INJECTIVE MODULES:
PREPARATORY MATERIAL FOR THE SNOWBIRD
SUMMER SCHOOL ON COMMUTATIVE ALGEBRA

These notes are intended to give the reader an idea what injective modules
are, where they show up, and, to a small extent, what one can do with them.
Let R be a commutative Noetherian ring with an identity element. An R-
module E is injective if Hompg(—, F) is an exact functor. The main messages
of these notes are

e Every R-module M has an injective hull or injective envelope, de-
noted by Er(M), which is an injective module containing M, and
has the property that any injective module containing M contains
an isomorphic copy of Er(M).

e A nonzero injective module is indecomposable if it is not the direct
sum of nonzero injective modules. Every injective R-module is a
direct sum of indecomposable injective R-modules.

e Indecomposable injective R-modules are in bijective correspondence
with the prime ideals of R; in fact every indecomposable injective
R-module is isomorphic to an injective hull Er(R/p), for some prime
ideal p of R.

e The number of isomorphic copies of Er(R/p) occurring in any direct
sum decomposition of a given injective module into indecomposable
injectives is independent of the decomposition.

e Let (R, m) be a complete local ring and E' = Er(R/m) be the injec-
tive hull of the residue field of R. The functor (—) = Hompg(—, E)
has the following properties, known as Matlis duality:

(1) If M is an R-module which is Noetherian or Artinian, then
MYV = M.

(2) If M is Noetherian, then M"Y is Artinian.

(3) If M is Artinian, then M" is Noetherian.

Any unexplained terminology or notation can be found in [1] or [3].
Matlis’ theory of injective modules was developed in the paper [4], and
may also be found in [3, §18] and [2, §3].

These notes owe a great deal of intellectual debt to Mel Hochster, whose
lecture notes are very popular with the organizers of this workshop. How-
ever, the organizers claim intellectual property of all errors here.

1. INJECTIVE MODULES

Throughout, R is a commutative ring with an identity element 1 € R.
All R-modules M are assumed to be unitary, i.e., 1 -m = m for all m € M.
1



2 INJECTIVE MODULES

Definition 1.1. An R-module F is injective if for all R-module homomor-
phisms ¢ : M — N and ¢ : M — E where ¢ is injective, there exists an
R-linear homomorphism 6 : N — E such that 6 o ¢ = 1.

Exercise 1.2. Show that F is an injective R-module E if and only if
Hompg(—, F) is an exact functor, i.e., applying Hompg(—, F) takes short ex-
act sequences to short exact sequences.

Theorem 1.3 (Baer’s Criterion). An R-module E is injective if and only
if every R-module homomorphism a — E, where a is an ideal, extends to
a homomorphism R — E.

Proof. One direction is obvious. For the other, if M C N are R-modules
and ¢ : M — E, we need to show that ¢ extends to a homomorphism
N — E. By Zorn’s lemma, there is a module N’ with M C N’ C N, which
is maximal with respect to the property that ¢ extends to a homomorphism
¢ : Nl — E. If N’ # N, take an element n € N\ N" and consider the ideal

a = N’ :g n. By hypothesis, the composite homomorphism a — N’ i/> FE
extends to a homomorphism ¢ : R — FE. Define ¢ : N' + Rn — FE by
@"(n' +rn) = ¢'(n') + 1 (r). This contradicts the maximality of ¢', so we
must have N/ = N. O

Exercise 1.4. Let R be an integral domain. An R-module M is divisible if
rM = M for every nonzero element r € R.

(1) Prove that an injective R-module is divisible.

(2) If R is a principal ideal domain, prove that an R-module is divisible
if and only if it is injective.

(3) Conclude that Q/Z is an injective Z-module.

(4) Prove that any nonzero Abelian group has a nonzero homomorphism
to Q/Z.

(5) If (—)Y = Homg(—,Q/Z) and M is any Z-module, prove that the
natural map M — MV is injective.

Exercise 1.5. Let R be an A-algebra.

(1) Use the adjointness of ® and Hom to prove that if E is an injective
A-module, and F'is a flat R-module, then Hom 4 (F, E) is an injective
R-module.

(2) Prove that every R-module can be embedded in an injective R-
module. Hint: If M is the R-module, take a free R-module F' with
a surjection F' — Homgz(M,Q/Z). Apply (—)" = Homgz(—, Q/Z).

Proposition 1.6. Let M # 0 and N be R-modules, and let 6 : M — N be
a monomorphism. Then the following are equivalent:

(1) Every nonzero submodule of N has a nonzero intersection with 6(M).

(2) Every nonzero element of N has a nonzero multiple in 6(M).

(8) If ¢ o 0 is injective for a homomorphism ¢ : N — Q, then ¢ is
injective.
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Proof. (1) = (2) If n is a nonzero element of N, then the cyclic module
Rn has a nonzero intersection with 6(M).

(2) = (3) If not, then ker ¢ has a nonzero intersection with 6(M),
contradicting the assumption that ¢ o 8 is injective.

(3) = (1) Let N’ be a nonzero submodule of N, and consider the
canonical surjection ¢ : N — N/N’. Then ¢ is not injective, hence the
composition pof: M — N/N' is not injective, i.e., N’ contains a nonzero
element of 6(M). O

Definition 1.7. If 8 : M — N satisfies the equivalent conditions of the
previous proposition, we say that N is an essential extension of M.

Example 1.8. If R is a domain and Frac(R) is its field of fractions, then
R C Frac(R) is an essential extension. More generally, if S C R is the set
of nonzerodivisors in R, then S™'R is an essential extension of R.

Example 1.9. Let (R,m) be a local ring and N be an R-module such
that every element of IV is killed by a power of m. The socle of N is the
submodule soc(/N) = 0 :y m. Then soc(N) C N is an essential extension: if
n € N is a nonzero element, let ¢ be the smallest integer such that m‘n = 0.
Then m‘~1n C soc(N), and m*~!n contains a nonzero multiple of n.

Exercise 1.10. Let I be an index set. Then M; C N; is essential for all
1 € I if and only if ®;c;M; C ®;crN; is essential.

Example 1.11. Let R = C[[z]] which is a local ring with maximal ideal (),
and take N = R, /R. Every element of N is killed by a power of the maximal
ideal, and soc(N) is the 1-dimensional C-vector space generated by [1/x],
i.e., the image of 1/x in N. By Example 1.9, soc(N) C N is an essential
extension. However [[ysoc(/N) C [[y &V is not an essential extension since
the element

(/) [1/27),(1/2%],...) e ][ NV
N

does not have a nonzero multiple in [[ysoc(N). (Prove!)
Proposition 1.12. Let L, M, N be nonzero R-modules.

(1) M C M is an essential extension.

(2) Suppose L C M C N. Then L C N is an essential extension if and
only if both L C M and M C N are essential extensions.

(8) Suppose M C N and M C N; C N with N = U;N;. Then M C N is
an essential extension if and only if M C N; is an essential extension
for every 1.

(4) Suppose M C N. Then there exists a module N' with M C N' C N,
which is maximal with respect to the property that M C N’ is an
essential extension.

Proof. The assertions (1), (2), and (3) elementary. For (4), let
F={N'| M CN' CN and N’ is an essential extension of M}.
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Then M € F so F is nonempty. If N C Nj C N3 C ... is a chain in
F, then U;N/ € F is an upper bound. By Zorn’s Lemma, the set F has
maximal elements. |

Definition 1.13. The module N’ in Proposition 1.12 (4) is a mazimal es-
sential extension of M in N. If M C N is essential and N has no proper
essential extensions, we say that N is a maximal essential extension of M.

Proposition 1.14. Let M be an R-module. The following conditions are
equivalent:

(1) M is injective;

(2) M is a direct summand of every module containing it;

(8) M has no proper essential extensions.

Proof. (1) = (2) = (3) is left as an exercise, and we prove the
implication (3) == (2). Consider an embedding M < E where F is
injective. By Zorn’s lemma, there exists a submodule N C FE which is
maximal with respect to the property that N N M = 0. This implies that
M — E/N is an essential extension, and hence that it is an isomorphism.
But then E =M + N so E = M & N. Since M is a direct summand of an
injective module, it must be injective. O

Proposition 1.15. Let M and E be R-modules.

(1) If E is injective and M C E, then any mazimal essential extension
of M in E is an injective module, hence is a direct summand of F.
(2) Any two maximal essential extensions of M are isomorphic.

Proof. (1) Let E' be a maximal essential extension of M in E and let E' C Q
be an essential extension. Since F is injective, the identity map E' — FE
lifts to a homomorphism ¢ : Q — FE. Since @ is an essential extension of
E’, it follows that ¢ must be injective. This gives us M C E' C Q — E,
and the maximality of E’ implies that Q = E’. Hence E’ has no proper
essential extensions, and so it is an injective module by Proposition 1.14.
(2) Let M C E and M C E’ be maximal essential extensions of M. Then
FE’ is injective, so M C E’ extends to a homomorphism ¢ : E — F'.
The inclusion M C F is an essential extension, so ¢ is injective. But then
¢(E) is an injective module, and hence a direct summand of E’. Since
M C ¢(E) C E' is an essential extension, we must have ¢(E) = E'. O

Definition 1.16. The injective hull or injective envelope of an R-module
M is a maximal essential extension of M, and is denoted by Er(M).

Definition 1.17. Let M be an R-module. A minimal injective resolution
of M is a complex

0—E'—>FE'—E>— ..
such that EY = ER(M), E' = Ep(E°/M), and
E = ER(E'/image(E*™1))  for all i > 2.
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Note that the modules E are injective, and that image(E?) C E*! is an
essential extension for all ¢ > 0.

2. INJECTIVES OVER A NOETHERIAN RING

Proposition 2.1 (Bass). A ring R is Noetherian if and only if every direct
sum of injective R-modules is injective.

Proof. We first show that if M is a finitely generated R-module, then
Homp (M, ®;N;) = @; Homg(M, N;).

Independent of the finite generation of M, there is a natural injective ho-
momorphism ¢ : ®; Homg(M, N;) — Hompg(M,®;N;). If M is finitely
generated, the image of a homomorphism from M to @;N; is contained in
the direct sum of finitely many NV;. Since Hom commutes with forming finite
direct sums, ¢ is surjective as well.

Let R be a Noetherian ring, and E; be injective R-modules. Then for
an ideal a of R, the natural map Hompg(R, E;) — Hompg(a, E;) is sur-
jective. Since a is finitely generated, the above isomorphism implies that
Hompg(R,®E;) — Homp(a, ®E;) is surjective as well. Baer’s criterion
now implies that & F; is injective.

If R is not Noetherian, it contains a strictly ascending chain of ideals

ap CaxCaz ...

Let a = U;a;. The natural maps a — R — R/a; — ERr(R/a;) give us
a homomorphism a — [[, Er(R/a;). The image lies in the submodule
®;Er(R/a;), (check!) so we have a homomorphism ¢ : a« — @®; Er(R/a;).
Lastly, check that ¢ does not extend to homomorphism R — @&; Er(R/a;).

([

Theorem 2.2. Let E be an injective module over a Noetherian ring R.
Then

where p; are prime ideals of R. Moreover, any such direct sum is an injective

R-module.

Proof. The last statement follows from Proposition 2.1. Let E be an injective
R-module. By Zorn’s Lemma, there exists a maximal family { F;} of injective
submodules of E such that E; & Er(R/p;), and their sum in F is a direct
sum. Let E' = @®F;, which is an injective module, and hence is a direct
summand of E. There exists an R-module E” such that £ = E' @ E". If
E" # 0, pick a nonzero element x € E”. Let p be an associated prime of
Rz. Then R/p — Rx C E”, so there is a copy of Er(R/p) contained in E”
and E” = Er(R/p) ® E", contradicting the maximality of family {E;}. O

Definition 2.3. Let a be an ideal of a ring R, and M be an R-module. We
say M is a-torsion if every element of M is killed by some power of a.
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Theorem 2.4. Let p be a prime ideal of a Noetherian ring R, and let
E = Eg(R/p) and k = Ry/pR,, which is the fraction field of R/p. Then

(1) if x € R\ p, then E - E is an isomorphism, and so E = E;
(2) 0:pp=~k,

(3) k C E is an essential extension of Ry-modules and E = Eg,(k);
(4) E is p-torsion and Ass(E) = {p};

(5) Homg, (k, E) = k and Homg, (k, Er(R/q)p) = 0 for primes q # p.

Proof. (1) k is an essential extension of R/p by Example 1.8, so E contains
a copy of k and we may assume R/p C x C E. Multiplication by x € R\p is
injective on x, and hence also on its essential extension E. The submodule
xF is injective, so it is a direct summand of £. But kK C zF C E are
essential extensions, so zF = F.

(2) 0:g p =0 :g pRy is a vector space over the field s, and hence the
inclusion kK C 0 :g p splits. But Kk C 0 :g p C F is an essential extension, so
0:5p =k

(3) The containment x C F is an essential extension of R-modules, hence
also of Ry-modules. Suppose 2 C M is an essential extension of Ry-modules,
pick m € M. Then m has a nonzero multiple (r/s)m € E, where s € R\ p.
But then rm is a nonzero multiple of m in F, so E C M is an essential
extension of R-modules, and therefore M = F.

(4) Let q € Ass(F). Then there exists * € E such that Rx C E and
0:r x =q. Since R/p C FE is essential,  has a nonzero multiple y in R/p.
But then the annihilator of y is p, so g = p and Ass(E) = {p}.

If a is the annihilator of a nonzero element of FE, then p is the only
associated prime of R/a — E, so E is p-torsion.

(5) For the first assertion,

Homg, (k, £) = Hompg, (Ry/pRy, E) = 0 :pr, E = k.

Since elements of R\ q act invertibly on Er(R/q), we see that Er(R/q), = 0
if ¢ ¢ p. In the case q C p, we have

Hompg, (k, Er(R/q)p) = 0 :pr, Er(R/q)p =0 :pr, Er(R/q).

If this is nonzero, then there is a nonzero element of Er(R/q) killed by p,
which forces q = p since Ass Er(R/q) = {q}. O

We are now able to strengthen Theorem 2.2 to obtain the following struc-
ture theorem for injective modules over Noetherian rings.
Theorem 2.5. Let E be an injective over a Noetherian ring R. Then
E= @ ErR/p)™,
pEeSpec R

and the numbers oy are independent of the direct sum decomposition.
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Proof. Theorem 2.2 implies that a direct sum decomposition exists. By
Theorem 2.4 (5), oy, is the dimension of the Ry, /pRy-vector space

Hompg, (Rp/pRy, Ey),
which does not depend on the decomposition. ([

The following proposition can be proved along the lines of Theorem 2.4,
and we leave the proof as an exercise.

Proposition 2.6. Let S C R be a multiplicative set.

(1) If E is an injective R-module, then S™'E is an injective module over
the ring S™'R.
(2) If M — N is an essential extension (or a mazimal essential exten-
sion) of R-modules, then the same is true for S~*M — S=IN over
S—IR.
(3) The indecomposable injectives over S~ R are the modules Er(R/p)
for p € Spec R with pN S = 0.
Definition 2.7. Let M be an R-module, and let E* be a minimal injective
resolution of R where

pESpec R

Then p;(p, M) is the i-th Bass number of M with respect to p. The following
theorem shows that these numbers are well-defined.

Theorem 2.8. Let k(p) = Ryp/pRy. Then
pi(p, M) = dim, ) Extly (r(p), My).

Proof. Let E® be a minimal injective resolution of M where the 7 th module
is B' = ®FER(R/p)* M) Localizing at p, Proposition 2.6 implies that Ej is
a minimal injective resolution of M, over the ring R,. Moreover, the number
of copies of Er(R/p) occurring in E’ is the same as the number of copies
of Er(R/p) in E}. By definition, Ext’]élD (k(p), M) is the i-th cohomology
module of the complex

0 — Hompg, (#(p), Ey) — Hompg, (x(p), Ey) — Hompg, (k(p), By) — ...

and we claim all maps in this complex are zero. If ¢ € Homp, (s(p), E},), we
need to show that the composition

w(p) £ B - FiH

is the zero map. If p(z) # 0 for = € k(p), then p(z) has a nonzero multiple
in image(Effl — E;) Since £ (p) is a field, it follows that

p(rk(p)) C image(By " — Ey),
and hence that § o ¢ = 0. By Theorem 2.4 (5)
Hompg, (x(p), Ey) 2 r(p)H P,
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S0 Ex‘c}é|D (k(p), M) is the i-th cohomology module of the complex
0 — k(p)o®M) () ®M) i)
where all maps are zero, and the required result follows. O

Remark 2.9. We next want to consider the special case in which (R, m, K)
is a Noetherian local ring. Recall that we have natural surjections

. — R/m? — R/m?> — R/m — 0,

and that the m-adic completion R of R is the inverse limit of this system,
ie.,

lgn(R/mk) = {(7"0,7“1,7‘2,...) S HR/mk ’ Tk — Tk—1 € mkl}.

k k

Morally, elements of the a-adic completion of R are power series of elements
of R where “higher terms” are those contained in higher powers of the ideal
a. There is no reason to restrict to local rings or maximal ideals—for topo-
logical purposes, completions at other ideals can be very interesting; see, for
example, [5].

Note that R/m*R = R/m*. Consequently if M is m-torsion, then the
R-module structure on M makes it an R-module. In particular, E r(R/m)
is an R-module.

Theorem 2.10. Let (R,m, K) be a local ring. Then Er(K) = Ex(K).

Proof. The containment K C Er(K) is an essential extension of R-modules,
hence also of R-modules. If Er(K) C M is an essential extension of R-
modules, then M is m-torsion. (Prove!) If m € M is a nonzero element,
then Rm N Er(K) # 0. But Rm = Rm, so Er(K) C M is an essential
extension of R-modules, which implies M = Er(K). It follows that Er(K)
is a maximal essential extension of K as an R-module. (]

Theorem 2.11. Let ¢ : (R,m, K) — (S,n, L) be a homomorphism of local
rings such that (m) C n, the ideal p(m)S is n-primary, and S is module-
finite over R. Then

Hompg(S, Ex(K)) = Es(L).

Proof. By Exercise 1.5, Hompg(S, Er(K)) is an injective S-module. Every
element of Hompg(S, Er(K)) is killed by a power of m and hence by a power
of n. It follows that Hompg (S, Fr(K)) is a direct sum of copies of Eg(L),
say Homp (S, Er(K)) = Es(L)*. To determine pu, consider

Homg(L, Homp(S, Eg(K))) = Homg(L ®s S, Er(K)) = Homg(L, Er(K)).
The image of any element of Hompg (L, Fr(K)) is killed by n, hence
HOmR(L, ER(K)) = HOmR(L, K) = HOmK(L, K)
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and L* = Homg (L, K). Considering vector space dimensions over K, this
implies pdimg L = dimg L, so p = 1. ]

Corollary 2.12. Let (R,m, K) be a local ring and let S = R/a where a is
an ideal of R. Then the injective hull of the residue field of S is

HomR(R/a, ER(K)) =0 ‘Egr(K) a.

Since every element of Er(K) is killed by a power of m, we have

Er(K) = | (0 g0 m") = | Eryme (K).
teN teN

This motivates the study of Er(K) for Artinian local rings.

3. THE ARTINIAN CASE

Recall that the length of a module M is the length of a composition series
for M, and is denoted ¢(M). The length is additive over short exact se-
quences. If (R, m, K) is an Artinian local ring, then every finitely generated
R-module has a composition series with factors isomorphic to R/m.
Lemma 3.1. Let (R, m, K) be a local ring. Then (—)" = Hompg(—, Er(K))
is a faithful functor, and ¢(M") = ¢(M) for every R-module M of finite
length.

Proof. Note that (R/m)¥ = Hompg(R/m, ER(K)) = K. If M is a nonzero
R-module, we need to show that MV is nonzero. Taking a nonzero cyclic
submodule R/a — M, we have M"Y — (R/a)V, so it suffices to show that
(R/a)Y is nonzero. The surjection R/a —» R/m yields (R/m)Y — (R/a)",
and hence (—)V is faithful.

For M of finite length, we use induction on ¢(M) to prove £(MY) = ¢(M).
The result is true for modules of length 1 since (R/m)¥ = K. For a module
M of finite length, consider m € soc(M) and the exact sequence

0— Rm — M — M/Rm — 0.
Applying (—)V, we obtain an exact sequence
0 — (M/Rm)" — MY — (Rm)" — 0.
Since Rm = K and ¢(M/Rm) = ¢(M) — 1, we are done by induction. O
Corollary 3.2. Let (R,m, K) be an Artinian local ring. Then Er(K) is a

finite length module and ¢(Er(K)) = ¢(R).

Theorem 3.3. Let (R,m,K) be a Artinian local ring and E = Er(K).
Then the map R — Hompg(E, E), which takes a ring element r to the
homomorphism “multiplication by r,” is an isomorphism.

Proof. By the previous results, £(R) = ¢(F) = ¢{(E"), so R and Homg(E, E)
have the same length, and it suffices to show the map is injective. If rE = 0,
then £ = Eg g, (K) so {(R) = {(R/Rr), forcing r = 0. O
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Theorem 3.4. Let (R,m, K) be a local ring. Then R is an injective R-
module if and only if the following two conditions are satisfied:

(1) R is Artinian, and

(2) soc(R) is 1-dimensional vector space over K.

Proof. If R=M & N then K = (M ®r K) & (N ®g K), so one of the two
summands must be zero, say M ®r K = 0. But then Nakayama’s lemma
implies that M = 0. It follows that a local ring in indecomposable as a
module over itself. Hence if R is injective, then R = Er(R/p) for some
p € Spec R. This implies R that is p-torsion and it follows that p is the
only prime ideal of R and hence that R is Artinian. Furthermore, soc(R) is
isomorphic to soc(Egr(K)), which is 1-dimensional.

Conversely, if R is Artinian with soc(R) = K, then R is an essential
extension of its socle. The essential extension K C R can be enlarged to a
maximal essential extension K C Er(K). Since {(Er(K)) = ¢(R), we must
have Er(K) = R. O

4. MATLIS DUALITY

Theorem 4.1. Let (R, m, K) be a local ring and let E = Er(K). Then E is
also an R-module, and the map R — Homp(FE, E), which takes an element
r € R to the homomorphism “multiplication by r,” is an tsomorphism.

Proof. Since E = Ex(K), there is no loss of generality in assuming that R
is complete. For integers t > 1, consider the rings By = R/m'. Then E; =
0 :g m! is the injective hull of the residue field of R;. If ¢ € Homg(E, E),
then p(E;) C Ey, so ¢ restricts to an element of Hompg, (Ey, E}), which
equals R; by Theorem 3.3. The homomorphism ¢, when restricted to Ey, is
multiplication by an element r; € R;. Moreover ¥ = Uy E; and the elements
r; are compatible under restriction, i.e., 7441 — 7 € mf. Thus ¢ is precisely
multiplication by the element (ry —r2) + (ro —r3) +--- € R. (]

Corollary 4.2. For a local ring (R,m, K), the module Er(K) satisfies the
descending chain condition (DCC).

Proof. Consider a descending chain of submodules
Er(K)=EDFE12EyD....
Applying the functor (—)¥ = Hompg(—, F) gives us surjections
R~ EY EY EY
Since R is Noetherian, the ideals ker(ﬁ — E)) stabilize for large t, and

hence By —» E}; is an isomorphism for ¢ > 0. Since (—)" is faithful, it
follows that E; = Eyq for t > 0. O

Theorem 4.3. Let (R,m,K) be a Noetherian local ring. The following
conditions are equivalent for an R-module M.

(1) M is m-torsion and soc(M) is a finite-dimensional K -vector space;
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(2) M is an essential extension of a finite-dimensional K -vector space;
(8) M can be embedded in a direct sum of finitely many copies of Er(K);
(4) M satisfies the descending chain condition.

Proof. The implications (1) = (2) = (3) = (4) follow from earlier
results, so we focus on (4) = (1). Let x € M. The descending chain

RrDmz2Om?zD...

stabilizes, so m*'z = m'z for some t. But then Nakayama’s lemma implies

mlz = 0, and it follows that M is m-torsion. Since soc(M) is a vector space
with DCC, it must be finite-dimensional. O

Example 4.4. Let (R, m, K) be a discrete valuation ring with maximal ideal
m = Rx. (For example, R may be a power series ring K[[z]] or the ring of
p-adic integers ip» in which case = p.) We claim that Fr(K) = R,/R. To
see this, note that soc(R,/R) is a 1-dimensional K-vector space generated
by the image of 1/2 € R,, and that every element of R, /R is killed by a
power of .

The next result explains the notion of duality in the current context.

Theorem 4.5. Let (R, m, K) be a complete Noetherian local ring, and use
(=)Y to denote the functor Hompg(—, Eg(K)).

(1) If M has ACC then MV has DCC, and if M has DCC then M" has
ACC. Hence the category of R-modules with DCC' is anti-equivalent
to the category of R-modules with ACC.

(2) If M has ACC or DCC, then M"Y = M.

Proof. Let E = Er(K). If M with ACC, consider a presentation
R™ — R" — M — 0.

Applying (—)Y, we get an exact sequence 0 — M — (R™)Y — (R™)V.
Since (R™)Y = E™ has DCC, so does its submodule M. Applying (—)V
again, we get the commutative diagram with exact rows

(Rm)vv (Rn>\/v M\/\/ 0

| | [

- — R — M — 0.

Since R — RYV is an isomorphism, it follows that M — MYV is an
isomorphism as well.
If M has DCC, we embed it in £ and obtain an exact sequence

00— M —FE" — E™

Applying (—)V gives an exact sequence (E™)Y — (E™)YV — MY — 0.
The surjection R" = (E™)Y — MY shows that M has ACC, while a
similar commutative diagram gives the isomorphism M"YV = M. O
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Remark 4.6. Let M be a finitely generated module over a complete local
ring (R, m, K). Then

HomR(K, Mv) = HOHIR<K KSR ]\4'7 ER<K)) = I‘IOHlRUM'/IﬂJ\I7 ER<K))
=~ Hompg (M/mM, K),

so the number of generators of M as an R-module equals the vector space
dimension of soc(M").
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