequality of the previous item is stri
t if in addition r < k�n or r � k.

We now prove, among other things, that ea
h homogeneous generator of the top


ohomology group H

n�1

DR

(Q

�1

(1); C ) of the Milnor �ber gives for all homogeneous

polynomials Q rise to a root of b

Q

(s) just as it is the 
ase for homogeneous isolated

singularities.
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4.1. Restri
tion and Integration.

A 
entral part of this se
tion is o

upied by e�e
tive methods for D-modules. In

fa
t, we shall use in an abstra
t way algorithms that were pioneered by Oaku [28℄

and sin
e have be
ome the 
enterpie
e of algorithmi
 D-module theory.

We shall �rst explain some basi
 fa
ts about restri
tion and integration fun
tors.

Mu
h more detailed explanations may be found in [28, 29, 30℄ and [38℄. In par-

ti
ular, we only 
onsider the situation of n + 1 variables x

1

; : : : ; x

n

; t and explain

restri
tion to t = 0 and integration along �

1

; : : : ; �

n

.

De�nition 4.1. Let

~




t

= D

x;t

=t �D

x;t

and 


�

= D

x;t

=f�

1

; : : : ; �

n

g �D

x;t

.

The restri
tion of the D

x;t

-
omplex A

�

to the subspa
e t = 0 is the 
omplex

�

t

(A

�

) =

~




t




L

D

x;t

A

�


onsidered as a 
omplex in the 
ategory of D

x

-modules.

The integration of A

�

along �

1

; : : : ; �

n

is the 
omplex DR(A

�

) = 


�




L

D

x;t

A

�


onsidered as a 
omplex in the 
ategory of D

t

-modules.

In the sequel we des
ribe tools that may be used to 
ompute restri
tion and

integration.

De�nitions 4.2. On the ring D

x;t

the V

t

-�ltration F

l

t

(D

x;t

) is the C -linear span of

all operators x

�

�

�

t

a

�

b

t

for whi
h a+ l � b. More generally, on a free D

x;t

-module

A =

L

r

j=1

D

x;t

� e

j

we set

F

l

t

(A[m℄) =

r

X

j=1

F

l�m(j)

t

(D

x;t

) � e

j

;

where m is any element of Z

r


alled the shift ve
tor. A shift ve
tor is tied to a

�xed set of generators. The V

t

-degree of an operator P 2 A[m℄ is the smallest

l = V

t

-deg(P [m℄) su
h that P 2 F

l

t

(A[m℄).

If M is a quotient of the free D

x;t

-module A =

L

r

1

D

x;t

� e

j

, M = A=I , we de�ne

the V

t

-�ltration on M by F

l

t

(M [m℄) = F

l

t

(A[m℄) + I and for submodules N of A by

interse
tion: F

l

t

(N [m℄) = F

l

t

(A[m℄) \N .

De�nitions 4.3. A 
omplex of free D

x;t

-modules

� � � ! A

i�1

�

i�1

�! A

i

�

i

�! A

i+1

! � � �

is said to be V

t

-stri
t with respe
t to the shift ve
tors fm

i

g if

�

i

�

F

l

t

(A

i

[m

i

℄)

�

� F

l

t

(A

i+1

[m

i+1

℄)

and also

im(�

i�1

) \ F

l

t

(A

i

[m

i

℄) = im(�

i�1

j

F

l

t

(A

i�1

[m

i�1

℄)

)

for all i; l.

Set � = t�

t

, the Euler operator for t. A D

x;t

-module M [m℄ = A[m℄=I is 
alled

spe
ializable to t = 0 if there is a polynomial b(s) in a single variable su
h that

b(� + l) � F

l

t

(M [m℄) � F

l�1

t

(M [m℄)(4.1)

for all l (
f. [18, 29℄). Holonomi
 modules are spe
ializable. Introdu
ing

gr

l

t

(M [m℄) = (F

l

t

(M [m℄))=(F

l�1

t

(M [m℄));

this 
an be written as

b(� + l) � gr

l

t

(M [m℄) = 0:
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The moni
 polynomial b(�) of least degree satisfying an equation of the type (4.1)

is 
alled the b-fun
tion for restri
tion of M [m℄ to t = 0.

By [30℄ (Proposition 3.8) and [38℄ every 
omplex admits a V -stri
t resolution.

In the theorems to follow, the meaning of �ltration on restri
tion and integration


omplexes is as in [38℄, De�nition 5.6.

Theorem 4.4 ([28, 30, 38℄). Let (A

�

[m

�

℄; Æ

�

) be a V

t

-stri
t 
omplex of free D

x;t

-

modules with holonomi
 
ohomology. The restri
tion �

t

(A

�

[m

�

℄) of A

�

[m

�

℄ to t = 0


an be 
omputed as follows:

(1) Compute the b-fun
tion b

A

�

[m

�

℄

(s) for restri
tion of A

�

[m

�

℄ to t = 0.

(2) Find an integer l

1

with

�

b

A

�

[m

�

℄

(l) = 0; l 2 Z

�

) [l � l

1

℄.

(3) �

t

(A

�

[m

�

℄) is quasi-isomorphi
 to the 
omplex

� � � ! F

l

1

t

(

~




t




D

x;t

A

i

[m

i

℄)! F

l

1

t

(

~




t




D

x;t

A

i+1

[m

i+1

℄)! � � �(4.2)

This is a 
omplex of free �nitely generated D

x

-modules and a representative of

�

t

(A

�

[m

�

℄). Moreover, if a 
ohomology 
lass in �

t

(A

�

[m

�

℄) has V

t

-degree d then d

is a zero of b

A

�

[m

�

℄

(s). �

In order to 
ompute the integration along �

1

; : : : ; �

n

one de�nes a �ltration by

F

l

�

(D

x;t

) = fx

�

�

�

t

a

�

b

t

: j�j � j�j+ lg:

With

~

E = ��

1

x

1

� : : :��

n

x

n

the b-fun
tion for integration of the module M is the

least degree moni
 polynomial

~

b(s) su
h that

~

b(

~

E + l) � F

l

�

(M) � F

l�1

�

(M):

Then the integration 
omplex DR(M) of M is quasi-isomorphi
 to

� � � !

~

F

l

1

�

(


�




D

x;t

A

i

[m

i

℄)!

~

F

l

1

�

(


�




D

x;t

A

i+1

[m

i+1

℄)! � � �(4.3)

where A

�

[m

�

℄ is a V

�

-stri
t resolution of M , and l

1

is the largest integral root of

~

b(s). Again, 
ohomology generators have V

�

-degree equal to a root of

~

b(s).

4.2. Bernstein-Sato polynomial and the relative de Rham 
omplex.

Following Malgrange [24℄, we 
onsider for f 2 R

n

the symbol f

s

as generating a

D

x;t

-module 
ontained in the free R

n

[f

�1

; s℄-module R

n

[f

�1

; s℄f

s

via

t �

g(s)

f

j

f

s

=

g(s+ 1)

f

j�1

f

s

; �

t

�

g(s)

f

j

f

s

=

�sg(s� 1)

f

j+1

f

s

:

Then the left ideal J

n+1

(f) = ht � f; f�

i

+ �

i

� (f)�

t

g

n

i=1

i � D

x;t

is easily seen to


onsist of operators that annihilate f

s

. Moreover, ��

t

t a
ts as multipli
ation by

s. Sin
e J

n+1

(f) is maximal, it a
tually 
ontains all annihilators of f

s

. It turns

out, that J

n+1

(f) des
ribes the D-module dire
t image of R

n

under the embedding

x! (x; f(x)):

Lemma 4.5. For all f 2 R

n

,

D

x;t

=J

n+1

(f)

�

=

H

1

t�f

(R

x;t

);

generated by

1

t�f

.
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Proof. Consider � =

1

t�f

2 R

x;t

[(t� f)

�1

℄. It is obviously annihilated by f�

i

+ �

i

�

(f)�

t

g

n

i=1

. Moreover,

t�f

t�f

2 R

x;t

so that (t � f)(� mod R

x;t

) = 0 2 H

1

t�f

(R

x;t

).

Hen
e J

n+1

(f) annihilates the 
oset of � in H

1

t�f

(R

x;t

).

The polynomial t�f is free of singularities and so its Bernstein-Sato polynomial

is s+ 1. Hen
e � generates R

x;t

[(t� f)

�1

℄. Therefore the 
oset of � generates the

lo
al 
ohomology module. Sin
e this module is nonzero, the 
oset of � 
annot be

zero. Hen
e its annihilator 
annot be D

x;t

. As J

n+1

(f) is maximal we are done. �

We now 
onne
t the ideas of Malgrange with algorithmi
 methods pioneered by

Oaku, and Takayama, to show that the ideal J

n+1

(f) is intimately 
onne
ted with

the Bernstein-Sato polynomial of f :

Theorem 4.6. Let Q be a homogeneous polynomial of degree k > 0 with Bernstein-

Sato polynomial b

Q

(s). Then b

Q

((�s � n)=k) is a multiple of the b-fun
tion for

integration of J

n+1

(Q) = ht�Q; f�

i

+ �

i

� (Q)�

t

g

n

i=1

i along �

1

; : : : ; �

n

.

Proof. It is well-known, that J

n+1

(Q)\D

x

[s℄ = ann

D

x

[s℄

(Q

s

). Hen
e in parti
ular,

J

n+1

(Q) 
ontains E � ks = E + k�

t

t.

To be a Bernstein polynomial means that b

Q

(s) 2 J

n+1

(Q) \D

x

[s℄ +D

x

[s℄ �Q.

Write b

Q

(s) = j + P (s)Q with j 2 J

n+1

(Q) \D

x

[s℄, P (s) 2 D

x

[s℄.

The ideal J

n+1

(Q) is (1; k)-homogeneous if we set deg(x

i

) = 1, deg(�

i

) = �1,

deg(t) = k, deg(�

t

) = �k. Sin
e b

Q

(s) is (1; k)-homogeneous of degree 0, we

may assume that j (and hen
e P (s)Q) is also (1; k)-homogeneous of degree 0.

Writing P (s) =

P

l

i=0

P

i

s

i

with P

i

2 D

x

, we see that ea
h P

i

is of (1; k)-degree

�k. This implies, as P

i

2 D

x

, that P

i

2 F

�k

�

(D

x

). Note that as t�Q 2 J

n+1

(Q),

b

Q

(s) = P (s)t modulo J

n+1

(Q). So P (s)t = P (��

t

t)t 2 F

�k

�

(D

x;t

) and b

Q

(��

t

t) 2

J

n+1

(Q) + F

�k

�

(D

x;t

).

Also, b

Q

(��

t

t) is modulo J

n+1

(Q) equivalent to b

Q

((�

~

E � n)=k) be
ause E +

k�

t

t 2 J

n+1

(Q). Thus

b

Q

 

�

~

E � n

k

!

2 J

n+1

(Q) + F

�k

�

(D

x;t

);

proving that b

Q

(�(s + n)=k) is a multiple of the b-fun
tion for integration of

D

x;t

=J

n+1

(Q) along �

1

; : : : ; �

n

. �

Combining Theorem 4.6 with Theorem 4.4 and its integration 
ounterpart, one

obtains

Corollary 4.7. The only possible V

�

-degrees for the generators of the 
ohomology

of DR(D

x;t

=J

n+1

(Q)) are those spe
i�ed by the roots of b

Q

(�(s+ n)=k). �

4.3. Restri
tion to the �ber.

Let Q be a homogeneous polynomial of positive degree. We now 
onsider the ef-

fe
t of restri
tion to t�1 of the relative de Rham 
omplex DR(D

x;t

=J

n+1

(Q)). This

is 
omputed as the 
ohomology of the tensor produ
t over D

t

of DR(D

x;t

=J

n+1

(Q))

with (D

x;t

(t�1)�

�! D

x;t

). We shall 
on
entrate on the highest 
ohomology group. It

equals D

x;t

=(J

n+1

(Q) + f�

1

; : : : ; �

n

; t� 1gD

x;t

).

Theorem 4.8. The quotient

U := D

x;t

=(J

n+1

(Q) + f�

1

; : : : ; �

n

; t� 1gD

x;t

)(4.4)
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is spanned by polynomials g 2 R

n

. One may 
hoose a C -basis for U in su
h a way

that

� all basis elements are in R

n

and homogeneous;

� no basis element may be repla
ed by an element of smaller degree (homoge-

neous or not).

We 
all su
h a basis a homogeneous degree minimal basis.

The degree of any element g of a degree minimal basis satis�es

b

Q

(�(deg(g) + n)=k) = 0

and then the usual degree of g is the V

�

-degree of the 
lass of g.

Proof. Clearly U is spanned by the 
osets of R

n

[�

t

℄. Let g 2 R

n

be homogeneous

of degree d. In U we have gt

a

�

b

t

= gt

b

�

b

t

= g

Q

b�1

j=0

(t�

t

� j) for all a; b 2 N. Now

observe that E + k�

t

t 2 J

n+1

(Q) implies that in U

0 = �

b

t

g(E + k�

t

t) = �

b

t

(E � d+ k�

t

t)g

= �

b

t

(�n� d+ k�

t

t)g

=

�

(�n� d+ k(b+ 1))�

b

t

+ k�

b+1

t

�

g:

By indu
tion this shows that in U

�

b

t

g = t

b

�

b

t

g =

b

Y

i=1

�

n+ d

k

� i

�

g:(4.5)

Hen
e U is spanned by the 
osets of R

n

. As �

b

t

g and

Q

b

i=1

�

n+d

k

� i

�

g have the

same V

�

-degree, minimal V

�

-deg representatives for all u 2 U 
an be 
hosen within

R

n

.

Now let u

0

2 R

n

be homogeneous and let 0 6= u 2 D

x;t

be a V

�

-degree minimal

representative of the 
lass of u

0

in U . By the previous paragraph, without a�e
ting

V

�

-degree, u 
an be assumed to be in R

n

. Then obviously the V

�

-degree agrees

with the usual degree.

Therefore by de�nition deg(u) = V

�

-deg(u) � V

�

-deg(u

0

) = deg(u

0

). Hen
e for

any u

0

2 U we have

minfdeg(u) : u 2 R

n

; u = u

0

2 Ug = minfV

�

-deg(u) : u

0

= u 2 Ug

and the equality 
an be realized by one and the same element u 2 R

n

on both sides.

If this u is nonzero in U , then 
learly u 2 H

n

(DR(D

x;t

=J

n+1

(Q))) is also nonzero

sin
e this module surje
ts onto U . The V

�

-degree of uwithinH

n

(DR(D

x;t

=J

n+1

(Q)))


annot be smaller than the V

�

-degree of u in the bigger 
oset when 
onsidered in U ,

and hen
e is just the usual degree of u. By Corollary 4.7, b

Q

(�(deg(u)+n)=k) = 0.

This implies that U is �nite dimensional. Hen
e any C -basis for U may be turned

into a degree minimal one.

It remains to show that the basis 
an be pi
ked in a homogeneous minimal way.

Note that J

n+1

(Q)+f�

1

; : : : ; �

n

; t�1gD

x;t

is Z=hki-graded (by x

i

7! 1; �

i

7! �1 and

t; �

t

7! 0); so U is Z=hki-graded and U has a degree minimal Z=hki-graded basis. If

u is in a Z=hki-gradedminimal degree basis but not homogeneous, the degrees of its

graded 
omponents only di�er by multiples of k. Write u = u

a

+u

a+1

+: : :+u

b

with

a; b 2 N and u

j

the 
omponent of u in degree jk. Then sin
e t�Q is in J

n+1

(f), we

have in U the equality u =

P

b

j=a

u

j

Q

b�j

. The right hand side is homogeneous and

both of usual and of V

�

-degree deg(u). Hen
e Z=hki-graded minimal degree bases



BERNSTEIN-SATO POLYNOMIAL AND MILNOR FIBER COHOMOLOGY 19

for U 
an be 
hanged into homogeneous minimal degree bases without 
hanging

the o

urring degrees (all of whi
h we proved to be roots of b

Q

(�(s+ n)=k)). �

Remark 4.9. An important hidden ingredient of the above theorem is the fa
t that

the b-fun
tion for restri
tion to t�1 of bothD

x;t

=J

n+1

(f) andH

n

DR(D

x;t

=J

n+1

(f))

is (t � 1)�

t

whenever f is w-homogeneous. Namely, if f =

P

n

i=1

w

i

x

i

�

i

� f then

with � =

P

n

i=1

w

i

x

i

�

i

we have (�

t

t+ �) � f

s

= 0. Consider then the equation

(t� 1)�

t

= (t� 1)(�

t

t+ �)

| {z }

A

� (t� 1)(�

t

(t� 1) + �)

| {z }

B

:

Obviously, A 2 J

n+1

(f) and B 2 F

�1

t�1

(D

x;t

)\F

�1

�;t�1

(D

x;t

). These are the required


onditions to be a b-fun
tion for restri
tion to t � 1 of D

x;t

=J

n+1

(f) respe
tively

H

n

(DR(D

x;t

=J

n+1

(f))).

Corollary 4.10. Let Q = H

1

� � �H

k

de�ne a 
entral generi
 arrangement. Then

U has a homogeneous basis of polynomials of degree at most 2k � n� 2.

Proof. By Theorem 2.13, b

Q

(s) has its zero lo
us inside f�n=k; : : : ; (�2k+2)=kg.

Then by Theorem 4.8 the degrees of a minimal degree basis for U are bounded

above by 2k � n� 2. �

4.4. De Rham 
ohomology from D-module operations.

For any f , the 
omplex DR(D

x;t

=J

n+1

(f)) 
arries the de Rham 
ohomology of

the �bers of the map C

n

3 x ! f(x) 2 C , sin
e it is the result of applying the de

Rham fun
tor to the 
omposition of maps x! (x; f(x)) and (x; y)! (y) (see [13℄).

The de Rham fun
tor for the embedding 
orresponds to the fun
tor that takes the

D

x

-module M to the D

x;t

-
omplex M 


D

x

(D

x;t

�(f�t)

�! D

x;t

), while the proje
tion


orresponds to the formation of the Koszul 
omplex indu
ed by left multipli
ation

by �

1

; : : : ; �

n

. The 
ohomology of the �ber Q

�1

(1) is obtained as the restri
tion

to t� 1.

With the shifts in 
ohomologi
al degree, U = D

x;t

=(J

n+1

(Q)+h�

1

; : : : ; �

n

; t�1i�

D

x;t

) thus en
odes the top de Rham 
ohomology of Q

�1

(1). For homogeneousQ the


orresponden
e between these two spa
es is at follows. Write dX = dx

1

^ : : :^ dx

n

and

d

dX

i

= dx

1

^ : : :^




dx

i

^ : : :^ dx

n

where the hat indi
ates omission. An element

g in U determines the form g dX on C

n

. Under the embedding Q

�1

(1) ,! C

n

,

the form g dX restri
ts (D-module theoreti
ally) to the form G whi
h satis�es

dQ ^G = g dX . Let us 
ompute G. Sin
e G is an (n� 1)-form, G =

P

n

i=1

g

i

d

dX

i

.

Thus, dQ ^ G =

P

n

i=1

(�1)

i

�

i

� (Q)g

i

dX . On the other hand, along Q

�1

(1),

g dX = gQdX =

g

k

P

n

i=1

x

i

�

i

� (Q)dX . Thus by 
omparison, kg

i

= (�1)

i

x

i

g.

With ! as in (3.1), the (n� 1)-form on Q

�1

(1) en
oded by g 2 U is G = g!=k. We

show now that all forms in H

n�1

DR

(Q

�1

(1); C ) are 
aptured by U .

Lemma 4.11. If Q is homogeneous, then H

n�1

DR

(Q

�1

(1); C ) is generated by R

n

�!.

Proof. This is trivial for n = 1, so we assume that n > 1. Consider the map

R

n

! H

n�1

DR

(Q

�1

(1); C ) given by g ! g!. Suppose g! = 0. Then

g! = (Q� 1)h+ d(G) +A ^ dQ
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for h =

P

(�1)

i+1

h

i

d

dX

i

2 


n�1

, G =

P

g

i;j

dx

1

^ : : :^




dx

i

^ : : :^

d

dx

j

^ : : :^ dx

n

2




n�2

, A 2 


n�2

. Multiply by dQ to get

kQg dX =

0

�

n

X

i=1

(Q� 1)�

i

� (Q)h

i

+

n

X

i;j=1

�

i

� (Q)�

j

� (g

i;j

)� �

j

� (Q)�

i

� (g

i;j

)

1

A

dX

in 


n

= R

n

dX . Now look at this in U . Note that kQg = ktg = kg and (Q� 1)�

i

�

(Q)h

i

= (t� 1)�

i

� (Q)h

i

= 0 in U . So (in U)

kg =

n

X

i;j=1

�

i

� (Q)�

j

� (g

i;j

)� �

j

� (Q)�

i

� (g

i;j

)(4.6)

We would like this to be zero in U ; in fa
t it will turn out to vanish term by term.

We may assume that g

i;j

is homogeneous by looking at the graded pie
es g of

(4.6). So to simplify notation let h be a homogeneous polynomial in R

n

. In the

remainder of this proof we shall use a subs
ript to denote derivatives: h

i

= �

i

� (h).

Then in U we have

0 = ��

j

th

i

+ �

i

th

j

= �th

i;j

+ th

j;i

+ (�th

i

�

j

+ th

j

�

i

)

= th

i

Q

j

�

t

� th

j

Q

i

�

t

= (h

i

Q

j

� h

j

Q

i

)t�

t

= (h

i

Q

j

� h

j

Q

i

)

n+ deg(h)� 2

k

by (4.5).

If deg(h) > 0, this implies the vanishing of h

i

Q

j

� h

j

Q

i

2 U . But if deg(h) = 0

there is nothing to prove in the �rst pla
e. Therefore the sum (4.6) is zero. Hen
e

if g! = 0 in H

n�1

DR

(Q

�1

(1); C ) then kg = 0 in U . So R

n

!! U fa
tors as R

n

!!

R

n

! !! U = H

n�1

DR

(Q

�1

(1); C ). �

Our 
onsiderations prove in view of Corollary 4.10:

Theorem 4.12. Let Q 2 R

n

be a homogeneous polynomial of degree k. The de

Rham 
ohomology group H

n�1

DR

(Q

�1

(1); C ) is isomorphi
 to U � !. There is a ho-

mogeneous basis for U with degrees bounded by

u

Q

= maxfi 2 Z : b

Q

(�(i+ n)=k) = 0g:

If Q de�nes a generi
 arrangement of hyperplanes, u

Q

� 2k � n� 2. �

4.5. Non-vanishing of H

n�1

DR

(Q

�1

(1); C ) and roots of b

Q

(s).

We now establish the existen
e of a non-vanishing g 2 H

n�1

DR

(Q

�1

(1); C ) in all

degrees 0 � deg(g) � 2k � n � 2 for generi
 
entral arrangements Q. This will


ertify ea
h root of (2.2) as root of b

Q

(s).

The primitive k-th root �

k

of unity a
ts on C

n

by x

i

! �

k

x

i

. This �xes Q

and hen
e the ideal J

n+1

(Q). Therefore it gives an automorphism of the de Rham


omplex and hen
e the indu
ed map on 
ohomology separates H

n�1

DR

(Q

�1

(1); C )

into eigenspa
es, U =

L

i2Z=kZ

M

i

whi
h are 
lassi�ed by their degree modulo k.

From [31℄ we know the monodromy ofQ. In parti
ular,M

i

is a

�

k�2

n�1

�

-dimensional

ve
tor spa
e unless i = k � n. Write U

i

for the elements in U with (homogeneous)

minimal degree representative of degree pre
isely i. Sin
e elements of U have degree
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at most 2k � n� 2, we �nd that

dim(U

i

) + dim(U

i+k

) = dim(U

i

+ U

i+k

) =

�

k � 2

n� 1

�

for 0 � i � k � n� 1;

U

i

=M

i

and dim(U

i

) =

�

k � 2

n� 1

�

for k � n < i � k � 1:

Moreover, U

k�n

=M

k�n

= (R

n

)

k�n

of dimension

�

k�1

n�1

�

.

Sin
e R

n

=(E + hQ� 1i) surje
ts onto U , Lemma 3.7 shows that neither U

i

nor

U

i+k

is zero-dimensional for 0 � i � k � n� 1. So one has

Theorem 4.13. For a generi
 hyperplane arrangement Q the ve
tor spa
e

�

H

n�1

DR

(Q

�1

(1); C )

�

r

6= 0 for 0 � r � 2k � n� 2:

It is zero for all other i. �

One 
an now use the non-vanishing to 
ertify roots of b

Q

(s) as su
h:

Corollary 4.14. The Bernstein-Sato polynomial of a generi
 
entral arrangement

Q =

Q

H

i

2A

H

i

of degree k is

(s+ 1)

r

2k�n�2

Y

i=0

�

s+

i+ n

k

�

where r = n� 1 or r = n� 2.

Proof. By the previous theorem, U

i

6= 0 for 0 � i � 2k � n� 2. A minimal degree

basis for U must therefore 
ontain elements of all these degrees. By the last part

of Theorem 4.8, b

Q

(s) is a multiple of

Q

2k�n�2

i=0

�

s+

i+n

k

�

. On the other hand,

Theorem 2.13 proves that b

Q

(s) divides the displayed expression with r = n � 1.

This proves everything apart from the multipli
ity of (s+ 1).

Let ~x 6=

~

0 be any point of the arrangement where pre
isely n�1 planes meet. The

Bernstein-Sato polynomial of Q is a multiple of the lo
al Bernstein-Sato polynomial

at ~x (whi
h is de�ned by the same type of equation as b

Q

(s) but where P (s) is in

the lo
alization of D

x

[s℄ at the maximal ideal de�ning ~x). Sin
e the lo
al Bernstein-

Sato polynomial at a normal 
rossing of n � 1 smooth divisors is (s + 1)

n�1

, the

theorem follows. �

We are quite 
ertain, that the exponent r in Corollary 4.14 is n� 1, but we do

not know how to show that. In fa
t, we believe that the elements g 2 R

n

whose


osets in

(s+ 1)

n�2

2k�n�2

Y

i=0

�

s+

i+ n

k

�

�

D

n

[s℄ � f

s

D

n

[s℄ � f

s+1

are zero are pre
isely the elements of m

k�n+1

.

Conje
ture 4.15. If k � r � 2k�n� 2 we believe that the spa
e (R

n

=(E + hQ�

1i))

r

is spanned by the expressions in (3.4) for whi
h i

1

< (n � 1) + (r � k). If

k�n < r < k, the expressions in Proposition 3.5 are known to span U . If r � k�n

we believe that U

r

= (R

n

)

r

.

This is in a

ordan
e with [31℄ as there are exa
tly as many su
h expressions as

Conje
ture 3.2 predi
ts for the dimension of (H

n�1

DR

(Q

�1

(1); C ))

r

.
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Example 4.16. Consider the non-generi
 arrangement given by Q = xyz(x +

y)(x + z). With the D-module pa
kage [21℄ of Ma
aulay 2 [14℄ one 
omputes its

Bernstein-Sato polynomial as

(s+ 1)(s+

2

3

)(s+

3

3

)(s+

4

3

)(s+

3

5

)(s+

4

5

)(s+

5

5

)(s+

6

5

)(s+

7

5

):

Therefore the b-fun
tion for integration of J

n+1

along �

1

; : : : ; �

n

is a divisor of

(s� 2)(s�

1

3

)(s� 2)(s�

11

3

)(s� 0)(s� 1)(s� 2)(s� 3)(s� 4):

This indi
ates that the degrees of the top 
ohomology of the Milnor �ber Q

�1

(1) are

at most 4. It also shows that in this 
ase these degrees do not suÆ
e to determine

the roots of b

Q

(s). In fa
t, the degrees of no 
lass in any H

i

DR

(Q

�1

(1); C ) will

explain the roots �2=3 and �4=3 in b

Q

(s).

However, 
onsider a point P 6= 0 on the line x = y = 0. This line is the

interse
tion of three parti
ipating hyperplanes, x, y and x + y. In P the variety

of Q has a homogeneous stru
ture as well, so the lo
al Bernstein-Sato polynomial

of Q at P is a multiple of the minimal polynomial of the lo
al Euler operator on

the 
ohomology of the Milnor �ber of Q at P . In fa
t, at P the variety of Q is

a generi
 arrangement in the plane, times the aÆne line. Without diÆ
ulty one

veri�es then that the Milnor �ber has top 
ohomology in degrees 0, 1 and 2, and

that b

Q;P

(s) = (s+ 2=3)(s+ 1)

2

(s+ 4=3).

The global Bernstein-Sato polynomial of Q is the least 
ommon multiple of

all lo
al Bernstein-Sato polynomials b

Q;P

(s). Hen
e b

Q

(s) must be a multiple of

(s+2=3)(s+1)

2

(s+4=3) and so all roots of b

Q

(s) 
ome in one way or another from


ohomology degrees on Milnor �bers. This prompts the following question:

Problem 4.17. Let Q be a lo
ally quasi-homogeneous polynomial in R

n

(as for

example a hyperplane arrangement). Is it true that every root of b

Q

(s) arises

through the a
tion of an Euler operator on the top de Rham 
ohomology of the

Milnor �ber of Q at some point of the arrangement?

This is of 
ourse true for isolated quasi-homogeneous singularities. If Q is an

arrangement then by the lo
al-to-global prin
iple one may restri
t to 
entral ar-

rangements. We have proved here that the question has an aÆrmative answer for

generi
 arrangements.

One more remark is in order. The 
ohomology we have used to des
ribe the

Bernstein-Sato polynomial is the one with 
oeÆ
ients in the 
onstant sheaf C , whi
h

may be viewed as the sheaf of solutions of the D

n

-ideal h�

1

; : : : ; �

n

i des
ribing R

n

on C

n

. Relating holonomi
 D

n

-modules to lo
ally 
onstant sheaves on C

n

is the

point of view of the Riemann-Hilbert 
orresponden
e, [4℄. There are, however, other

natural lo
ally 
onstant sheaves on C

n

nQ

�1

(0) indu
ed by D

n

-modules than just

the 
onstant sheaf. For example, for every a 2 C the D

n

-ideal ann

D

n

(f

a

) indu
es

su
h a sheaf as the sheaf of its lo
al solutions. For most exponents a this is of


ourse a sheaf without global se
tions on Q 6= 0, and more generally without any


ohomology. For suitable exponents, however, this is di�erent; it is suÆ
ient to


onsider the 
ase where a + Z 
ontains a root of the Bernstein-Sato polynomial.

Perhaps one 
an 
hara
terize the Bernstein-Sato polynomial as the polynomial of

smallest degree su
h that s = ��

t

t annihilates the V

�

-degree of every 
ohomology


lass in H

i

(



L

D

n

R

�

P) for every D

n

-module P de�ning a lo
ally 
onstant system
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on C

n

nQ

�1

(0)

�

,! C

n+1

. Another possibility is given by the 
y
li
 
overs introdu
ed

by Cohen and Orlik [12℄.

5. Mis
ellaneous Results

In this se
tion we 
olle
t some results and 
onje
tures 
on
erning the stru
ture

of the module D

n

�Q

s

asso
iated to 
entral arrangements.

5.1. Arbitrary arrangements.

We begin with a fa
t pointed out to us by A. Leykin.

Theorem 5.1 (Leykin). The only integral root of the Bernstein-Sato polynomial

of any arrangement A is �1.

Proof. By Lemma 1.3 it will be suÆ
ient to show that if Q =

Q

H

i

2A

H

i

then

R

n

[Q

�1

℄ is generated by 1=Q sin
e this implies that D

n

� (Q

�1

) = D

n

� (Q

�r

) for

all r 2 N.

Sin
e the Bernstein-Sato polynomial is the least 
ommon multiple of the lo
al

Bernstein-Sato polynomials, we may assume that A is 
entral. We may also assume

that A � C

n

is not 
ontained in a linear subspa
e of C

n

.

The 
laim is true for a normal 
rossing arrangement. We pro
eed by indu
-

tion on the di�eren
e k � n > 0 where k = deg(Q). Sin
e the lo
al 
ohomology

module H

k

m

(R

n

) vanishes, R

n

[Q

�1

℄ =

P

k

i=1

R

n

[(Q=H

i

)

�1

℄. Moreover, by indu
tion

R

n

[(Q=H

i

)

�1

℄ is generated by H

i

=Q as D

n

-module. Sin
e obviously H

i

=Q is in the

D

n

-module generated by 1=Q, the theorem follows. �

Remark 5.2. Note that the same argument proves the following. Let g

1

; : : : ; g

k

2

R

n

and set G =

Q

k

i=1

g

i

. If R

n

[(G=g

i

)

�1

℄ is generated by (g

i

=G)

m

for i = 1; : : : ; k,

and H

k

hg

1

;::: ;g

k

i

(R

n

) = 0 then R

n

[G

�1

℄ is generated by 1=G

m

. That is to say, if the

smallest integral root of b

G=g

i

(s) is at least �m, and if H

k

hg

1

;::: ;g

k

i

(R

n

) = 0 then

the smallest integral root of b

G

(s) is at least �m. By Grothendie
k's vanishing

theorem this last 
ondition is always satis�ed if k > n.

We now give some 
ombinatorial results on the lo
alization module R

n

[Q

�1

℄.

The following really is a general fa
t about �nite length modules.

Proposition 5.3. Let M =

P

k

i=1

M

i

be a holonomi
 D

n

-module. Then the holo-

nomi
 length satis�es

`(M) =

k

X

i=1

(�1)

i+1

X

jIj=i

`(M

I

)

where M

I

=

T

j2I

M

j

.

Proof. ` is additive in short exa
t sequen
es. Hen
e `(M) = `(M

1

) + `(M=M

1

). In

order to start the indu
tion, one needs to look at the 
ase k = 2 whi
h is the se
ond

isomorphism theorem.
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Also, by indu
tion,

`(M)� `(M

1

) = `(M=M

1

) = `(

X

i>1

(M

j

+M

1

)=M

1

)

=

k�1

X

i=1

(�1)

i+1

X

jIj�f2;::: ;kg

`(

\

1<j2I

(M

j

+M

1

)=M

1

)

=

k�1

X

i=1

(�1)

i+1

X

jIj�f2;::: ;kg

`(M

I

=(M

1

\M

I

))

=

k�1

X

i=1

(�1)

i+1

X

jIj�f2;::: ;kg

[`(M

I

)� `(M

I[f1g

)℄

The terms `(M

I

) in the last sum are all the summands in the sum of the theorem

without the index 1. The terms `(M

I[f1g

) together with `(M

1

) make up all those

who do use the index 1. �

Proposition 5.4. In the 
ontext of Theorem 5.1, let M

I

= R

n

h

Q

j 62I

H

j

�1

i

. The

length of M = R

n

[Q

�1

℄ is determined re
ursively as follows where H

i

A

(�) is lo
al


ohomology with supports in the ideal hH

1

; : : : ; H

k

i.

� If H

k

A

(R

n

) = 0 then `(M) =

P

(�1)

i

P

jIj=i

`(M

I

).

� If H

k

A

(R

n

) 6= 0 then `(M) =

P

(�1)

i

P

jIj=i

`(M

I

) + 1.

This information 
an be obtained from the interse
tion latti
e.

Proof. In the �rst 
ase the

�

Ce
h 
omplex shows that M =

P

k

i=1

M

i

and hen
e

all that needs to be shown is that the two usages of the symbol M

I

here and in

Proposition 5.3 agree. In other words, we must show that

R

n

2

4

Y

j2f1;::: ;kgnI

H

j

�1

3

5

\ R

n

2

4

Y

j

0

2f1;::: ;kgnI

0

H

j

0

�1

3

5

= R

n

2

4

Y

j2f1;::: ;kgn(I[I

0

)

H

j

�1

3

5

for all index sets I; I

0

. This, however, is 
lear.

If H

k

A

(R

n

) 6= 0 then the H

i

form a regular sequen
e and hen
e we know that this

lo
al 
ohomology module is of length one, a suitable generator being annihilated

by all H

i

. The formula follows by 
onsidering

P

jIj=1

M

I

and 0 !

P

jIj=1

M

I

!

M ! H

k

A

(R

n

)! 0. �

Remark 5.5. There are substantially more general results by

�

Alvarez-Montaner,

Gar
��a-L�opez, and Zarzuela-Armengou. In fa
t, Propositions 5.3 and 5.4 
an be

modi�ed to apply to the 
hara
teristi
 
y
le of R

n

[Q

�1

℄. This idea is dis
ussed in

[1℄ and then used to express the lengths of the modules H

r

A

(R

n

) in terms of Betti

numbers obtained from the interse
tion latti
e (even for subspa
e arrangements).

5.2. Some 
onje
tures.

We now 
lose with 
onje
tures on the generators of J(Q

s

) and ann

D

n

(Q

�1

).

De�nition 5.6. For a 
entral arrangement A = fH

1

; : : : ; H

k

g and Q = H

1

� � �H

k

we de�ne the ideals I(A) and I

s

(A) as follows. Let H

1

; : : : ; H

n

be linearly inde-

pendent. Choose ve
tor �elds v

i

with 
onstant 
oeÆ
ients su
h that v

i

�(H

j

) = Æ

i;j

for all 1 � i; j � n.
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Form P

i;j

(Q) =

H

i

H

j

H

1

���H

n

(v

i

� (Q)v

j

� v

j

� (Q)v

i

) 2 D

n

; P

i;j

(Q) kills Q

s

. Let

I(Q) =

��

P

i;j

(Q

0

)

Q

Q

0

: Q

0

jQ

��

� D

n

:

We de�ne I

s

(Q) re
ursively. If deg(Q) = 1, set I

s

(Q) = I(Q). If deg(Q) > 1,

I

s

(Q) =

Dn

Q

00

s+1

P

i;j

(Q

0

)Q

00

�s

: Q = Q

0

Q

00

oE

� D

n

[s℄:

It is apparent that I

s

(Q) kills Q

s

and I(Q) kills 1=Q.

Conje
ture 5.7. For any 
entral arrangement Q,

(1) the annihilator ann

D

n

(Q

�1

) is I(Q) + hE + ki;

(2) the annihilator ann

D

n

[s℄

(Q

s

) is I

s

(Q) + hE � ksi.

There is 
ertainly a 
onsiderable amount of redundan
y in these generators. Par-

ti
ularly for generi
 arrangements mu
h smaller sets 
an be taken. The importan
e

of the 
onje
ture lies perhaps more in the fa
t that all operators shown are order

one. We make some remarks about this now.

T. Torelli [35℄ has proved that ann(Q

�1

) is generated in order one for the union

of a generi
 arrangement with a hyperboli
 arrangement. A divisor div(f) on C

n

is 
alled free if the module of logarithmi
 derivations der(log f) = fÆ 2 der(R

n

) :

Æ(f) 2 hfig is a lo
ally free R

n

-module. It is 
alled Koszul-free if one 
an 
hoose a

basis for the logarithmi
 derivations su
h that their top order parts form a regular

sequen
e in gr

(0;1)

(D

n

). The 
omplex of logarithmi
 di�erentials 


�

(log f) 
onsists

(in the algebrai
 
ase) of those di�erential forms ! 2 


�

(R

n

[f

�1

℄) for whi
h both f!

and fd! are regular forms on C

n

. It is a sub
omplex of 


�

(R

n

[f

�1

℄) and (algebrai
)

Logarithmi
 Comparison is said to hold if the in
lusion is a quasi-isomorphism.

Let

~

I

log f

be the subideal of ann(1=f) generated by the order one operators

introdu
ed by L. Narvaez-Ma
arro [36℄ and put I

log f

= D

n

� der(log f). F.J Castro

and J.M. U
ha [10, 11℄, using results and ideas of F.J. Calderon [8℄, proved that

if f is Koszul-free then the map from 


�

(log f) to the (holomorphi
) de Rham


omplex of the (holonomi
) module

~

M

log f

= D

n

=

~

I

log f

is a quasi-isomorphism,

and

~

I

log f

and I

log f

are holonomi
ally dual. Hen
e if f is Koszul-free and

~

M

log f

regular holonomi
, then

~

M

log f

= R

n

[f

�1

℄ if and only if (holomorphi
) Logarithmi


Comparison holds. In his paper [35℄ Torelli 
onje
tures that if f is redu
ed (but

not ne
essarily Koszul-free) then (holomorphi
) Logarithmi
 Comparison holds for

f if and only if ann(1=f) =

~

I

log f

.

Terao 
onje
tured in [34℄ that (algebrai
) Logarithmi
 Comparison holds for any


entral arrangement (and more) and there is a proof in the analyti
 
ase for free

quasi-homogeneous divisors in [9℄. This 
an via Torelli's 
onje
ture be seen as


ounterpart to our 
onje
ture. Wiens and Yuzvinsky have proved in [39℄ Terao's


onje
ture for arrangements in C

�4

, and all tame arrangements.
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de Bernstein: 
as non d�eg�en�er�e. Ann. Inst. Fourier (Grenoble), 39(3):553{610, 1989.

[6℄ E. Brieskorn. Die Monodromie der isolierten Singularit�aten von Hyper
�a
hen. Manus
ripta

Math., 2:103{161, 1970.

[7℄ N. Budur and M. Saito. Multiplier ideals, V -�ltration and spe
trum.

arXiv:math.AG/0305118, 2003.

[8℄ F. J. Calder�on-Moreno. Logarithmi
 di�erential operators and logarithmi
 de Rham 
om-

plexes relative to a free divisor. Ann. S
i.

�

E
ole Norm. Sup. (4), 32(5):701{714, 1999.

[9℄ F. J. Castro-Jim�enez, L. Narv�aez-Ma
arro, and D. Mond. Cohomology of the 
omplement of

a free divisor. Trans. Amer. Math. So
., 348(8):3037{3049, 1996.

[10℄ F. J. Castro-Jim�enez and J. M. U
ha. Free divisors and duality for D-modules. Tr. Mat. Inst.

Steklova, 238(Monodromiya v Zada
hakh Algebr. Geom. i Di�er. Uravn.):97{105, 2002.

[11℄ F. J. Castro-Jim�enez and J. M. U
ha-Enr��quez. Expli
it 
omparison theorems for D-modules.

J. Symboli
 Comput., 32(6):677{685, 2001. E�e
tive methods in rings of di�erential operators.

[12℄ D. C. Cohen and P. Orlik. Some 
y
li
 
overs of 
omplements of arrangements. Topology Appl.,

118(1-2):3{15, 2002. Arrangements in Boston: a Conferen
e on Hyperplane Arrangements

(1999).

[13℄ P. Deligne.

�

Equations di��erentielles �a points singuliers r�eguliers. Springer-Verlag, Berlin,

1970. Le
ture Notes in Mathemati
s, Vol. 163.

[14℄ D. R. Grayson and M. E. Stillman. Ma
aulay 2, a software system for resear
h in algebrai


geometry. Available at http://www.math.uiu
.edu/Ma
aulay2/.

[15℄ H. A. Hamm. Ein Beispiel zur Bere
hnung der Pi
ard-Lefs
hetz-Monodromie f�ur ni
htisolierte

Hyper
�a
hensingularit�aten. Math. Ann., 214:221{234, 1975.

[16℄ H. A. Hamm. Remarks on asymptoti
 integrals, the polynomial of I. N. Bernstein and the

Pi
ard-Lefs
hetz monodromy. In Several 
omplex variables (Pro
. Sympos. Pure Math., Vol.

XXX, Part 1, Williams Coll., Williamstown, Mass., 1975), pages 31{35. Amer. Math. So
.,

Providen
e, R.I., 1977.

[17℄ M. Kashiwara. B-fun
tions and holonomi
 systems. Rationality of roots of B-fun
tions. In-

vent. Math., 38(1):33{53, 1976/77.

[18℄ M. Kashiwara. On the holonomi
 systems of linear di�erential equations. II. Invent. Math.,

49(2):121{135, 1978.

[19℄ M. Kashiwara. D-modules and mi
rolo
al 
al
ulus, volume 217 of Translations of Mathemat-

i
al Monographs. Ameri
an Mathemati
al So
iety, Providen
e, RI, 2003. Translated from the

2000 Japanese original by Mutsumi Saito, Iwanami Series in Modern Mathemati
s.

[20℄ M. Kato. An estimate of the roots of b-fun
tions by Newton polyhedra. Pro
. Japan A
ad.

Ser. A Math. S
i., 57(10):496{498, 1981.

[21℄ A. Leykin, M. Stillman, and H. Tsai. The D-module pa
kage for Ma
aulay 2 . Available at

http://www.math.ui
.edu/~leykin.

[22℄ B. Li
htin. A 
onne
tion between polar invariants and roots of the Bernstein-Sato polynomial.

In Singularities, Part 2 (Ar
ata, Calif., 1981), pages 145{154. Amer. Math. So
., Providen
e,

RI, 1983.

[23℄ F. Loeser. Fon
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