
INJECTIVE MODULES:
PREPARATORY MATERIAL FOR THE SNOWBIRD
SUMMER SCHOOL ON COMMUTATIVE ALGEBRA

These notes are intended to give the reader an idea what injective modules
are, where they show up, and, to a small extent, what one can do with them.
Let R be a commutative Noetherian ring with an identity element. An R-
module E is injective if HomR(−, E) is an exact functor. The main messages
of these notes are

• Every R-module M has an injective hull or injective envelope, de-
noted by ER(M), which is an injective module containing M , and
has the property that any injective module containing M contains
an isomorphic copy of ER(M).
• A nonzero injective module is indecomposable if it is not the direct

sum of nonzero injective modules. Every injective R-module is a
direct sum of indecomposable injective R-modules.
• Indecomposable injective R-modules are in bijective correspondence

with the prime ideals of R; in fact every indecomposable injective
R-module is isomorphic to an injective hull ER(R/p), for some prime
ideal p of R.
• The number of isomorphic copies of ER(R/p) occurring in any direct

sum decomposition of a given injective module into indecomposable
injectives is independent of the decomposition.
• Let (R,m) be a complete local ring and E = ER(R/m) be the injec-

tive hull of the residue field of R. The functor (−)∨ = HomR(−, E)
has the following properties, known as Matlis duality:
(1) If M is an R-module which is Noetherian or Artinian, then

M∨∨ ∼= M .
(2) If M is Noetherian, then M∨ is Artinian.
(3) If M is Artinian, then M∨ is Noetherian.

Any unexplained terminology or notation can be found in [1] or [3].
Matlis’ theory of injective modules was developed in the paper [4], and
may also be found in [3, § 18] and [2, § 3].

These notes owe a great deal of intellectual debt to Mel Hochster, whose
lecture notes are very popular with the organizers of this workshop. How-
ever, the organizers claim intellectual property of all errors here.

1. Injective Modules

Throughout, R is a commutative ring with an identity element 1 ∈ R.
All R-modules M are assumed to be unitary, i.e., 1 ·m = m for all m ∈M .
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Definition 1.1. An R-module E is injective if for all R-module homomor-
phisms ϕ : M −→ N and ψ : M −→ E where ϕ is injective, there exists an
R-linear homomorphism θ : N −→ E such that θ ◦ ϕ = ψ.

Exercise 1.2. Show that E is an injective R-module E if and only if
HomR(−, E) is an exact functor, i.e., applying HomR(−, E) takes short ex-
act sequences to short exact sequences.

Theorem 1.3 (Baer’s Criterion). An R-module E is injective if and only
if every R-module homomorphism a −→ E, where a is an ideal, extends to
a homomorphism R −→ E.

Proof. One direction is obvious. For the other, if M ⊆ N are R-modules
and ϕ : M −→ E, we need to show that ϕ extends to a homomorphism
N −→ E. By Zorn’s lemma, there is a module N ′ with M ⊆ N ′ ⊆ N , which
is maximal with respect to the property that ϕ extends to a homomorphism
ϕ′ : N ′ −→ E. If N ′ 6= N , take an element n ∈ N \N ′ and consider the ideal

a = N ′ :R n. By hypothesis, the composite homomorphism a
n−→ N ′

ϕ′−→ E
extends to a homomorphism ψ : R −→ E. Define ϕ′′ : N ′ + Rn −→ E by
ϕ′′(n′ + rn) = ϕ′(n′) + ψ(r). This contradicts the maximality of ϕ′, so we
must have N ′ = N . �

Exercise 1.4. Let R be an integral domain. An R-module M is divisible if
rM = M for every nonzero element r ∈ R.

(1) Prove that an injective R-module is divisible.
(2) If R is a principal ideal domain, prove that an R-module is divisible

if and only if it is injective.
(3) Conclude that Q/Z is an injective Z-module.
(4) Prove that any nonzero Abelian group has a nonzero homomorphism

to Q/Z.
(5) If (−)∨ = HomZ(−,Q/Z) and M is any Z-module, prove that the

natural map M −→M∨∨ is injective.

Exercise 1.5. Let R be an A-algebra.

(1) Use the adjointness of ⊗ and Hom to prove that if E is an injective
A-module, and F is a flat R-module, then HomA(F,E) is an injective
R-module.

(2) Prove that every R-module can be embedded in an injective R-
module. Hint: If M is the R-module, take a free R-module F with
a surjection F −→→ HomZ(M,Q/Z). Apply (−)∨ = HomZ(−,Q/Z).

Proposition 1.6. Let M 6= 0 and N be R-modules, and let θ : M ↪→ N be
a monomorphism. Then the following are equivalent:

(1) Every nonzero submodule of N has a nonzero intersection with θ(M).
(2) Every nonzero element of N has a nonzero multiple in θ(M).
(3) If ϕ ◦ θ is injective for a homomorphism ϕ : N −→ Q, then ϕ is

injective.
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Proof. (1) =⇒ (2) If n is a nonzero element of N , then the cyclic module
Rn has a nonzero intersection with θ(M).

(2) =⇒ (3) If not, then kerϕ has a nonzero intersection with θ(M),
contradicting the assumption that ϕ ◦ θ is injective.

(3) =⇒ (1) Let N ′ be a nonzero submodule of N , and consider the
canonical surjection ϕ : N −→ N/N ′. Then ϕ is not injective, hence the
composition ϕ ◦ θ : M −→ N/N ′ is not injective, i.e., N ′ contains a nonzero
element of θ(M). �

Definition 1.7. If θ : M ↪→ N satisfies the equivalent conditions of the
previous proposition, we say that N is an essential extension of M .
Example 1.8. If R is a domain and Frac(R) is its field of fractions, then
R ⊆ Frac(R) is an essential extension. More generally, if S ⊆ R is the set
of nonzerodivisors in R, then S−1R is an essential extension of R.
Example 1.9. Let (R,m) be a local ring and N be an R-module such
that every element of N is killed by a power of m. The socle of N is the
submodule soc(N) = 0 :N m. Then soc(N) ⊆ N is an essential extension: if
n ∈ N is a nonzero element, let t be the smallest integer such that mtn = 0.
Then mt−1n ⊆ soc(N), and mt−1n contains a nonzero multiple of n.
Exercise 1.10. Let I be an index set. Then Mi ⊆ Ni is essential for all
i ∈ I if and only if ⊕i∈IMi ⊆ ⊕i∈INi is essential.
Example 1.11. Let R = C[[x]] which is a local ring with maximal ideal (x),
and take N = Rx/R. Every element of N is killed by a power of the maximal
ideal, and soc(N) is the 1-dimensional C-vector space generated by [1/x],
i.e., the image of 1/x in N . By Example 1.9, soc(N) ⊆ N is an essential
extension. However

∏
N

soc(N) ⊆
∏
N
N is not an essential extension since

the element (
[1/x], [1/x2], [1/x3], . . .

)
∈
∏
N

N

does not have a nonzero multiple in
∏
N

soc(N). (Prove!)
Proposition 1.12. Let L,M,N be nonzero R-modules.

(1) M ⊆M is an essential extension.
(2) Suppose L ⊆ M ⊆ N . Then L ⊆ N is an essential extension if and

only if both L ⊆M and M ⊆ N are essential extensions.
(3) Suppose M ⊆ N and M ⊆ Ni ⊆ N with N = ∪iNi. Then M ⊆ N is

an essential extension if and only if M ⊆ Ni is an essential extension
for every i.

(4) Suppose M ⊆ N . Then there exists a module N ′ with M ⊆ N ′ ⊆ N ,
which is maximal with respect to the property that M ⊆ N ′ is an
essential extension.

Proof. The assertions (1), (2), and (3) elementary. For (4), let

F = {N ′ | M ⊆ N ′ ⊆ N and N ′ is an essential extension of M}.
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Then M ∈ F so F is nonempty. If N ′1 ⊆ N ′2 ⊆ N ′3 ⊆ . . . is a chain in
F , then ∪iN ′i ∈ F is an upper bound. By Zorn’s Lemma, the set F has
maximal elements. �

Definition 1.13. The module N ′ in Proposition 1.12 (4) is a maximal es-
sential extension of M in N . If M ⊆ N is essential and N has no proper
essential extensions, we say that N is a maximal essential extension of M .
Proposition 1.14. Let M be an R-module. The following conditions are
equivalent:

(1) M is injective;
(2) M is a direct summand of every module containing it;
(3) M has no proper essential extensions.

Proof. (1) =⇒ (2) =⇒ (3) is left as an exercise, and we prove the
implication (3) =⇒ (2). Consider an embedding M ↪→ E where E is
injective. By Zorn’s lemma, there exists a submodule N ⊆ E which is
maximal with respect to the property that N ∩M = 0. This implies that
M ↪→ E/N is an essential extension, and hence that it is an isomorphism.
But then E = M +N so E = M ⊕N . Since M is a direct summand of an
injective module, it must be injective. �

Proposition 1.15. Let M and E be R-modules.
(1) If E is injective and M ⊆ E, then any maximal essential extension

of M in E is an injective module, hence is a direct summand of E.
(2) Any two maximal essential extensions of M are isomorphic.

Proof. (1) Let E′ be a maximal essential extension of M in E and let E′ ⊆ Q
be an essential extension. Since E is injective, the identity map E′ −→ E
lifts to a homomorphism ϕ : Q −→ E. Since Q is an essential extension of
E′, it follows that ϕ must be injective. This gives us M ⊆ E′ ⊆ Q ↪→ E,
and the maximality of E′ implies that Q = E′. Hence E′ has no proper
essential extensions, and so it is an injective module by Proposition 1.14.

(2) Let M ⊆ E and M ⊆ E′ be maximal essential extensions of M . Then
E′ is injective, so M ⊆ E′ extends to a homomorphism ϕ : E −→ E′.
The inclusion M ⊆ E is an essential extension, so ϕ is injective. But then
ϕ(E) is an injective module, and hence a direct summand of E′. Since
M ⊆ ϕ(E) ⊆ E′ is an essential extension, we must have ϕ(E) = E′. �

Definition 1.16. The injective hull or injective envelope of an R-module
M is a maximal essential extension of M , and is denoted by ER(M).
Definition 1.17. Let M be an R-module. A minimal injective resolution
of M is a complex

0 −→ E0 −→ E1 −→ E2 −→ . . .

such that E0 = ER(M), E1 = ER(E0/M), and

Ei+1 = ER(Ei/ image(Ei−1)) for all i ≥ 2.
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Note that the modules Ei are injective, and that image(Ei) ⊆ Ei+1 is an
essential extension for all i ≥ 0.

2. Injectives over a Noetherian Ring

Proposition 2.1 (Bass). A ring R is Noetherian if and only if every direct
sum of injective R-modules is injective.

Proof. We first show that if M is a finitely generated R-module, then

HomR(M,⊕iNi) ∼= ⊕i HomR(M,Ni).

Independent of the finite generation of M , there is a natural injective ho-
momorphism ϕ : ⊕i HomR(M,Ni) −→ HomR(M,⊕iNi). If M is finitely
generated, the image of a homomorphism from M to ⊕iNi is contained in
the direct sum of finitely many Ni. Since Hom commutes with forming finite
direct sums, ϕ is surjective as well.

Let R be a Noetherian ring, and Ei be injective R-modules. Then for
an ideal a of R, the natural map HomR(R,Ei) −→ HomR(a, Ei) is sur-
jective. Since a is finitely generated, the above isomorphism implies that
HomR(R,⊕Ei) −→ HomR(a,⊕Ei) is surjective as well. Baer’s criterion
now implies that ⊕Ei is injective.

If R is not Noetherian, it contains a strictly ascending chain of ideals

a1 ( a2 ( a3 ( . . . .

Let a = ∪iai. The natural maps a ↪→ R −→→ R/ai ↪→ ER(R/ai) give us
a homomorphism a −→

∏
iER(R/ai). The image lies in the submodule

⊕iER(R/ai), (check!) so we have a homomorphism ϕ : a −→ ⊕iER(R/ai).
Lastly, check that ϕ does not extend to homomorphism R −→ ⊕iER(R/ai).

�

Theorem 2.2. Let E be an injective module over a Noetherian ring R.
Then

E ∼= ⊕iER(R/pi),
where pi are prime ideals of R. Moreover, any such direct sum is an injective
R-module.

Proof. The last statement follows from Proposition 2.1. Let E be an injective
R-module. By Zorn’s Lemma, there exists a maximal family {Ei} of injective
submodules of E such that Ei ∼= ER(R/pi), and their sum in E is a direct
sum. Let E′ = ⊕Ei, which is an injective module, and hence is a direct
summand of E. There exists an R-module E′′ such that E = E′ ⊕ E′′. If
E′′ 6= 0, pick a nonzero element x ∈ E′′. Let p be an associated prime of
Rx. Then R/p ↪→ Rx ⊆ E′′, so there is a copy of ER(R/p) contained in E′′

and E′′ = ER(R/p)⊕E′′′, contradicting the maximality of family {Ei}. �

Definition 2.3. Let a be an ideal of a ring R, and M be an R-module. We
say M is a-torsion if every element of M is killed by some power of a.
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Theorem 2.4. Let p be a prime ideal of a Noetherian ring R, and let
E = ER(R/p) and κ = Rp/pRp, which is the fraction field of R/p. Then

(1) if x ∈ R \ p, then E
x−→ E is an isomorphism, and so E = Ep;

(2) 0 :E p = κ;
(3) κ ⊆ E is an essential extension of Rp-modules and E = ERp(κ);
(4) E is p-torsion and Ass(E) = {p};
(5) HomRp(κ,E) = κ and HomRp(κ,ER(R/q)p) = 0 for primes q 6= p.

Proof. (1) κ is an essential extension of R/p by Example 1.8, so E contains
a copy of κ and we may assume R/p ⊆ κ ⊆ E. Multiplication by x ∈ R\p is
injective on κ, and hence also on its essential extension E. The submodule
xE is injective, so it is a direct summand of E. But κ ⊆ xE ⊆ E are
essential extensions, so xE = E.

(2) 0 :E p = 0 :E pRp is a vector space over the field κ, and hence the
inclusion κ ⊆ 0 :E p splits. But κ ⊆ 0 :E p ⊆ E is an essential extension, so
0 :E p = κ.

(3) The containment κ ⊆ E is an essential extension of R-modules, hence
also of Rp-modules. Suppose E ⊆M is an essential extension of Rp-modules,
pick m ∈M . Then m has a nonzero multiple (r/s)m ∈ E, where s ∈ R \ p.
But then rm is a nonzero multiple of m in E, so E ⊆ M is an essential
extension of R-modules, and therefore M = E.

(4) Let q ∈ Ass(E). Then there exists x ∈ E such that Rx ⊆ E and
0 :R x = q. Since R/p ⊆ E is essential, x has a nonzero multiple y in R/p.
But then the annihilator of y is p, so q = p and Ass(E) = {p}.

If a is the annihilator of a nonzero element of E, then p is the only
associated prime of R/a ↪→ E, so E is p-torsion.

(5) For the first assertion,

HomRp(κ,E) = HomRp(Rp/pRp, E) ∼= 0 :pRp E = κ.

Since elements of R\q act invertibly on ER(R/q), we see that ER(R/q)p = 0
if q * p. In the case q ⊆ p, we have

HomRp(κ,ER(R/q)p) ∼= 0 :pRp ER(R/q)p = 0 :pRp ER(R/q).

If this is nonzero, then there is a nonzero element of ER(R/q) killed by p,
which forces q = p since AssER(R/q) = {q}. �

We are now able to strengthen Theorem 2.2 to obtain the following struc-
ture theorem for injective modules over Noetherian rings.

Theorem 2.5. Let E be an injective over a Noetherian ring R. Then

E =
⊕

p∈SpecR

ER(R/p)αp ,

and the numbers αp are independent of the direct sum decomposition.
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Proof. Theorem 2.2 implies that a direct sum decomposition exists. By
Theorem 2.4 (5), αp is the dimension of the Rp/pRp-vector space

HomRp(Rp/pRp, Ep),

which does not depend on the decomposition. �

The following proposition can be proved along the lines of Theorem 2.4,
and we leave the proof as an exercise.
Proposition 2.6. Let S ⊂ R be a multiplicative set.

(1) If E is an injective R-module, then S−1E is an injective module over
the ring S−1R.

(2) If M ↪→ N is an essential extension (or a maximal essential exten-
sion) of R-modules, then the same is true for S−1M ↪→ S−1N over
S−1R.

(3) The indecomposable injectives over S−1R are the modules ER(R/p)
for p ∈ SpecR with p ∩ S = ∅.

Definition 2.7. Let M be an R-module, and let E• be a minimal injective
resolution of R where

Ei =
⊕

p∈SpecR

ER(R/p)µi(p,M).

Then µi(p,M) is the i-th Bass number of M with respect to p. The following
theorem shows that these numbers are well-defined.
Theorem 2.8. Let κ(p) = Rp/pRp. Then

µi(p,M) = dimκ(p) ExtiRp
(κ(p),Mp).

Proof. Let E• be a minimal injective resolution of M where the i th module
is Ei = ⊕ER(R/p)µi(p,M). Localizing at p, Proposition 2.6 implies that E•p is
a minimal injective resolution of Mp over the ring Rp. Moreover, the number
of copies of ER(R/p) occurring in Ei is the same as the number of copies
of ER(R/p) in Eip. By definition, ExtiRp

(κ(p),Mp) is the i-th cohomology
module of the complex

0 −→ HomRp(κ(p), E0
p) −→ HomRp(κ(p), E1

p) −→ HomRp(κ(p), E2
p) −→ . . .

and we claim all maps in this complex are zero. If ϕ ∈ HomRp(κ(p), Eip), we
need to show that the composition

κ(p)
ϕ−→ Eip

δ−→ Ei+1
p

is the zero map. If ϕ(x) 6= 0 for x ∈ κ(p), then ϕ(x) has a nonzero multiple
in image(Ei−1

p −→ Eip). Since κ(p) is a field, it follows that

ϕ(κ(p)) ⊆ image(Ei−1
p −→ Eip),

and hence that δ ◦ ϕ = 0. By Theorem 2.4 (5)

HomRp(κ(p), Eip) ∼= κ(p)µi(p,M),
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so ExtiRp
(κ(p),Mp) is the i-th cohomology module of the complex

0 −→ κ(p)µ0(p,M) −→ κ(p)µ1(p,M) −→ κ(p)µ2(p,M) −→ . . . .

where all maps are zero, and the required result follows. �

Remark 2.9. We next want to consider the special case in which (R,m,K)
is a Noetherian local ring. Recall that we have natural surjections

. . . −→ R/m3 −→ R/m2 −→ R/m −→ 0,

and that the m-adic completion R̂ of R is the inverse limit of this system,
i.e.,

lim←−
k

(R/mk) =

{
(r0, r1, r2, . . . ) ∈

∏
k

R/mk | rk − rk−1 ∈ mk−1

}
.

Morally, elements of the a-adic completion of R are power series of elements
of R where “higher terms” are those contained in higher powers of the ideal
a. There is no reason to restrict to local rings or maximal ideals—for topo-
logical purposes, completions at other ideals can be very interesting; see, for
example, [5].

Note that R̂/mkR̂ ∼= R/mk. Consequently if M is m-torsion, then the
R-module structure on M makes it an R̂-module. In particular, ER(R/m)
is an R̂-module.
Theorem 2.10. Let (R,m,K) be a local ring. Then ER(K) = E

R̂
(K).

Proof. The containment K ⊆ ER(K) is an essential extension of R-modules,
hence also of R̂-modules. If ER(K) ⊆ M is an essential extension of R̂-
modules, then M is m-torsion. (Prove!) If m ∈ M is a nonzero element,
then R̂m ∩ ER(K) 6= 0. But R̂m = Rm, so ER(K) ⊆ M is an essential
extension of R-modules, which implies M = ER(K). It follows that ER(K)
is a maximal essential extension of K as an R̂-module. �

Theorem 2.11. Let ϕ : (R,m,K) −→ (S, n, L) be a homomorphism of local
rings such that ϕ(m) ⊆ n, the ideal ϕ(m)S is n-primary, and S is module-
finite over R. Then

HomR(S,ER(K)) = ES(L).

Proof. By Exercise 1.5, HomR(S,ER(K)) is an injective S-module. Every
element of HomR(S,ER(K)) is killed by a power of m and hence by a power
of n. It follows that HomR(S,ER(K)) is a direct sum of copies of ES(L),
say HomR(S,ER(K)) ∼= ES(L)µ. To determine µ, consider

HomS(L,HomR(S,ER(K))) ∼= HomR(L⊗S S,ER(K)) ∼= HomR(L,ER(K)).

The image of any element of HomR(L,ER(K)) is killed by n, hence

HomR(L,ER(K)) ∼= HomR(L,K) ∼= HomK(L,K)
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and Lµ ∼= HomK(L,K). Considering vector space dimensions over K, this
implies µdimK L = dimK L, so µ = 1. �

Corollary 2.12. Let (R,m,K) be a local ring and let S = R/a where a is
an ideal of R. Then the injective hull of the residue field of S is

HomR(R/a, ER(K)) ∼= 0 :ER(K) a.

Since every element of ER(K) is killed by a power of m, we have

ER(K) =
⋃
t∈N

(0 :ER(K) mt) =
⋃
t∈N

ER/mt(K).

This motivates the study of ER(K) for Artinian local rings.

3. The Artinian case

Recall that the length of a module M is the length of a composition series
for M , and is denoted `(M). The length is additive over short exact se-
quences. If (R,m,K) is an Artinian local ring, then every finitely generated
R-module has a composition series with factors isomorphic to R/m.
Lemma 3.1. Let (R,m,K) be a local ring. Then (−)∨ = HomR(−, ER(K))
is a faithful functor, and `(M∨) = `(M) for every R-module M of finite
length.

Proof. Note that (R/m)∨ = HomR(R/m, ER(K)) ∼= K. If M is a nonzero
R-module, we need to show that M∨ is nonzero. Taking a nonzero cyclic
submodule R/a ↪→M , we have M∨ −→→ (R/a)∨, so it suffices to show that
(R/a)∨ is nonzero. The surjection R/a −→→ R/m yields (R/m)∨ ↪→ (R/a)∨,
and hence (−)∨ is faithful.

For M of finite length, we use induction on `(M) to prove `(M∨) = `(M).
The result is true for modules of length 1 since (R/m)∨ ∼= K. For a module
M of finite length, consider m ∈ soc(M) and the exact sequence

0 −→ Rm −→M −→M/Rm −→ 0.

Applying (−)∨, we obtain an exact sequence

0 −→ (M/Rm)∨ −→M∨ −→ (Rm)∨ −→ 0.

Since Rm ∼= K and `(M/Rm) = `(M)− 1, we are done by induction. �

Corollary 3.2. Let (R,m,K) be an Artinian local ring. Then ER(K) is a
finite length module and `(ER(K)) = `(R).
Theorem 3.3. Let (R,m,K) be a Artinian local ring and E = ER(K).
Then the map R −→ HomR(E,E), which takes a ring element r to the
homomorphism “multiplication by r,” is an isomorphism.

Proof. By the previous results, `(R) = `(E) = `(E∨), so R and HomR(E,E)
have the same length, and it suffices to show the map is injective. If rE = 0,
then E = ER/Rr(K) so `(R) = `(R/Rr), forcing r = 0. �
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Theorem 3.4. Let (R,m,K) be a local ring. Then R is an injective R-
module if and only if the following two conditions are satisfied:

(1) R is Artinian, and
(2) soc(R) is 1-dimensional vector space over K.

Proof. If R = M ⊕N then K ∼= (M ⊗R K)⊕ (N ⊗R K), so one of the two
summands must be zero, say M ⊗R K = 0. But then Nakayama’s lemma
implies that M = 0. It follows that a local ring in indecomposable as a
module over itself. Hence if R is injective, then R ∼= ER(R/p) for some
p ∈ SpecR. This implies R that is p-torsion and it follows that p is the
only prime ideal of R and hence that R is Artinian. Furthermore, soc(R) is
isomorphic to soc(ER(K)), which is 1-dimensional.

Conversely, if R is Artinian with soc(R) = K, then R is an essential
extension of its socle. The essential extension K ⊆ R can be enlarged to a
maximal essential extension K ⊆ ER(K). Since `(ER(K)) = `(R), we must
have ER(K) = R. �

4. Matlis duality

Theorem 4.1. Let (R,m,K) be a local ring and let E = ER(K). Then E is
also an R̂-module, and the map R̂ −→ HomR(E,E), which takes an element
r ∈ R̂ to the homomorphism “multiplication by r,” is an isomorphism.

Proof. Since E = E
R̂

(K), there is no loss of generality in assuming that R
is complete. For integers t ≥ 1, consider the rings Rt = R/mt. Then Et =
0 :E mt is the injective hull of the residue field of Rt. If ϕ ∈ HomR(E,E),
then ϕ(Et) ⊆ Et, so ϕ restricts to an element of HomRt(Et, Et), which
equals Rt by Theorem 3.3. The homomorphism ϕ, when restricted to Et, is
multiplication by an element rt ∈ Rt. Moreover E = ∪tEt and the elements
rt are compatible under restriction, i.e., rt+1 − rt ∈ mt. Thus ϕ is precisely
multiplication by the element (r1 − r2) + (r2 − r3) + · · · ∈ R. �

Corollary 4.2. For a local ring (R,m,K), the module ER(K) satisfies the
descending chain condition (DCC).

Proof. Consider a descending chain of submodules

ER(K) = E ⊇ E1 ⊇ E2 ⊇ . . . .
Applying the functor (−)∨ = HomR(−, E) gives us surjections

R̂ ∼= E∨ −→→ E∨1 −→→ E∨2 −→→ . . . .

Since R̂ is Noetherian, the ideals ker(R̂ −→→ E∨t ) stabilize for large t, and
hence E∨t −→→ E∨t+1 is an isomorphism for t � 0. Since (−)∨ is faithful, it
follows that Et = Et+1 for t� 0. �

Theorem 4.3. Let (R,m,K) be a Noetherian local ring. The following
conditions are equivalent for an R-module M .

(1) M is m-torsion and soc(M) is a finite-dimensional K-vector space;
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(2) M is an essential extension of a finite-dimensional K-vector space;
(3) M can be embedded in a direct sum of finitely many copies of ER(K);
(4) M satisfies the descending chain condition.

Proof. The implications (1) =⇒ (2) =⇒ (3) =⇒ (4) follow from earlier
results, so we focus on (4) =⇒ (1). Let x ∈M . The descending chain

Rx ⊇ mx ⊇ m2x ⊇ . . .

stabilizes, so mt+1x = mtx for some t. But then Nakayama’s lemma implies
mtx = 0, and it follows that M is m-torsion. Since soc(M) is a vector space
with DCC, it must be finite-dimensional. �

Example 4.4. Let (R,m,K) be a discrete valuation ring with maximal ideal
m = Rx. (For example, R may be a power series ring K[[x]] or the ring of
p-adic integers Ẑp, in which case x = p.) We claim that ER(K) ∼= Rx/R. To
see this, note that soc(Rx/R) is a 1-dimensional K-vector space generated
by the image of 1/x ∈ Rx, and that every element of Rx/R is killed by a
power of x.

The next result explains the notion of duality in the current context.
Theorem 4.5. Let (R,m,K) be a complete Noetherian local ring, and use
(−)∨ to denote the functor HomR(−, ER(K)).

(1) If M has ACC then M∨ has DCC, and if M has DCC then M∨ has
ACC. Hence the category of R-modules with DCC is anti-equivalent
to the category of R-modules with ACC.

(2) If M has ACC or DCC, then M∨∨ ∼= M .

Proof. Let E = ER(K). If M with ACC, consider a presentation

Rm −→ Rn −→M −→ 0.

Applying (−)∨, we get an exact sequence 0 −→ M −→ (Rn)∨ −→ (Rm)∨.
Since (Rn)∨ ∼= En has DCC, so does its submodule M . Applying (−)∨

again, we get the commutative diagram with exact rows

(Rm)∨∨ −−−−→ (Rn)∨∨ −−−−→ M∨∨ −−−−→ 0x x x x
Rm −−−−→ Rn −−−−→ M −−−−→ 0.

Since R −→ R∨∨ is an isomorphism, it follows that M −→ M∨∨ is an
isomorphism as well.

If M has DCC, we embed it in Em and obtain an exact sequence

0 −→M −→ Em −→ En.

Applying (−)∨ gives an exact sequence (En)∨ −→ (Em)∨ −→ M∨ −→ 0.
The surjection Rn ∼= (Em)∨ −→→ M∨ shows that M has ACC, while a
similar commutative diagram gives the isomorphism M∨∨ ∼= M . �
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Remark 4.6. Let M be a finitely generated module over a complete local
ring (R,m,K). Then

HomR(K,M∨) ∼= HomR(K ⊗RM,ER(K)) ∼= HomR(M/mM,ER(K))
∼= HomK(M/mM,K),

so the number of generators of M as an R-module equals the vector space
dimension of soc(M∨).

References

[1] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-
Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.

[2] W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced
Mathematics 39, Cambridge University Press, Cambridge, 1993.

[3] H. Matsumura, Commutative algebra, W. A. Benjamin, Inc., New York, 1970.
[4] E. Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958) 511–528.

[5] R. Hartshorne, On the de Rham cohomology of algebraic varieties, Inst. Hautes Études
Sci. Publ. Math. 45 (1975), 5–99.


