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Lecture 1. Basic notions (AS)

Definition 1.1. Let R = K[x1, . . . , xn] be a polynomial ring in n variables over a
field K, and consider polynomials f1, . . . , fm ∈ R. Their zero set

V = {(α1, . . . , αn) ∈ Kn | f1(α1, . . . , αn) = 0, . . . , fm(α1, . . . , αn) = 0}
is an algebraic set in Kn. These are our basic objects of study, and include many
familiar examples such as those listed below.

Example 1.2. If f1, . . . , fm ∈ K[x1, . . . , xn] are homogeneous linear polynomials,
their zero set is a vector subspace of Kn. If V,W are vector subspaces of Kn, then
we have the following inequality of vector space dimensions:

rankK(V ∩W ) > rankK V + rankKW − n.
An easy way to see this inequality is via the exact sequence

0 −−−−→ V ∩W α−−−−→ V ⊕W β−−−−→ V +W −−−−→ 0,

where α(u) = (u, u) and β(v, w) = v − w. Then

rankK(V ∩W ) = rankK V ⊕W − rankK(V +W )

> rankK V + rankKW − n.
Example 1.3. A hypersurface is a zero set of one equation. The circle of unit
radius in R2 is a hypersurface—it is the zero set of the polynomial x2 + y2 − 1.

Example 1.4. If f ∈ K[x1, . . . , xn] is a homogeneous polynomial of degree d, then
f(α1, . . . , αn) = 0 implies that

f(cα1, . . . , cαn) = cdf(α1, . . . , αn) = 0

for all c ∈ K. Hence if an algebraic set V ⊂ Kn is the zero set of homogeneous
polynomials, then, for all (α1, . . . , αn) ∈ V and c ∈ K, we have (cα1, . . . , cαn) ∈ V .
In this case, the algebraic set V is said to be a cone.

Example 1.5. For integers m,n > 2, consider the set V ⊂ Kmn of all m × n
matrices over K which have rank less than a fixed integer t. A matrix has rank less
than t if and only if its size t minors (i.e., the determinants of t × t submatrices)
all equal zero. Take

R = K[xij | 1 6 i 6 m, 1 6 j 6 n],

which is a polynomial ring in mn variables arranged as an m× n matrix. Then V
is the solution set of the

(
m
t

)(
n
t

)
polynomials which arise as the size t minors of the

matrix (xij). Hence V is an algebraic set (in fact, a cone) in Kmn.

Exercise 1.6 ([94]). Let K be a finite field.

(1) For every point p ∈ Kn, construct a polynomial f ∈ K[x1, . . . , xn] such that
f(p) = 1 and f(q) = 0 for all points q ∈ Kn \ {p}.

(2) Given a function g : Kn −→ K, show that there is a polynomial f ∈
K[x1, . . . , xn] with f(p) = g(p) for all p ∈ Kn.

(3) Prove that any subset of Kn is the zero set of a single polynomial.

Remark 1.7. One may ask: is the zero set of an infinite family of polynomials also
the zero set of a finite family? To answer this, recall that a ring is Noetherian if all
its ideals are finitely generated, and that the polynomial ring R = K[x1, . . . , xn] is
Noetherian by the Hilbert basis theorem, [4, Theorem 7.5]. Let a ⊂ R be the ideal
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generated by a possibly infinite family of polynomials {gλ}. The zero set of {gλ} is
the same as zero set of all polynomials in the ideal a. But a is finitely generated,
say a = (f1, . . . , fm), so the zero set of {gλ} is precisely the zero set of the finitely
many polynomials f1, . . . , fm.

Given a set of polynomials f1, . . . , fm generating an ideal a ⊂ R, we denote
their zero set in Kn by Var(f1, . . . , fm) or by Var(a). Note that Var(f) = Var(fk)
for any integer k > 1, hence if a and b are ideals with the same radical, then
Var(a) = Var(b). A theorem of Hilbert states that over an algebraically closed
field, the converse is true as well:

Theorem 1.8 (Hilbert’s Nullstellensatz). Let R = K[x1, . . . , xn] be a polynomial
ring over an algebraically closed field K. If Var(a) = Var(b) for ideals a, b ⊂ R,
then rad a = rad b. Consequently the map a 7→ Var(a) is a containment reversing
bijection between the set of radical ideals of K[x1, . . . , xn] and algebraic sets in Kn.

For a proof, solve [4, Problem 7.14]. In particular, the theorem above tells us
when polynomial equations have a common solution, and the following corollary is
also (and perhaps more appropriately) referred to as the Nullstellensatz:

Corollary 1.9. Let R = K[x1, . . . , xn] be a polynomial ring over an algebraically
closed field K. Then polynomials f1, . . . , fm ∈ R have a common zero if and only
if (f1, . . . , fm) 6= R.

Proof. Var(R) = ∅, so Var(a) = ∅ for an ideal a if and only if rad a = R, which
occurs if and only a = R. �

Corollary 1.10. Let R = K[x1, . . . , xn] be a polynomial ring over an algebraically
closed field K. Then the maximal ideals of R are precisely the ideals

(x1 − α1, . . . , xn − αn) where αi ∈ K.

Proof. Let m be a maximal ideal of R. Then m 6= R so there exists a point
(α1, . . . , αn) ∈ Var(m). But then

Var(x1 − α1, . . . , xn − αn) ⊆ Var(m),

so m ⊆ (x1 − α1, . . . , xn − αn). Since each is a maximal ideal of R, they must be
equal. �

Exercise 1.11 ([94]). Let K be a field which is not algebraically closed. Prove
that any algebraic set in Kn is the zero set of a single polynomial f ∈ K[x1, . . . , xn].

Krull dimension of a ring

We would like a notion of dimension for algebraic sets which agrees with vec-
tor space dimension if the algebraic set is a vector space, and gives a suitable
generalization of the inequality in Example 1.2. The situation is certainly more
complicated than with vector spaces; for example, not all points of an algebraic set
are “similar”—the algebraic set defined by xy = 0 and xz = 0 is the union of a line
and a plane. To obtain a good theory of dimension, we recall some notions from
commutative algebra.
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Definition 1.12. Let R be a ring. The spectrum of R, denoted SpecR, is the
set of prime ideals of R with the Zariski topology, which is the topology where the
closed sets are

V (a) = {p ∈ SpecR | a ⊆ p} for ideals a ⊆ R.
It is easily verified that this is indeed a topology: the empty set is both open and
closed, an intersection of closed sets is closed since

⋂
λ V (aλ) = V (

⋃
λ aλ), and the

union of two closed sets is closed since

V (a) ∪ V (b) = V (a ∩ b) = V (ab).

The height of a prime ideal p, denoted height p, is the supremum of integers t
such that there exists a chain of prime ideals

p = p0 ) p1 ) p2 · · · ) pt, where pi ∈ SpecR.

The height of an arbitrary ideal a ⊂ R is

height a = inf{height p | p ∈ SpecR, a ⊆ p}.
The Krull dimension of R is

dimR = sup{height p | p ∈ SpecR}.
Note that for every prime ideal p of R, we have dimRp = height p.

Example 1.13. The prime ideals of Z are (0) and (p) for prime integers p. Conse-
quently the longest chains of prime ideals in Spec Z are those of the form (0) ( (p),
and so dim Z = 1. More generally, if R is a principal ideal domain which is not a
field, then dimR = 1.

Theorem 1.14 (Krull). Let R be a Noetherian ring. If an ideal a ( R is generated
by n elements, then each minimal prime p of a has height p 6 n. In particular, every
ideal a ( R has finite height.

The above theorem implies that every proper principal ideal of a Noetherian
ring has height at most one, which is Krull’s principal ideal theorem. For a proof
of Theorem 1.14, see [4, Corollary 11.16]. While it is true that every prime ideal
in a Noetherian ring has finite height, the Krull dimension is the supremum of the
heights of prime ideals, and this supremum may be infinite, see [4, Problem 11.4]
for an example due to Nagata. The following theorem implies, in particular, that
local rings have finite Krull dimension; see [4, Theorem 11.14] for a proof.

Theorem 1.15 (Main theorem of dimension theory). Let (R,m) be a Noetherian
local ring, and d a nonnegative integer. The following conditions are equivalent:

(1) dimR = d;
(2) heightm = d;
(3) d is the least number of generators of an m-primary ideal;
(4) d is the least integer such that there exist elements x1, . . . , xd ∈ m for which

R/ (x1, . . . , xd) is an Artinian ring;
(5) For n≫ 0, the function ℓ(R/mn) is a polynomial in n of degree d.

Definition 1.16. Let (R,m) be a local ring of dimension d. Elements x1, . . . , xd
are a system of parameters for R if rad (x1, . . . , xd) = m.

Theorem 1.15 guarantees that every local ring has a system of parameters.
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Example 1.17. Let K be a field, and take

R = K[x, y, z](x,y,z)/(xy, xz).

Then R has a chain of prime ideals (x) ( (x, y) ( (x, y, z), so dimR > 2. On
the other hand, the maximal ideal (x, y, z) is the radical of the 2-generated ideal
(y, x− z), implying that dimR 6 2. It follows that dimR = 2 and that y, x− z is
a system of parameters for R.

Exercise 1.18. Let K be an arbitrary field. For the following local rings (R,m),
compute dimR by examining ℓ(R/mn) for n ≫ 0. In each case, find a system of
parameters for R and a chain of prime ideals

p0 ( p1 ( · · · ( pd = m, where d = dimR.

(1) R = K[x2, x3](x2,x3).

(2) R = K[x2, xy, y2](x2,xy,y2).
(3) R = K[w, x, y, z](w,x,y,z)/(wx − yz).
(4) R = Z(p) where p is a prime integer.

For a finitely generated domain over a field, the dimension may also be computed
as the transcendence degree of a field extension:

Theorem 1.19. If R is a finitely generated domain over a field K, then

dimR = tr. degK Frac(R),

where Frac(R) is the fraction field of R. Moreover, any chain of primes in SpecR
can be extended to a chain of length dimR. Hence dimRm = dimR for every
maximal ideal m of R, and

height p + dimR/p = dimR for all p ∈ SpecR.

When K is algebraically closed, this is [4, Corollary 11.27]; for the general case
see [114, Theorem 5.6, Exercise 5.1].

Example 1.20. If K is a field, then the polynomial ring R = K[x1, . . . , xd] has
dimension d since tr. degK K(x1, . . . , xd) = d.

If f ∈ R is a nonzero polynomial, then the minimal primes of the ideal (f) are
the principal ideals generated by irreducible factors of f and these have height 1
by Theorem 1.14. It follows that dimR/ (f) = n− 1.

Remark 1.21. We say that a ring R is N-graded if R = ⊕n>0Rn as an Abelian
group, and RmRn ⊆ Rm+n for integers m,n > 0. Assume that R is finitely
generated over a field R0 = K. Then m = ⊕n>0Rn is the (unique) homogeneous
maximal ideal of R.

Let M be a finitely generated Z-graded R-module, i.e., M = ⊕n∈ZMn as an
Abelian group, and RmMn ⊆Mm+n for all m > 0 and n ∈ Z. The Hilbert-Poincaré
series of M is the generating function for dimKMn, i.e., the series

P (M, t) =
∑

n∈Z

(dimKMn)t
n ∈ Z[[t]][t−1].

It turns out that P (M, t) is a rational function of t of the form

f(t)∏
i(1 − tki)

where f(t) ∈ Z[t],
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[4, Theorem 11.1], and that the dimension of R is precisely the order of the pole of
P (R, t) at t = 1.

Example 1.22. Let R be the polynomial ring K[x1, . . . , xd] where K is a field. The
vector space dimension of Rn is the number of monomials of degree n, which is the
binomial coefficient

(
n+d−1
n

)
. Hence

P (R, t) =
∑

n>0

(
n+ d− 1

n

)
tn =

1

(1 − t)d .

Exercise 1.23. Compute P (R, t) in the following cases:

(1) R = K[wx,wy, zx, zy] where each of wx,wy, zx, zy have degree 1.
(2) R = K[x2, x3] where the grading is induced by deg x = 1.
(3) R = K[x4, x3y, xy3, y4] where deg x4 = deg y4 = 1.

Dimension of an algebraic set

For the sake of simplicity we work over an algebraically closed field K.

Definition 1.24. An algebraic set V is irreducible if it is not the union of two
algebraic sets which are proper subsets of V .

Exercise 1.25. Prove that an algebraic set V ⊂ Kn is irreducible if and only if
V = Var(p) for a prime ideal p of K[x1, . . . , xn].

Remark 1.26. Every algebraic set can be uniquely written as a finite union of
irreducible algebraic sets where there are no redundant terms in the union. Let
V = Var(a) where a is a radical ideal. Then

a = p1 ∩ · · · ∩ pn for pi ∈ SpecR,

and assume this intersection is irredundant. Then

V = Var(p1) ∪ · · · ∪Var(pn),

and Var(pi), are precisely the irreducible components of V . Note that the map
a 7→ Var(a) gives us the following bijections:

radical ideals of K[x1, . . . , xn] ←→ algebraic sets in Kn,
prime ideals of K[x1, . . . , xn] ←→ irreducible algebraic sets in Kn,
maximal ideals of K[x1, . . . , xn] ←→ points of Kn.

Definition 1.27. Let V = Var(a) be the algebraic set defined by an ideal a ⊂
K[x1, . . . , xn]. The coordinate ring of V , denoted K[V ], is the ring R/a.

The points of V correspond to maximal ideals of K[x1, . . . , xn] containing a, and
hence to the maximal ideals of K[V ]. Let p ∈ V be a point corresponding to a
maximal ideal m ⊂ K[V ]. The local ring of V at p is the ring K[V ]m.

Definition 1.28. The dimension of an irreducible algebraic set V is the Krull
dimension of its coordinate ring K[V ]. For a (possibly reducible) algebraic set V ,
we define

dimV = sup{dimVi | Vi is an irreducible component of V }.
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Example 1.29. The irreducible components of the algebraic set

V = Var(xy, xz) = Var(x) ∪Var(y, z) in K3

are the plane x = 0 and the line y = z = 0. The dimension of the plane is
dim K[x, y, z]/ (x) = 2, and of the line is dim K[x, y, z]/ (y, z) = 1, so dimV = 2.

Example 1.30. Let V be a d-dimensional vector subspace of Kn. After a linear
change of variables, we may assume that the n−d homogeneous linear polynomials
defining the algebraic set V are a subset of the variables of the polynomial ring
K[x1, . . . , xn], i.e., V = Var(x1, . . . , xn−d). Hence

dimV = dim K[x1, . . . , xn]/ (x1, . . . , xn−d) = d.

The dimension of an algebraic set, as we have defined it here, has several desirable
properties:

Theorem 1.31. Let K be an algebraically closed field, and let V and W be algebraic
sets in Kn.

(1) If V is a vector space, then dimV equals the vector space dimension rankK V .
(2) Let W be an irreducible algebraic set of dimension d, and V an algebraic set

defined by m polynomials. Then every nonempty irreducible component of
V ∩W has dimension at least d−m.

(3) Every nonempty irreducible component of V ∩W has dimension greater than
or equal to dimV + dimW − n.

(4) If K = C, then dimV is half of the dimension of V as a real topological space.

Note that Theorem 1.31(3) generalizes the inequality of vector space dimensions
we observed in Example 1.2.

Sketch of proof. (1) was observed in Example 1.30.
(2) Let p be the prime ideal of R = K[x1, . . . , xn] such that W = Var(p), and

let V = Var(f1, . . . , fm). An irreducible component of V ∩ W corresponds to a
minimal prime q of p + (f1, . . . , fm). But then q/p is a minimal prime of the ideal
(f1, . . . , fm)R/p, so height q/p 6 m by Theorem 1.14. Hence

dimR/q = dimR/p− height q/p > d−m.
(3) Replacing V and W by irreducible components, we may assume that V =

Var(p) andW = Var(q) for prime ideals p, q ⊂ K[x1, . . . , xn]. Let q′ ⊂ K[x′1, . . . , x
′
n]

be the ideal obtained from q by replacing each xi by a new variable x′i. We may
regard V ×W as an algebraic set in Kn×Kn = K2n, i.e., as the zero set of the ideal

p + q′ ⊂ K[x1, . . . , xn, x
′
1, . . . , x

′
n] = S.

Using the fact that K is algebraically closed, it is not hard to see that p + q′ is a
prime ideal of S, so V ×W is irreducible and has dimension dimV + dimW . Let
d = (x1 − x′1, . . . , xn − x′n), in which case ∆ = Var(d) is the ‘diagonal’ in Kn ×Kn.
Then

K[V ∩ W ] =
K[x1, . . . , xn]

p + q
∼= K[x1, . . . , xn, x

′
1, . . . , x

′
n]

p + q′ + d
= K[(V × W ) ∩ ∆].

The ideal d is generated by n elements, so Krull’s Theorem 1.14 implies that

dim(V ∩W ) = dimS/(p + q′ + d)

> dimS/(p + q′)− n = dim V + dimW − n.
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(4) We skip the proof, but point out that an irreducible complex algebraic set
of dimension d is the union of a C-manifold of dimension d and an algebraic set of
lower dimension. �

An extended example

Example 1.32. Consider the algebraic set V of 2×3 complex matrices of rank less
than 2. Take the polynomial ring R = C[u, v, w, x, y, z]. Then V = Var(a), where
a is the ideal generated by the polynomials

∆1 = vz − wy, ∆2 = wx − uz, ∆3 = uy − vx.

Exercise 1.34 shows that a is a prime ideal. We compute dimV from four different
points of view.

As a topological manifold: The set of rank one matrices is the union of the sets
{(

a b c
ad bd cd

)
| (a, b, c) ∈ C3 \ {0}, d ∈ C

}

and {(
ad bd cd
a b c

)
| (a, b, c) ∈ C3 \ {0}, d ∈ C

}
,

each of which is a copy of C3 \ {0}×C and hence has dimension 8 as a topological
space. The set V is the union of these along with one more point corresponding to
the zero matrix. Hence V has topological dimension 8 and so dimV = 8/2 = 4.

Using transcendental degree: The ideal a is prime so dimR/a can be computed
as tr. degC L, where L is the fraction field of R/a. In the field L we have v = uy/x
and w = uz/x, so

L = C(u, x, y, z)

where u, x, y, z are algebraically independent over C. Hence Theorem 1.19 implies
that dimR/a = 4.

By finding a system of parameters: In the polynomial ring R we have a chain
of prime ideals

a ( (u, x, vz − wy) ( (u, v, x, y) ( (u, v, w, x, y) ( (u, v, w, x, y, z)

which gives a chain of prime ideals in R/a showing that dimR/a > 4. Consider the
four elements u, v − x,w − y, z ∈ R. Then the ideal

a + (u, v − x,w − y, z) =
(
u, v − x,w − y, z, x2, xy, y2

)

contains m2 and hence it is m-primary. This means that the image of m in R/a is
the radical of a 4-generated ideal, so dimR/a 6 4. It follows that dimR/a = 4 and
that the images of u, v − x,w − y, z in R/a are a system of parameters for R/a.
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From the Hilbert-Poincaré series: Exercise 1.34 shows that R/a is isomorphic
to the ring S = C[as, bs, cs, at, bt, ct], under a degree preserving isomorphism, where
each of the monomials as, bs, cs, at, bt, ct is assigned degree 1. The vector space
dimension of Sn is the product of the number of monomials of degree n in a, b, c
with the number of monomials of degree n in s, t, i.e.,

(
n+2

2

)(
n+1

1

)
. It follows that

P (S, t) =
∑

n

(
n+ 2

2

)(
n+ 1

1

)
tn =

1 + 2t

(1− t)4 ,

which has a pole of order 4 at t = 1. Hence dimS = 4.

Exercise 1.33 (Hochster). Let R and S be K-algebras and ϕ : R −→ S a surjective
K-algebra homomorphism. Let {si} be a K-vector space basis for S, and ri ∈ R
elements with ϕ(ri) = si. Let a be an ideal contained in ker(ϕ). If every element of
R is congruent to an element in the K-span of {ri} modulo a, prove that a = ker(ϕ).

Exercise 1.34 (Hochster). Let R = K[u, v, w, x, y, z] and S the subring of the
polynomial ring K[a, b, c, s, t] generated over K by the monomials as, bs, cs, at, bt, ct,
i.e., S = K[as, bs, cs, at, bt, ct]. Consider the K-algebra homomorphism ϕ : R −→ S
where

ϕ(u) = as, ϕ(v) = bs, ϕ(w) = cs,

ϕ(x) = at, ϕ(y) = bt, ϕ(z) = ct.

Prove that ker(ϕ) = (vz − wy, wx − uz, uy − vx), and conclude that this ideal is
prime. This shows that

K[as, bs, cs, at, bt, ct] ∼= K[u, v, w, x, y, z]/(vz − wy,wx − uz, uy − vx).

Tangent spaces and regular rings

Working over an arbitrary field, one can consider partial derivatives of polyno-
mial functions with respect to the variables, e.g.,

∂

∂x
(x3 + y3 + z3 + xyz) = 3x2 + yz.

Definition 1.35. Let V = Var(a) ⊂ Kn be an algebraic set. The tangent space to
V at a point p = (α1, . . . , αn) is the algebraic set Tp(V ) ⊂ Kn which is the solution
set of the linear equations

n∑

i=1

∂f

∂xi

∣∣∣∣
p

(xi − αi) = 0 for f ∈ a.

An easy application of the product rule shows that to obtain the defining equations
for Tp(V ), it is sufficient to consider the linear equations arising from a generating
set for a.

For the rest of this lecture, we work over an algebraically closed field. Let V
be an irreducible algebraic set. Then V is nonsingular or smooth at a point p ∈ V
if dimTp(V ) = dimV , and V is singular at p otherwise.

Example 1.36. The circle Var(x2 + y2 − 1) is smooth at all points as long as the
field does not have characteristic 2.
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Take a point p = (α, β) on the cusp Var(x2 − y3). Then the tangent space at p
is the space defined by the polynomial equation

2α(x− α)− 3β2(y − β) = 0.

This is a line in K2 if p 6= (0, 0), whereas the tangent space to the cusp at p = (0, 0)
is all of K2. Hence the cusp has a unique singular point at the origin.

Definition 1.37. A local ring (R,m) of dimension d is a regular local ring if its
maximal ideal m can be generated by d elements.

Theorem 1.38. Let p be a point of an irreducible algebraic set V . Then the
dimension of Tp(V ) is the least number of generators of the maximal ideal of the
local ring of V at p.

Hence dimTp(V ) > dimV , and p is a nonsingular point of V if and only if the
local ring of V at p is a regular local ring.

Proof if V is a hypersurface. Let V = Var(f) for f ∈ K[x1, . . . , xn]. After a linear
change of coordinates, we may assume p = (0, . . . , 0) is the origin in Kn. Then
Tp(V ) is the algebraic set in Kn defined by the linear equation

n∑

i=1

∂f

∂xi

∣∣∣∣
p

xi = 0,

so dimTp(V ) > n − 1 and V is smooth at p if and only if some partial derivative

∂f/∂xi does not vanish at p, i.e., if and only if f /∈ (x1, . . . , xn)
2
. The local ring of

V at p is K[x1, . . . , xn](x1,...,xn)/ (f) and the minimal number of generators of its
maximal ideal m is the vector space dimension of

m/m2 = (x1, . . . , xn) /((x1, . . . , xn)
2

+ (f)),

which equals n− 1 precisely if f /∈ (x1, . . . , xn)
2
. �



11

Lecture 2. Sheaves: a potpourri of algebra, analysis and topology
(UW)

In this lecture we are going to get a first glimpse at the interplay of algebra,
geometry and topology that is commonly known as “sheaf theory”. The goal of
this lecture is to introduce sheaves by example and to motivate their further study
by pointing out some of their connections to algebra, analysis and topology. In
consequence, there is little proof and much hand-waving. Some of this will be
fixed by later lectures, but substantial parts will not. Because of its motivational
character the reader may want to revisit this lecture later, when equipped with more
of the algebraic tools that are necessary to fully appreciate some of the principles
outlined here.

There are many sources for further reading on sheaves and their applications.
For the algebro-geometric approach to sheaves on varieties and schemes we refer to
Hartshorne’s excellent book [63]. For more of the differential aspects of the theory
one can consult the monumental book by Griffiths and Harris [53], the very nice
book by Björk [9], the classic by Godement [47], or the work by Morita [121]. Much
of the required homological background can be found in Weibel’s excellent reference
book [158], while the books [84, 46] by Iversen, and Gelfand and Manin shows the
workings of homological algebra in action in the context of sheaf theory. As perhaps
the best expositions of how to link calculus and cohomology we recommend [11, 111],
and [29, 88] for connections with D-modules and singularity theory. This is not by
any account a complete list, but these books are excellent starting points.

The point of view of this lecture is to consider sheaves as spaces of functions.
They are typically defined by local conditions and it is of interest to determine
the global functions with the required local properties. For example, the Mittag-
Leffler problem specifies the principal parts of a holomorphic function on a Riemann
surface at finitely many points and asks for the existence of a global holomorphic
function with the appropriate principal parts [53]. Such local-to-global problems
are often nontrivial to solve and give rise to the notion of sheaf cohomology (which
is also discussed in Lectures 12,13,?? and 19), a special type of derived functor
(to be discussed in Lecture 3). These derived functors can be viewed as a kind of
shadow of a chosen functor when evaluated at some specific argument. Particularly
in topology such derived functors have a highly hands-on nature; sheaf cohomology
(when applied to the right kind of sheaf) “is” singular cohomology.

The nature of sheaves is truly multidisciplinary and so there are several algebraic
constructions that sheaf theory gave rise to. One of these is the Čech complex. It
may be viewed as a notion born out of the familiar Seifert–van Kampen theorem
that expresses the fundamental group of the union of two topological spaces in terms
of the fundamental groups of the two spaces, their intersection, and information how
these three groups interact. This Čech complex idea is a leading theme in the study
of algebraic varieties that we undertake under the umbrella of “local cohomology”
in this book.

To close these introductory remarks let us comment that our point of view that
sheaves be actual functions reflects the way that sheaves were initially conceived by
the French school around Leray and Cartan, but these days one typically describes
them in more abstract ways. Namely, Definition 2.3 below distills from the idea of
a function space the crucial abstract properties; this leads to a very flexible theory
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with many areas of application. Despite this abstraction, one may always view any
sheaf as a collection of functions although the target of the functions may be hard
to understand—see Remark 12.31.

2.1. The basics of sheaves. We assume that the reader is familiar with the basic
concepts of point set topology. Let us fix a space X with topology TX ,

Example 2.1. a) While in a space like Rn open and closed sets abound, a topol-
ogy can quite sparse. In the extreme case, the only sets in TX are X and the
empty set ∅. This scenario is known as the trivial topology.

b) In the other extreme, all subsets of X are open, and hence all of them are closed
as well. In that case, X is said to be given the discrete topology.

c) Most situations are of course somewhere between these two extreme cases. The
cases that interest us most will typically have distinctly fewer open sets than
one is accustomed to in Rn. For example, let us consider the spectrum of the
ring R = C[x]. By definition, points in this set correspond to prime ideals in
R, which are the ideals {(x− c)}c∈C together with the ideal (0). One declares
to be closed any collection Var(I) of prime ideals that happens to be the set of
all prime ideals containing an ideal I of R, this is the variety of I. This notion
is set up in such a way that the variety of the ideal I is the same as the variety
of the radical of I. So the closed sets are in this case the empty set, any finite
(!) collection of ideals of the type (x− c), and the entire space. The topology
on Spec(R) having as closed sets precisely all varieties of ideals is the Zariski
topology from Definition 1.12.

In this last example, the topology is fairly coarse. This is best illustrated by
looking at the Hausdorff property: the topology TX is Hausdorff if all pairs x 6= y
in X can be enclosed in disjoint open sets—there are U ∋ x, V ∋ y in TX with
U ∩ V = ∅. The spectrum of a ring, with its Zariski topology, is almost never
Hausdorff.

Choose now a second topological space (F, TF ). Recall that a continuous map
from X to F is a function f : X −→ F such that whenever V is an open set in F
then f−1(V ) = {x ∈ X |f(x) ∈ V } is an open set in X . We attach to each open set
U ∈ TX the space of all continuous functions C(U,F ) from U to F . The following
is our running example for this lecture.

Example 2.2. To be concrete, let us take as X = S1, the unit circle with its
usual collection of open sets inherited through the embedding of X into R2. So
any proper open set is the union of open connected arcs. On the other side we let
F be the set of integers Z with the discrete topology (every subset is open). For
an open set U in X let f : X −→ F be in C(X,F ). This has the effect that the
preimage of any number z ∈ Z∩ f(U) is an open set in U . But since the collection
of all points in U that do not map to z is also open (it’s the union of the preimages
of all z′ ∈ Z, z′ 6= z), every z ∈ Z decomposes U into two open sets: f−1(z) and
U \ f−1(z). However, if U is a connected open set in X (an open arc along the unit
circle, or the entire circle), then U cannot be written as the union of two disjoint
nonempty open subsets. It follows that if U is connected then f(U) is a singleton
z ∈ Z and so C(U,F ) = Z.

We write from now on Z(U) for C(U,Z). Suppose we have a containment of two
open sets U ′ ⊆ U in the topological space X , and let f : U −→ F be continuous.
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Then one can define a new map f ′ : U ′ −→ F by combining f with the embedding
ιU ′,U : U ′ →֒ U . This affords a restriction map ρU,U ′;F : C(U,F ) −→ C(U ′, F ). Of
course, compositions of restrictions are restrictions again.

In order to prepare for the definition to come, we slightly change the point
of view. Namely, we consider the space Z × X with its natural projection πZ :
Z × X −→ X . Then the elements of C(U,F ) can for any open set U in X be
identified with the continuous maps f : U −→ Z×X such that πZ ◦f is the identity
on U . In this way, the elements of Z(U) become sections (that is, continuous lifts)
for the projection πZ .

Definition 2.3. Let (X, TX) be a topological space. A sheaf (of sets) on X is
a choice F of a topological sheaf space (or espace étalé) (F, TF ) together with a
surjective map πF : F −→→ X . The sheaf F associates to each open set U the
set F(U) = C(U,F ) of continuous functions f : U −→ F for which πF ◦ f is the
identity on U .

Then for each open containment ιU ′,U : U ′ →֒ U there a restriction map ♣ check other

notations of

restriction maps
ρU ′,U = ρU ′,U ;F : F(U) −→ F(U ′)

f 7→ f ◦ ιU ′,U

satisfying

ρU ′′,U ′ ◦ ρU ′,U = ρU ′′,U

for any three open sets U ′′ ⊆ U ′ ⊆ U in TX .
The elements of F(U) are the sections of F over U ; if U = X one calls them the

global sections.

The notion of a sheaf arose from the idea to consider the sections (i.e., the
continuous lifts) of a bundle map π : E −→→ X over the base space X with fiber F0

and total space E. To allow for greater flexibility, the bundle E was later replaced
by an arbitrary space F surjecting ontoX . An important class of sheaves, including
our running example, are the constant sheaves. These arise when the sheaf space
F is the product F0 ×X of X with a space F0 which is equipped with the discrete
topology. In that case, the sections of F over the open set U are identified with the
continuous maps from U to F0. In our example, F0 = Z.

Remark 2.4. We will see in Lecture 12 that one may specify a sheaf without
knowing the sheaf space F . Namely, one may select the collections of sections
F(U) as long as they fit the crucial properties from our definition. This is useful
since for many important sheaves, particularly those sheaves that arise in algebraic
geometry, the sheaf space F is very obscure and its topology TF highly complicated.

In general, the sections F(U) of a sheaf form a set without further structure.
There are, however, more special kinds of sheaves: sheaves of groups (specifically,
Abelian groups), sheaves of rings (specifically, commutative rings), or sheaves of R-
algebras where R is a fixed ring. In these cases, F(U) is for all U of the appropriate
algebraic structure, and the restriction maps are morphisms in the corresponding
category.

We continue our Example 2.2 from above.

Example 2.5 (The constant sheaf Z). With X = S1, let Z(U) = C(U,Z) where Z
has the discrete topology. Since Z is an Abelian group, Z(U) is an Abelian group
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as well, with pointwise addition of maps, and the restrictions Z(U) −→ Z(U ′) for
U ′ ⊆ U are group homomorphisms.

It turns out that the sheaf Z can be used to show that the circle is not con-
tractible. The remainder of this lecture is devoted to an outline of two mechanisms
that connect Z to the topology of the circle: Čech complex, and derived functors.

2.2. Čech cohomology. Cover S1 with two sets U1, U2 as follows. Picturing S1 as
unit circle embedded into the complex line C1 let U1 = S1 \{−1} and U2 = S1 \{1},
and write U1,2 = U1∩U2.

1 Since both U1 and U2 are connected, Z(Ui) = C(Ui,Z) =
Z for i = 1, 2. The restriction maps Z(S1) −→ Z(Ui) are isomorphisms since the
number of connected components of all three sets involved is the same, equal to one.
With U1,2, however, the story is different. The two different connected components
of U1,2 may be mapped to distinct numbers of Z and hence Z(U1,2) ∼= Z × Z. In
fact, in general, the assignment U −→ Z(U) satisfies clearly

Lemma 2.6. Let Z(−) be the sheaf of Abelian groups on X sending U to Z(U) =
C(U,Z). Then Z(U) =

∏
Z where the product ranges over all connected components

of U . �

The four open sets X,U1, U2 and U1,2 give a small commutative diagram of
embeddings

U1

S1 �
U1,2

�

U2
�

�

The restriction maps furnish a commutative diagram on the level of sections:

Z(U1)

Z(S1)

-

Z(U1,2)

-

Z(U2)

-
-

Let us discuss the maps Z(Ui) −→ Z(U1,2) for i = 1, 2. A section on U1,2 is given
by a pair of integer numbers (a, b). If this element were to come from a section on
Ui, one would obviously have to have a = b since each Ui is connected. It follows
that the image of Z(Ui) −→ Z(U1,2) is Z · (1, 1) for both i = 1, 2. In a sense, the
quotient of Z(U1,2) by the images of Z(Ui) measures the insufficiency of knowing
the value of a section in one point in order to determine the entire section. In more
fancy terms, it expresses the variety2 of possible Z-bundles over S1. Since U1, U2

are contractible, any bundle on them is constant (given by the product of Ui with
the fiber of the bundle). The question then arises how the sections on the two open
sets are identified along the two parts of their intersection U1,2. Choose a generator
for Z over U1 and U2, and suppose the two generators agree over one connected
component of U1,2. On the other connected component, these generators may be

1While analysts usually refer to C1 as the complex “plane”, it is only of complex dimension 1,
and hence a “line”.
2Of course, “variety” is here used in the colloquial and not the technical sense of the word as in
Example 2.1, c.
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either identified the nose, or each is identified with the (group law) opposite of the
other. In the former case the trivial bundle arises on S1, in the latter case the total
space of the bundle is a “discrete Möbius band”. The trivial bundle corresponds to
the section (1, 1) over U1,2 while the Möbius strip is represented by (1,−1).

Figure 1. The trivial bundle and the Möbius bundle over the circle

In terms of sections of Z on X , a pair (a, b) ∈ Z(U1) × Z(U2) gives rise to an
element of Z(X) if and only if ρU1,2,U1(a) = ρU1,2,U2(b).

Algebraically this can be read as follows. Consider the following complex:

0 −→ Z(S1) −→ Z(U1)× Z(U2)︸ ︷︷ ︸
Č0

d0−→ Z(U1,2)︸ ︷︷ ︸
Č1

−→ 0.

We introduce signs in the maps that are of combinatorial nature: the map 1 ×
Z(U2) −→ Z(U1,2) in the complex above is negative the restriction map. The sign
occurs since the permutation (2, 1) that arises by juxtaposing the index set {2} of
U2 with the new index {1} that occurs in the index set of U1,2 is odd. The benefit
is that now we have an actual complex: the composition of two consecutive maps
is zero.

The discussion above reveals that the complex is exact on the left and in the mid-
dle, and has a free group of dimension one as cohomology on the right, representing
the existence of interesting Z-bundles on S1.

It is entirely reasonable to ask what would happen if we covered S1 with other
open sets than the ones we chose. In particular, what happens if the number of
sets is changed?

Example 2.7. Let us cover the circle with three open sets, the complements of
the three third roots of unity; call them Ui, 1 6 i 6 3. Their intersections Ui,j
are homeomorphic to pairs of intervals, and their triple intersection U1,2,3 is the
complement of all three roots, hence homeomorphic to three disjoint intervals.
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It follows that there is a diagram of restriction maps that involves eight open
sets, including the full circle:

Z(U1) - Z(U1,2)

Z(S1) -

-

Z(U2)

-

Z(U1,3) -
-

Z(U1,2,3)
-

Z(U3) -

-
-

Z(U2,3)

-
-

which algebraically corresponds to the following complex C•

0 −→ Z(S1) −→
3∏

i=1

Z(Ui)

︸ ︷︷ ︸
Č0

d0−→
∏

16i<j63

Z(Ui,j)

︸ ︷︷ ︸
Č1

d1−→ Z(U1,2,3)︸ ︷︷ ︸
Č2

−→ 0

In this complex all groups are free and of ranks 1, 3, 6 and 3 respectively. The first
map is given by the matrix (1, 1, 1)T . The differentials di are given by

d0 =




1 −1 0
1 −1 0
−1 0 1
−1 0 1
0 1 −1
0 1 −1




: Č1 −→ Č2

and

d1 =




0 1 0 1 1 0
1 0 0 1 0 1
1 0 1 0 1 0


 : Č2 −→ Č3.

As in the case of two open sets, in these matrices the sign of the entry that corre-
sponds to the restriction from UI to UI∪{j} corresponds to the sign of the permu-
tation (I, j).

Again there is just one cohomology group, in degree one, and this cohomology
is a free group of rank one generated by the element (1,−2,−2, 1, 1,−2) ∈ C1.

The preceding examples are supposed to suggest that there is a certain invariance
to the computations induced by open covers; this is indeed the case. The following
procedure attaches a complex to an open cover of a space equipped with a sheaf,
and we shall investigate the independence of its cohomology groups from the chosen
cover.

Definition 2.8. Fix a topological space X and a sheaf F on X , and let I be a
totally ordered index set. Given any open cover U = {Ui}i∈I of X define for a finite
J ⊆ I the open set UJ =

⋂
i∈J Ui. We define a complex Č•(U;F) whose t-th term

(where t ≥ 0) is
∏

|J|=t+1 F(UJ).

To define the maps of the complex, fix t ∈ N. Let J ⊆ I with |J | = t and pick
j ∈ I \ J . Put sgn(J, j) to be −1 raised to the number of elements of J that are
bigger than j. In other words, sgn(J, j) is the sign of the permutation (J, j). Then
define

dt : Čt(U;F) −→ Čt+1(U;F)
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as the sum of the maps

sgn(J, j) · ρUJ∪{j},UJ ;F : F(UJ) −→ F(UJ∪{j}).

Because of the sign choices, dt+1 ◦ dt = 0, so Č•(U;F) is a cohomological complex

(2.8.1)

0 −→
∏

i∈I

F(Ui)

︸ ︷︷ ︸
Č0(U;F)

d0−→
∏

i,j∈I

F(U{i,j})

︸ ︷︷ ︸
Č1(U;F)

d1−→ · · · d
t−1

−→
∏

J⊆I,|J|=t+1

F(UJ)

︸ ︷︷ ︸
Čt(U;F)

dt

−→ · · ·

called the Čech complex associated to F and the open cover U. Its cohomology is
denoted Ȟ(U;F).

We note that F(X) is not part of the Čech complex. However, the following exer-
cise justifies the indexing in the Čech complex—the global sections are determined
by the sections on the cover and F(X) can be read off Č•(U;F).

Exercise 2.9. Let F be a sheaf on the space X and assume that U is an open
cover for X . Prove that the kernel of the initial differential d0 in the Čech complex
Č•(U;F) is identified with F(X).

If you found this easy, look up the idea of a refinement of an open cover by
another cover in Definition 2.12. Then prove that the identification of ker(d0) with
F(X) that you found is independent of the refinement.

Remark 2.10. Suppose that

0 −→ A′ −→ A −→ A′′ −→ 0

is a short exact sequence of groups. We consider the three induced constant sheaves
A′,A,A′′ on the spaceX . Suppose there is a cover U such that evaluating the above
sequence at any intersection UI of open sets in the cover gives a short exact sequence

0 −→ Č(UI ;A
′) −→ Č(UI ;A) −→ Č(UI ;A

′′) −→ 0.

Then one obtains a short exact sequence of Čech complexes which in turn yields a
long exact sequence of cohomology groups

· · · −→ Ȟi(U;A′) · · · −→ Ȟi(U;A) · · · −→ Ȟi(U;A′′) · · · −→ Ȟi+1(U;A′) −→ · · ·
We now come to the fundamental theorem about the Čech complex, it says that

there is a stable “limit” version that can be obtained by choosing finer and finer
covers. The cohomology groups of a Čech complex attached to a very fine cover
are hence attached to the underlying space rather than the cover.

Theorem 2.11. For reasonable spaces X, for a suitable fixed sheaf F on X, and for
all sufficiently fine covers U, the cohomology groups of the associated Čech complex
are well defined (i.e., are naturally isomorphic for all sufficiently fine covers).

It is adequate to include some discussion of this theorem: what kinds of spaces
are “reasonable”, which sheaves are “suitable”, and what does “fine” mean in the
corresponding context? This is a complicated question since quite different sorts of
spaces fit the bill. The simplest class is formed by the n-dimensional real manifolds.
In that case, if all sets in the cover U as well as all their finite intersections are
homeomorphic to Rn, then Ȟ•(U;F) is independent of the cover U. More generally,
if X is a paracompact space then Ȟ•(F ,U) is independent of the cover provided
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that any finite intersection of elements in the open cover U is contractible. In both
situations the sheaf F can be arbitrary. On the other hand, ifX is a scheme and F a
quasi-coherent sheaf3 then any cover U consisting of affine schemes (spectra of rings)
satisfies Theorem 2.11. It is often interesting to consider certain non-quasi-coherent
sheaves on schemes, such as the constant sheaf. In Lecture 19 we will consider a
method that replaces the constant sheaf by a complex of quasi-coherent sheaves.
This, in conjunction with an affine cover, can be used to compute the cohomology
of the constant sheaf, which in turn yields interesting topological information.

To understand in what sense the cohomology of the Čech complex can be inde-
pendent of the cover, we need to introduce some notation.

Definition 2.12. Let X be a topological space and suppose that U,V are two
covers with index sets I, I ′. We call U a refinement of V, U < V, if there is a map
τ : I −→ I ′ with Ui ⊆ Vτ(i). Note that there is no need for τ to be injective.

Suppose now that U < V with index map τ : I −→ I ′. This induces F(Vτ(i)) −→
F(Ui) by restriction, and we use this to construct a morphism Čt(V;F) −→
Čt(U;F) and a map of complexes

τ̌ : Č•(V;F) −→ Č•(U;F).

as follows. Let c be an element of Čt(V;F) and let J ′ be a subset of I ′ of cardinality
t + 1. Write cJ for the component of c over VJ so that the canonical projection∏
J⊆I,|J|=t+1 C(VJ , F ) −→ C(VJ , F ) sends c to cJ . Now define τ̌ (c) to be the

element c̃ ∈ Čt(U;F) for which

c̃J = ρUJ ,Vτ(J)
(cτ(J)).

This map clearly depends on the assignment i 7→ τ(i), but by good fortune it
always maps cocycles to cocycles. Amazingly, the induced map on cohomology
is independent of τ . Indeed, as one can show, any two index maps give rise to
homotopic maps of complexes.

Considering all possible covers of the space and their associated Čech complexes,
one can form the direct limit 4 Č•(X ;F) of the complexes, where the limit goes
over all open covers of X . Since taking cohomology of complexes commutes with
direct limits (see Theorem 4.30 and also Remark ??),

Ȟt(X ;F) := lim−→
U

Ht(U;F)

is the cohomology of the limit complex, called the Čech cohomology groups of F on
X . The term “well-defined” in Theorem 2.11 refers to the fact that if U and V are
both “fine enough” in the appropriate context and one refines the other, then the
induced maps on t-th cohomology are isomorphisms, and Ȟt(U;F) ∼= Ȟt(X ;F) for
all t.

One can prove the following fundamental principle which may be viewed as the
non plus ultra of the Mayer–Vietoris principle, and provides a quantitative criterion
for the applicability of Theorem 2.11, see [47, Théorème 5.4.1 + Corollaire]:

3Roughly speaking, a quasi-coherent sheaf is a sheaf whose sections look (locally) like a module
over the ring that gave rise to the (local patch of the) scheme. Detailed accounts on this will come
in Lectures 12 and 13
4The notion of a direct limit is discussed in detail in Lecture 4. Readers unacquainted with this
notion may on first reading want to disregard the limit issue and take the existence of the groups
Ȟt(X;F) on faith.
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Theorem 2.13. Suppose U is an open cover for X. Let F be a sheaf on X. If
Ȟi(U ;F) = 0 for all i > 0 and all finite intersection U of elements of U then

Hi(U;F) = Ȟi(X ;F)

for all i.

This seems to be a ridiculous test for “fineness” of U, since it requires information
about the behavior of the Čech mechanism on all sets of the cover and yet only
yields information about the one space X . However, it is quite handy as we will
see later. In fact, it comes with its own definition:

Definition 2.14. A sheaf F on the topological space X that has no higher Čech
cohomology on X is called acyclic on X .

Note that if U ⊆ X is open then acyclicity of F on U and on X do not imply
one another.

The prototype of an acyclic sheaf is the flasque sheaf where every restriction
map is surjective. A more specialized sort are the injective sheaves5, and we will
see in Remark 12.25 and the surrounding discussion that there are “enough” of
these. Lecture 12 discusses both of these types. Typically, flasque and injective
sheaves have tremendous numbers of sections. (To illustrate: let I(U) be the sheaf
of all maps from U to a fixed target F0; this produces a flasque and injective sheaf
with sheaf space F0 × X . Injective sheaves are generally not far from this type.)
On differentiable manifolds one has access to nicer (and weaker) versions of acyclic
sheaves such as “soft” and “fine” sheaves whose sections are smooth functions.

In some ways the main theme of the summer school is the study of quasi-coherent
sheaves (see Definition 12.22) on varieties and their Čech cohomology behavior. ♣ what to

do about

GL-affine-coho?

Typically, geometrically interesting sheaves F allow on any space X for a scenario
that satisfies the hypotheses of the Acyclicity Theorem, see [53, pages 40-41]. We
shall discuss in later lectures acyclicity in the theory of quasi-coherent sheaves. For
example, it will turn out (Remark 12.40) that if X is an affine variety equipped
with its Zariski topology, and F is a quasi-coherent sheaf, then all Čech cohomology
groups of F on X with positive index are zero. Affine sets relate to quasi-coherent
sheaf cohomology the way contractible sets relate to singular cohomology: they are
trivial in that particular sense.

We close this train of thoughts with the remark that if we computed Ȟ•(S1;F)
where F is the sheaf that assigns to each open U the set of continuous functions
from U into a field of characteristic zero (such as Q, R or C — each endowed with
the discrete topology) then we would get the tensor product of Ȟ•(S1;Z) with the
corresponding field.

On the other hand, replacing Z by Z/nZ where n ∈ Z has more interesting effects
since a tensor product with Z/nZ does not necessarily preserve exact sequences (in
contrast, tensoring with a field of characteristic zero is an exact functor).

Exercise 2.15. Recall that the real projective plane RP2 arises as the quotient of
the 2-sphere S2 by identifying antipodal points. Cover RP2 with three open hemi-
spheres whose pairwise and triple intersections are unions of disjoint contractible
sets.

5defined by a universality condition that mirrors that of injective modules over a ring, Definition
A.1
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Use this cover to prove that Ȟ1(RP2;Z) is zero. In contrast, prove that the sheaf
Z2 given by Z2(U) = C(U ; Z/2Z) satisfies Ȟ1(S2;Z2) ∼= Z/2Z. In particular, the
map Ȟ1(RP2;Z) −→ Ȟ1(RP2;Z2) induced by the natural projection Z −→ Z/2Z
is not surjective. (In geometric terms: the real projective plane is a non-orientable
surface and as a result the orientation moduleH2(RP2;Z) is not free but isomorphic
to Z/2Z. This is reflected in the non-vanishing of the cokernel we consider here.)

2.3. Calculus versus topology: the use of resolutions. We shall now switch
gears and investigate what happens if instead of making the cover increasingly fine,
we replace F by a resolution of more “flexible” sheaves. Specifically, let D be the
sheaf on S1 that attaches to each open set U the ring of real-valued infinitely many
times differentiable functions.6 Note that in this case, since R is a vector space,
D(U) is always a vector space as well.

Example 2.16 (Poincaré Lemma, Version 1). Consider the covering of S1 = U1∪U2

from Example 2.5: U1 = S1 \ {−1}, U2 = S1 \ {1}. In the same way as before we
get a complex of the form

0 −→ D(S1) −→ D(U1)× D(U2)︸ ︷︷ ︸
Č0(U;D)

−→ D(U1,2)︸ ︷︷ ︸
Č1(U;D)

−→ 0,

the sheaf D replacing the sheaf Z.
Suppose we have a pair of functions (f1, f2) in D(U1)×D(U2) that is in the kernel

of the restriction to U1,2. Then on U1,2, these two functions agree. It follows that
neither of the two functions has a non-removable singularity at 1 or −1, since f1
has no singularity in 1, f2 has no singularity in −1, and they agree on the overlap.
In particular, there is a function f ∈ D(S1) such that each fi is the restriction of f
to Ui, as predicted by Exercise 2.9.

Now consider the cohomology at the last spot in this complex. Every section
on U1,2 is in the kernel of the zero map, so we are interested in the failure of
D(U1) × D(U2) −→ D(U1,2) to be surjective. Let f be a section on U1,2; it has
singularities in no places but 1 and −1. Let u be a C∞-function on U1,2 that is
zero near −1 and identically equal to 1 near 1; of course f = uf+(1−u)f . Clearly
uf can be extended to a C∞-function on U1 and (1 − u)f can be extended to a
C∞-function on U2. It follows that f is in the image of D(U1)×D(U2) −→ D(U1,2)

and hence the sheaf D gives rise to a Čech complex on S1 with unique cohomology
group Ȟ0(S1;D) = D(S1).

We remark that this behavior of the sheaf D generalizes in two ways. Firstly,
if we had taken any other open cover of S1 we would again have ended up with a
Čech complex with unique cohomology in degree zero. In terms of the limit over
all open covers, this is saying that D has no higher Čech cohomology on the circle.

6Strictly speaking, this construction does not fall under the umbrella of our definition of a sheaf:
we have defined a sheaf as the continuous functions, rather than differentiable ones, into a fixed
target space. However, in Remark 12.31 it is outlined how to find a projection πD : D −→ X such
that the C∞-maps D(U) on U are exactly the continuous lifts from U to D. Unfortunately, this
D is not a nice space. On the good side, it is a general paradigm that in the definition of sheaves

one can replace “continuous” by “differentiable”, or “analytic”, or “C∞” if the circumstances
permit—that is, when both X and F are in the appropriate category. Each such choice will yield
a sheaf on the base space, even though the sheaf space that gives rise to F as the continuous
functions into it may be fairly obscure.
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Secondly, Ȟ>0(M ;D) actually vanishes for all smooth manifolds M . The key is the
existence of partitions of unity for D:

Definition 2.17. Let M be a C∞-manifold and U = {Ui}i∈I a locally finite open
cover of M (so that for all m ∈M only a finite number of open sets Ui contain m).

A partition of unity subordinate to U is a collection of smooth functions {fi}i∈I ,
fi : M −→ R such that fi|M\Ui

= 0 and
∑
fi = 1. (Note that this is a finite sum

near every point of M .)

The partition in our case was 1 = u+(1−u); its existence allows for the sections
of D on U1,2 to be writable as sum of sections over U1 and U2. Partitions of unity
make the sheaf D sufficiently fine and flexible so that D has no cohomology. On
the other hand, their absence for the sheaf Z leads to nonzero cohomology.

In order to play off the sheaf D against the constant sheaf Z we shall replace
Z by R: let R be the sheaf that sends the open set U ⊆ X to the continuous
functions C(U,R) where R is endowed with the discrete topology. The sections of
this sheaf are the locally constant maps from U to R. (Note that C(U,R) is, when
R has the discrete topology, identified with the maps f : U −→ U × R for which

U −→ U × R nat−→ U is the identity. In particular, R fits definition 2.3 with sheaf

space F = S1 × R and projection πR : S1 × R nat−→ S1.)
The elements of R(U) are differentiable functions. Hence (see Definition 2.19)

R may be viewed as a subsheaf of D.

Example 2.18 (Poincaré Lemma, Version 2). Let U be any proper open subset of
S1. There is an exact sequence

0 −→ R(U) −→ D(U)︸ ︷︷ ︸
degree 0

d
dt−→ D(U)︸ ︷︷ ︸

degree 1

−→ 0(2.18.1)

where the first map is the inclusion of the locally constant maps from U to R
into the smooth maps from U to R, while the second map is differentiation by
arclength. To see that this sequence is indeed exact, note that each U is the union
of disjoint open subsets that are diffeomorphic to the real line. On such open arcs,
however, it is clear that a) the constants are the only functions that are annihilated
by differentiation, and b) every smooth function can be integrated to a smooth
function. On the other hand, as we will discuss below, the sequence is not exact on
the right if U = S1!

The sequences above, with the appropriate restriction maps, splice together to
commutative diagrams

R(U) - D(U)
d
dt- D(U)

R(V )
?

- D(V )
? d

dt- D(V )
?

for any inclusion V ⊆ U of open sets in S1. This prompts

Definition 2.19. A morphism ϕ between sheaves F ,G on X is a collection of maps
{ϕU}U∈TX such that for all inclusions V ⊆ U of open sets one has equality of the
two maps ρV,U ;G ◦ ϕU and ϕV ◦ ρV,U ;F from F(U) to G(V ). In other words, the
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maps given by ϕ “commute” with the restriction maps:

F(U)
ϕU- G(U)

F(V )

ρV,U ;F

?

ϕV
- G(V )

ρV,U ;G

?

is a commutative diagram.
If F ,G are sheaves of Abelian groups or rings or algebras etc., a morphism of

such sheaves is a collection as above with the additional property that all maps in
question are morphisms in the appropriate category.

The exact sequences (2.18.1) form an exact sequence of sheaves. This means
that the sequences (2.18.1) are exact for all sufficiently small open sets (i.e., X has
a base of open sets with this property). We stress that in order to be an exact
sequence of sheaves it is not required that the sequences are exact for all open sets.
This “minor” detail makes all the difference between a useless and a very interesting
theory of sheaves and their morphisms.

In fact, we shall now study what happens when we look at the sequence of
global sections. Naturally, the only functions on all of S1 that are in the kernel of
the differentiation map are the constants. Hence (2.18.1) is exact “on the left and
in the middle” even if U = S1.

However, there are C∞-functions on S1 which are not a derivative. This fairly
odd seeming statement stems from the fact that one cannot compute in local coor-
dinates, where of course each function is a derivative. Indeed, the (nonzero) con-
stant functions on the circle are not derivatives: following the value of g ∈ D(S1)
around the circle, the main theorem of integral calculus states that g(1) = g(1) +∫ 2π

t=0 g
′(exp(

√
−1t)) dt, and so the average value of any derivative f(x) = g′(x) on

the circle must be zero. On the other hand, for any C∞-function f : S1 −→ R the

function g = f −
∫ 2π

t=0 f(exp(
√
−1t)) dt/2π is always a derivative, namely that of∫ t

τ=0
g(exp(

√
−1τ)) dτ . It follows that the complex of global sections

0 −→ D(S1)︸ ︷︷ ︸
degree 0

−→ D(S1)︸ ︷︷ ︸
degree 1

−→ 0

has cohomology in degrees 0 and 1, and both cohomology groups are isomorphic to
the space of constant functions on S1 (although for different reasons).

The mechanism that we discussed here gives rise to a second type of cohomology
that one can compute from a sheaf.

Definition 2.20. Suppose F is a sheaf on the space X . Let {Gt}t∈N be sheaves on
X and suppose that for all t ∈ N there are sheaf morphisms dt : Gt −→ Gt+1 with
dt+1 ◦ dt = 0. Assume that the topology TX has a base consisting of open sets U
for which the complex

0 −→ G0(U) −→ G1(U) −→ · · · −→ Gn(U) −→ · · ·(2.20.1)

has a unique cohomology group, in degree 0, isomorphic to F(X). Then G• is a
resolution of F .
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If each Gt is acyclic on X then the resolution is called acyclic and the cohomology
of the complex (2.20.1) with U = X is the derived functor or sheaf cohomology of
F , denoted Hi(X ;F).

Remark 2.21. The quantity Hi(X ;F) does not, in fact, depend on the particular
acyclic resolution (see Theorem 2.22).

We have verified that D is acyclic on S1 in Example 2.16. This means that
H•(S1;D) can be computed from the acyclic resolution 0 −→ D −→ 0 which
implies immediately that Hi(S1;D) = 0 for positive i.

We also computed just before Definition 2.20 that the constant sheaf R has an
acyclic resolution of the form 0 −→ D −→ D −→ 0, so Hi(S1;R) vanishes for
i 6= 0, 1. Moreover, H0(S1;R) ∼= R ∼= H1(S1;R). These agree with the singular
cohomology groups of S1.

2.4. Čech versus derived functors: a comparison. We now compare the two
approaches we have taken. Starting with the constant sheaf R on S1 we have dis-
covered that there is the principle of Čech cohomology that associates to this sheaf
the groups Ȟi(S1;R) = 0 if i > 1, and Ȟ0(S1;R) ∼= Ȟ1(S1;R) ∼= R. On the other
hand, we have the calculus approach which gave us derived functor cohomology
that turned out to return (at least in appearance) the same results as Čech coho-
mology. Let’s try to investigate this similarity between Čech complexes and the
calculus approach.

We take an open cover U of S1, fine enough so that each finite intersection UI
of the open sets is an open arc. By the discussion following Theorem 2.11 then
Ȟ•(U;R) = Ȟ•(S1;R) and Ȟ•(U;D) = Ȟ•(S1;D). Moreover, for each UI there is
a short exact sequence

0 −→ R(UI) −→ D(UI) −→ D(UI) −→ 0

and that means that there is a short exact sequence of complexes

0 −→ Č•(U;R) −→ Č•(U;D) −→ Č•(U;D) −→ 0.

By Remark‘2.10 there results a long exact sequence of cohomology groups

0 −→ Ȟ0(S1;R) −→ Ȟ0(S1;D)︸ ︷︷ ︸
=D(S1)

−→ Ȟ0(S1;D)︸ ︷︷ ︸
=D(S1)

−→ Ȟ1(S1;R) −→ 0

where the zero on the right comes from the fact that by Example 2.16 we have
Ȟ≥1(S1;D) = 0. We deduce that Ȟ≥2(S1;R) is zero, and that Ȟ0(S1;R) and
Ȟ1(S1;R) arise naturally as kernel and cokernel of the differentiation map d

dt :

C∞(S1) −→ C∞(S1).
This exhibits an explicit isomorphism of the vector space of real constant func-

tions with Ȟ0(S1;R) = R(S1) (these are the elements of D(S1) that have zero
derivative), and another isomorphism of the vector space of real constant functions
with Ȟ1(S1;R) (since they are a set of representatives for the quotient of D(S1) by
its submodule of functions that have no integral). In particular, the Čech cohomol-
ogy of R on S1 can be “read off” the global sections of the morphism D −→ D given
by differentiation. In Lecture 19 we shall revisit this theme of linking differential
calculus with sheaves and topology. The main ideas, sketched here in one example,
are the following. One can get topological information from the Čech approach since
very fine open covers turn the computation effectively into a triangulation of the
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underlying space. On the other hand, one can take an algebraic-analytic approach
and replace the given sheaf, say R, by a suitable complex of sheaves that have
themselves no higher Čech cohomology (such as D) and consider the cohomology
in the resulting complex of global sections.

The following statement enunciates what the discussion above is supposed to
convey. It also places Theorem 2.13 in the context of derived functor cohomology.

Theorem 2.22 (Acyclicity Principle, [47]). Let X be a topological space and F a
sheaf of Abelian groups on X. Suppose G• is a finite complex of sheaves of Abelian
groups and let U = {Ui}i∈I be an open cover of X. Assume that the following
hypotheses hold:

(1) For all finite index sets ∅ 6= I ′ ⊆ I, with UI′ =
⋂
i∈I′ Ui,

0 −→ F(UI′) −→ G•(UI′)
is an exact sequence of Abelian groups.

(2) Each sheaf Gt is acyclic on U and on X: for all finite index sets I and for
all j > 0,

Ȟj(X ;Gt) = Ȟj(UI′ ;Gt) = 0.

Then there are natural isomorphisms

Ȟj(U;F) ∼= Hj(· · · −→ Gj−1(X) −→ Gj(X) −→ Gj+1(X) −→ · · · ) ∼= Hj(X ;F)

between the Čech cohomology of F relative to the open cover U, the cohomology of
the complex of global sections of G•, and the derived functor cohomology of F on
X.

The main statement, in Grothendieck language, of this theorem is the following.
If Γ is an additive covariant functor between Abelian categories (such as the global
section functor on the category of sheaves of Abelian groups on X to the category
of Abelian groups), F an object in the source category and G• a Γ-acyclic resolution
of F then the cohomology of Γ(G•) is the derived functor of Γ evaluated on F . For
example, the global section functor associates to Z the Abelian group Zπ0(X), the
product of copies of Z indexed by the components of X . We know now that its
derived functors appear as the cohomology groups of a Čech complex on an open
cover with small open sets. This motivates why one should want to know about such
derived functors: for paracompact spaces there is a natural isomorphism between
the Čech cohomology groups of Z on X and the singular (“=”derived functor)
cohomology groups H•

sing(S
1; Z) with Z-coefficients. For example, H1(S1;R) ∼= R

“because” H1
sing(S

1; Z)⊗Z R ∼= R
On differentiable manifolds it gets even better (as we will see in Lecture 19) where

sheaves provide a link between topology of a manifold and integrals of differential
forms. This is indicated by the fact that we could use the sheaf of C∞-functions
to resolve R on S1. On algebraic manifolds this will lead in Theorem 19.28 to a
connection between local cohomology, differential forms, and singular cohomology.
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Lecture 3. Resolutions and derived functors (GL)

This lecture is intended to be a whirlwind introduction to, or review of, reso-
lutions and derived functors – with tunnel vision. That is, we’ll give unabashed
preference to topics relevant to local cohomology, and do our best to draw a straight
line between the topics we cover and our final goals. At a few points along the way,
we’ll be able to point generally in the direction of other topics of interest, but other
than that we will do our best to be single-minded.

Appendix A contains some preparatory material on injective modules and Matlis
theory. In this lecture, we will cover roughly the same ground on the projective/flat
side of the fence, followed by basics on projective and injective resolutions, and
definitions and basic properties of derived functors.

Throughout this lecture, let us work over an unspecified commutative ring R
with identity. Nearly everything said will apply equally well to noncommutative
rings (and some statements need even less!).

In terms of module theory, fields are the simple objects in commutative algebra,
for all their modules are free. The point of resolving a module is to measure its
complexity against this standard.

Definition 3.1. A module F over a ring R is free if it has a basis , that is, a subset
B ⊆ F such that B generates F as an R-module and is linearly independent over
R.

It is easy to prove that a module is free if and only if it is isomorphic to a direct
sum of copies of the ring. The cardinality of a basis S is the rank of the free module.
(To see that the rank is well-defined, we can reduce modulo a maximal ideal of R
and use the corresponding result for—what else?—fields.)

In practice and computation, we are usually satisfied with free modules. The-
oretically, however, the properties that concern us are projectivity and flatness .
Though the definition of freeness given above is “elementary”, we could also have
given an equivalent definition in terms of a universal lifting property. (It’s a worth-
while exercise to formulate this property, and you’ll know when you’ve got the right
one because the proof is trivial.) For projective modules, we reverse the process
and work from the categorical definition to the elementary one.

Definition 3.2. An R-module P is projective if whenever there exist a surjective
homomorphism of R-modules f : M −→ N and an arbitrary homomorphism of
R-modules g : P −→ N , there is a lifting h : P −→M so that fh = g. Pictorially,
we have

P

g

��

h

~~
M

f
// N // 0

with the bottom row forming an exact sequence of R-modules.

Here is another way to word the definition which highlights our intended uses
for projective modules. Let F be a covariant functor from R-modules to abelian
groups. Recall that F is said to be left-exact if for each short exact sequence

0 // M ′ // M // M ′′ // 0 ,
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there is a corresponding induced exact sequence

0 // F(M ′) // F(M) // F(M ′′) .

If in addition the induced map F(M) −→ F(M ′′) is surjective, then we say that F
is exact . It is easy to show that for any R-module N , HomR(N,−) is a covariant
left-exact functor.

Exercise 3.3. Prove that P is projective if and only if HomR(P,−) is exact.

Here are the first four things that you should check about projectives, plus one.

(1) Free modules are projective.
(2) A module P is projective if and only if there is a module Q such that P ⊕Q

is free.
(3) Arbitrary direct sums of projective modules are projective.
(4) Freeness and projectivity both localize.
(5) Over a Noetherian local ring R, all projectives are free.

Example 3.4. Despite their relatively innocuous definition, projective modules
are even now a very active area of research. Here are a couple of highlights.

(1) Let R be a polynomial ring over a field K. Then all finitely generated
projective R-modules are free. This is the content of the rightly renowned
Quillen-Suslin theorem [129, 152], also known as Serre’s Conjecture, pre-
1978 (see [6]). It’s less well-known that the Quillen-Suslin theorem holds as
well when K is a discrete valuation ring. Closely related is the Bass-Quillen
Conjecture, which asserts for any regular ring R that every projective mod-
ule over R[T ] is extended from R. Quillen and Suslin’s solutions of Serre’s
Conjecture proceed by proving this statement when R is a regular ring
of dimension at most 1. Popescu’s celebrated theorem of “General Néron
Desingularization” [128, 153], together with results of Lindel [101], proves
Bass-Quillen for regular local rings (R,m) such that either R contains a
field, char(R/m) /∈ m2, or R is excellent and Henselian.

(2) In the ring R = Z[
√
−5], the ideal a = (3, 2 +

√
−5) is projective but not

free as an R-module. Indeed, a is not principal, so cannot be free (prove
this!), while the obvious surjection R2 −→ a has a splitting given by

x 7→ x ·
(−1 +

√
−5

2 +
√
−5

,
2−
√
−5

3

)

so that a is a direct summand of R2. (This is of course directly related to
the fact that R is not a UFD.)

(3) Let R = R[x, y, z]/(x2+y2+z2−1), the coordinate ring of the real 2-sphere.
Then the homomorphism R3 −→ R defined by the row vector ν = [x, y, z]
is surjective, so the kernel P satisfies P ⊕ R ∼= R3. However, it can be
shown that P is not free. Every element of R3 gives a vector field in R3,
with ν defining the vector field pointing straight out from the origin. An
element of P thus gives a vector field that is tangent to the 2-sphere in R3.
If P were free, a basis would define two linearly independent vector fields
on the 2-sphere. But hedgehogs can’t be combed!

As we noted above, the definition of projectivity amounts to saying that some
usually half-exact functor is exact. You can also check easily that an R-module I
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is injective if and only if the contravariant functor HomR(−, I) is exact. Our next
step is to mimic these two statements for the other half-exact functor that we’re
familiar with.

Recall that for a given R-module M , the functor − ⊗RM is right-exact. (The
proof is “elementary”, in that the best way to approach it is by chasing elements.)
It’s clear that if we take M = R, then A ⊗R M and B ⊗R M are nothing but A
and B again, so that in fact −⊗R R is exact. With an eye toward defining the Tor
and Ext functors below, we give this property its rightful name.

Definition 3.5. An R-module M is flat provided −⊗RM is an exact functor.

We have already observed that the free module R is flat, and it is easy to check
that the direct sum of a family of flat modules is flat. Thus free modules are trivially
flat, and it follows immediately from the distributivity of ⊗ over ⊕ that projective
modules are flat as well. In fact, it is very nearly true that the only flat modules
are the projectives. Specifically,

Theorem 3.6 (Govorov and Lazard [49, 96], see [31]). An R-module M is flat if
and only if M is a direct limit of a directed system7 of free modules. In particular,
a finitely generated flat module is projective.

Having defined the three classes of modules to which we will compare all others,
let us move on to resolutions.

Definition 3.7. Let M be an R-module.

• An injective resolution of M is an exact sequence of the form

E• : 0 −→M −→ E0 ϕ1

−→ E1 ϕ2

−→ E2 −→ · · ·
with each En injective.
• A projective resolution of M is an exact sequence of the form

P• : · · · −→ P2
ϕ2−→ P1

ϕ1−→ P0 −→M −→ 0

with each Pn projective.
• A flat resolution of M is an exact sequence of the form

F• : · · · −→ F2
ρ2−→ F1

ρ1−→ F0 −→M −→ 0

with each Fn flat.

Remark 3.8. Each of the resolutions above exist for any R-moduleM ; another way
to say this is that the category of R-modules has enough projectives and enough
injectives . (Since projectives are flat, there are of course also enough flats.) In
contrast, the category of sheaves over projective space does not have enough pro-
jectives, as we’ll see in Lecture 12!

Slightly more subtle is the question of minimality. Let us deal with injective
resolutions first. We say that E• as above is a minimal injective resolution if
each En is the injective hull of the image of ϕn : En−1 −→ En. As in the proof of
Theorem A.21, we see that E is an injective hull for a submoduleM if and only if for
all p ∈ SpecR, the map HomR(R/p,M)p −→ HomR(R/p, E)p is an isomorphism.
Therefore, E• is a minimal injective resolution if and only if the result of applying
HomR(R/p,−)p to each homomorphism in E• is the zero map.

7For “direct limit of a directed system” in this statement, you can substitute “union of submod-
ules” without too much loss of sense. For more on direct limits, see Lecture ??.
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The injective dimension of M , idRM , is the minimal length of an injective res-
olution of M . (If no resolution of finite length exists, we say idRM = ∞.) We
have idRM = 0 if and only if M is injective. Theorem A.25 shows that not only is
this concept well-defined, it can be determined in terms of the Bass numbers of M .
Observe that all this bounty springs directly from the structure theory of injective
modules over Noetherian rings, Theorem A.21.

In contrast, the theory of minimal projective resolutions works best over local
rings R, where, not coincidentally, all projective modules are free. See Lecture 8
for more in this direction. In any case, we define the projective dimension of M ,
pdRM , as the minimal length of a projective resolution of M , or ∞ if no finite
resolution exists.

Finally, for completeness, we mention that flat (or weak) dimension is the min-
imal length of a flat resolution. For finitely generated modules over Noetherian
rings, this turns out to be exactly the same as projective dimension, so we won’t
have much need for it.

One main tool for proving existence and uniqueness of derived functors will be
the following Comparison Theorem. It comes in two dual flavors, the proof of each
being immediate from the definitions.

Theorem 3.9 (Comparison Theorem). Let f : M −→ N be a homomorphism of
R-modules.

(1) Assume that we have a diagram

J• : 0 // M

f

��

// J0 // J1 // J2 // · · ·

I• : 0 // N // I0 // I1 // I2 // · · ·
with J• exact and I• a complex of injective modules. Then there is a lifting
ϕ• : J• −→ I• of f , and ϕ• is unique up to homotopy.

(2) Assume that we have a diagram of homomorphisms of R-modules

P• : · · · // P2
// P1

// P0
// M //

f

��

0

Q• : · · · // Q2
// Q1

// Q0
// N // 0

with P• a complex of projective modules, and Q• exact. Then there is a
lifting ϕ• : P• −→ Q• of f , and ϕ• is unique up to homotopy.

Recall that two degree-zero maps of complexes ϕ•, ψ• : (F•, ∂
F ) −→ (G•, ∂

G) are
homotopic (or homotopy-equivalent) if there is a map of degree −1, s : F• −→ G•,
so that

ϕ• − ψ• = ∂Gs− s∂F .
Exercise 3.10. Prove that homotopic maps induce the same homomorphism in
homology.

At last we define derived functors. The basic strategy is as follows: for a half-
exact additive functor F and module M , resolve M by modules that are acyclic for
F , apply F to the complex obtained by deleting M from the resolution, and take
(co)homology. The details vary according to whether F is left- or right-exact and
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co- or contravariant. We give here the one most relevant to our purposes, and leave
it to the reader to formulate the others.

Definition 3.11. Let F be an additive, covariant, left-exact functor (for example,
HomR(M,−) for some fixed R-module M). Let M −→ E• be an injective resolu-
tion. Then F(E•) is a complex; the ith right derived functor of F on M is defined
by RiF(M) := Hi(F(E•)).

Remark 3.12. Derived functors, both the flavor defined above and the corre-
sponding ones for other variances and exactnesses, satisfy appropriate versions of
the following easily-checked properties. Let F be as in Definition 3.11. Then

(1) RiF is well-defined up to isomorphism (use the Comparison Theorem).
More generally, any homomorphism f : M −→ N gives rise to homomor-
phisms RiF(f) : RiF(M) −→ RiF(N) for every i ≥ 0. In particular, if F
is multiplicative (so that F takes multiplication by r ∈ R to multiplication
by r), then so is RiF .

(2) R0F = F , and RiF(E) = 0 for all i > 0 if E is injective.
(3) For every short exact sequence

0 // M ′ // M // M ′′ // 0

of R-modules, there are connecting homomorphisms δi and a long exact
sequence

· · · // RiF(M) // RiF(M ′′)
δi

// Ri+1F(M ′) // Ri+1F(M) // · · · .

For our purposes, there are three main examples of derived functors. We define
two of them here; the third will make its grand entrance in Lecture 7.

Definition 3.13. Let M and N be R-modules.

(1) The Ext functors ExtiR(M,N), i ≥ 0, are the right derived functors of
HomR(M,−).

(2) The Tor functors TorRi (M,N), i ≥ 0, are the left derived functors of −⊗R
N .

A sharp eye might see that we’ve smuggled a few theorems in with this defini-
tion. There are two potential descriptions of Ext: while we chose to use the right
derived functors of the left-exact covariant functor HomR(M,−), we could also have
used the right derived functors of the left-exact contravariant functor HomR(−, N).
More concretely, our definition gives the following recipe for computing Ext: Given
M and N , let I• be an injective resolution of N , and compute ExtiR(M,N) =
Hi(HomR(M, I•)). An alternative definition would proceed by letting P• be a
projective resolution of M , and computing ExtiR(M,N) = Hi(HomR(P•, N)). It
is a theorem (which we will not prove) that the two approaches agree. Similarly,

TorRi (M,N) can be computed either by applying M ⊗R− to a flat resolution of N ,
or by applying −⊗R N to a flat resolution of M .

Here are two examples of computing Tor and Ext.8

8It’s possible that these examples are too namby-pamby. Another possibility would be to replace
them by the 0134 and 2-by-3 examples. I’m open to suggestions.
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Example 3.14. Let K be a field and R = K[x, y, z]. Denote the residue field
R/(x, y, z)R again by K. We assert that

0 // R

»x
y
z

–

// R3

"
0 z −y
−z 0 x
y −x 0

#

// R3
[x y z ]

// R // 0

is a (truncated) free resolution of K. (You can check this directly and laboriously, or

wait until Lectures 6 and 8.) From it we can calculate TorRi (K,K) and ExtiR(K, R)
for all i ≥ 0. For the Tori, we apply − ⊗R K to the resolution. Each free module
Rb becomes Rb ⊗R K ∼= Kb, and each matrix is reduced modulo the ideal (x, y, z).
The result is the complex

0 // K
0 // K3 0 // K3 0 // K // 0

with zero differentials at every step. Thus

TorRi (K,K) ∼=





K for i = 0;

K3 for i = 1;

K3 for i = 2;

K for i = 3;

0 for i ≥ 4.

Applying HomR(−, R) has the effect of replacing each matrix in our resolution of
K by its transpose, which yields

0 Roo R3
[ x y z ]
oo R3

"
0 −z y
z 0 −x
−y x 0

#

oo R

»
x
y
z

–

oo 0 .oo

Noting the striking similarity of this complex to the one we started with, we con-
clude that

ExtiR(K, R) ∼=
{

K if i = 3;

0 otherwise.

Example 3.15. Let K again be a field and put R = K[x, y]/(xy). Set M = R/(x)

and N = R/(y). To compute Tori and Exti, let us start with a projective resolution
of M . As the kernel of multiplication by x is the ideal y, and vice versa, we obtain
the free resolution

F• : · · · x // R
y

// R
x // R // M // 0 .

Computing TorRi (M,N) requires that we truncate F• and apply −⊗RN . In effect,
this replaces each copy of R by N = R/(y) ∼= K[x]:

F• : · · · x // R/(y)
y

// R/(y)
x // R/(y) .

Since y kills R/(y) while x is a nonzerodivisor on R/(y), computing kernels and
images quickly reveals that

TorRi (M,N) ∼=
{

K for i ≥ 0 even, and

0 for i ≥ 0 odd.



31

Similarly, applying HomR(−, N) replaces each R by N = R/(y), but this time
reverses all the arrows:

HomR(F•, N) : R/(y)
x // R/(y)

y
// R/(y)

x // · · · .
We see that

ExtiR(M,N) ∼=
{

0 for i ≥ 0 even, and

K for i ≥ 0 odd.

Finally, apply HomR(−, R) to find that

ExtiR(M,R) ∼=
{
N for i = 0, and

0 otherwise.

We finish this section with the main properties of Ext and Tor that we’ll use
repeatedly in the lectures to follow. They follow directly from the properties of
derived functors listed above.

Theorem 3.16. Let R be a ring and

0 // M ′ // M // M ′′ // 0

a short exact sequence of R-modules. Then for any R-module N , there are three
long exact sequences

· · · // ExtiR(N,M) // ExtiR(N,M ′′) // Exti+1
R (N,M ′) // Exti+1

R (N,M) // · · ·

· · · // Exti+1
R (M,N) // Exti+1

R (M ′, N) // ExtiR(M ′′, N) // ExtiR(N,M) // · · ·

· · · // Tori+1
R (M,N) // Tori+1

R (M ′′, N) // ToriR(M ′, N) // ToriR(M,N) // · · ·

Theorem 3.17. Let M be an R-module. Each of the following three sets of condi-
tions are equivalent:

(1a) M is injective;

(1b) ExtiR(−,M) = 0 for all i ≥ 1;
(1c) Ext1R(−,M) = 0.

(2a) M is projective;
(2b) ExtiR(M,−) = 0 for all i ≥ 1;
(2c) Ext1R(M,−) = 0.

(3a) M is flat;

(3b) ToriR(−,M) = 0 for all i ≥ 1;
(3c) Tor1R(−,M) = 0.
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Lecture 4. Direct Limits (UW)

4.1. Motivation. One of the most fundamental results in algebraic topology, named
after Herbert Seifert and Egbert Rudolf van Kampen, expresses the fundamental
group of the space X = Ua ∪ Ub in terms of the fundamental groups of the subsets
Ua, Ub, Uc = Ua ∩ Ub of X , and information how these three groups interact. To
be precise, the three groups fit into a diagram of the following sort:

π1(Ua)

π1(Uc)

ϕc,a-

π1(Ub)ϕc,b
-

(4.0.1)

with ϕc,a = π1(Uc →֒ Ua), ϕc,b = π1(Uc →֒ Ub). Assume now that Ua, Ub and Uc are
path-connected. According to the Seifert–van Kampen Theorem, the fundamental
group of X is a group G with morphisms from π1(Ua), π1(Ub) to G such that the
following diagram commutes:

π1(Ua)

π1(Uc)

-
G = π1(X)

ϕa-

π1(Ub) ϕb

--
(4.0.2)

with ϕa = π1(Ua →֒ X), ϕb = π1(Ub →֒ X). This may be phrased as saying
that every one of the three given fundamental groups maps to G in a way that is
compatible with the “internal” maps (4.0.1), the commutativity of (4.0.2) being the
necessary condition for the map π1(Uc) −→ G to be well-defined.

Of course, this property alone does not determine G in any way. The trivial
group fits into (4.0.2) and so do many others. Suppose a second space Y were given,
together with a continuous map f : X −→ Y . This would by restriction induce maps
from Ua, Ub and Uc to Y , so that with ψa = π1(Ua →֒ Y ) and ψb = π1(Ub →֒ Y )
we have a diagram of the form

π1(Ua)

π1(Uc)

-

G ........................-
ϕ
a

-

H

ψa
-

π1(Ub)
ψb

-
ϕ b--

(4.0.3)

where H = π1(Y ). Since π1 is a functor, the dotted arrow is just π1(f)) and then
every triangle commutes

It turns out that the dotted morphisms can be filled in in a unique manner, once
π1(Y ) and the maps ϕ•, ψ• have been chosen. Thus, the information contained in
all diagrams of type (4.0.3) pins down completely both π1(X) as well as its behavior
under morphisms.

Exercise 4.1. Suppose G′ is a second group that fits into a commutative diagram

π1(Ua)

π1(Uc)

ϕc,a-
G′

ϕ ′
a -

π1(Ub) ϕ
′
b

-
ϕc,b

-
(4.1.1)
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and assume that one can find a unique dotted arrow ψ : G′ .......- H for every choice
of a group H and all maps ψ′

i such that the following diagram commutes:

π1(Ua)

π1(Uc)

ϕc,a -

G′ .......................-
ϕ ′
a

-

H

ψ ′
a

-

π1(Ub)
ψ
′
b

-
ϕ
′
b-

ϕ
c,b

-

(4.1.2)

Then prove that there is a unique isomorphism G ∼= G′, completing an isomorphism
between (4.0.3) and (4.1.2) that is the identity for every other group in the diagrams.

This type of construction (namely, defining G to be the object that fits into a
certain type of diagram with maps that are unique) is called a universal property
with respect to the diagram type because it matters not how the corner and mor-
phism variables are chosen. The object so defined is unique up to unique diagram
preserving isomorphism. Our particular diagram is known as the pushout, and the
group G is the amalgamated sum of π1(Ua) and π1(Ub), with respect to π1(Ua∩Ub).

Universal properties abound in algebra and elsewhere, but often it is hard to
decipher which explicit construction is hidden behind the diagram. The pushout
case is at least somewhat translucent. The amalgamated sum Ga ∗Gc Gb of the

groups Ga, Gb relative to the pushout
Gc

Gb
-

Ga
- is the following group. Let G be

the collection of all words w in the alphabet Ga ⊔ Gb. Introduce an equivalence
relation on this set induced by w ≡ w′ if w arises from w′ either

• by insertion of an identity element from some Ga or Gb, or
• by replacing two consecutive letters from the same Gi by their product in

that Gi, or
• by replacing a letter gi ∈ Gi ∩ image(ϕc,i) by ϕc,j(gc) where ϕc,i(gc) = gi

for {i, j} = {a, b}.
The quotient set is a group under composition of words, the inverse of w =
g1g2 · · · gk being given by the word g−1

k · · · g−1
2 g−1

1 . In particular, in favorable cases
one may find generators and relations for G if such are known for Ga, Gb and Gc
and if the maps ϕc,i : Gc −→ Ga, Gb are given explicitly.

Exercise 4.2. Define F1 = Z and then inductively Ft+1 = Ft∗1Z, the amalgamated
sum of Ft and the integers over the one-element subgroup consisting of the identity.
The group Ft is the free group on t letters; it consists of all words that can be formed
from t distinct letters and their formal inverses.

Show that the notion of rank that one is accustomed to from free commutative
groups makes no sense here by proving that F2 contains F3 as subgroup.

Exercise 4.3. Let X = S1 be the 1-sphere. As in Lecture 2, cover X with open
sets Ua = X \ {−1}, Ub = X \ {1}. In this context, what does the Seifert–van
Kampen theorem say about π1(X) ?

The Hurewicz map from homotopy to homology induces in degree one an isomor-
phism between the quotient (π1(X))Ab of π1(X) modulo its commutator with the
singular homology H1(X ; Z). This map is functorial and in particular commutes
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with the maps in the Seifert–van Kampen pushout diagram. It follows that on the
level of homology there is a diagram

H1(Ua; Z)

H1(Uc; Z)
-

H1(X ; Z)
-

H1(Ub,Z)
--

(4.3.1)

that arises as Abelianized version of diagram (4.0.2). Let us investigate whether
this is the pushout of the homology groups.

Suppose G is a commutative group and assume that there is a diagram

H1(Ua; Z)

H1(Uc; Z)

-

H1(X ; Z)

-

G = GAb
-

H1(Ub; Z)

---
(4.3.2)

The Hurewicz functor h : π1(−) −→ H1(−; Z) can be used to lift this to the diagram

π1(Ua)

π1(Uc)

-

π1(X) ............................-
-

G
-

π1(Ub)

-
--

(4.3.3)

Pushout properties imply that there is a unique dotted arrow. Since G is commuta-

tive, π1(X) ........- G factors as π1(X)
hX−→ H1(X ; Z) ........- G, and this factorization

is unique (prove that!). This shows that there is a unique natural dotted arrow
H1(X ; Z) ........- G in diagram (4.3.2). So H1(X ; Z) is the pushout of H1(Ua; Z) and
H1(Ub; Z) relative to H1(Uc; Z) in the category Ab of Abelian groups.

Exercise 4.4. Let X be the figure of 8, Ua the complement of the lowest point,
and Ub the complement of the highest point. Determine π1(X). Find H1(X ; Z) in
two ways: as Abelianization of π1(X), and via the Mayer–Vietoris sequence.

Exercise 4.5. Use the Exercise 4.4 to show that H1(X ; Z) is typically not the
pushout of the relevant homology groups in the category Groups of all groups.

Let Ga, Gb and Gc be the groups in a pushout diagram. Let Ha, Hb and Hc be
their Abelianizations. Prove that the H-pushout in the category of Abelian groups
is the Abelianization of the G-pushout in the category of all groups, which is also
the Abelianization of the H-pushout in the category of all groups.

4.2. Axiomatization. In this subsection we distill the essential properties of a
pushout in order to form a more general concept, that of a direct limit. To begin
with, we shall call the underlying structure of a pushout diagram (namely, the
indices a, b and c together with the information “object at c maps to both the
object at a and the object at b”) by its proper name: a partially ordered set, or
poset for short. Posets will (usually) have names like I or J , and their elements are
(usually) i, i′, j, . . . with order relation i 6 i′, or i < i′ if i = i′ is impossible. We

denote by

{ a
c

-

b
-

}
the pushout poset where c 6 a, b.

The process of decorating the vertices of a poset I with groups (or other al-
gebraic structures) comes with a collection of maps in the appropriate category
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that are compatible with the relations in the poset. That means that any resulting
subdiagram that one can ask to be commutative must be commutative.

The following describes in fancy language what is happening. Read the poset
I as a category whose objects are the vertices of the poset. Whenever i 6 j then
there is precisely one morphism from i to j, which, abusing notation, we write as
i 6 j. The convention (j 6 k) ◦ (i 6 j) := (i 6 k) then makes a category out of the
poset. Obviously for i 6 i′ 6 j and i 6 i′′ 6 j the compositions (i′ 6 j) ◦ (i 6 i′)
and (i′′ 6 j) ◦ (i 6 i′′) are the same, namely i 6 j, so every subdiagram of the
category I that can be commutative is in fact commutative.

Now pick a second category, A, and a covariant functor Φ from I to A. The
effect of Φ on I is the decoration of the vertices of I with objects from A, and the
decoration of the relations in I with morphisms in A. Functors being functors, this
leads to commutative subdiagrams within Φ(I).

Definition 4.6. A diagram or direct system (I,A,Φ) over I in A is a category A,
a poset I, and a covariant functor Φ : I −→ A. We often abuse language and call
Φ(I), or even Φ, the direct system. Moreover, we typically write ϕi,j for Φ(i 6 j).

The collection of all diagrams over I in A forms the object set of a category DirA
I

whose morphisms are the natural transformations between the objects (which are
functors).

Now that we have generalized the pushout diagram to arbitrary posets we can
put down the definition of a direct limit:

Definition 4.7. Let (I,A,Φ) be a diagram in A over I. For simplicity we shall
write Ai for Φ(i) for any i ∈ I. The direct limit lim−→i∈I

Ai of Φ(I), so it exists, is

• an object A of A,
• together with a morphism ϕi : Ai - A for every i such that the diagram

Ai

A

ϕi
-

Aj

ϕi,j ?
ϕj

-(4.7.1)

commutes for all i 6 j,
• so that whenever another object A′ of A is given, together with morphisms
ψi : Ai −→ A′ such that every diagram

Ai

A′

ψi
-

Aj

ϕi,j ?
ψj

-(4.7.2)

commutes for i 6 j ∈ I, then there is a unique A-morphism ψ : A ........- A′

such that

Ai

A ......ψ ..............................-
ϕ
i

-
A′

ψi

-

Aj

ϕi,j

? ψj

-
ϕj

-
(4.7.3)

commutes for every i 6 j.
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The object A′ in conjunction with the maps {ψi} is called a test object for (A, {ϕi}).
If we need to stress the underlying category in which the limit is taken, we shall
write lim−→

A

I
Ai.

Exercise 4.8. Prove that if (I,A,Φ) allows a direct limit then the limit is unique up
to unique isomorphism. That is, if A and A′ both satisfy the stipulating conditions
then there is a unique A-morphism ψ such that

Ai
ϕi - A

Aj

ϕi,j

?

ϕ′
j

-
ϕj

-

A′

ψ

?

.............

ϕ ′
i

-

(4.8.1)

commutes for all i 6 j ∈ I. Moreover, this unique morphism is an isomorphism.

Morally speaking, the direct limit lim−→I
Ai is an object of A, positioned “after”

all Ai (so that the maps ϕi : Ai −→ lim−→I
Ai exist) that is “as close” to all Ai as

possible (so that the factorizations Ai
ψi−→ A′ into Ai

ϕi−→ lim−→I
Ai

ψ−→ A′ become

possible).

4.3. Existence. The “universal” definition of a direct limit as given above is useful
in proving uniqueness. In general, universal definitions keep the actual value and
structure of the object in question well hidden. To be practical we need to have
a formula that expresses lim−→I

Ai in terms of the Ai and the maps between them.

As we have seen in Exercise 4.5, the construction will depend on the category A as
well, not just the obvious variables I,Φ. We shall specifically be interested in the
categories Groups, Ab, and R -mods (of all groups, Abelian groups, and R-modules
for a fixed ring R, respectively). So until further notice is given A is one of these
three categories.

If I is a poset without any comparable elements, then lim−→I
Ai must satisfy pre-

cisely the conditions that one expects the categorical sum (or coproduct)
∐
I Ai

of all the Ai to satisfy. Namely, A = lim−→I
Ai permits an arrow ϕi : Ai - A,

i ∈ I, without commutativity conditions since I has no comparable elements with
an implied arrow ψ : A .........- A′ for any collection of morphisms ψi : Ai −→ A′.
In particular, the existence of direct limits in A over every index set implies the
existence of arbitrary categorical sums.

Exercise 4.9. Show that in the category of finite Abelian groups direct limits do
not necessarily exist.

Name three other, fairly popular, categories with the same defect.

Consider the category Groups; we investigate the existence of direct limits. The
following generalizes the idea of free groups in Exercise 4.2 to free sums. For
objects {Ai}i∈I of Groups, where I has no relations, let ei : Ai - ∐

I Ai be the
canonical map arising from the coproduct construction as a direct limit. Explicitly,
the coproduct is the group of all words in the (disjoint union of the) elements of
the participating groups subject to the rules that identify the words w and w′ if w
arises from w′
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• by insertion of the identity element of any Ai in any position, or
• by substituting two adjacent elements of the same Ai by their product in

that group.

The map ei sends ai ∈ Ai to the one-letter word ai ∈
∐
I Ai. This construction

may be viewed as the amalgamated sum of the Ai relative to the trivial group.
Note that our category A has arbitrary coproducts, namely the familiar direct

sums in Ab and R -mods, and the free sum in Groups.

Remark 4.10. Even for two-element index sets I that are incomparable, the cat-
egorical coproduct and product may not be the same. One is used to such equality
from Ab and its reasonable subcategories, but Exercise 4.5 shows that coproduct
and product of two copies of Z are not the same when taken in Groups (F2 is not
Abelian).

If now I is any poset and (I,A = Groups,Φ) is a direct system then the direct
limit lim−→I

Ai is given as the quotient

A =

∐
i∈I Ai

({ei(ai) ∗ (ϕi,j ◦ ei(ai))−1}i6j∈I,ai∈Ai)

where the denominator denotes the smallest normal subgroup containing the spec-
ified elements. Explicitly, we identify words if they are already the same word in
the coproduct, or if w contains two adjacent letters ai and aj such that i 6 j,
aj ∗ ϕi,j(ai) = 1Aj , and w′ arises from w by cancellation of ai and aj .

Exercise 4.11. Prove that A is lim−→I
Ai by verifying the correctness of the universal

property.

Let us now consider direct limits in Ab. We switch from multiplicative notation
in Groups to additive notation in Ab.

Exercise 4.12. Show that the direct limit of Abelian groups within the category
of Abelian groups is the Abelianization of the direct limit when taken in Groups.
(Compare the discussion in Exercise 4.5.)

It follows by simplifying the formula for Groups that if {Ai}i∈I are in Ab then
in Ab,

lim−→
I

Ai =

⊕
i∈I Ai

{(. . . , 0, ai︸︷︷︸
∈Ai

, 0, . . . , 0,−ϕi,j(ai)︸ ︷︷ ︸
∈Aj

, 0, . . .)}(4.12.1)

where
⊕

denotes the coproduct (direct sum) of Abelian groups.

Finally, suppose that A = R -mods. The direct sum of the Ai permits a (well-
known) componentwise R-action and with this action the coproduct in the category
Ab becomes not only an R-module but indeed the coproduct in R -mods.

Consider now the forgetful functor

FAb,R -mods : R -mods −→ Ab,

and let (I, R -mods,Φ) be a direct system in R -mods with Φ(i) = Ai. Since for
any R -mods-morphism ϕ the Ab-morphism FAb,R -mods(ϕ) has the same effect on

elements as ϕ itself, lim−→
Ab

I
Ai is an R-module and the natural maps ϕi : Ai −→

lim−→
Ab

I
Ai are R-linear. Next, if {ψi : Ai −→ A′} is a test object for A in R -mods
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then there is a unique map of Abelian groups ψ : lim−→
Ab

I
Ai ..........- A′ such that

ψ ◦ ϕi = ψi. Each element a ∈ lim−→
Ab

I
Ai is a finite sum

∑
ϕi(ai) and hence

ψ(ra) = ψ(r
∑

ϕi(ai)) =
∑

ψ(ϕi(rai))

=
∑

ψi(rai)

= r
∑

ψi(ai)

= r
∑

ψ ◦ ϕi(ai) = rψ(a).

Therefore ψ is R-linear. It follows that

Ab

lim−→
I

FAb,R -mods(Ai) = FAb,R -mods

R -mods

lim−→
I

(Ai).

4.4. Limits of diagrams. We now consider the question of existence of direct
limits in categories of diagrams over A. To start, assume that A is a category that
has direct limits for every I-diagram in A, for one particular fixed I.

Suppose that η′′ : Φ −→ Φ′′ is a morphism of I-diagrams. Hence for i 6 j ∈ I
we get a commutative diagram

Ai
η′′i - A′′

i

Aj

ϕi,j

? η′′j - A′′
j

ϕ′′
i,j

?

lim−→
I

Ai ..........................................................
η−→

′′
-

ϕ
i

-ϕj -
lim−→
I

A′′
i

ϕ ′′i

-ϕ ′′
j -

Here as usual the dashed arrows are the universal morphisms from the direct limit
definition for Φ,Φ′′. The commutativity of the diagrams gives compatible maps
Ai −→ A′′

i −→ lim−→I
A′′
i which induce through the universal property of lim−→I

Ai the

dotted arrow. Given two morphisms of three I-diagrams such as in A′ η′−→ A
η′′−→ A′′

then the uniqueness part of the universal property ensures that the induced diagram

lim−→
I

A′
i

lim−→
i

A′′
i

.........................

(η ′′ ◦ η ′)−−−−−→
-

lim−→
I

Ai

η′−→
?

......... .........
.........

.......

η′
′

−→

-
(4.12.2)

commutes. We conclude that

Proposition 4.13. The process of taking direct limits is a functor

lim−→
I

(−) : DirA
I −→ A.

Let J be a second poset and consider the category DirA
J of J-diagrams in A. If

we consider objects labeled by I × J , we use upper indices for I and lower indices
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for J . Let Φ be an I-diagram in DirA
J . So Φ is a collection of J-diagrams Φi•, one

for every i ∈ I, with inner maps ϕij,j′ : Aij −→ Aij′ specific to the J-diagram Φi•,

and a collection of outer maps (morphisms of J-diagrams) ϕi,i
′

j : Aij −→ Ai
′

j that

commute with the inner maps. In other words, Φ = {Aij}i∈I,j∈J is a diagram in A
over I×J with maps ϕi,i

′

j : Aij −→ Ai
′

j and ϕij,j′ : Aij −→ Aij′ , where the latter type

of map is considered “inner” (specific to a particular J-diagram) and the former
maps are “outer”, giving a morphism of J-diagrams in A.

Proposition 4.14. If A has direct limits for all I-diagrams then DirA
J has direct

limits for all I-diagrams.

Proof. Let Φ = {Φi•}I = {Aij}i∈I,j∈J be an I-diagram in Dir A
J . We picture this

with the J-morphisms in vertical and the I-morphisms in horizontal direction.
What we are looking for is another J-diagram {Aj} (a “column”) with universal
morphisms ϕi• : Ai• - A• of J-diagrams that fit into

A′
j

Aij -

-

Ai
′

j

-

Aj
......

......
......

......
......

......
......

......
......

...-

--
A′
j′

?

Aij′

?
-

-

Ai
′

j′

?

-

Aj′
?.....

......
.....

......
.....

......
.....

.....
......

......-

--

(4.14.1)

for every test object {A′
j} in DirA

J .

By considering test J-diagrams Ψ = {A′
j} with A′

j = 0 unless j = j0, one sees

that the only possibility for Aj is lim−→I
Aij and ϕij : Aij −→ Aj must for every fixed

j be the universal morphism that belongs to this direct limit.
It follows that for every test object Ψ′ = {A′

j}, the row with index j in (4.14.1)

is always the direct limit diagram for the system {Aij}i∈I with test object A′
j . In

particular, there is no choice regarding either the object lim−→I
Φi, nor the universal

morphism Φ −→ lim−→I
Φi. Moreover, the inner (vertical) map Aj −→ Aj′ of lim−→I

Φi

must arise as the universal map from the test object {Aj′ , Aij −→ Aij′ −→ Aj′} for

the direct limit lim−→I
Aij . The uniqueness of the universal map implies that

Aj

Aj′′
-

Aj′
? -(4.14.2)

commutes, so by Proposition 4.13 we obtain actually a J-diagram in A.
The only remaining question is whether the various universal maps of horizontal

I-diagrams in A combine to a universal map of I-diagrams in DirA
J . In other words,
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we need to know whether the diagram

Aj ..................- A′
j

Aj′
?

.................- A′
j′

?

(4.14.3)

commutes for all j 6 j′ ∈ J . Note that

Aij
- A′

j

Aij′

?
- A′

j′

?

commutes because the horizontal maps are maps of J-diagrams. This gives two test
objects for Aj = lim−→I

Aij , namely via the maps Aij −→ A′
j −→ A′

j′ (which factors

as Aij −→ Aj −→ A′
j −→ A′

j′ by universality of Aj), and Aij −→ Aij′ −→ A′
j′

(which factors as Aij −→ Aij′ −→ Aj′ −→ A′
j′ by universality of Aj′ ). Since the

morphism Aj −→ Aj′ is the universal map to {Aij −→ Aij′ −→ Aj′}i∈I , the maps

Aij −→ Aij′ −→ Aj′ −→ A′
j′ and Aij −→ Aj −→ Aj′ −→ A′

j′ are identical. Hence
the two test objects are the same. The uniqueness of factorizations through a direct
limit now implies that diagram 4.14.3 commutes. �

Remark 4.15. Suppose that the notion of a complex makes sense in A. Suppose
also that A has direct limits for all I-diagrams. Note that a complex in A may be
viewed as a diagram in A over Z. It follows that if Φ is a direct system of complexes
in A, indexed by I, then there is a limit complex.

4.5. Exactness. From now on we shall assume that the categoryA is Abelian, and
that it has direct limits over any poset. In particular, of the three standard cate-
gories we look at, this eliminates Groups (since, amongst other things, morphisms
must form Abelian groups now), but it allows for A = Ab and A = R -mods. The
reason is that we wish to talk about homology in A.

Fix a poset I and an Abelian category A. Recall (Definition 4.6) that the objects

of DirA
I are the direct systems (I,A,Φ), and the morphisms HomDir A

I
((I,A,Φ), (I,A,Φ′))

are exactly the natural transformations from Φ to Φ′. Such a transformation η “is”
a prism with base I where all corners are decorated with objects of A, all edges are
decorated with morphisms of A, and all diagrams commute.

One may now use Abelianness of A and make the following

Definition 4.16. Let Φ′,Φ,Φ′′ be three objects of DirA
I , and suppose η′ : Φ′ −→ Φ

and η′′ : Φ −→ Φ′′ are morphisms of diagrams.
Then η′ gives rise to a new I-diagram, the kernel of η′, obtained by (ker(η′))i =

ker(η′i) ⊆ A′
i and whose interior maps are simply the restrictions of those of A′.

We say that η′ is a monomorphism if for every i ∈ I the induced A-morphism
η′i : A′

i −→ Ai is a monomorphism, so that ker(η′) is the zero diagram.
Moreover, η′′ gives rise to a new I-diagram, the cokernel of η′′, obtained by

(coker(η′′))i = coker(η′′i ) and whose interior maps are simply those induced by η′′
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via the universal cokernel property. Note that coker(η′′) is well-defined since η′′ is
a natural transformation. We say that η′′ is an epimorphism if for every i ∈ I the
induced A-morphism η′′i : Ai −→ A′′

i is an epimorphism, so that coker(η′′) is the
zero diagram.

We call Φ′ −→ Φ −→ Φ′′ is a short exact sequence of I-diagrams, if η′ is a
monomorphism, η′′ is an epimorphism, η′′ ◦ η′ = 0, η′ induces an isomorphism
between Φ′ and ker(η′′) and η′′ induces an isomorphism between coker(η′) and Φ′′.
In down to earth language, every 0 −→ A′

i −→ Ai −→ A′′
i −→ 0 is an exact

sequence in A.
With this terminology, Dir A

I becomes an Abelian category: a morphism with
zero kernel and zero cokernel is an isomorphism.

Remark 4.17. Let Fil be the category of filtered Abelian groups. Objects of Fil
look exactly like certain diagrams, and their morphisms are defined in the same way.
Nonetheless, Fil is not Abelian, since any refinement of a filtration of a fixed group
G gives a monomorphism that is also an epimorphism but not an isomorphism.
The trouble is that the cokernel is defined “incorrectly” in Fil. Namely, if Fi ⊆ F ′

i

are refining filtrations exhausting G then the cokernel filtration to the inclusion is
F ′

i+G
Fi+G

= 0. If F, F ′ are considered as direct systems, however, the cokernel is zero

if and only if Fi = F ′
i throughout.

Exercise 4.18. Verify that lim−→I
(−) is an additive functor. That is, the map

HomDir A
I
(Φ′,Φ) −→ HomA(lim−→I

Φ′, lim−→I
Φ) sending η to η−→ is a group homomor-

phism that is natural with respect to composition of morphisms.

We now come to the central question of this lecture, the exactness of the direct
limit functor. Let 0 −→ Φ′ −→ Φ −→ Φ′′ −→ 0 be an exact sequence of I-diagrams.
(I.e., for any i ∈ I the sequence 0 −→ A′

i −→ Ai −→ A′′
i −→ 0 is exact.)

When is 0 −→ lim−→I
Φ′ −→ lim−→I

Φ −→ lim−→I
Φ′′ −→ 0 exact?

Let us record an example showing that this is not a trivial issue.

Example 4.19. Let I =

{ a
c

-

b
-

}
be the pushout poset and consider the follow-

ing sequence of I-diagrams in Ab:

0 −→
(

Z
0

-

Z
-

)

︸ ︷︷ ︸
Φ′

η′−→
( Z

Z
-

Z
-

)

︸ ︷︷ ︸
Φ

η′′−→
(

0
Z

-

0
-

)

︸ ︷︷ ︸
Φ′′

−→ 0

Here, the outermost two systems have zero objects at every vertex, and the maps
η′i, η

′′
i are isomorphisms whenever that is conceivable, and the zero morphism oth-

erwise.
From Exercise 4.12 and the subsequent remarks it is clear that

lim−→
I

A′
i
∼= Z⊕ Z,

lim−→
I

Ai ∼= Z⊕ Z⊕ Z/ ((1,−1, 0), (1, 0,−1)) ∼= Z, and

lim−→
I

A′′
i
∼= Z/Z ∼= 0.



42

So on the level of limits, we have a complex

0 −→ lim−→
I

A′
i

︸ ︷︷ ︸
∼=Z⊕Z

η′
−→−→ lim−→

I

Ai

︸ ︷︷ ︸
∼=Z

η′′
−→−→ lim−→

I

A′′
i

︸ ︷︷ ︸
∼=0

−→ 0.

Clearly, η′−→ is not injective and hence lim−→I
(−) is not an exact functor.

Definition 4.20. For a poset I and an object A of A, let AI be the constant
diagram along I with coefficient A. That is, (AI)i = A for all i ∈ I, and for all
i 6 j ∈ I the morphism AI(i 6 j) is the identity on A.

Note that (−)I is a functor from A to DirA
I , which is obviously exact.

Exercise 4.21. Let A be an object ofA and let Φ be an I-diagram inA. Prove that
a morphism of diagrams Φ −→ AI determines a unique morphism lim−→I

Φ −→ A.

Prove conversely that a morphism lim−→I
Φ −→ A determines a unique morphism

Φ −→ AI , and that these two procedures are inverses of each other.

The exercise establishes that there is an identification

HomDir A
I
(Φ, AI) = HomA(lim−→

I

Φ, A).

Definition 4.22. Suppose one has two categories B, C and two functors F : B −→
C, G : C −→ B. Assume that for any objects B,C one has an identification

HomB(B,G(C))
α-�
β

HomC(F (B), C)(4.22.1)

as functors from B × C to the category Sets.
Then (F,G) form an adjoint pair, F is the left adjoint of G and G is the right

adjoint of F .

The condition of the definition that the Hom-sets be identified as functors is
stronger than what Exercise 4.21 asserts. Namely, the functor property requires
that the identification is functorial under morphisms in both arguments.

Example 4.23. The functor (−) ⊗R (B) is left adjoint to HomR(B,−) for any
R-module B.

Exercise 4.24. Extending Exercise 4.21, verify that lim−→I
(−) and (−)I are adjoints.

The benefit of adjoint pairs is the following.

Proposition 4.25. Let (F,G) be an adjoint pair of the categories B and C.
• Then there are adjunction morphisms (i.e., natural transformations) of

functors

σ : F ◦G −→ IdC , τ : IdB −→ G ◦ F
such that F

F◦τ−→ FGF
σ◦F−→ F and G

τ◦G−→ GFG
G◦σ−→ F are the identity

transformations on F and G respectively.
• The adjunction morphisms determine the Hom-set equivalence (4.22.1).
• If in addition B, C are Abelian, and F,G are additive then F is right exact

and G is left exact.



43

Proof. The first part follows by substituting C = F (B) and B = G(C) into the
Equation (4.22.1); the equational properties follow from plugging in.

The second part comes about as follows. Let u : B −→ G(C) be a morphism

in B. Its corresponding morphism α(u) : F (B) −→ C is obtained as F (B)
F (u)−→

F (G(C))
σ(C)−→ C; the converse direction is similar.

For the last part note first that the second part says that α(u : B −→ G(Y )) =
σC ◦ F (u) and β(v : F (B) −→ C) = G(v) ◦ τB. Then let v : C −→ C′ be a

monomorphism and let B be the kernel of G(v), so 0 −→ B
u−→ G(C)

G(v)−→ G(C′)
is exact. Apply F and consider the resulting diagram:

F (B)
F (u) - FG(C)

FG(v) - FG(C′)

C

σC
?

v
- C′

σC′

?

SinceG(v)◦u = 0, the top row is zero. By naturality of σ, the diagram commutes, so
F (B) −→ FG(C) −→ C −→ C′ is zero. Since v is a monomorphism, σC ◦F (u) = 0,
but by the first sentence of the paragraph above the diagram that means that u = 0.
In the light of u being a monomorphism this implies that B = 0, so G(v) is injective
and hence G is left exact. �

Exercise 4.26. Complete the proof of the third part of the proposition by showing
that F is right exact.

We have established that the direct limit functor from DirA
I to A is always right

exact, but not exact on the pushout diagram. The right exactness (and general

derived functor patterns) indicates that if a short exact sequence in Dir A
I fails to

provide a short exact sequence in A then in some way the fault is with the rightmost
I-diagram, since it is its first left derived functor that keeps the limit sequence
inexact. Instead of discussing acyclic object over arbitrary I we shall identify a
property of I that forces all I-diagrams to be lim−→(−)-acyclic. Justification of this
approach comes from the fact that, apart from the pushout, the most important
posets appear to fall into that category.

Definition 4.27. The poset I is said to be confluent if for all i, j ∈ I there is
k ∈ I such that i 6 k and j 6 k.

The traditional word is “directed”. However, as a graph every poset is directed,
and in the presence of “direct” limits, “directed” occasionally causes confusion.

Example 4.28. (1) The most important poset in topology is the pushout di-
agram and that is clearly not confluent.

(2) The most important poset in algebraic geometry is the poset of open sets
{Ui} in a scheme X that contain a chosen point P . The order relation is
reverse inclusion. Since the intersection of two open sets containing P is
another such set, U is confluent.

(3) The two most important direct systems in algebra are the natural num-
bers N (obviously confluent), and the collection of all finitely generated
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R-modules {Mi} of some fixed R-module M . The order relation is contain-
ment, and since the sum of two finitely generated submodules is another
such module, {Mi} is confluent.

At this point we restrict ourselves to categories whose objects have elements.
For example, subcategories of Ab are permitted.

Recall that ϕ : Ai - lim−→I
Ai are the universal limit maps. In general, the

elements of lim−→I
Ai are sums

∑
i∈I ϕi(ai) where all but finitely many ai are zero.

As it turns out, the crucial property of confluent posets I is that every element
{ai}ai∈Ai of lim−→I

Ai can be represented as the coset of (ϕi of) a single element ai.

This follows immediately from the formula (4.12.1), and confluence. This allows
for the following vanishing test in confluent diagrams.

Lemma 4.29. Let I be a confluent poset, suppose that A has direct limits for all
I-diagrams, and let Φ be an I-diagram in A. Then a = {ai} ∈

⊕
I Φi maps to

0 = a =∈ lim−→I
(Φ) provided that there exists j ∈ I such that

(1) i 6 j for every i with ai 6= 0;
(2)

∑
ai 6=0 ϕi,j(ai) = 0.

In other words, in direct limits over confluent diagrams, “vanishing elements vanish
at finite time”.

Proof. Let a be as stipulated. Since only a finite number of the ai is nonzero,
confluence assures the existence of j as stipulated by (1). We are therefore reduced
to proving the lemma in the case of one non-vanishing component aj .

If a = 0 then aj is a finite sum of expressions of the type ai′ − ϕi′,i′′(ai′):
aj =

∑

i′

(ai′ − ϕi′,i′′ (ai′)) ∈
⊕

i∈I

Ai.

Let j′ be an index dominating j and all i′ with ai′ 6= 0. Then

ϕj,j′ (aj) = (−aj)− ϕj,j′(−aj) +
∑

i′

(ai′ − ϕi′,j′(ai′))

+
∑

i′

[ϕi′′,j′(ϕi′,i′′(ai′))− ϕi′,i′′(ai′ )] ∈
⊕

i∈I

Ai

(since ϕi′,j′ = ϕi′′,j′ϕi′,i′′), and ϕj,j′ (aj) = a. We rewrite this as

ϕj,j′(aj) =
∑

i′′6j′

(ai′′ − ϕi′′,j′ (ai′′)) ∈
⊕

i∈I

Ai.

We may assume that each i′′ appears at most once in the sum. This being a
statement about a direct sum, components left and right must be equal. In par-
ticular, ai′′ = 0 for every i′′ 6= j′. The equation then simplifies to ϕj,j′(aj) =
aj′ − ϕj′,j′(aj′ ) = 0. �

Note that the converse of the lemma is obvious.

Theorem 4.30. If I is confluent then lim−→I
(−) : DirA

I −→ A is an exact functor.

Proof. Let 0 −→ Φ′ η′−→ Φ
η′′−→ Φ′′ −→ 0 be a short exact sequence of I-diagrams.

In view of Proposition 4.25 we only need to show exactness of 0 −→ lim−→I
A′
i −→

lim−→I
Ai −→ lim−→I

A′′
i −→ 0 on the left.
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Let a′ = {a′i} ∈ lim−→I
A′
i be in the kernel of η′−→. By Lemma 4.29 applied to η′−→(a′)

there is j ∈ I with j ≥ i for all a′i 6= 0 such that

η′j(
∑

i

ϕ′
i,j(a

′
i)) =

∑

i

ϕi,j(η
′
i(a

′
i)) = 0.

But η′j is a monomorphism according to the hypothesis, so
∑

i ϕi,j(a
′
i) = 0. Since

this sum represents a′, the theorem follows. �

Exercise 4.31. Let 0 −→ Φ(0) −→ Φ(1) −→ . . . −→ Φ(n) −→ 0 be a complex of
diagrams in A over the confluent poset I.

• If the complex Φ(•) is exact in DirA
I then show that the resulting sequence

of direct limits is exact too.
• In general, let Ψ(k) = {H(k)

i } be the k-th homology I-diagram

H
(k)
i =

ker
(
A

(k)
i −→ A

(k+1)
i

)

image
(
A

(k−1)
i −→ A

(k)
i

) .

Show that lim−→I
Ψ(k) is naturally isomorphic to the homology of

lim−→
I

A
(k−1)
i −→ lim−→

I

A
(k)
i −→ lim−→

I

A
(k+1)
i .

One says that direct limits on confluent index sets commute with homology. We
reiterate the point made in Example 4.19 that arbitrary diagrams will fail Theorem
4.30.

4.6. Direct limits and left adjoints. It is somewhat remarkable that the fol-
lowing theorem uses no such condition as additivity or Abelianness. It is a pure
example of what is called “abstract nonsense”.

Theorem 4.32. Let F : B −→ C be a covariant functor that is left adjoint to
G : C −→ B. Let I be a poset and assume that B has direct limits for all I-diagrams.

Let {Bi}i∈I be an I-diagram in B and lim−→I
Bi its direct limit. The I-diagram

{F (Bi)}i∈I in C has direct limit F (lim−→I
Bi).

Proof. Note first that, since F is a functor, F (B) is indeed an I-diagram over I in
C.

We shall show that F (lim−→I
Bi) satisfies the appropriate universal condition. Cer-

tainly there are compatible maps from F (Bi) to F (lim−→I
Bi); they arise by applying

F to the universal maps ϕi : Bi - lim−→I
Bi.

Let C be an object of C and suppose we are given compatible morphisms ψi :
F (Bi) −→ C:

F (Bi)

C

ψi
-

F (Bj)

F (ϕi,j) ?
ψj

-(4.32.1)

We need to show that there is a unique morphism ψ : F (lim−→I
Bi) ........- C through

which all ψi factor.
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From the given data, by applying the functor G, we get compatible maps

G(F (Bi))

G(C)

G(ψi)-

G(F (Bj))

G(F (ϕi,j)) ?
G(ψj)

-

and the adjunction morphisms τBi : Bi −→ G(F (Bi)) produce a commutative
diagram

Bi

G(C)

G(ψi) ◦ τBi-

Bj

ϕi,j ?

G(ψj) ◦ τBj

-

for all i 6 j ∈ I.
The universal property of lim−→I

Bi yields a unique morphism lim−→I
Bi ........- G(C)

compatible with these triangles. In view of the adjoint correspondence of morphism
sets (4.22.1) there is a unique morphism F (lim−→I

Bi) .........- C compatible with the

maps in (4.32.1). This means that F (lim−→I
Bi) is the direct limit of {F (Bi)}. �

Let us mention some instances where this theorem can be applied.

Example 4.33. (1) Let A be Ab or R -mods and take F to be the tensor
product (over Z, resp. R) with the object A′ of A. As is well-known (and
easy to check), (−)A ⊗ A′ is left adjoint to HomA(A′,−). It follows from
the theorem that if {Ai} is an I-diagram in A then there is a natural
identification

lim−→
I

(Ai ⊗A A′) = lim−→
I

(Ai)⊗A A′,

i.e., “direct limits commute with tensor products”.
(2) Let I, J be posets and let A be a category such that A has direct limits for

both all I-diagrams and all J-diagrams.
By Proposition 4.14, DirA

I has direct limits over J-diagrams, and DirA
J

has direct limits over I-diagrams. Recall from the discussion before Propo-

sition 4.14 that there is an identification of Dir
Dir A

I

J and Dir
Dir A

J

I with the
diagrams over the poset I × J (with (i, j) 6 (i′, j′) if and only if i 6 i′ and
j 6 j′) in A. We continue the custom to decorate objects in this category
with upper indices in I and lower indices in J . Let {Aij}i∈I,j∈j be one

such diagram. Then since lim−→•
(−) is left adjoint to the functor (−)• (from

Definition 4.20) of constant •-diagrams for both • = I, J , we have

lim−→
J

(
lim−→
I

(Aij)

)
= lim−→

I

(
lim−→
J

(Aij)

)
.

Here, {Aij} is on the left interpreted as a collection of I-diagrams in A
which happen to form a J-diagram in DirA

I . The direct limits of these
I-diagrams then forms a J-diagram in A, and it is the direct limit of this
system that forms the left hand side of the equation. On the right, the
positions of I and J are inverted. One says that “direct limits commute
with each other”.

Indeed, both constructions can be seen to satisfy the universal property
of lim−→I×J

Aji by virtue of the right adjoints (−)I and (−)J .
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(3) As a particular case of the previous property, direct limits commute with
arbitrary direct sums because a direct sum is a direct limit over its index
set with no nontrivial relations.

Exercise 4.34. Despite the fact that “direct limits commute with tensor products”,
show by example that if Φ = {Ai} and Ψ = {A′

i} are two I-diagrams in A = Ab or
R -mods then

lim−→
I

(Ai ⊗A A′
i) = lim−→

I

(Ai)⊗A lim−→
I

(A′
i)

may be false. (Hint: look at the pushout.)
Note that there is always a natural map from the left to the right hand side

of the equation, and the right hand term always agrees with lim−→I
lim−→J

(Ai ⊗A A′
j).

Prove that if I is confluent then this natural map is an isomorphism.

4.7. Assorted remarks and exercises on the pushout. We identify here the
derived functors of lim−→I

(−) on the pushout poset.

Exercise 4.35. We consider I-diagrams in A = Ab where I is arbitrary. For i ∈ I
and an Abelian group M , let M[i] be the I-diagram given by (M[i])j = M whenever
i 6 j and (M[i])j = 0 otherwise. Let ϕj,j′ be the identity on M for all i 6 j 6 j′

and the zero map otherwise. For example, on the pushout poset we have

M[c] =

{
M

M
-

M
-

}
, Ma =

{
M

0
-

0
-

}
, Mb =

{
0

0
-

M
-

}

where every morphism is the obvious embedding and M is any object of A. One
might call M[i] the constant system on the closure of i, i.e., on the sub-poset given
by all j with i 6 j.

Show that each M[i] is lim−→I
(−)-acyclic. In other words, show that a short ex-

act sequence of I-diagrams with M[i] as the rightmost system gives a short exact
sequence of direct limits. Consider first the case when M is free. Then note that
lim−→I

M[i] is canonically identified with (M[i])i ∼= M . Deal with arbitrary M by

resolving M in Ab and noting that this gives you a resolution of M[i] in Dir Ab
I .

Now use the above identification to show that on the level of limits the sequence
stays a resolution, implying acyclicity.

From now on, let I be the pushout poset

{ a
c

-

b
-

}
.

Exercise 4.36. Show that every I-diagram in Ab has a two-step left resolution
by I-diagrams of the type M ′

[a] ⊕M ′′
[b] ⊕M ′′′

[c] where all occurring groups are free.

Show that for any two such resolutions there is a third such resolution dominating
it. In consequence, show that every short exact sequence 0 −→ {Ai} −→ {Bi} −→
{Ci} −→ 0 of I-diagrams in Ab gives rise to an exact sequence

0 −→ A1 −→ B1 −→ C1 −→ lim−→
I

Ai −→ lim−→
I

Bi −→ lim−→
I

Ci −→ 0

where A1, B1, C1 are objects of Ab that do not depend on the resolution, up to
isomorphism. Prove that A1, B1, C1 are natural with respect to maps of I-diagrams:
a map of short exact sequences of I-diagrams in Ab results in a morphism of the
corresponding six-term exact sequences.
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We may hence consider these groups as left derived functors

lim−→
I,1

: Dir Ab
I −→ Ab

of lim−→I
(−), and we know that the higher left derived functors lim−→k,I

(−) are zero

for k > 1.

Compute lim−→I,1

(
0

Z
-

0
-

)
.

Exercise 4.37. Contemplate the case of A = R -mods in the previous exercise.

Exercise 4.38. Find a poset such that its second left derived functors lim−→
Ab

I,2
(−)

is not the zero functor. (Hint: think of the pushout as a baby case of a dualized
Čech complex for a 2-set cover of S1. Find a space with nonzero second homology,
cover it with open sets, and “dualize” the corresponding Čech complex.)

Generalize to show that for arbitrary n there are posets for which lim−→
Ab

I,n
(−) is

nonzero.

For the last three exercises in this lecture, if M is a pushout diagram in Ab, let
KM be the group of elements in Mc that are sent to zero under both ϕc,a and ϕc,b.

Exercise 4.39. Show that if KM is zero then M is lim−→I
-acyclic. (Hint: Consider

the natural inclusion of the constant diagram (Mc)[c] into M and let Q be the
cokernel. Prove that one may assume M = Q.)

Exercise 4.40. Using result and strategy of the preceding exercise, show that
KM

∼= lim−→I,1
(M).

Exercise 4.41. If 0 −→ C′
• −→ C• −→ C′′

• −→ 0 is a short exact sequence of
complexes (i.e., of diagrams over the poset Z with its natural order) then there
is long exact homology sequence. Use this to give a quick and dirty proof for
KM

∼= lim−→I,1
(M).

Remark 4.42. The discussion of direct limits can be “turned upside down” by
considering universal properties in the opposite categoryAopp. This leads to inverse
limits, which have been slighted here. This is mainly because direct limits appear
in the more basic theory of local cohomology. It should be noted that inverse
limits (and their derived functors on R -mods) also play an important role in local
cohomology theory. This role can be summed up in “Greenlees–May duality”,
which interweaves the completion functor along the variety of an ideal with the
local cohomology functor with supports in the ideal. Greenlees–May duality is an
upscale version of local duality which is discussed for example in Theorem 11.32.
The reader is referred to [102] for details.
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Lecture 5. Dimension theory, Gröbner bases (AL)

This lecture develops the dimension theory for algebras and modules that was
already brought to light in the first lecture in the series. Starting with a filtra-
tion on an algebra (ring, module) and working with the graded associated algebra
(ring, module), we define dimension and multiplicity by introducing the Hilbert
polynomial. For a classical treatment of the dimension theory see [4].

Later we show how to compute this polynomial using the apparatus of Gröbner
bases, which is a cornerstone of the computational commutative algebra. A crash-
course on Gröbner bases begins with the introduction of orders on the monomials
of the polynomial ring R = K[x1, ..., xn]. A special attention is paid to the weight
monomial orders: a weight defines a filtration on R.

The concept of the initial ideal leads to flat deformations that enable computation
of such things as Hilbert polynomials. Besides, initial ideals carry a certain artistic
value: these are monomial ideals and, therefore, correspond to staircases in the
integer lattice Zn≥0 that can be drawn in Rn≥0 for n ≤ 3.

Several equivalent definitions of a Gröbner basis follow; we put special emphasis
on Buchberger’s algorithm for computing Gröbner bases. For an introduction to
the very basics of computational commutative algebra we recommend [26].

This lecture will be accompanied by examples of computations in the computer
algebra system Macaulay 2 [?], several applications of which are described in the re-
cent book [32]. Besides, there are several other computer systems specialized on the
computational commutative algebra, in particular, CoCoA [22] and Singular [51].
The developers of the latter published a good textbook on commutative algebra
[52] showing an abundance of applications of their software.

5.1. Graded algebras, filtrations, associated graded algebra. The first men-
tioning of graded rings and modules was made in Lecture 1. Let us recall what has
been said replacing the word ring with the word algebra.

Definition 5.1. An algebra R over a field K is called N-graded if R = ⊕i∈NRi as
a K-vector space, and RiRj ⊂ Ri+j for all i, j ∈ N.

Usually, graded means N-graded when talking about algebras and their ideals.

Example 5.2. The ring of polynomials R = K[x1, ..., xn] can be graded by the
degree, i.e. Ri = {f ∈ R | deg(f) = i}.
Exercise 5.3. A two-sided ideal I of a graded algebra R = ⊕i∈NRi is called graded
if I = ⊕i∈NIi, where Ii = Ri ∩ I.

Show that if I is a graded ideal of a graded K-algebra R then the quotient
K-algebra R/I is graded.

Exercise 5.4. Let R = ⊕i∈NRi and S = ⊕i∈NSi be graded K-algebras. A K-
algebra homomorphism ϕ : R→ S is called graded if ϕ(Ri) ⊂ Si for all i ∈ N.

Show that kerϕ is a graded (two-sided) ideal of R.

A graded algebra admits a special kind of modules — the graded ones. In
case of modules, we allow negative graded parts: a left R-module M is called Z-
graded if M = ⊕i∈ZMi as a K-vector space , where Mi are called the homogeneous
components of degree i, and Ri ·Mj ⊂Mi+j for all i ∈ N and j ∈ Z. A submodule
N of M is a graded submodule if N = ⊕i∈ZNi, where Ni = Mi ∩N . A grading on
M also induces the grading on M/N in this case.
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Example 5.5. For a graded K-algebra R = ⊕i∈NRi, let R⊗m denote the m-th
tensor power of R over K. This module can be graded naturally the following way:

(Rm)i =
∑

j1+...+jm=i

(Rj1 ⊗K ...⊗K Rjm).

Another approach to constructing a graded algebra is via filtrations: a family
F = {Fi}i∈N of K-vector spaces is called a filtration on a K-algebra R if

(1) F0 ⊂ F1 ⊂ F2 ⊂ ... ⊂ R,
(2) R =

⋃
i∈N Fi,

(3) Fi · Fj ⊂ Fi+j .
We also set a convention that Fi = 0 for i < 0.

If an algebra comes with a filtration then we say that it is filtered.

Example 5.6. Every graded algebra is filtered. Take R = ⊕i∈NRi, then Fi =∑
0≤j≤iRi for i ∈ N form a filtration of R.

For an example of a filtered algebra that is not graded, we refer you to Lecture 17
where the algebra of differential operators is introduced; it possesses only a trivial
grading, however, it can be nontrivially filtered. That is why the next concept, the
associated graded algebra, is useful: although it may not coincide with the original
filtered algebra, many of its properties pass on to its parent.

Definition 5.7. Let R be a K-algebra equipped with filtration F = {Fi}i∈N, then
the vector space grG R = ⊕i∈N(Fi/Fi−1) with the naturally defined multiplication
is called the graded algebra associated to filtration F of R, or simply the associated
graded algebra in case the filtration is implied.

Example 5.8. The associated graded algebra (with respect to the natural filtration
as in Example 5.6) of a graded algebra is isomorphic to its parent.

For an algebra R and its filtration F , we define a filtration on a left R-module
M to be a collection of K-vector spaces G = {Gi}i∈Z that satisfies

(1) ... ⊂ G−1 ⊂ G0 ⊂ G1 ⊂ ... ⊂M ,
(2) M =

⋃
i∈Z Gi,

(3) Fi ·Gj ⊂ Fi+j .
Similarly, the graded module of M associated to the filtration G is set to be

grG M = ⊕i∈Z(Gi/Gi−1).

Example 5.9. Let R = K[x] be the ring of univariate polynomials filtered by the
degree. For a polynomial f ∈ R of degree d, the localized ring Rf = K[x, f−1] is a
module over R.

Consider the filtration of Rf by the degree:

Gi = { g
fm
∈ Rf | g ∈ R, deg g − dm ≤ i}.

The i-th component of the associated graded module grG Rf consists of rational
functions of the form g/fm, where g is homogeneous and deg g−dm = i. Note that
these are not finitely generated.

If a filtration on a module is such that the components of the associated graded
module are finitely generated then we call it a good filtration.
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Exercise 5.10. Show that for every finitely generated module over a polynomial
ring there exists a good filtration.

Theorem 5.11. Let M = ⊕iMi be a finitely generated module over the polynomial
ring R = K[x1, ..., xn]. Then there exist a polynomial χ(t) ∈ Q[t] such that

s∑

i=0

dimK(Mi) = χ(s), for s >> 0.

The polynomial χ(t) is called the Hilbert polynomial of M and is denoted by
χ(M, t).

Exercise 5.12. Show that the Hilbert polynomial of R = K[x1, ..., xn] as a graded
module over itself is χ(R, t) =

(
t+n
n

)
= (t+ n)(t+ n− 1)...(t+ 1).

Prove that χ(M, t) is additive in the second argument. What is χ(Rm, t)?

For the polynomial ring R = K[x1, ..., xn] and a module M equipped with a good
filtration G, let us define the Hilbert polynomial by χ(M,G, t) = χ(grG M, t).

Definition 5.13. Let χ(M,G, t) = adt
d + lower degree terms. Then d is called the

dimension of M and the multiplicity of M is defined as d!ad.

Both numbers are nonnegative integers and do not depend on the choice of the
good filtration.

5.2. Hilbert polynomial, function, series. Let us establish the connection be-
tween Hilbert polynomial, Hilbert function and Hilbert-Poincaré series.

Hilbert function is h : Z → Z is defined h(M, i) = dim(grM)i. For i >> 0 it
may be expressed through the Hilbert polynomial: h(M, i) = χ(M, i)−χ(M, i−1).

The Hilbert-Poincaré series, in turn, is P (M, t) =
∑

i∈Z h(M, i)ti. To complete
the loop we express the Hilbert polynomial via the Hilbert-Poincaré series (e.g. see
[52, Definition 5.1.4]). Let

P (M, t) =
G(t)

(1− t)s , G(t) =

d∑

i=0

git
i ∈ Z[t], G(1) 6= 0.

Then the Hilbert polynomial is

χ(M,n) =

d∑

i=0

gi

(
s− 1 + n− i

s− 1

)
∈ Q[n].

It follows that it is sufficient to find one of the three in order to know the dimension

and the multiplicity of a module. Let us see if we can do the computations for a
quotient of the ring.

Lemma 5.14. If f is a homogeneous polynomial of degree d and I ⊂ R a homoge-
neous ideal, then

P (R/I, t) = P (R/〈I, f〉, t) + tdP (R/(I : 〈f〉), t).
Proof. See the proof of [52, Lemma 5.2.2]. �

Exercise 5.15. Let I ⊂ R be a monomial ideal with the minimal set of generators
{xα1 , ..., xαs}. Using Lemma 5.14 construct an algorithm for computing P (R/I, t).
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5.3. Monomial orders. Let R = K[x1, ..., xn] be the ring of polynomials in n
variables with coefficients in the field K.

Definition 5.16. A monomial order ≥ is an order on the monoid {xα | α ∈ Zn≥0}
that respects multiplication: i.e. xα > xβ ⇒ xα+γ > xβ+γ for any γ.

If in addition ≥
• is a total order, i.e. for any α and β one of the three holds: xα > xβ ,
xβ > xα, or β = α;
• is a well-order: any set of monomials has the minimal element,

then it is called a term order .

Example 5.17. One of the standard examples of a term order is the lexicographic
order a.k.a. dictionary order, since the monomials are ordered as words in a dic-
tionary:

xα ≥ xβ ⇔ the first nonzero entry in α− β is positive.

One way to construct monomial orders is via integer weights; to a weight vector
ω ∈ Zn we may associate the weight order ≤ω by setting

(5.17.1) xα ≥ω xβ ⇔ 〈α, ω〉 ≥ 〈β, ω〉,
where 〈·, ·〉 is the usual inner product. Note that xα =ω x

β is possible for α 6= β;
also, if ωi < 0 then 1 > xi > x2

i > ... is an infinite descending sequence. Therefore,
such a weight order is a non-term order. However, if a positive weight is used and
the order is refined (i.e. the ties are broken) with, for example, the lexicographic
order, then such an order becomes a term order.

For a fixed weight vector ω, let Fω = {Fω,m}m∈Z, where

Fω,m = {
∑

〈α,ω〉≤m

cαx
α}.

Exercise 5.18. Prove that Fω is a Z-filtration on R. Show that if ω ∈ Zn>0 then
Fω is a good N-filtration.

We shall write grω R for the associated graded ring of R with respect to the
filtration F above.

In presence of a term order ≥, a polynomial

(5.18.1) f(x) =
∑

α∈Zn
≥0

cαx
α ∈ R

has the following attributes associated with it:

Supp(f) = the support = {xα | cα 6= 0},
le(f) = the leading exponent = max≥ Supp(f),

lm(f) = the leading monomial = xle(f),
lc(f) = the leading coefficient = cle(f),
lt(f) = the leading term = lc(f) lm(f).

For an arbitrary monomial order ≥ω, we use in(f) = inω(f) to denote the initial
form of f , which is the sum of the terms cαx

α that are maximal. If ≥ω happens to
be a term order, then in = lt.

For a weight order ≥ω, the initial form is viewed as an element of grω R.
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Figure 2. Staircases: in(I) for I = 〈x4 + x2y3, y4 − y2x3〉 and
three different orders.

Definition 5.19. Let I be an ideal of R equipped with an order ≥. We define the
initial ideal of I with respect to ≥ as in(I) = in≥(I) = 〈in(f)|f ∈ I〉.

For a weight order ω we write inω(I) for the initial ideal in≥ω (I) and think
inω(I) ⊂ grω R.

Remark 5.20. The initial inω(I) is equal to grω I ⊂ grω R, the associated graded
of I ⊂ R equipped with the filtration Fω.

In case of a term order, the initial ideal is guaranteed to be monomial. The
monomials that do not belong to the initial ideal in(I) are called standard monomi-
als. A monomial ideal can be represented by a staircase in the nonnegative integer
lattice Zn≥0.

Example 5.21. Consider the ideal I = 〈x4 + x2y3, y4 − y2x3〉 ⊂ R = K[x, y]. We
will consider three monomial orders: ≥lex{x,y}, ≥lex{y,x}, and ≥(1,2) — the first two
are lexicographic orders with the different order of indeterminates, the last one is
the weight order with ω = (1, 2). Notice that ≥(1,2) is a non-term order, however,
the initial ideal in(1,2)(I) still turns out to be monomial.

Figure 5.21 displays the staircases corresponding to these three orders.

5.4. Flat deformations. Fundamental to the computation of the Hilbert-Poincaré
series is the following statement [52, Theorem 5.2.6].

Theorem 5.22. Fix a term order on the polynomial ring R. Then for every ho-
mogeneous ideal I ⊂ R,

P (R/I, t) = P (R/ in(I), t).
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Note that together with the algorithm developed in Exercise 5.15, this theorem
enables the computation of P (R/I, t) for any homogeneous ideal I.

Corollary 5.23. With the notation of the previous theorem,

dim(R/I) = dim(R/ in(I)),

dimK(R/I) = dimK(R/ in(I)).

Proof. All the numbers associated to the Hilbert-Poincaré series are invariant under
flat deformations. �

Exercise 5.24. Count the number of monomials under the staircase (standard
monomials) in Figure 5.21. Explain why the result does not depend on the order.

5.5. Gröbner bases. Is there a recipe for getting initial ideals in Example 5.21?
The question is answered positively via Gröbner bases and Buchberger’s algorithm.

Definition 5.25. Fix a monomial order on R. A subset G of an ideal I ⊂ R is a
Gröbner basis iff in(I) = 〈in(g) | g ∈ G〉.
Example 5.26. For the ideal I and the orders of the Example 5.21, the corre-
sponding Gröbner bases can be computed using gb command of Macaulay2.

i1 : Rxy = QQ[x,y, MonomialOrder=>Lex];

i2 : I = ideal(x^4+x^2*y^3,y^4-y^2*x^3);

o2 : Ideal of Rxy

i3 : gb I

o3 = | y11+y6 xy4-y8 x3y2-y4 x4+x2y3 |

o3 : GroebnerBasis

i4 : Ryx = QQ[y,x, MonomialOrder=>Lex];

i5 : gb substitute(I,Ryx)

o5 = | x11-x6 yx4+x8 y3x2+x4 y4-y2x3 |

o5 : GroebnerBasis

i6 : R12 = QQ[x,y, Weights=>{1,2}];

i7 : gb substitute(I,R12)

o7 = | y4-x3y2 x2y3+x4 x4y2-x7 x8+x4y x7y+x6 |

o7 : GroebnerBasis

Now we can read off generators for the corresponding initial ideals, which happen
to be the corners of the staircases in Figure 5.21.

5.6. Buchberger’s algorithm. Let us discuss the basic idea behind the algorithm
that makes the gb command of Example 5.26 work.

Fix a term order. The following algorithm reduces a polynomial with respect to
a finite subset of R:

Algorithm 5.27 (Normal form). f
G

= NF (f,G)

Require: f ∈ R, G ⊂ R.
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Ensure: f
G ∈ R, such that f

G
= f mod 〈G〉 and lm(f

G
) is not divisible by lm(g)

for all g ∈ G.

f ′ := f
while f ′ is divisible by lm(g) for some g ∈ G do

f ′ := f ′ − lt(f ′)

lt(g)
· g

end while
f
G

:= f ′

Note that the choice of a reductor g in the while loop is not deterministic.
However, we shall assume that a strategy for picking reductors is fixed and the
outcome of the algorithm is, therefore, uniquely determined.

Remark 5.28. Algorithm 5.27 terminates since the leading monomials of f ′ at
every step form a decreasing sequence, which has to terminate since a term order
is, in particular, a well-order.

There is another way to define a Gröbner basis using the concept of the s-
polynomial of two polynomials f, g:

S(f, g) =
xα

lt(f)
f − xα

lt(g)
g, where xα = lcm(lm(f), lm(g)).

Theorem 5.29 (Buchberger Criterion). Let G be a finite generating set of an ideal

I ⊂ R. Then G is a Gröbner basis if and only if S(f, g)
G

= 0 for all pairs f, g ∈ G.

Proof. See Chapter 2, §7 of [26]. �

The Buchberger criterion provides an idea for the following algorithm.

Algorithm 5.30 (Buchberger’s algorithm). G = Buchberger(F)

Require: F , a finite generating set for an ideal I ⊂ R equipped with a term order.
Ensure: G, a Gröbner basis of I.

G := F,Q := {(f, g) | f, g ∈ F}
while Q 6= ∅ do

Pick a pair (f, g) ∈ Q
h := NF (S(f, g))
if h 6= 0 then
Q := Q ∪ {(f, h) | f ∈ G}
G := G ∪ {h}

end if
end while

A proof of termination of Buchberger’s algorithm can be found in Chapter 2, §6
of [26].



56

5.7. Gröbner bases for modules. A monomial order ≥ on the polynomial ring
R = K[x1, ..., xn] can be used to build an order on the free module Rm of rank
m > 0 in several ways; Let Rm = Re1 ⊕ ...⊕Rem, we describe two possible orders
≥TOP and ≥POT as follows:

xαei >TOP x
βej ⇔ xα > xβ or (xα = xβ and i > j)

(TOP = “term over position”)
xαei >POT x

βej ⇔ i > j or (i = j and xα > xβ)
(POT = “position over term”)

Similarly to how it is done in 5.16, we may introduce the notion of a term order
for a free module of finite rank. If ≥ is a term order, so are both ≥TOP and ≥POT .

It is also not very hard to modify the definition of a Gröbner basis and Buch-
berger’s algorithm to make them work in the module setting.
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Lecture 6. Complexes from a sequence of ring elements (GL)

In Lecture 3 we postulated or proved the existence of several examples of exact
sequences: projective, free, or injective resolutions, as well as long exact sequences
in (co)homology. Most of these were quite abstract, and the concrete examples
came out of thin air. The problem of actually producing any one of these kinds
of resolutions for a given module was essentially ignored. In this lecture, we will
give a few, quite concrete, constructions of complexes beginning from an explicit
list of ring elements, which we can later use and manipulate to obtain resolutions
in some cases. The complexes we construct will also, as we shall see, carry quite
a lot of information that is relevant to our long-term goal of understanding local
cohomology.

In constructing various complexes from a sequence of elements, we will begin
with the case of a single element, and inductively patch copies together to build
the final product. This patching will be done by taking the tensor product of two
or more complexes, a procedure we now define in general. Let R be an arbitrary
commutative ring.

Definition 6.1. Let

F • : · · · // F i
ϕi

// F i+1 // · · ·
and

G• : · · · // Gi
ψi

// Gi+1 // · · ·
be (cohomologically indexed) complexes of R-modules. Then the tensor product of
F and G is

F • ⊗R G• : · · · //
⊕

i+j=k

F i ⊗R Gj ∂k
//
⊕

i+j=k+1

F i ⊗R Gj // · · · ,

where ∂k is defined on simple tensors x⊗ y ∈ F i ⊗R Gj by

∂k(x ⊗ y) = ϕi(x) ⊗ y + (−1)ix⊗ ψj(y) .
An exactly similar definition applies to homologically-indexed complexes.

Remark 6.2. The sign in the definition of ∂k is there precisely so that F •⊗RG• is a
complex. With this definition, it is straightforward to check that the tensor product
defines an honest binary operation on complexes, which, if R is commutative, is
both associative and commutative.

The Koszul complex

When we are handed a single element of a ring, there is one complex simply
crying out to be constructed.

Definition 6.3. Let R be a ring and x ∈ R. The Koszul complex on x is

K•(x) : 0 −−−−→ R
x−−−−→ R −−−−→ 0 ,

with R in degrees 1 and 0. For a sequence x = x1, . . . , xn, the Koszul complex on
x is defined by

K•(x) = K•(x1)⊗R · · · ⊗R K•(xn) .
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Example 6.4. Let x, y ∈ R. The Koszul complex on x is

K•(x) : 0 −−−−→ R
x−−−−→ R −−−−→ 0 ,

and that on y is

K•(y) : 0 −−−−→ R
y−−−−→ R −−−−→ 0 .

The tensor product is

K•(x, y) : 0 −−−−→ R
[ x−y ]−−−−→ R2 [y x]−−−−→ R −−−−→ 0

where the three nonzero modules are in degrees 2, 1, and 0, left to right. Observe
that K•(x, y) is indeed a complex.

Remark 6.5. Let x = x1, . . . , xn. Then some simple counting using Definition 6.1
reveals that the rth module in the Koszul complex K•(x) is given by

Kr(x) ∼= R(n
r) ,

where
(
n
r

)
is the appropriate binomial coefficient. The natural basis for this free

module is the set {ei1,...,ir}, where 1 ≤ i1 < · · · < ir ≤ n. In terms of this basis,
the rth differential ∂r is given by

∂r(ei1,...,ir) =

r∑

j=1

(−1)i−1xijei1,...,bij ,...,ir .

Exercise 6.6. Construct the Koszul complex on a sequence of three elements
x, y, z ∈ R. Compare with Example 3.14.

Exercise 6.7. For a sequence of any length, x = x1, . . . , xn, identify the maps ∂1

and ∂n in K•(x).

The Koszul complex as defined above holds an enormous amount of information
about the sequence x = x1, . . . , xn and the ideal of R that they generate. In future
lectures we’ll see some of this information laid bare. For the best applications,
however, we will want more relative information about x and its impact on various
R-modules. We therefore define the Koszul complex on a module M , and introduce
the Koszul homology groups.

Definition 6.8. Let R be a commutative ring, x = x1, . . . , xn a sequence of ele-
ments of R, and M an R-module.

(1) The Koszul complex of x on M is K•(x,M) := K•(x)⊗RM .
(2) The Koszul homology of x on M is the homology of this complex, so

Hj(x,M) := Hj(K•(x,M)) for j = 0, . . . , n.

Example 6.9. Let x ∈ R be a single element and M an R-module. Then the
tininess of the Koszul complex K•(x,M) makes computing the Koszul homology
trivial:

H0(x,M) = M/xM

H1(x,M) = (0 :M x) = {m ∈M | xm = 0}.
In particular, we can make two immediate observations:

(1) If xM 6= M , that is, x does not act “like a unit” on M , then H0(x,M) 6= 0.
In particular, if M is finitely generated and x is in the Jacobson radical of
R, then H0 is nonzero by Nakayama’s Lemma.
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(2) If x is a nonzerodivisor on M , that is, xm 6= 0 for all nonzero m ∈M , then
H1(x,M) = 0.

In order to put this example in its proper context, let us insert here a brief
interlude on regular sequences and depth.

Regular sequences and depth: a first look

Definition 6.10. Let R be a ring and x ∈ R. We say that x is a nonzerodivisor if
xy 6= 0 for all nonzero y ∈ R. If in addition x is a nonunit, say that x is a regular
element .

Let moreover M be an R-module. Then x is a nonzerodivisor on M if xm 6= 0
for all nonzero m ∈ M , and a regular element on M (or M -regular) if in addition
xM 6= M .

Remark 6.11. From Example 6.9 we see that x ∈ R is M -regular if and only if
H0(x,M) 6= 0 and H1(x,M) = 0.

Definition 6.12. A sequence of elements x of R is a regular sequence on M if

(1) x1 is M -regular, and
(2) for each i = 2, . . . , n, xi is regular on M/(x1, . . . , xi−1)M .

Remark 6.13.

(1) Some authors allow the possibility that xM = M , and call such a sequence
“weakly” M -regular.

(2) In such an inductive definition, the order of the xi is essential. For example,
the sequence X − 1, XY,XZ is regular in K[X,Y, Z], while XY,XZ,X− 1
is not. If, however, (R,m) is local and x is contained in m, then we shall
see below that the order of the xi is immaterial.

The set of regular elements is easy to describe.

Lemma 6.14. Let R be a Noetherian commutative ring. The set of zerodivisors
on a finitely generated R-module M is the union of the associated primes of M .

Proof. Exercise. �

We’ll finish this interlude by smuggling in one more definition.

Definition 6.15. Let a ⊆ R be an ideal and M an R-module. The depth of a

on M is the maximal length of an M -regular sequence contained in a, denoted
depthR(a,M).

Depth will reappear in Lectures 8 and 9.

Back to the Koszul complex

Let us return now to the Koszul complex. We computed above the Koszul
homology of a single element, and now recognize it as determining regularity. We
have high hopes for the case of two elements.



60

Example 6.16. Let x, y ∈ R and let M be an R-module. Then the homology of
the complex

K•({x, y},M) : 0 // M
[ x−y ]

// M2
[ y x ]

// M // 0

at the ends can be computed easily. We have

H0({x, y},M) = M/(x, y)M, and

H2({x, y},M) = (0 :M (x, y)) = {m ∈M | xm = ym = 0}.
What is the homology in the middle? Let (a, b) ∈ M2 be such that ya + bx = 0.
Then ya = −xb, so in particular a ∈ (xM :M y). Assume for the moment that
x is regular on M , and take a ∈ (xM :M y). Then there exists some b so that
ya = −xb, and since x is M -regular, there is precisely one such b. In other words,
if we assume that x is a nonzerodivisor on M , then ker[x y] ∼= (xM :M y). Still
assuming that x is M -regular, we can also identify the image of [ x

−y ] as

{(xc,−yc) | c ∈M} ∼= xM .

Therefore

H1({x, y},M) ∼= (xM :M y)/xM .

Exercise 6.17. Assume that x is M -regular, and prove that x, y is an M -regular
sequence if and only if (xM :M y) = xM .

Examples 6.16 and 6.11 are part of what is usually called the “depth-sensitivity”
of the Koszul complex. See [114, 16.5] for a proof.

Theorem 6.18. Let R be a commutative ring and x = x1, . . . , xn a sequence
of elements of R. If x is regular on M , then Hj(x,M) = 0 for all j > 0 and
H0(x,M) = M/xM 6= 0. If either (R,m) is Noetherian local, x ∈ m, and M
is nonzero finitely generated, or R is N-graded, M is nonzero N-graded, and the
elements x are homogeneous of positive degree, then there is a strong converse: if
H1(x,M) = 0, then x is an M -regular sequence.

As a corollary, we can conclude that depth is a “geometric” property:

Corollary 6.19. If x1, . . . , xn is an M -regular sequence, then xa1
1 , . . . x

an
n is M -

regular as well for any positive integers a1, . . . , an. In particular, depthR(a,M) =
depthR(

√
a,M).

We also mention the following fact, which we won’t need, but which motivates
some of our results in Lecture 8. See [31, 17.4] for a proof.

Proposition 6.20. Let (R,m) be a local ring, M a finitely generated R-module,
and a an ideal of R. Suppose that a is minimally generated by n elements and
that a contains an M -regular sequence of length n. Then any minimal system of
generators for a is an M -regular sequence.

For later applications, it will occasionally be useful to adjust the indexing of the
Koszul complex.

Definition 6.21. Let R be a commutative ring and x ∈ R. The cohomological
Koszul complex on x is

K•(x) : 0 −−−−→ R
x−−−−→ R −−−−→ 0 ,
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which is identical to the usual Koszul complex, except with R in degrees 0 and 1.
For a sequence x = x1, . . . , xn, define K•(x) = K•(x1)⊗R · · · ⊗R K•(xn). Finally,
for an R-module M , we put K•(x,M) = K•(x)⊗RM .

Exercise 6.22. Prove that K•(x)⊗RM is isomorphic to HomR(K•(x),M).

The Čech complex

Given again a single element x in a ring R, it may seem like the only complex
we can build from such meager information is the Koszul complex. If we insist on
clinging to the world of finitely generated R-modules, this is essentially true. If,
however, we allow some small amount of infinite generation, new vistas open to us.

The Čech complex attached to a sequence of ring elements, like the Koszul,
is built inductively by tensoring together short complexes. Recall that for x ∈
R, the localization Rx, also sometimes written R[ 1

x ], is obtained by inverting the

multiplicatively closed set {1, x, x2, . . . }.
Definition 6.23. Let R be a commutative ring and x ∈ R. The Čech complex on
x is

C•(x;R) : 0 −−−−→ R
ι−−−−→ Rx −−−−→ 0 ,

with R in degree 0 and Rx in degree 1, and where ι is the canonical map sending
each r ∈ R to the fraction r

1 ∈ Rx. For a sequence x = x1, . . . , xn in R, the Čech
complex on x is C•(x;R) := C•(x1;R) ⊗R · · · ⊗R C•(xn;R). For an R-module
M , define C•(x;M) = C•(x;R) ⊗R M . The jth Čech cohomology is defined by
Hj(x;M) := Hj(C•(x;M)).

Example 6.24. As with the Koszul complexes, the Čech complex is easy to de-
scribe for small n. In case x = x is a single element, C•(x;R) is given by the
definition. We note that

H0(x;R) = {r ∈ R | r
1

= 0 in Rx}
= {r ∈ R | xar = 0 for some a ≥ 0}
=
⋃

a≥0

0 :R x
a

is the union of annihilators of xa. This is sometimes written 0 :R x
∞.

Meanwhile, H1(x;R) ∼= Rx/R. This expression for H1 is ambiguous and not
very satisfying (particularly if x is a zerodivisor); we’ll correct for this shortly. For
now, suppose that R = K[x] is the univariate polynomial ring over a field K. Then
Rx ∼= K[x, x−1] is the ring of Laurent polynomials . The quotient K[x, x−1]/K[x]
is generated (over K) by all the negative powers x−c, c ∈ N, and has R-module
structure dictated by

xax−c =

{
xa−c if a < c, and

0 otherwise.

Exercise 6.25. Prove that K[x, x−1]/K[x] is isomorphic to the injective hull of the
residue field of K[x].

Example 6.26. For x = {x, y} a sequence of two elements, we have the tensor
product of

C•(x;R) : 0 −−−−→ R
r 7→ r

1−−−−→ Rx −−−−→ 0
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and

C•(y;R) : 0 −−−−→ R
r 7→ r

1−−−−→ Ry −−−−→ 0 ,

which is

0 −−−−→ R⊗R α−−−−→ (Rx ⊗R)⊕ (R⊗Ry) β−−−−→ Rx ⊗Ry −−−−→ 0 .

The map α sends 1⊗ 1 to (1
1 ⊗ 1, 1⊗ 1

1 ). For β we have

β(
1

1
⊗ 1, 0) = (−1)

1

1
⊗ 1

1
, and β(0, 1⊗ 1

1
) =

1

1
⊗ 1

1
.

Simplified, this becomes

C•({x, y};R) : 0 −−−−→ R
17→(1,1)−−−−−→ Rx ⊕Ry

(1,0) 7→ −1
(0,1) 7→ 1−−−−−−−−→ Rxy −−−−→ 0 .

Let’s try to compute the cohomology Hj({x, y};R) for j = 0, 2. If r ∈ R maps
to zero in Rx ⊕ Ry, so that ( r1 ,

r
1 ) = 0, then there exist integers a, b ≥ 0 such that

xar = ybr = 0. Equivalently, the ideal (x, y)c kills r for some c ≥ 0. Thus

H0({x, y};R) ∼=
⋃

c≥0

0 :R (x, y)c

is the union of all annihilators of the ideals (x, y)c. On the other hand, H2({x, y};R) ∼=
Rxy/(Rx + Ry), which again is a less than completely satisfactory answer. Here is
a more useful one:

Exercise 6.27. Observe that an element of H2({x, y};R) can be written η =[
r

(xy)c

]
, that is, as an equivalence class of fractions in Rxy. Then show that η = 0

iff there exists d ≥ 0 such that

r(xy)d ∈ (xc+d, yc+d) .

Conclude that for {x, y} a regular sequence, η =
[

r
(xy)c

]
represents the zero el-

ement if and only if r ∈ (x, y)c. State and prove the analogous statements for
Hj({x1, . . . , xn};R), J ≤ n.

Remark 6.28. Unlike the Koszul complex on a sequence of elements, in which all
the modules are free, the Čech complex is made up of direct sums of localizations
of R. Specifically, we can see that C0(x) ∼= R, while C1(x) ∼= Rx1 ⊕ · · · ⊕Rxn , and
in general Ck(x) is the direct sum of all localizations Rxi1 ···xik

, where 1 ≤ i1 <

· · · < ik ≤ n. In particular, Cn(x) ∼= Rx1···xn . Note that in general Ck(x) is not
finitely generated over R, but that it is flat.
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Lecture 7. Local cohomology - the basics (SI)

Let R be a Noetherian commutative ring and a an ideal in R.

Definition 7.1. For each R-module M , set

Γa(M) = {m ∈M | atm = 0 for some t ∈ N}.
This is the a-torsion functor on the category of R-modules. It extends to a functor
on the category of complexes of R-modules: for each complex I• of R-modules,
Γa(I

•) is the complex whose component in degree n is Γa(I
n), and the differential

is that induced by I•.
It is an elementary exercise to check that the a-torsion functor is left exact; its

nth right derived functor is denoted Hn
a (−), i.e.,

Hn
a (M) = Hn(Γa(I

•)),

where I• is an injective resolution of M . The R-module Hn
a (M) is the nth local

cohomology of M with support in a—since Γa(I
•) is a complex of R-modules, each

Hn
a (M) is an R-module.

Here are a few basic properties of local cohomology:

Proposition 7.2. Let M be an R-module.

(1) One has H0
a(M) ∼= Γa(M), and Hn

a (M) is a-torsion all n.
(2) If b is an ideal with rad b = rad a, then Hn

a (M) ∼= Hn
b (M) for each n.

(3) Let {Mλ}λ∈Λ be a family of R-modules. Then, for each integer n, one has

Hn
a

(⊕

λ

Mλ

) ∼=
⊕

λ

Hn
a (Mλ).

(4) An exact sequence of R-modules 0 −→ L −→M −→ N −→ 0 induces a long
exact sequence in local cohomology

· · · −→ Hn
a (L) −→ Hn

a (M) −→ Hn
a (N) −→ Hn+1

a (L) −→ · · · .
Proof. (1) Let I• be an injective resolution of M . The left-exactness of Γa(−)
implies that

Γa(M) ∼= H0(Γa(I
•)) = H0

a(M).

Furthermore, the R-module Γa(I
n) is a-torsion, so the same property carries over

to its subquotient Hn
a (M).

(2) This is immediate, once we note that Γa(−) = Γb(−).
(3) Let I•λ be an injective resolution of Mλ, in which case

⊕
λ I

•
λ is an injective

resolution of
⊕

λMλ. It is not hard to verify that Γa

(⊕
λ I

•
λ

)
=
⊕

λ Γa(I
•
λ). Since

homology commutes with direct sums, passing to homology yields the desired result.
(4) Let G• and J• be injective resolutions of L and N , respectively. One can

then construct an injective resolution I• of M which fits in an exact sequence of
complexes of R-modules,

0 −→ G• −→ I• −→ J• −→ 0.

Since G• consists of injective modules, this exact sequence is split in each degree,
so induces an exact sequence of complexes of R-modules

0 −→ Γa(G
•) −→ Γa(I

•) −→ Γa(J
•) −→ 0.

The homology long exact sequence of this sequence is the one announced. �
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Example 7.3. Let R = Z and let p be a prime number. We want to compute
the local cohomology with respect to the ideal (p) of finitely generated R-modules,
that is to say, of finitely generated Abelian groups. Thanks to Proposition 7.2.3, it
suffices to consider the case where the module is indecomposable. By the Funda-
mental Theorem of Abelian Groups, such a module is isomorphic to Z/(d) where
either d = 0, or d is a prime power. For any integer d, the complex

0 −→ Q/dZ −→ Q/Z −→ 0.

is an injective resolution of Z/(d). In computing local cohomology, one has two
cases to consider; in what follows, Zp denotes Z with the element p inverted.

Case (1). If M = Z/(pe) for some integer e > 1, then

H0
(p)(M) = Z/(pe) and H1

(p)(M) = 0.

This is clear given the injective resolution above, as are the other cases:
Case (2). If M = Z/(d) with d a nonzero integer relatively prime to p, then

H0
(p)(M) = 0 and H1

(p)(M) = Zp/dZp.

Case (3). If M = Z, then

H0
(p)(M) = 0 and H1

(p)(M) = Zp/Z.

The calculation of the local cohomology with respect to any ideal in Z is equally
elementary; see also Theorem 7.13 below. One noteworthy feature of this example
is that Hn

a (−) = 0 for n > 2 for any ideal a; confer Proposition 9.12.

Example 7.4. Let R be a ring and a an ideal in R. If a is nilpotent, that is say, if
ae = 0 for some integer e > 0, then

H0
a(M) = M, while Hn

a (M) = 0 for n > 1.

For some purposes, for example in the proof of Theorem 7.10, it is useful to
know the local cohomology of injective modules. An injective R-module is a direct
sum of modules ER(R/p) for prime ideals p of R, see Theorem A.22. Thus, by
Proposition 7.2.3, it suffices to focus on indecomposable injectives ER(R/p).

Example 7.5. Let R be a ring and a an ideal in R. For each prime ideal p in R,
one has Hn

a (ER(R/p)) = 0 for n > 1, and

H0
a(ER(R/p)) =

{
ER(R/p) if a ⊆ p,

0 otherwise.

This follows from the definition since ER(R/p) is injective and p-torsion!

Here is one application; keep in mind Theorem A.25.

Exercise 7.6. Let (R,m,K) be a local ring and M a finitely generated R-module.
Prove that the R-module Hn

m(M) is Artinian for each integer n.

Next, we describe alternative methods for computing local cohomology.

Theorem 7.7. For each R-module M , there is a natural isomorphism

lim−→
t

ExtnR(R/at,M) ∼= Hn
a (M) for each n > 0.
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Proof. For each R-module I and integer t, one has a functorial identification

HomR(R/at, I)
∼=−→ {x ∈ I | atx = 0} ⊆ Γa(I), where f 7→ f(1).

With this identification, one has a direct system

HomR(R/a, I) ⊆ · · · ⊆ HomR(R/at, I) ⊆ HomR(R/at+1, I) ⊆ · · ·
of submodules of Γa(I). It is evident that its limit (that is to say, its union) equals
Γa(I); in other words, one has

lim−→
t

HomR(R/at, I) = Γa(I).

Let I• be an injective resolution of M . The construction of the direct system above
is functorial, so

lim−→
t

HomR(R/at, I•) = Γa(I
•).

SinceHn(−) commutes with direct limits, Remark 4.30, the preceding identification
results in a natural isomorphism

lim−→
t

Hn(HomR(R/at, I•)) ∼= Hn(Γa(I
•)) = Hn

a (M).

It remains to note that Hn(HomR(R/at, I•)) = ExtnR(R/at,M). �

Remark 7.8. In the context of Theorem 7.7, let {at}t>0 be a decreasing chain of
ideals cofinal with the chain {at}t>0, that is to say, for each integer t > 0, there
exist positive integers c, d such that at+c ⊆ at ⊆ at−d. Then there is a functorial
isomorphism

lim−→
t

ExtnR(R/at,M) ∼= Hn
a (M).

Another viewpoint is that cofinal systems induce the same topology, so the local
cohomology modules they define are the same. These considerations apply, for
instance, when R is a ring of positive prime characteristic p. Then the system
{a[pe]}e>0 of Frobenius powers of a is cofinal with {at}t>0, so one obtains a functorial
isomorphism of R-modules

lim−→
e

ExtnR(R/a[pe],M) ∼= Hn
a (M).

This expression for local cohomology was exploited by Peskine and Szpiro in their
ground-breaking work on intersection theorems [127]; see also Lectures 21 and 22.

Next we express local cohomology in terms of Koszul complexes.

7.9. Let x be an element in R. For each integer t, consider the Koszul complex
K(xt) on xt,

0 −−−−→ R
xt

−−−−→ R −−−−→ 0.
This complex is concentrated in (cohomological) degrees −1 and 0, and is aug-
mented to R/(xt), viewed as a complex concentrated in degree 0. The complexes
{K(xt)}t>1 form an inverse system, with structure morphisms

(7.9.1)

0 −−−−→ R
xt+1

−−−−→ R −−−−→ 0
yx

∥∥∥

0 −−−−→ R
xt

−−−−→ R −−−−→ 0



66

compatible with the augmentations. Let x = x1, . . . , xc be elements in R, and set
x
t = xt1, . . . , x

t
c. The Koszul complex on x

t is the complex of R-modules

K(xt) = K(xt1)⊗R · · · ⊗R K(xtc)

concentrated in degrees [−c, 0]. One has an augmentation ǫt : K(xt) −→ R/(xt),
which we view as a (degree zero) morphism of complexes. Associated to each xi,
there is an inverse system as in (7.9.1); tensoring these componentwise yields an
inverse system of complexes of R-modules

(7.9.2) · · · −→ K(xt+1) −→ K(xt) −→ · · · −→ K(x),

compatible with the augmentations ǫt.
Let M be an R-module and η : M −→ I• an injective resolution of M . The maps

ǫt and η induce morphisms of complexes of R-modules

HomR(R/(xt), I•) −→ HomR(K(xt), I•)←− HomR(K(xt),M),

where the map on the left is HomR(ǫt, I
•), and the right is HomR(K(xt), η).

The latter is a quasi-isomorphism because K(xt) is a bounded complex of free
R-modules. Thus, passing to homology yields, for each integer n, a diagram of
homomorphisms of R-modules

ExtnR(R/(xt),M) −→ Hn(HomR(K(xt), I•))
∼=←− Hn(HomR(K(xt),M)),

and hence a homomorphism of R-modules

θnt : ExtnR(R/(xt),M) −→ Hn(HomR(K(xt),M)).

It is not hard to verify that this homomorphism is compatible with the inverse
system in (7.9.2). Because HomR(−,M) is contravariant, one gets a compatible
direct system of R-modules

ExtnR(R/(xt),M)
θn

t−−−−→ Hn(HomR(K(xt),M))
y

y

ExtnR(R/(xt+1),M)
θn

t+1−−−−→ Hn(HomR(K(xt+1),M)).

In the limit, this gives us a homomorphism of R-modules

θn(M) : lim−→
t

ExtnR(R/(xt),M) −→ lim−→
t

Hn(HomR(K(xt),M)).

The module on the left is Hn
(x)(M); this follows from the discussion in Remark 7.8,

because the system of ideals {(xt)}t>1 is cofinal with the system {(x)t}t>1. It is
an important point that the θn(−) are functorial in M , and also compatible with
connecting homomorphisms: each exact sequence of R-modules

0 −→ L −→M −→ N −→ 0

induces a commutative diagram of R-modules

−−−−→ Hn
(x)(L) −−−−→ Hn

(x)(M) −−−−→ Hn
(x)(N) −−−−→ Hn+1

(x) (L) −−−−→
yθn(L)

yθn(M)

yθn(N)

yθn+1(L)

−−−−→ Fn(x)(L) −−−−→ Fn(x)(M) −−−−→ Fn(x)(N) −−−−→ Fn+1
(x) (L) −−−−→

where Fn(x)(−) = lim−→t
Hn(HomR(ΣcK(xt),−)). All these claims are easy to verify

given the construction of Fn(x)(−) and the θn(−). In category-theory language,
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what we are saying is that {θn(−)}n>0 define a natural transformation between
δ-functors.

Theorem 7.10. Let x = x1, . . . , xc be a set of generators for an ideal a. For each
R-module M and integer n, the homomorphism

θn : Hn
a (M) −→ lim−→

t

Hn(HomR(K(xt),M))

constructed above is bijective.

Proof. Set Fn
x

(−) = lim−→t
Hn(HomR(K(xt),−)). The argument is a standard one

for proving that a natural transformation between δ-functors is an equivalence:

(1) prove that θ0(M) is an isomorphism for any R-module M ;
(2) prove that Hn

a (I) = 0 = Fn
x

(I) for each injective R-module I and n > 1;
(3) use induction on n to verify that θn(M) is an isomorphism for each n.

Here is how these steps are executed:

Step (1). We claim that

F 0
x
(M) = lim−→

t

HomR(R/(xt),M) = Γa(M).

The first equality holds because HomR(−,M) is left exact, while the second holds
because the system of ideals {(xt)}t>1 is cofinal with the system {(x)t}t>1.

Step (2). Since I is injective, Hn
a (I) = 0 for n > 1. As to the vanishing of Fn

x
(I),

it is not hard to check that Fn
x

(−) commutes with direct sums, so it suffices to
verify the claim for an indecomposable injective E = ER(R/p), where p is a prime
ideal of R. In this case, as E is naturally an Rp-module, one has

HomR(K(xt), E) ∼= HomRp
(Rp ⊗R K(xt), E).

If p 6⊇ (x), one of the xi must be invertible in Rp, so Rp ⊗R K(xt) is acyclic for
each t. It follows that Fn

x
(E) = 0 for all n > 1.

In the case p ⊇ (x), the R-module E, being p-torsion, is also (x)-torsion. In
particular, any homomorphism L −→ E, where L is a finitely generated R-module,
is (x)-torsion. For u > t > 1, the homomorphism

αnut : HomR(K(xt), E)n −→ HomR(K(xu), E)n

in the direct system defining Fn
x

(E) is induced by K−n(xu)
∧nA−−−→ K−n(xt), where

A = (aij) is the c× c matrix with

aij =

{
xu−ti if i = j,

0 if i 6= j.

Therefore, for n > 1, the matrix ∧nA has coefficients in (x). The upshot is that for
a fixed integer t > 1 and homomorphism f : K−n(xt) −→ E, since f is (x)-torsion,
there exists u > t with αnut(f) = 0. Thus cycles in HomR(K(xt), E)n do not survive
in the limit, so Fn

x
(E) = 0, as claimed.

Step (3). We argue by an induction on n that θn(−) is an isomorphism for
all R-modules; the basis of the induction is Step (1). Assume that θn−1(−) is an
isomorphism for some integer n > 1. Given an R-module M , embedded it into an
injective module I to get an exact sequence

0 −→M −→ I −→ N −→ 0.
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The functoriality of the θn(−), discussed in (7.9), yields a commutative diagram

Hn−1
a (I) −−−−→ Hn−1

a (N) −−−−→ Hn
a (M) −−−−→ Hn

a (I) = 0

θn−1(I)

y∼= θn−1(N)

y∼= θn(M)

y

Fn−1
a (I) −−−−→ Fn−1

a (N) −−−−→ Fna (M) −−−−→ Fna (I) = 0,

where the isomorphisms are from the induction hypothesis, and the vanishing as-
sertions follow from Step (2). Therefore, by the three-lemma (if there is such a
thing), θn(M) is bijective. �

Next we provide an alternative, and more useful, formulation of Theorem 7.7.

7.11. The stable Koszul complex. As before, let x = x1, . . . , xc be elements in
R, and t > 1 an integer. There is a canonical isomorphism

HomR(K(xt),M) ∼= Σ−cK(xt)⊗RM
of complexes of R-modules, where Σ−cK(xt) denotes the complex K(xt) shifted
c steps to the right. Set Cx(M) = lim−→t

(Σ−cK(xt)⊗RM). Since direct limits

commute with tensor products, we have

(7.11.1) Cx(M) =
(
lim−→
t

Σ−cK(xt)
)
⊗RM = Cx(R)⊗RM.

We want to analyze Cx(R). The tensor product decomposition of K(xt) implies

(7.11.2) Cx(R) ∼=
(
lim−→
t

Σ−1K(xt1)
)
⊗R · · · ⊗R

(
lim−→
t

Σ−1K(xtc)
)
.

Thus, it suffices to examine Cx(R) for an element x ∈ R. The limit system in
question is obtained by applying HomR(−, R) to the one in (7.9.1), and looks like

0 −−−−→ R
xt

−−−−→ R −−−−→ 0
∥∥∥

yx

0 −−−−→ R
xt+1

−−−−→ R −−−−→ 0.

The direct limit of the system R
x−→ R

x−→ R
x−→ · · · is Rx; see Exercise 7.12.

With this in hand, it is easy to see that the direct limit Cx(R) of the system above
is the complex

0 −→ R −→ Rx −→ 0,

sitting in degrees 0 and 1, where the map R −→ Rx is the canonical localization
map. Feeding this into (7.11.2), one obtains that Cx(R) is the complex with

Cn
x

=
⊕

16i1<···<in6c

Rxi1 ···xin
,

and differential Cn
x
−→ Cn+1

x
defined to be the alternating sums of maps

∂
(
Rxi1 ···xin

)
j1,...,jn+1

=

{
1 if {i1, . . . , in} ⊂ {j1, . . . , jn+1} ,
0 otherwise.

This is the stable Koszul complex or the extended Čech complex associated with x.
It has the form

0 −→ R −→
⊕

16i6c

Rxi −→
⊕

16i<j6c

Rxixj −→ · · · −→ Rx1···xc −→ 0.



69

Exercise 7.12. Prove that the localization Rx is isomorphic to the direct limit

lim−→
(
R

x−→ R
x−→ R

x−→ · · ·
)
.

Using (7.11.1) and the description of Cx(R), Theorem 7.10 translates to:

Theorem 7.13. Let x = x1, . . . , xc be a set of generators for an ideal a. For each
R-module M and integer n, there is a natural isomorphism

Hn
a (M) ∼= Hn (Cx(R)⊗RM) .

One can now “calculate” the last possible local cohomology module; compare
this result with Exercise 9.7.

Corollary 7.14. If x = x1, . . . , xc is a set of generators for an ideal a, then, for
each R-module M , one has Hn

a (M) = 0 for n > c+ 1, and

Hc
a(M) =

Mx1···xc∑c
i=1Mx1···bxi···xc

,

where the localization Mx1···bxi···xc
is identified with its image in Mx1···xc . �

Here is something else to keep in mind about the stable Koszul complex:

Remark 7.15. For each integer n, the R-module Cn
x
(R) is flat, since it is a sum

of localizations of R. Therefore Cx(R) is a bounded complex of flat modules.

The next item adds to the list of properties of local cohomology stated in Propo-
sition 7.2. These are all straightforward applications of Theorem 7.13, and are left
as exercises. By the way, try to verify properties in Proposition 7.2 using Theo-
rem 7.13, and the ones below without taking recourse to it!

Proposition 7.16. Let R be a ring, a an ideal in R, and M an R-module.

(1) If U is a multiplicatively closed subset of R, then

Hn
a (U−1M) ∼= U−1Hn

a (M).

(2) If R −→ S is a homomorphism of rings and N is an S-module, then

Hn
a (N) ∼= Hn

aS(N).

(3) If a homomorphism of rings R −→ S is flat, then there is a natural isomor-
phism of S-modules

S ⊗R Hn
a (M) ∼= Hn

aS(S ⊗RM).

The following calculation illustrates Corollary 7.14:

Example 7.17. Let K be a field, R = K[x1, . . . , xc] a polynomial ring over K, and
let a = (x1, . . . , xc). Then

Hn
a (R) =

{
K[x−1

1 , . . . , x−1
c ](x−1

1 · · ·x−1
c ) if n = c,

0 otherwise,

where K[x−1
1 , . . . , x−1

c ] denotes the K-vector space of polynomials in x−1
1 , . . . , x−1

c

with the R-action defined by

xi · (xa1
1 · · ·xac

c ) =

{
xa1

1 · · ·xai+1
i · · ·xac

c if ai 6 −2,

0 otherwise.
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Indeed, the claim about Hn
a (R) for n > c follows from Corollary 7.14. As to the

other values of n, for each t the sequence xt1, . . . , x
t
c is R-regular. Thus, the depth

sensitivity of Koszul complexes implies that Hn(K(xt)) = 0 for 0 6 n 6 c − 1.
Since Cx(R) is a direct limit of these Koszul complexes, and homology commutes
with direct limits, one obtains that Hn(Cx(R)) = 0 for n < c; see Theorem 9.1.

Exercise 7.18. Compute H1
(xy,xz)(R) where R = K[x, y, z].

Exercise 7.19. Compute H2
m(R) where R = K[x, y, z]/(xz− y2) and m = (x, y, z).
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Lecture 8. Hilbert Syzygy Theorem and Auslander-Buchsbaum
Theorem (GL)

In this lecture we consider the top rung of the celebrated “hierarchy of rings”:
regular local rings. More generally, we will examine finitely generated modules of
finite projective dimension over (local) rings. Regularity is characterized by finite-
ness of the projective dimension for every finitely generated module. Along the way,
we will need to reconsider regular sequences, and prove the Auslander-Buchsbaum
Theorem, which relates the existence of regular sequences to the finiteness of pro-
jective dimension.

In this lecture, we generally are concerned with a local ring (R,m,K). This
means that R is a Noetherian commutative ring with unique maximal ideal m, and
K = R/m.

8.1. Recall from Lecture 3 that the projective dimension pdRM of a module M
over a commutative ring R is by definition the minimal length of an R-projective
resolution ofM . Our first task is to give a homological characterization of projective
dimension, at least in the case of a finitely generated module over a local ring. As we
know, finitely generated projective modules over local rings are free, so a projective
resolution has the form

(8.1.1) · · · −→ Fn
ϕn−→ Fn−1 −→ · · · −→ F1

ϕ1−→ F0 −→M −→ 0

with each Fi free of finite rank. In this case we also call (8.1.1) a free resolution.
Note that by choosing bases for each Fi, we can write each ϕi as a matrix with
entries from R.

Definition 8.2. Let (R,m,K) be a local ring. A free resolution (8.1.1) is minimal
if for each i, ϕi(Fi) ⊆ mFi−1. Equivalently, the entries of matrices representing the
maps ϕi are all contained in m.

Proposition 8.3. Let (R,m,K) be a local ring and M a finitely generated nonzero
R-module. Then pdRM is the length of every minimal free resolution of M . Specif-
ically, that value is given by

pdRM = inf{i ≥ 0 | TorRi+1(K,M) = 0} .
Proof. Let

(8.3.1) · · · −→ Fn
ϕn−→ Fn−1 −→ · · · −→ F1

ϕ1−→ F0 −→M −→ 0

be a minimal free resolution of M . Let βi be the rank of the ith free module Fi.
We claim that βi = dimK TorRi (K,M). To see this, apply R/m ⊗R − to (8.3.1),
and consider the truncation at F0/mF0. The maps ϕi then give homomorphisms
between free modules over K. Note that Fi/mFi ∼= Kβi . Since (8.3.1) was chosen
minimal, the entries of ϕi were in m, and as in Example 3.14 the induced map
ϕi : Fi/mFi −→ Fi−1/mFi−1 is the zero map. Now, TorRi (K,M) is the homology
in the ith position of the complex with zero differentials

· · · 0−→ Kβn
0−→ Kβn−1

0−→ · · · 0−→ Kβ1
0−→ Kβ0 −→ 0 ,

which is Kβi, as claimed.
Now it is clear that pdRM is the least i such that βi+1 = 0 in some free resolu-

tion, which is the least i such that βi+1 = 0 in every minimal free resolution. �
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Definition 8.4. The numbers βi = βRi (M) = dimK TorRi (K,M) appearing in the
proof of Proposition 8.3 are the Betti numbers of M over R.

Corollary 8.5. The global dimension of a local ring (R,m,K) is pdR K. In partic-
ular, pdR K <∞ if and only if pdRM < ∞ for every finitely generated R-module
M , and in this case pdRM ≤ pdR K.

Proof. For any R-module M , we can compute TorRi (K,M) from a free resolution

of K. If pdR K < ∞ then TorRi (K,M) = 0 for i > pdR K, and it follows that
pdRM ≤ pdR K. �

The next definition is historically correct, but seems out of sequence here. Luck-
ily, we will shortly prove that this is exactly the right place for it.

Definition 8.6. A local ring (R,m,K) is regular if m can be generated by dimR
elements.

Remark 8.7. Recall that the minimal number of generators of m is called the
embedding dimension of R. It follows from Krull’s (Generalized) Principal Ideal
Theorem that µ(m) ≥ heightm = dimR; regular rings are those for which equality
obtains.

Geometrically, over a field of characteristic zero, say, regular local rings corre-
spond to smooth (or “nonsingular”) points on algebraic varieties. They are those
for which the tangent space to the variety (at the specified point) has dimension
no greater than that of the variety itself. It also turns out that (R,m) is a regular
local ring if and only if the associated graded ring grm(R) is a polynomial ring over
the field R/m. We won’t use this fact here, but it lends credence to the idea that
all regular rings look more or less like polynomial rings over a field.

It will turn out below that a minimal generating set for the maximal ideal of a
regular local ring is a regular sequence (as defined in Lecture 6). The regularity of
this sequence is the key to our homological characterization of regular rings. Let
us therefore consider regular sequences more carefully on their own terms.

Regular sequences and depth redux

The basic question we must address is how to establish the existence of a regular
sequence, short of actually specifying elements. Specifically, given a ring R, an ideal
a, and a module M , how can we tell whether a contains an M -regular element?
More generally, can we get a lower bound on depthR(a,M)?

Lemma 8.8. Let R be a Noetherian ring and M , N finitely generated R-modules.
Set a = annM . Then a contains an N -regular element if and only if HomR(M,N) =
0.

Proof. (=⇒) We leave this direction as an easy exercise.
(⇐=) Assume that a consists entirely of zerodivisors on N . Then by Lemma 6.14, a

is contained in the union of the associated primes of N and, using prime avoidance,
we can find p ∈ AssN such that a ⊆ p. Localize at p and reset notation to assume
that (R,m) is a local ring and m ∈ AssN . (Since HomR(M,N)p = HomRp

(Mp, Np),
it suffices to show that the localized module is nonzero.) Then we have a surjection
M −→M/mM −→ R/m, and a monomorphism R/m →֒ N . The composition gives
a nonzero homomorphism M −→ N . �
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In combination with the following easy consequence of the long exact sequence
of Ext, Lemma 8.8 will allow us to compute depths.

Proposition 8.9. Let R be a ring and M , N R-modules. Suppose that there is an
N -regular sequence x = x1, . . . , xn in a := annN . Then

ExtnR(M,N) ∼= HomR(M,N/xN) ∼= HomR/(x)(M,N/xN) .

Definition 8.10. We will say that a sequence of elements x1, . . . , xn in an ideal a of
R is a maximal regular sequence on a module M (or maximal M -regular sequence)
if x1, . . . , xn is regular on M , and x1, . . . , xn, y is not a regular sequence for any
y ∈ a.

It’s an easy exercise to show that in a Noetherian ring, every regular sequence
can be lengthened to a maximal one. What’s less obvious is that every regular
sequence can be extended to one of the maximum possible length.

Theorem 8.11 (Rees). Let R be a Noetherian ring, M a finitely generated R-
module, and a an ideal of R such that aM 6= M . Then any two maximal M -regular
sequences in a have the same length, namely

depthR(a,M) = min{i ≥ 0 | ExtiR(R/a,M) 6= 0} .
One special case arises so often that we single it out. When (R,m,K) is a local

ring, we write simply depthM for depthR(m,M).

Corollary 8.12. Let (R,m,K) be a local ring and M a finitely generated R-module.
Then

depthM = min{i | ExtiR(K,M) 6= 0} .
This fortuitous coincidence of an “elementary” property with a homological one

accounts for the great power of the concept of depth. We note three immediate
consequences; the first follows from the long exact sequence of Ext, and the second
from computation of Ext via a projective resolution of the first argument.

Corollary 8.13 (The Depth Lemma). Let 0 −→ M ′ −→ M −→ M ′′ −→ 0 be a
short exact sequence of finitely generated modules over a ring R. Then for any ideal
a,

(1) depthR(a,M) ≥ min{depthR(a,M ′), depthR(a,M ′′)} ,
(2) depthR(a,M ′) ≥ min{depthR(a,M), depthR(a,M ′′) + 1} , and
(3) depthR(a,M ′′) ≥ min{depthR(a,M ′)− 1, depthR(a,M)} .

Corollary 8.14. For nonzero finitely generated M , depthR(a,M) ≤ pdRR/a.

Ideals so that equality is attained in Corollary 8.14, depthR(a, R) = pdR R/a,
are called perfect . Our next main result is a substantial sharpening of this Corollary
in a special case, the Auslander-Buchsbaum formula.

Theorem 8.15 (Auslander-Buchsbaum). Let (R,m,K) be a local ring and M a
nonzero finitely generated R-module of finite projective dimension. Then

pdRM + depthM = depthR .

Proof. If pdRM = 0, then M is free, and depthM = depthR. We may therefore
assume that h := pdRM ≥ 1. If h = 1, let

0 −−−−→ Rn
ϕ−−−−→ Rm −−−−→ M −−−−→ 0
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be a minimal free resolution of M . We consider ϕ as an m×n matrix over R, with
entries in m by minimality. Apply HomR(K,−) to obtain a long exact sequence

· · · −−−−→ ExtiR(K, Rn)
ϕ∗−−−−→ ExtiR(K, Rm) −−−−→ ExtiR(K,M) −−−−→ · · · .

The entries of ϕ∗ are the same as those of ϕ, after the identification ExtiR(K, Rn) ∼=
ExtiR(K, R)n. Since each ExtiR(K, Rn) is a vector space over K, ϕ∗ is identically
zero. For each i, then, we have an exact sequence

0 −−−−→ ExtiR(K, R)m −−−−→ ExtiR(K,M) −−−−→ Exti+1
R (K, R)n −−−−→ 0 .

It follows that depthM = depthR− 1, and we are done in this case.
If h > 1, take any exact sequence 0 −→ M ′ −→ Rm −→ M −→ 0. Then

pdRM
′ = pdRM − 1. By induction, depthM ′ = depthR − h + 1. But by the

Depth Lemma, depthM ′ = depthM + 1, and the result follows. �

Corollary 8.16. Over a local ring R, a module M of finite projective dimension
has pdRM ≤ depthR.

Remark 8.17. For noncommutative rings, this result is quite false. In fact, it is an
open question in the theory of noncommutative Artin rings (the so-called finitistic
dimension conjecture) whether the number

fin. dim. R = sup{pdRM | pdRM <∞}
is finite.

Here are two amusing applications of the Auslander-Buchsbaum formula. You
may need to look ahead to Lectures 10 and 11 for the relevant definitions.

Exercise 8.18. Let S be a regular local ring and a an ideal such that R = S/a is
a Cohen-Macaulay ring with dim(R) = dim(S)− 1. Prove that a is principal.

Exercise 8.19. Let S be a regular local ring and a an ideal such that R = S/a is a
Gorenstein ring with dim(R) = dim(S)− 2. Prove that a is a complete intersection
(i.e., generated by two elements).

Let us return to the singular world of regular rings. Here are two false statements
that are nonetheless useful: every regular ring looks like a polynomial ring over a
field, and regular sequences behave like polynomial indeterminates. Our next goal
is to revise these statements so that they make sense, and then to prove them. To
get an idea where we’re headed, observe the following: For R = K[x1, . . . , xn] a
polynomial ring, the sequence x = x1, . . . , xn is a regular sequence. (This falls out
immediately upon induction on n.) In particular, the Koszul complex on x is exact,
so that R/(x) = K has finite projective dimension. From Corollary 8.5 it follows
that R has finite global dimension. All we need do is to replace K[x1, . . . , xn] by
an arbitrary regular local ring.

Here is a first easy lemma, the proof of which we leave as an exercise.

Lemma 8.20. Let a be an ideal in a Noetherian ring R. If a contains a regular
sequence of length n, then a has height at least n.

Caution: the converse is quite false! (But see Lecture 10.)

Lemma 8.21. Let (R,m) be a local ring and x a minimal generator of m (so that
x ∈ m \m2). Then R is a regular local ring if and only if R/(x) is so.
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Proof. Extend x to a full system of parameters x = x1, x2, . . . , xn. Then the maxi-
mal ideal of R/(x) is generated by the images of x2, . . . , xn, and has dimension one
less than that of R. �

Lemma 8.22. A regular local ring is a domain.

Proof. Let (R,m) be a regular local ring of dimension d. The case d = 0 being
trivial, assume first that d = 1. Then m is a principal ideal, generated by some
element x ∈ R. As dimR > 0, m is not nilpotent, but by Krull’s Intersection
Theorem, the intersection

⋂
j≥0 x

jR is trivial. It follows that any element a ∈ R
can be written uniquely as a product of a unit times a power of x. If, then, a = uxp

and b = vxq are such that ab = 0, with u and v units, we have uvxp+q = 0, so that
xp+q = 0, a contradiction.

In the general case d ≥ 2, use prime avoidance to find an element x ∈ m \ m2

outside the minimal primes of R. By induction and Lemma 8.21, R/(x) is a domain,
so (x) is a prime ideal. Now apply the same argument as above. �

Proposition 8.23. Let x = x1, . . . , xn be a sequence of elements of a local ring
(R,m). Consider the statements

(1) x is an R-regular sequence.
(2) height(x1, . . . , xi) = i for i = 1, . . . , n.
(3) height(x1, . . . , xn) = n.
(4) x is part of a system of parameters for R.

Then (1) =⇒ (2) =⇒ (3) =⇒ (4). If R is a regular local ring, then each
implication is an equivalence.

In fact, one can get by with much less than regularity; the last statement of the
Lemma remains true if R is only Cohen-Macaulay. See Lecture 10.

Proof. (1) =⇒ (2). By the definition of a regular sequence and Lemma 6.14, we
have height(x1) < height(x1, x2) < · · · ; now use Lemma 8.20.

(2) =⇒ (3). This one is obvious.
(3) =⇒ (4). If R has dimension n, we are done. If dimR > n, then m is

not a minimal prime of (x). It follows that there exists xn+1 ∈ m \ (x) so that
height(x1, . . . , xn, xn+1) = n + 1. Continuing in this way, we obtain a system of
parameters for R, as desired.

Now assume that R is regular. Take a system of parameters x such that x
generate m. In particular, each xi is a minimal generator of m. As R is a domain
by Lemma 8.22, x1 is certainly a nonzerodivisor. As R/(x1) is again a regular local
ring by Lemma 8.21, we are done by induction. �

Putting the pieces together, we have shown that if (R,m) is a regular local ring,
then m is generated by a regular sequence, so R/m has finite projective dimension.
This leads us to the celebrated theorem of Serre.

Theorem 8.24 (Serre). The following are equivalent for a local ring (R,m).

(1) R is regular.
(2) The global dimension of R is equal to dimR.
(3) R has finite global dimension.

Proof. We have already established (1) =⇒ (2), and (2) =⇒ (3) is clear. For
(3) =⇒ (1), we go again by induction, this time on t, the minimal number of
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generators of m. If t = 0, then the zero ideal is maximal in R, so R is a field.
Assume then that t ≥ 1 and R has global dimension g < ∞. We first note that
m 6∈ Ass(R): the finite free resolution of R/m has all its matrices taking entries
from m, so the final nonzero free module Fn is contained in mFn−1. If m ∈ Ass(R),
then m is the annihilator of an element a ∈ R, so that aFn = 0, a contradiction.
By prime avoidance, then, we may take an element x ∈ m outside of m2 and the
associated primes of R. The long exact sequence of Ext shows that R/(x) has global
dimension g−1, so R/(x) is regular by induction. Finally, Lemma 8.21 implies that
R is regular as well. �

Remark 8.25. So far we have clung to the case of local rings. A little care, how-
ever, allows one to generalize everything in this lecture to the case of graded rings,
homogeneous elements, and homogeneous resolutions. In particular, we have the
following theorem, for which an argument could be made that it is the second9

theorem of commutative algebra. See [27] for a proof due to Schreyer. In particu-
lar, the proof given there, like Hilbert’s original proof, does indeed produce a free
resolution rather than merely a projective one.

Theorem 8.26 (Hilbert Syzygy Theorem). Let K be a field. Then every finitely
generated module over the polynomial ring K[x1, . . . , xn] has a free resolution of
length at most n. If M is graded (with respect to any grading on K[x1, . . . , xn])
then the resolution can be chosen to be graded as well.

9Since Hilbert’s proof of the Syzygy Theorem (1890) uses his Basis Theorem (1888), there is at
least one older.
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Lecture 9. Depth and cohomological dimension (SI)

Given a cohomology theory, a basic problem is to relate its vanishing to properties
of the object under consideration. For example, given a module M over a ring R,
the functor Ext1R(M,−) is zero if and only if M is projective, while TorR1 (M,−) is
zero if and only if M is flat. This section provides (partial) answers in the case of
local cohomology.

Depth

Recall from Definition 6.15 that depthR(a,M) denotes the length of the longest
M -regular sequence contained in the ideal a. In Theorem 8.11 it was proved that
when the R-module M is finitely generated, its depth with respect to a can be
measured in terms of the vanishing of Ext∗R(R/a,M). One consequence of the
following theorem is that depth is detected also by local cohomology modules;
perhaps not a surprise, given Theorem 7.7.

Theorem 9.1. Let R be a Noetherian ring, a an ideal in R, and K the Koszul
complex on a finite generating set for a. For each R-module M , the numbers

inf{n | ExtnR(R/a,M) 6= 0},
inf{n | Hn

a (M) 6= 0}, and

inf{n | Hn(HomR(K,M)) 6= 0}
coincide. In particular, when M is finitely generated,

depthR(a,M) = inf{n | Hn
a (M) 6= 0}.

Sketch of proof. Denote the three numbers in question e, l, and k, respectively;
assume that each of these is finite, that is to say, the cohomology modules in
question are nonzero (in some degree). The argument is more delicate when we
do not assume a priori that these numbers are all finite; see the proof of [42,
Theorem 2.1].

Let I• be an injective resolution of M , in which case H∗
a (M) is the cohomology

of the complex Γa(I
•). It is not hard to verify that

Hn
(
HomR(R/a,Γa(I

•))
)

=

{
0 for n < l,

HomR(R/a, H l
a(M)) for n = l.

By Proposition 7.2.1, the R-module Hn(Γa(I
•)) = Hn

a (M), is a-torsion, so the
module HomR(R/a, Hn

a (M)) is nonzero. On the other hand, it is clear that

HomR(R/a,Γa(I
•)) = HomR(R/a, I•).

The preceding displays now yield e = l.
To prove that l = k, one first proves that the inclusion Γa(I

•) ⊆ I• induces a
quasi-isomorphism HomR(K, I•) ≃ HomR(K,Γa(I

•)). Since Hn
a (M) is a-torsion

for each n, the desired result follows from a repeated application of the following
claim:

Let C• be a complex of R-modules such that Hn(C•) is a-torsion for each integer
n, and zero for n≪ 0. For each a ∈ a, one has

inf{n | Hn(HomR(K(a), C•)) 6= 0} = inf{n | Hn(C•) 6= 0}.



78

Indeed, this is immediate from the long exact sequence that results when we apply
HomR(−, C•) to the exact sequence of complexes 0 −→ R −→ K(a) −→ ΣR −→ 0,
and pass to homology. �

The preceding result suggests that when dealing with an arbitrary (that is to
say, not necessarily finitely generated) module M , the ‘right’ notion of depth is
the one introduced via any one of the formulae in the theorem above. Such an
approach also has the merit that it immediately extends to the case where M is
a complex of modules. What is more, Foxby and Iyengar [42] have proved that
Theorem 9.1 extends to all complexes, with no restrictions on their homology.
Thus, all (homological) notions of depth lead to the same invariant.

Remark 9.2. It turns out that for d = depthR(a,M), one has

AssR ExtRd (R/a,M) = AssRH
d
a (M) = AssRH

d(HomR(K,M)),

see [58, ??] or the discussion in [85, page 564]. When the R-module M is finitely
generated, so is Hd(HomR(K,M)); in particular, the latter has only finitely many
associated primes. The equalities above now imply that the R-module Hd

a (M) has
only finitely many associated primes. This suggests a natural question: does each
local cohomology module have finitely many associated primes? This is not the
case, as we will see in Lecture 22

Now we know in which degree the nonzero local cohomology modules of an R-
module M begin to appear. Theorem 7.13 tells us that they disappear eventually,
so the next natural step is to determine in which degree the last nonvanishing coho-
mology module occurs; what one has in mind is a statement akin to Theorem 9.1.
This has proved to be a rather difficult endeavour, and every result we know of
relates this number to the topology of the support of the module M . The first of
these is due to Grothendieck:

Theorem 9.3. Let (R,m,K) be a local ring and M a finitely generated R-module.
Then

sup{n | Hn
m(M) 6= 0} = dimRM.

The proof we present uses the local duality theorem, covered later in Lecture 11.

Proof. Let R̂ denote the m-adic completion of R; it is a local ring with maximal

ideal mR̂, and residue field K. The R̂-module R̂⊗RM is finite, with

dim bR M̂ = dimRM and H∗
m bR(R̂⊗RM) ∼= H∗

m(M),

where the first equality is essentially [4, Corollary 11.19], and the second follows

from Proposition 7.16.3. Thus, substituting R̂ and R̂ ⊗RM for R and M respec-
tively, we may assume that R is m-adically complete. Cohen’s Structure Theorem
now provides a surjective homomorphism (Q, n,K) −→ R, with Q a regular local
ring. According to Proposition 7.16.2, viewing M as a Q-module through R, one
has H∗

n(M) ∼= H∗
m(M), so we may replace R by Q and assume that R is a complete

regular local ring.
We are now in a position to apply Theorem 11.32 which yields, for each integer

n, an isomorphism of R-modules

Hn
m(M) ∼= ExtdimR−n

R (M,R)∨,
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with (−)∨ = HomR(−, E), where E is the injective hull of K. Since (−)∨ is faithful
(that is, it takes nonzero modules to nonzero modules), the preceding isomorphisms
imply the first equality below

sup{n | Hn
m(M) 6= 0} = dimR− inf{l | ExtlR(M,R) 6= 0},

= dimR− gradeRM.

The second equality is given by Theorem ??. Finally, dimR− gradeRM = dimM ,
since R is Cohen-Macaulay; see [16, (2.1.2)].

Grade has not been defined; also, let us not have to rely on BH here.
�

Remark 9.4. Let (R,m,K) be a local ring. For any finitely generated R-module
M , we know from Theorems 9.1 and 9.3 that Hn

m(M) = 0 for n 6∈ [depthM, dimM ],
and that it is nonzero for n = depthM and dimM . In general, nothing can be said
about the vanishing of local cohomology for intermediate values of n: given any
sequence of non-negative integers n0 < · · · < ns, there exists a local ring (R,m,K)
with depthR = n0 and dimR = ns, and such that Hn

m(R) is nonzero exactly when
n in one of the integers ni, see Evans and Griffith [35].

The search for a meaning to the top degree of nonvanishing of local cohomology
(with respect to an arbitrary ideal) leads to the following considerations:

Cohomological dimension

Definition 9.5. LetR be a Noetherian ring and a an ideal in R. For eachR-module
M , set

cdR(a,M) = inf{s ∈ N | Hn
a (M) = 0 for each n > s+ 1}.

The cohomological dimension of a in R is the integer

cdR(a) = sup{cdR(a,M) |M an R-module}.
It is immediate from Theorem 9.3 that for a local ring R with maximal ideal m,
one has cdR(m) = dimR.

It turns out that the cohomological dimension has a ‘test module’:

Theorem 9.6. Let a be an ideal of a Noetherian ring R. Then cdR(a) = cdR(a, R).

Proof. Set d = cdR(a); by Corollary 7.14, this number is finite. Thus, Hn
a (−) = 0

for n > d + 1, and there is an R-module M with Hd
a (M) 6= 0. Pick a surjective

homomorphism F −→→ M , with F a free R-module, and complete to an exact
sequence

0 −→ K −→ F −→M −→ 0.

From the resulting long exact sequence, Proposition 7.2.4, one obtains an exact
sequence

Hd
a (K) −→ Hd

a (F ) −→ Hd
a (M) −→ Hd+1

a (K) = 0.

We conclude that Hd
a (F ) 6= 0, and therefore Hd

a (R) 6= 0 by Proposition 7.2.3. �

The result above can be enhanced to a precise expression relating the local
cohomology of M and R in high degrees:
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Exercise 9.7. Let R be a Noetherian ring, a an ideal in R, and set d = cdR(a).
Prove that for any R-module M , one has a natural isomorphism

Hd
a (M) ∼= Hd

a (R)⊗RM.

Hint: Theorem 9.6 implies that the functor Hd
a (−) is right exact. (By the way,

what are its left derived functors?)

Exercise 9.8. Let a an ideal in a Noetherian ring R, and let M be a finitely
generated R-module. Prove the following:

(1) cdR(a,M) = cdR(a, R/ annRM).
(2) If N is a finitely generated R-module and SuppR(M) ⊆ SuppR(N), then

cdR(a,M) 6 cdR(a, N).

(3) Find examples to show that the analogues of (1) and (2) fail for depthR(a,−).

One way to do approach these exercises is via the following, independently rele-
vant, exercise:

Exercise 9.9. Let R be a Noetherian ring and M a finitely generated R-module. If
SuppR(M) = SpecR, show that for each nonzero R-module H , the module H⊗RM
is nonzero.

Arithmetic rank

Recall that if ideals a and b have the same radical, then Hn
a (−) = Hn

b (−); see
Proposition 7.2.2. This suggests the following definition.

Definition 9.10. Let a be an ideal in a Noetherian ring R. The arithmetic rank
of a is the number

ara a = inf{ν(b) | b an ideal with radb = rad a},
where ν(b) stands for the minimal number of generators of the ideal b. Evidently,
ara a 6 ν(a); however, the arithmetic rank of a can be a lot smaller than ν(a);
consider, for example, that ara(an) = araa for each integer n > 1.

Remark 9.11. The arithmetic rank is also pertinent from a geometric perspective.
For instance, when R is a polynomial ring over an algebraically closed field, ara a

equals the minimal number of hypersurfaces needed to cut out the algebraic set
Var(a) in affine space. By the way, the radical of a is not necessarily the ‘best’ ideal
defining Var(a), see Example 9.21.

Now we return to cohomological dimensions:

Proposition 9.12. Let a be an ideal in a Noetherian ring R. Then

height a 6 cdR(a) 6 ara a.

Proof. For any ideal b of R with radb = rad a, we have cdR(a) = cdR(b) by
Proposition 7.2.2, and cdR(a) 6 ν(b) by Corollary 7.14. This proves the inequality
on the right.

Let h = height a, and pick a prime ideal p containing a with dimRp = h. Then

Hh
a (R)p

∼= Hh
aRp

(Rp) ∼= Hh
pRp

(Rp),

where the first isomorphism is by Proposition 7.16.3, and the second by Propo-
sition 7.2.2. But Hh

pRp
(Rp) 6= 0 by Grothendieck’s Theorem 9.3, so the above

isomorphisms imply that Hh
a (R) 6= 0, which settles the inequality on the left. �
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This proposition leads us to an important result on the arithmetic rank of ideals
in local rings; in its original form, it is due to Kronecker [91], and has been extended
and improved on by several people, notably Forster [40]; see also [103].

Theorem 9.13 (Kronecker-Foster). Let a be an ideal in a local ring R. Then
ara a 6 dimR.

We provide a proof of this result; it uses a weak form of a result commonly
known as “prime avoidance” [4, Proposition 1.11].

Lemma 9.14 (Prime avoidance). Let p1, . . . , pn be prime ideals in a commutative
ring R. If an ideal a is such that a ⊆ ⋃ni=1 pi, then a ⊆ pi for some i.

Proof of Theorem 9.13. Set P = SpecR \V (a); these are the prime ideals of R not
containing a. For each n > 0, set P(n) = {p ∈ P | height p = n}, so that

P =
d−1⋃

i=0

P(n),

where d = dimR. The idea of the proof is to pick elements r0, . . . , rd in a such that
for 0 6 i 6 d− 1, the ideal bi = (r0, . . . , ri) satisfies the following condition:

(∗) if p ∈ P(i), then bi 6⊆ p.

Once this is accomplished, we have rad bd−1 = rad a giving the desired result.
The choice of the ri is iterative: for i = 0, since P(0) is a subset of the minimal

primes of R, its cardinality is finite, so we may pick an element r0 ∈ a \⋃p∈P(0) p

by prime avoidance, Lemma 9.14. Evidently, b0 satisfies (∗) for i = 0.
Suppose that for some 0 6 i 6 d− 2, elements r0, . . . , ri, have been chosen such

that condition (∗) is satisfied for i. Another use of prime avoidance allows us to
pick an element

ri+1 ∈ a \
⋃

p∈Min(bi)∩P(i+1)

p.

We claim that the ideal bi+1 = b + (ri+1) satisfies condition (∗) for i+ 1. Indeed,
suppose there exists p in P(i+1) containing bi+1, and hence also bi. Since height p =
i + 1, if there is a prime ideal p′ with height p′ = i such that bi ⊆ p′ ⊆ p, then
p′ ∈ P(i), which contradicts condition (∗). Thus p is minimal over bi, that is to
say, p ∈ Min(bi) ∩ P(i + 1). Therefore ri+1 ∈ bi+1 ⊆ p, which is a contradiction.
This completes the induction argument, and hence the proof of the result. �

Remark 9.15. Suppose R is a Noetherian ring of dimension d, but is not local.
Then, following the above construction, we obtain an ideal bd−1 that satisfies con-
dition (∗) for all prime ideals of height less than dimR. Moreover, there is at most a
finite set of prime (indeed, maximal) ideals of height d for which the condition fails.
Picking a final element rd in a but outside these finitely many maximal ideals, gives
an ideal b = (r0, . . . , rd) ⊆ a with the same radical as a. In particular, all varieties
in affine d-space over a zero-dimensional ring can be defined by d+ 1 equations.

Moreover, if R is a standard graded polynomial ring in d variables over a local
ring of dimension zero, and if a is homogeneous, then the construction in the proof of
Theorem 9.13 shows how to obtain a homogeneous ideal bd−1 that satisfies condition
(∗) for all primes of height less than d, and for the homogeneous maximal ideal. In
particular, all varieties in projective (d − 1)-space over a field can be defined by d
equations.
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Proposition 9.16. Let a be an ideal in a Noetherian ring R. For each finitely
generated R-module M , one has that Hn

a (M) = 0 for n > dimM + 1.
In particular, cdR(a) 6 dimR.

Proof. Note that for any R-module N , if Np = 0 for each p ∈ SpecR, then N = 0.
For any prime ideal p, one has Hn

a (M)p = Hn
aRp

(Mp) for each n, see Proposi-

tion 7.16.1. Since dimMp 6 dimM , it suffices to consider the case where R is
local.

Now M is a module over the ring S = R/ annR(M), and Proposition 7.16.3
implies thatHn

a (M) ∼= Hn
aS(M) for each n. It remains to note that cdS(aS) 6 dimS

by Theorem 9.13, and that dimS = dimM . �

Exercise 9.17. Let R be a Noetherian ring of dimension d. Show that Hd
a (M) =

Hd
a (R)⊗RM for any R-module M .

It is clear that Proposition 9.16 is not optimal; for example, the arithmetic rank
of a could be smaller than dimR. The question arises: what is the import of the
nonvanishing of HdimR

a (R)? In the lectures ahead we will encounter a number of
answers, which cover different contexts. Here is a prototype, due to Hartshorne
and Lichtenbaum; its proof is given in Lecture 14.

Theorem 9.18. Let R be a d-dimensional complete local domain, and let a be an
ideal in R. Then cdR(a) 6 dimR− 1 if and only if dimR/a > 1.

Proposition 9.12 may also be used to obtain lower bound on arithmetic ranks.
Here is an beautiful example, due to Hartshorne, that illustrates this particular use
of cohomological dimensions:

Example 9.19. Let K be a field and let R = K[x, y, u, v]. Consider the ideals
b′ = (x, y) and b′′ = (u, v), and set a = b′ ∩ b′′. Note that heightR(a) = 2. We
claim that araa > 3.

Indeed, the Mayer-Vietoris sequence 15.2 arising from the ideals b′ and b′′ yields
an exact sequence

−→ H3
b′(R)⊕H3

b′′(R) −→ H3
a(R) −→ H4

b′+b′′(R) −→ H4
b′(R)⊕H4

b′′(R) −→ .

From Corollary 7.14 one obtains that the first and the last displayed terms of this
exact sequence are zero, and from Theorem 9.3 one obtains that the second term is
nonzero, since b′+b′′ = (x, y, u, v) is a maximal ideal of height 4. Thus, H3

a(R) 6= 0,
so that araa > 3 by Proposition 9.12. The following exercise shows that ara a = 3.

Exercise 9.20. Let R = K[x, y, u, v]. Find elements f, g, h ∈ R with

rad(f, g, h) = (x, y) ∩ (u, v).

The ideal a in Example 9.19 is not a set-theoretic complete intersection: the vari-
ety that it defines has codimension two, but it cannot be defined by two equations.
It is an open question whether every irreducible curve is a set theoretic complete
intersection; Cowsik and Nori [24] have proved that this is so over fields of positive
characteristic.

The last item in this lecture is an example, promised in Remark 9.11, which
shows that the radical of an ideal does not necessarily provide the most optimal set
of generators for the variety it defines.
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Example 9.21. Let f ∈ C[x, y, z] be a homogeneous polynomial of degree three.
Assume that the singular locus of Var(f) ⊂ A3 is precisely the origin. In this case,
f = 0 defines a smooth projective elliptic curve E = Var(f) in ProjC[x, y, z] = P2

C.
Consider the Segre embedding P2

C×P1
C →֒ P5

C which, in homogeneous coordinates,
corresponds to the map

(x, y, z)× (s, t) 7→ (xs, ys, zs, xt, yt, zt).

Let u1, u2, u3, v1, v2, v3 be homogeneous coordinates in P5
C, and R = C[u1, . . . , v3].

Let ∆1,∆2,∆3 be the maximal minors of the matrix
(
u1 u2 u3

v1 v2 v3

)
.

Then the image of P2
C × P1

C equals Var(∆1,∆2,∆3). We will see in Example 19.30
that even though the image is only codimension two, one cannot get away with only
two defining equations. However, let us study the image of E×P1

C in P5
C. The (full)

defining ideal of E × P1
C is generated by the three minors, and all ‘bihomogeneous

consequences’ of the equation f(x, y, z) = 0, where deg(ui) = (1, 0) and deg(vj) =
(0, 1); these other equations arise from expressing in terms of the ui, vj the equations

s3 · f = s2t · f = st2 · f = t3 · f = 0.

There is a certain ambiguity here. For example, if f = x3 + y3 + z3 + xyz then
s2tf = u2

1v1 +u2
2v2 +u2

3v3 +u1u2v3 = u2
1v1 +u2

2v2 +u2
3v3 +u1u3v2. Of course, these

ways of rewriting differ simply by an expression in the ideal (∆1,∆2,∆3). However,
there are four equations that are naturally associated to the situation. These are
F1 = f(u1, u2, u3) and F2, F3, F4 which arise by the rule

Fi+1 =
1

4− i

3∑

j=1

vj
∂Fi
∂uj

.

Note that F4 = f(v1, v2, v3). The ideal of R defining E × P1
C is the prime ideal

a = (∆1,∆2,∆3, F1, F2, F3, F4).

One cannot define the image of E × P1
C by fewer than four equations since the

local cohomology module H4
a(R) is nonzero by an argument involving the topology

of the elliptic curve. Parts of this argument are treated in Lecture 19. On the other
hand, using the group law of the elliptic curve, one can show that every point in P4

that lies on the common zero locus of all four Fj also lies on the three hypersurfaces
described by the ∆i. It follows that the 7-generated prime ideal a is the radical of
the 4-generated ideal (F1, F2, F3, F4), and that araa = 4. For details, the reader is
invited to take a look at [147].
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Lecture 10. Cohen-Macaulay rings (AS)

Definition 10.1. A local ring (R,m) is Cohen-Macaulay if some (equivalently,
every) system of parameters for R is a regular sequence on R. A ring R is said to
be Cohen-Macaulay if Rm is Cohen-Macaulay for every maximal ideal m of R.

If M is a module over a local ring (R,m), the depth of m on M is often abbrevi-
ated as depthM . Recall that this is the length of a maximal sequence of elements
in the ideal m which form a regular sequence on M . Consequently a local ring R is
Cohen-Macaulay if and only if depthR = dimR.

If R is an N-graded ring, finitely generated over a field R0 = K, then R is
Cohen-Macaulay if and only if some (equivalently, every) homogeneous system of
parameters is a regular sequence on R.

Example 10.2. Rings of dimension 0 are trivially Cohen-Macaulay. A domain of
dimension 1 is Cohen-Macaulay.

Example 10.3. By [4, Theorem 11.22, Lemma 11.23], a regular local ring is a
domain. Let (A,m) be a regular local ring of dimension d, and x1, . . . , xd ∈ A be
elements which generate the maximal ideal m. Since A is a domain, x1 is not a
zerodivisor on A. For all 2 6 i 6 d, the ring A/ (x1, . . . , xi−1) is a regular local
ring, so xi is not a zerodivisor on A/ (x1, . . . , xi−1). It follows that a regular local
ring is Cohen-Macaulay.

Example 10.4. Let A be a regular local ring of dimension d, and f1, . . . , fr ∈
A be elements such that the ring R = A/ (f1, . . . , fr) has dimension d − r. If
a ring R (or, more generally, its completion) has this form, then R is said to
be a complete intersection. The elements f1, . . . , fr ∈ A can be extended to a
system of parameters f1, . . . , fr, y1, . . . , yd−r for A, in which case the images of
y1, . . . , yd−r in R form a system of parameters for R. Since A is Cohen-Macaulay,
f1, . . . , fr, y1, . . . , yd−r is a regular sequence on A, but then y1, . . . , yd−r is a regular
sequence on R = A/ (f1, . . . , fr). Hence a complete intersection is Cohen-Macaulay.

Example 10.5. Let R = K[x, y]/(x2, xy). Then R has dimension 1, and the
element y constitutes a homogeneous system of parameters for R. However y is a
zerodivisor, so R is not Cohen-Macaulay.

Example 10.6. Let R be the subring of the polynomial ring K[s, t] generated,
as a K-algebra, by the monomials s4, s3t, st3, t4. Then R has dimension 2, and
s4, t4 is a homogeneous system of parameters for R. Since R is a domain, s4 is a
nonzerodivisor. However t4 is a zerodivisor on R/s4R since

t4(s3t)2 = s4(st3)2

and (s3t)2 /∈ s4R. It follows that R is not Cohen-Macaulay.

Example 10.7. Let R be a subring of a polynomial ring K[x1, . . . , xd] which is
generated, as a K-algebra, by monomials in the variables x1, . . . , xd. Such affine
semigroup rings are discussed in Lecture 20. If R is a normal ring, then it is
Cohen-Macaulay by a theorem of Hochster, [69, Theorem 1]. Note that the ring
in Example 10.6 is not normal. For a proof of Hochster’s theorem using Zd-graded
homological algebra and convex polyhedral geometry, see Exercise 20.35.

We shall see next how the Cohen-Macaulay property arises quite naturally in
different situations; for more on the question “What does it really mean for a ring
to Cohen-Macaulay?” see Hochster’s beautiful survey article [71].
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Noether normalization

We recall the Noether normalization theorem in its graded form:

Theorem 10.8. Let R be an N-graded ring, which is finitely generated over a field
R0 = K. If x1, . . . , xd is a homogeneous system of parameters for R, then x1, . . . , xd
are algebraically independent over K, and R is a finitely generated module over the
subring K[x1, . . . , xd].

In the situation above, a natural question arises: when is R a free module over
the polynomial ring K[x1, . . . , xd]? Before giving the answer, we look at a few
examples.

Example 10.9. Let Sn be the symmetric group on n symbols acting on the polyno-
mial ring R = K[x1, . . . , xn] by permuting the variables. Then the ring of invariants
is RSn = K[e1, . . . , en], where ei is the elementary symmetric function of degree i
in the variables x1, . . . , xn. The ring R is a free RSn -module with basis

xm1

1 xm2

2 · · ·xmn
n , where 0 6 mi 6 i− 1 for 1 6 i 6 n,

see, for example, [3, Chapter II.G].

Example 10.10. Fix a positive integer d, and let R be the subring of the polyno-
mial ring K[x, y] which is generated, as a K-algebra, by the monomials of degree d,
i.e., by the elements xd, xd−1y, . . . , xyd−1, yd. As a homogeneous system of parame-
ters for R, we take xd, yd. Then Theorem 10.8 implies that R is a finitely generated
module over the polynomial ring A = K[xd, yd]; indeed, the monomials xiyj with
0 6 i, j 6 d− 1 are a generating set for R as an A-module. It is a straightforward
exercise to prove that R is a free A-module.

Example 10.11. Let R = K[s4, s3t, st3, t4], which is the ring encountered in Ex-
ample 10.6. The elements s4, t4 form a homogeneous system of parameters for R,
and so R is a finitely generated module over the polynomial subring A = K[s4, t4].
The monomials 1, s3t, st3, s6t2, s2t6 are a minimal generating set for R as an A-
module. However R is not a free module on this minimal generating set, since we
have a relation

t4(s6t2) = s4(s2t6).

Note that this is precisely the relation we used earlier to demonstrate that R is not
Cohen-Macaulay.

Theorem 10.12. Let R be an N-graded ring which is finitely generated over a field
R0 = K, and x1, . . . , xd be a homogeneous system of parameters for R. Then R
is Cohen-Macaulay if and only if it is a free module over the polynomial subring
K[x1, . . . , xd].

Proof. Consider R as a module over the polynomial ring A = K[x1, . . . , xd]. The
Hilbert syzygy theorem implies that R has finite projective dimension over A. The
Auslander-Buchsbaum formula then gives us

depthR+ pdAR = depthA.

Since depthA = d = dimR, the ring R is Cohen-Macaulay if and only if pdRA = 0,
i.e., if and only if R is a projective A-module. Since R is a finitely generated graded
module over the graded ring A, it follows that R is a projective module if and only
if it is free. �
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Exercise 10.13. Let K denote a field. For each of the following, find a homoge-
neous systems of parameters and determine whether the ring is Cohen-Macaulay.

(1) R = K[x, y, z]/(xy, yz).
(2) R = K[x, y, z]/(xy, yz, zx).
(3) R = K[s, t, x, y]/(sx, sy, tx, ty).

Exercise 10.14. Let R be an N-graded ring finitely generated over a field R0 = K.
If R is Cohen-Macaulay with a homogeneous system of parameters f1, . . . , fd, prove
that the Hilbert-Poincaré series of R has the form

P (R, t) =
g(t)

(1− te1) · · · (1 − ted)

where deg fi = ei and g(t) is a polynomial with nonnegative integer coefficients.

Intersection multiplicities

Let f, g ∈ K[x, y] be two polynomials without a common factor. Then Var(f)
and Var(g) are plane curves with isolated points of intersection. Suppose that the
origin p = (0, 0) is one of these intersection points, and we wish to compute the
intersection multiplicity or order of tangency of the curves at the point p, this can
be achieved by working in the local ring R = K[x, y](x,y) and taking the length of
the module

R/(f, g) ∼= R/(f)⊗R R/(g).
Example 10.15. The intersection multiplicity of the parabola Var(y − x2) with
the x-axis Var(y) is

ℓ

(
K[x, y](x,y)

(y − x2, y)

)
= 2,

and with the y-axis Var(x) is

ℓ

(
K[x, y](x,y)

(y − x2, x)

)
= 1.

Example 10.16. The intersection multiplicity of Var(y2−x2−x3) with the x-axis
Var(y) is

ℓ

(
K[x, y](x,y)

(y2 − x2 − x3, y)

)
= ℓ

(
K[x, y](x,y)

(y, x2(1 + x))

)
= ℓ

(
K[x, y](x,y)

(x2, y)

)
= 2.

This illustrates the need to work with the local ring K[x, y](x,y) to measure the

intersection multiplicity at (0, 0); the length of K[x, y]/(y2 − x2 − x3, y) is 3 since
it also counts the other intersection point of the curves, (−1, 0).

Remark 10.17. For plane curves Var(f) and Var(g), the length of C[x, y](x,y)/(f, g)
gives the correct intersection multiplicity of the curves at the origin, in the sense
that for typical small complex numbers ǫ, this intersection multiplicity is precisely
the number of distinct intersection points of Var(f) and Var(g + ǫ) that lie in a
small neighbourhood of the origin.

To generalize from plane curves to arbitrary algebraic sets, let a and b be ideals
of K[x1, . . . , xn] defining algebraic sets Var(a) and Var(b) with an isolated point of
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Figure 3. The curves y = x2 and y2 = x2 + x3

intersection, p = (0, . . . , 0). Working in the local ring R = K[x1, . . . , xn](x1,...,xn)

and taking the length of the module

R/(a + b) ∼= R/a⊗R R/b
may or may not give the correct answer in the sense of perturbing the equations
and counting distinct points. Serre’s definition in [143] gives the correct answer:

χ(R/a, R/b) =

dimR∑

i=0

(−1)iℓ(TorRi (R/a, R/b)).

Example 10.18. Let a = (x3−w2y, x2z−wy2, xy−wz, y3−xz2) and b = (w, z) be
ideals of the polynomial ring C[w, x, y, z]. Then the ideal a + b = (w, z, x3, xy, y3)
has radical (w, x, y, z), so the algebraic sets Var(a) and Var(b) have a unique point
of intersection, namely the origin in C4. Let R = K[w, x, y, z](w,x,y,z). Note that

ℓ(R/(a + b)) = ℓ(R/(w, z, x3, xy, y3)) = 5.

However we claim that the intersection multiplicity of Var(a) and Var(b) should
be 4. To see this, we perturb the linear space Var(w, z) and count the number of
points in the intersection

Var(a) ∩Var(w − δ, z − ǫ)
for typical small complex numbers δ and ǫ, i.e., we determine the number of elements
of C4 which are solutions of the equations

w = δ, z = ǫ, x3 − w2y = 0, x2z − wy2 = 0, xy − wz = 0, y3 − xz2 = 0.

It is easily seen that the value of x-coordinate is a fourth root of δ3ǫ, and that the
choice of x uniquely determines the value of the y-coordinate. Hence for nonzero δ
and ǫ, there are four distinct intersection points.
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To determine the Serre intersection multiplicity χ(R/a, R/b), first note that the
Koszul complex

0 −−−−→ R

0
@−z
w

1
A

−−−−−→ R2

“
w z

”

−−−−−−→ R −−−−→ 0.

gives a projective resolution of R/b. To compute TorRi (R/a, R/b), we tensor this
complex with

R/a ∼= C[s4, s3t, st3, t4],

and take the homology of the resulting complex

0 −−−−→ R/a

0
@−t4
s4

1
A

−−−−−→ (R/a)2

“
s4 t4

”

−−−−−−−→ R/a −−−−→ 0.

In this notation, the module TorR1 (R/a, R/b) is the C-vector space spanned by the
element (

−s2t6
s6t2

)
∈ (R/a)2.

Since TorR2 (R/a, R/b) = 0 and ℓ(TorR0 (R/a, R/b)) = ℓ(R/(a + b)) = 5, we see that

χ(R/a, R/b) = 5− 1 + 0 = 4.

As the following theorem illustrates, the issue is precisely that the ring R/a ∼=
C[s4, s3t, st3, t4] is not Cohen-Macaulay.

Theorem 10.19. [143, page 111] Let (R,m) be a regular local ring, and a and b be
ideals of R such that a + b is m-primary. Then the Serre intersection multiplicity
χ(R/a, R/b) equals

ℓ(R/(a + b)) = ℓ(TorR0 (R/a, R/b))

if and only if R/a and R/b are Cohen-Macaulay rings.

The näıve attempt ℓ(R/(f, g)) gives the correct intersection multiplicity for plane
curves Var(f) and Var(g) since the rings R/(f) and R/(g) are Cohen-Macaulay.

Exercise 10.20. Let R = C[w, x, y, z], a = (w3−x2, wy−xz, y2−wz2, w2z−xy),
and b = (w, z).

(1) Check that the ring R/a ∼= C[s2, s3, st, t] is not Cohen-Macaulay.
(2) Compute the length of R/(a + b).
(3) Compute the intersection multiplicity of the algebraic sets Var(a) and Var(b)

at the origin in C4.

Invariant theory

Now let G be a group acting on a polynomial ring T . We use TG to denote the
ring on invariants, i.e., the ring

TG = {x ∈ T : g(x) = x for all g ∈ G}.
Example 10.21. Let T = K[a, b, c, s, t] be a polynomial ring over an infinite field
K. Consider the action of the multiplicative group G = K \ {0} on T under which
an element λ ∈ G sends a polynomial f(a, b, c, s, t) ∈ T to the polynomial

f(λa, λb, λc, λ−1s, λ−1t).
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Note that under this action, every monomial in T is taken to a scalar multiple. Let
f ∈ T be a polynomial which is fixed by the group action. If a monomial aibjcksmtn

occurs in f with nonzero coefficient, comparing coefficients of this monomial in f
and λ(f) gives us

λi+j+k−m−n = 1 for all λ ∈ G.
Since G is infinite, we must have i + j + k = m + n. It follows that the ring of
invariants is the monomial ring

TG = K[as, bs, cs, at, bt, ct].

The polynomial ring R = K[u, v, w, x, y, z] maps onto TG via the K-algebra homo-
morphism ϕ where

ϕ(u) = as, ϕ(v) = bs, ϕ(w) = cs, ϕ(x) = at, ϕ(y) = bt, ϕ(z) = ct.

By Exercise 1.34, ker(ϕ) is the prime ideal p = (∆1,∆2,∆3) where ∆1 = vz − wy,
∆2 = wx − uz, ∆3 = uy − vx. We would like to obtain a graded resolution of
R/p ∼= TG over R, i.e., one where the maps in the resolution preserve degree.
Towards this end, we use R(m) to denote the module R with the shifted grading
where [R(m)]n = [R]m+n. The graded resolution of R/p is

0 −−−−→ R2(−3)

0
BB@

u x
v y
w z

1
CCA

−−−−−−−→ R3(−2)

“
∆1 ∆2 ∆3

”

−−−−−−−−−−−−→ R −−−−→ 0.

Such a resolution can be used to compute the Hilbert-Poincaré series of R/p as
follows. For each integer n, we have an exact sequence of K-vector spaces

0 −−−−→ [R2(−3)]n −−−−→ [R3(−2)]n −−−−→ [R]n −−−−→ [R/p]n −−−−→ 0.

The alternating sum of the vector space dimensions must be zero, so

P (R/p, t) = P (R, t)− 3P (R(−2), t) + 2P (R(−3), t).

Since P (R(−m), t) = tmP (R, t) and P (R, t) = (1− t)−6, we see that

P (R/p, t) =
1− 3t2 + 2t3

(1− t)6 =
1 + 2t

(1− t)4 ,

which is, of course, precisely what we obtained earlier in Example 1.32.

Remark 10.22. Given an action ofG on a polynomial ring T , the first fundamental
problem of invariant theory, according to Hermann Weyl [160], is to find generators
for the ring of invariants TG, in other words to find a polynomial ring R with
a surjection ϕ : R −→ TG. The second fundamental problem is to find relations
amongst these generators, i.e., to find a free R-module Rb1 which surjects onto kerϕ.
Continuing this sequence of fundamental problems, one would like to determine the
resolution of TG as an R-module, i.e., to find an exact complex

· · · −→ Rb3 −→ Rb2 −→ Rb1 −→ R
ϕ−→ TG −→ 0.

In Example 10.21, we obtained this for the given group action, and saw how the
resolution provides information such as the Hilbert-Poincaré series (and hence the
dimension, multiplicity, etc.) of the ring of invariants TG. Another fundamental
question then arises: what is the length of the minimal resolution of TG as an
R-module, i.e., what is the projective dimension pdR T

G ? The Cohen-Macaulay
property appears once again:
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Theorem 10.23. Let G be a group acting on a polynomial ring T = K[x1, . . . , xd]
by degree preserving K-algebra automorphisms. Assume that TG is a finitely gen-
erated K-algebra, and let R be a polynomial ring mapping onto TG. Then

pdR T
G > dimR− dimTG,

and equality holds precisely if TG is Cohen-Macaulay.

Proof. By the Auslander-Buchsbaum formula,

pdR T
G = depthR− depthTG.

The polynomial ring R is Cohen-Macaulay and depthTG 6 dimTG, so we get the
asserted inequality. Equality holds if and only if depthTG = dimTG, i.e., precisely
when TG is Cohen-Macaulay. �

Exercise 10.24. Let p be a prime and let T = Z/pZ[a, b, c, s, t] be a polynomial
ring. Consider the action of the multiplicative group G = Z/pZ \ {0} on T under
which an element λ ∈ G sends a polynomial f(a, b, c, s, t) ∈ T to the polynomial

f(λa, λb, λc, λ−1s, λ−1t).

Determine the ring of invariants TG.

Exercise 10.25. Let T = C[x1, . . . , xd] be a polynomial ring, n be a positive
integer, and σ be the C-linear automorphism of T with

σ(xi) = e2πi/nxi for all 1 6 i 6 d.

Determine the ring of invariants TG where G is the cyclic group generated by σ.

We record some results which imply that the rings of invariants arising in several
important situations are indeed Cohen-Macaulay.

Theorem 10.26 (Hochster-Eagon, [73]). Let T be a polynomial ring over a field
K, and let G be a finite group acting on T by degree preserving K-algebra automor-
phisms. If |G| is invertible in K, then TG is Cohen-Macaulay.

Proof. Consider the map ρ : T −→ TG given by

ρ(t) =
1

|G|
∑

g∈G

g(t).

It is easily verified that ρ(t) = t for all t ∈ TG, and that ρ is a TG-module homo-
morphism. Hence TG is a direct summand of T as a TG-module, i.e., T ∼= TG⊕M
for some TG-module M .

Let x1, . . . , xd be a homogeneous system of parameters for TG. Since G is finite,
T is an integral extension of TG, so x1, . . . , xd is a system of parameters for T as
well. The ring T is Cohen-Macaulay, so x1, . . . , xd is a regular sequence on T . But
then it is also a regular sequence on its direct summand TG. �

The proof of Theorem 10.26 shows, more generally, that a direct summand S of a
Cohen-Macaulay ring T is Cohen-Macaulay, provided that a system of parameters
for S forms part of a system of parameters for T . In general, a direct summand of a
Cohen-Macaulay ring need not be Cohen-Macaulay as we see in the next example.
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Example 10.27. Let K be an infinite field, and let T be the hypersurface

T = K[x0, x1, x2, y0, y1]/(x
3
0 + x3

1 + x3
2).

The multiplicative group G = K \ {0} acts K-linearly on T where

λ :

{
xi 7−→ λxi

yj 7−→ λ−1yj
for λ ∈ G.

As in Example 10.21, the ring of invariants TG is the K-algebra generated by the
elements xiyj. The ring T is a complete intersection, and hence is Cohen-Macaulay.
Also, it is easy to see that TG is a direct summand of T . However TG is not Cohen-
Macaulay: the elements x0y0, x1y1, x1y0 + x0y1 form a homogeneous system of
parameters for TG (verify!) and satisfy the relation

x2y0x2y1(x1y0 + x0y1) = (x2y0)
2x1y1 + (x2y1)

2x0y0,

which shows that x1y0+x0y1 is a zerodivisor on TG/(x0y0, x1y1)T
G. For a different

proof that TG is not Cohen-Macaulay, see Example 22.5.

Remark 10.28. A linear algebraic group is Zariski closed subgroup of a general
linear group GLn(K). A linear algebraic group G is linearly reductive if every finite
dimensional G-module is a direct sum of irreducible G-modules, equivalently, if
every G-submodule has a G-stable complement.

Linearly reductive groups in characteristic zero include finite groups, algebraic
tori (i.e., products of copies of the multiplicative group of the field), and the classical
groups GLn(K), SLn(K), Sp2n(K), On(K) and SOn(K).

If a linearly reductive group acts on a finitely generated K-algebra T by degree
preserving K-algebra automorphisms, then there is a TG-linear map, the Reynolds
operator ρ : T −→ TG, which makes TG a direct summand of T .

Theorem 10.29 (Hochster-Roberts, [76]). Let G be a linearly reductive group act-
ing linearly on a polynomial ring T . Then TG is Cohen-Macaulay. More generally,
a direct summand of a polynomial ring is Cohen-Macaulay.

We record a few examples of rings of invariants which, by the Hochster-Roberts
theorem, are Cohen-Macaulay.

Example 10.30. Let n 6 d be positive integers, X = (xij) be an n × d matrix
of variables over a field K, and consider the polynomial ring T = K[X ], i.e., T is
a polynomial ring in nd variables. Let G = SLn(K) be the special linear group
acting on T as follows:

M : xij −→ (MX)ij ,

i.e., an element M ∈ G send xij , the (i, j) entry of the matrix X , to the (i, j) entry
of the matrix MX . Since detM = 1, it follows that the size n minors of X are
fixed by the group action. It turns out whenever K is infinite, TG is the K-algebra
generated by these size n minors. The ring TG is the homogeneous coordinate
ring of the Grassmann variety of n dimensional subspaces of a d-dimensional vector
space. The relations between the minors are the well-known Plücker relations.

Example 10.31. Let X = (xij) and Y = (yjk) be r × n and n × s matrices of
variables over an infinite field K, and consider the polynomial ring T = K[X,Y ] of
dimension rn+ns. Let G = GLn(K) be the general linear group acting on R where
M ∈ G maps the entries of X to corresponding entries of XM−1 and the entries
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of Y to those of MY . Then TG is the K-algebra generated by the entries of the
product matrix XY . If Z = (zij) is an r× s matrix of new variables mapping onto
the entries of XY , the kernel of the induced K-algebra surjection K[Z] −→ TG is
the ideal generated by the size n+ 1 minors of the matrix Z. These determinantal
rings are the subject of [17]. The case where r = 2, s = 3, n = 1 was earlier
encountered in Example 10.21.

Exercise 10.32. Let X = (xij) be a n× n matrix of variables over a field K, and
take the polynomial ring

A = K[xij : 1 6 i 6 n, 1 6 j 6 n].

Consider the hypersurface R = A/(detX). If ∆ is any size (n − 1) minor of X ,
show that R∆, i.e., the localization of R at the element ∆, is a regular ring.

Exercise 10.33. Let G be a group acting by ring automorphisms on a domain R.

(1) Show that the action of G on R extends to an action of G on the fraction
field L of R.

(2) If R is normal, show that the ring of invariants RG is normal.
(3) If G is finite, prove that LG is the fraction field of RG.

Local cohomology

We have seen how Cohen-Macaulay rings come up in the study of intersection
multiplicities, and in studying resolution of rings of invariants. They also arise in
a natural way when considering local cohomology:

Theorem 10.34. Let (R,m) be a local ring of dimension d. Then R is Cohen-
Macaulay if and only if Hi

m(R) = 0 for all i 6= d.

Proof. Let x1, . . . , xd be a system of parameters for R. Then Hi
m(R) can be com-

puted as the ith cohomology module of the complex

0 −→ R −→
⊕

Rxi −→
⊕

Rxixj −→ · · · −→ Rx1···xd
−→ 0,

hence Hi
m(R) = 0 for all i > d.

By Theorem 9.1, the depth of R is the least integer i such that Hi
m(R) is nonzero.

Since R is Cohen-Macaulay if and only if depthR = d, the result follows. �
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Lecture 11. Gorenstein Rings (CM)

In this lecture we introduce Gorenstein rings, which, among the class of commu-
tative Noetherian rings, are remarkable for their ‘duality properties’. The definition
we adopt, however, is perhaps not too illuminating:

Definition 11.1. A Noetherian ring R is said to be Gorenstein if injdimRR <∞.

Note that when injdimR R is finite, so is injdimRp
(Rp) for each prime ideal p in

R. Hence when R is Gorenstein, so is Rp. As to the converse:

Exercise 11.2. Prove that a Noetherian R is Gorenstein if and only if dimR is
finite and Rm is Gorenstein for each maximal ideal m in R.

In the literature, you may find that a Noetherian ring R is defined to be ‘Goren-
stein’ if it is locally Gorenstein; the finiteness of Krull dimension has been sacrificed.
However, from the perspective of these lectures, where we focus on Gorenstein rings
for their duality properties, the more stringent definition is the ‘right one’.

Here is one source of Gorenstein rings; recall that a regular ring is one which has
finite global dimension.

Proposition 11.3. A regular local ring is Gorenstein.

Proof. Since R has finite global dimension, ExtiR(−, R) = 0 for i ≫ 0, and so R
has finite injective dimension. �

It turns out when R is Gorenstein, the injective resolution of R (over itself) can
be described completely; see Remark 11.28. This is a consequence of general results
concerning the nature of injective resolution, discussed below.

Bass numbers

Let R be a Noetherian ring and let M be a finitely generated R-module. Let I•

be the minimal injective resolution of M . For each prime ideal p and integer i, the
number

µiR(p,M) = number of copies of ER(R/p) in Ii,

is the ith Bass number of M with respect to p, see Definition A.24. When R is local
with maximal ideal m, we sometimes write µiR(M) for µiR(m,M). By Theorem A.25,
the Bass numbers can be calculated as

µiR(p,M) = rankK(p) HomRp
(K(p), Iip) = rankK(p) ExtiRp

(K(p),Mp),

where K(p) = Rp/pRp. These formulae also show that Bass numbers are finite, and
that they can be calculated locally, that is to say, if U is a multiplicatively closed
subset of R with U ∩ p = ∅, then

µiR(p,M) = µiU−1R(U−1p, U−1M).

The following exercise is a first step towards ‘understanding’ the structure of min-
imal injective resolutions.

Exercise 11.4. Let M be an R-module. Prove that

AssR(M) = {p | µ0
R(p,M) 6= 0} = AssER(M).
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Definition 11.5. A functor F on R-modules is half-exact if, given an exact se-
quence of R-modules 0 −→ L −→M −→ N −→ 0, the sequence

F (L) −→ F (M) −→ F (N)

is exact.

Exercise 11.6. Let (R,m,K) be a local ring and let F be a half-exact functor. If
F (K) = 0, prove that F (L) = 0 for any finite length R-module L.

Bass numbers propagate along chains of prime ideals in the following sense:

Lemma 11.7. Let p ⊂ q be prime ideals of R with height(q/p) = 1. For any
finitely generated R-module M , if µiR(p,M) 6= 0, then µi+1

R (q,M) 6= 0.

Proof. Localizing at q, we may assume that R is local with maximal ideal m, and
that dimR/p = 1. Suppose that µi+1

R (M) = 0, in other words, that

Exti+1
R (K(m),M) = 0.

Since Exti+1
R (−,M) is a half-exact functor, Exti+1

R (L,M) = 0 for any R-module L

of finite length; see Exercise 11.6. In particular, Exti+1
R (R/(p + xR),M) = 0 for

any element x ∈ R \ p, since the length of the R-module R/(p + xR) is finite. Now
the short exact sequence

0 −→ R/p
x−→ R/p −→ R/(p + xR) −→ 0

yields an exact sequence of finitely generated modules

· · · −→ ExtiR(R/p,M)
x−→ ExtiR(R/p,M) −→ Exti+1

R (R/(p + xR),M) = 0.

Nakayama’s Lemma yields ExtiR(R/p,M) = 0, and hence µiR(p,M) = 0. �

Here is an immediate corollary:

Corollary 11.8. Let (R,m,K) be a local ring, and let M be a finitely generated
R-module. Then

injdimRM = sup{i | ExtiR(K,M) 6= 0}.
There is a better result, proved by Fossum, Foxby, Griffith, and Reiten [41], and

also by P. Roberts [130]:

Theorem 11.9. Let (R,m,K) be a local ring and let M be a finitely generated

R-module. Then ExtiR(K,M) 6= 0 for depthRM 6 i 6 injdimRM . �

Using Exercise 11.4 and the Lemma 11.7, solve:

Exercise 11.10. For any finitely generated R-module M , one has an inequality:

injdimM > dimM.

In particular, if R admits a nonzero finitely generated injective module, then R is
Artinian. (See also Remark 11.13.)

This exercise is a little misleading in that the injective dimension of M is either
infinite, or depends only on R. More precisely:

Proposition 11.11. Let R be a local ring and M a finitely generated R-module.
If injdimRM is finite, then

injdimM = depthR.
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Proof. Set d = depthR, and choose a maximal R-sequence x = x1, . . . , xd ∈ m.
Computing via the Koszul resolution of R/xR over R, one sees that

ExtdR(R/xR,M) ∼= M/xM,

which is nonzero by Nakayama’s Lemma. Thus injdimM > d = depthR. Suppose
that e = injdimM > d. Since depthR/xR = 0, there is an exact sequence

0 −→ K −→ R/xR −→ C −→ 0.

Since Exte+1
R (−,M) = 0, the induced long exact sequence has the form

· · · −→ ExteR(R/xR,M) −→ ExteR(K,M) −→ 0.

Since e > d = pdR(R/xR), one has ExteR(R/xR,M) = 0, and so ExteR(K,M) = 0.
However, ExtiR(K,M) = 0 for i > e since injdimR(M) = e, so Corollary 11.8 yields
injdimR(M) < e; this is a contradiction. �

The proof of the following result is now clear:

Corollary 11.12. A Gorenstein ring is Cohen-Macaulay.

Remark 11.13. More generally, if a Noetherian local ring R has a finitely gen-
erated module of finite injective dimension, then R is Cohen-Macaulay. This is
known as Bass’s Conjecture, now a theorem as Peskine and Szpiro showed that it
follows from the the Intersection Theorem [127], which in turn they had proved for
a large class of rings containing a field and which Roberts subsequently proved for
all local rings [133].

Recognizing Gorenstein rings

Let (R,m,K) be a local ring. Recall that the socle of an R-module M , denoted
soc(M), is the submodule (0 :M m) of M ; it may be identified with HomR(K,M).
It is thus a K-vector space, and indeed, the largest K-vector space contained in M .
(Convince yourself that the terminology is particularly well-chosen!)

Theorem 11.14. Let R be a zero-dimensional local ring. The following conditions
are equivalent:

(1) R is Gorenstein;
(2) R is injective as an R-module;
(3) rankK soc(R) = 1;
(4) ER(K) ∼= R;
(5) the ideal (0) of R is irreducible.

The equivalence of (1) and (2) is immediate from Proposition 11.11, and that of
(2) and (3) was proved in Theorem A.33. The equivalence of these with the other
conditions are all consequences of the following exercise; do fill in the details.

Exercise 11.15. Let R be a local ring and M an Artinian R-module. Prove that
the inclusion soc(M) ⊆M is an essential extension. Does this statement hold when
M is not Artinian?

Condition (3) in the result above is a particularly simple test for identifying
Gorenstein rings:
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Example 11.16. Let K be a field. The ring K[x, y]/(x2, y2) is Gorenstein since its
socle is generated by a single element xy, while the ring K[x, y]/(x, y)2 is not, since
its socle is minimally generated by the elements x and y.

However, one must be careful: this test applies only to zero dimensional rings.
The local ring R = K[[x, y]]/(x2, xy) is not Gorenstein (check!) and yet soc(R) ∼= K.

How can one identify higher dimensional Gorenstein rings? One way is to use
following result:

Proposition 11.17. Let x be a regular sequence on a ring R.

(1) If R is Gorenstein, then so is R/(x).
(2) The converse holds if R is local.

The proof of this result is almost trivial, once we use Corollary 11.8, and the
following theorem due to Rees:

Theorem 11.18. Let M and N be R-modules. If x ∈ annRN is a nonzerodivisor
on R and on M , then

Exti+1
R (N,M) ∼= ExtiR/xR(N,M/xM) for each i.

Here is one use of Proposition 11.17.

Example 11.19. Let K be a field and let R = K[x3, x5, x7], viewed as a subring
of K[x]. Evidently R is a domain of dimension 1, and hence Cohen-Macaulay.
However, soc(R/x3R) has rank two. Therefore the ring R/x3R is not Gorenstein,
and so neither is R itself.

We now enlarge our supply of Gorenstein rings; first, a technical note:

Lemma 11.20. A local ring (R,m,K) is Gorenstein if and only if its m-adic com-

pletion R̂ is Gorenstein.

Proof. This follows from the isomorphism

ExtibR(K, R̂) ∼= ExtiR(K, R)⊗R R̂
and Corollary 11.8. �

Proposition 11.21. If a local ring is a complete intersection, then it is Gorenstein.

Proof. The completion R̂ must be a complete intersection, so, by the previous
lemma, we may assume that R is complete. Then R ∼= Q/(x) for some regular
local ring Q and a Q-regular sequence x. Now Q is Gorenstein by Proposition 11.3,
hence so is R by Proposition 11.17. �

There are more Gorenstein rings than complete intersections:

Example 11.22. Let K be a field, and let

R = K[x, y, z]/(x2 − y2, y2 − z2, xy, yz, xz).

Note thatR is 0-dimensional; its socle is generated by x2, and hence it is Gorenstein.
However, the ideal of relations defining R can easily be seen to be minimally gen-
erated by the 5 elements listed, which do not form a regular sequence on K[x, y, z].

Remark 11.23. In the previous example, we used the fact that the property of
being complete intersection can be checked using any presentation of the ring R: if
R ∼= Q/a for some regular ring Q and ideal a of Q, then R is complete intersection
if and only if a is generated by a regular sequence.
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Determinantal rings are another (potential) source of Gorenstein rings.

Example 11.24. Let K be a field, andX = (xij) anm×nmatrix of indeterminates.
Let K[X ] denote the polynomial ring in the mn indeterminates xij . Fix an integer
r > 1, and set

R = K[X ]/Ir(X),

where Ir(X) denotes the ideal generated by the r× r minors of the matrix X . This
is the coordinate ring of the algebraic set of m × n matrices over K of rank less
than r as we saw in Example 1.5. The ring R is a Cohen-Macaulay normal domain
of dimension (m+ n− r + 1)(r − 1). However, for r > 1, the ring R is Gorenstein
if and only if m = n.

Let us verify this last statement when m = 2, n = 3, r = 2, that is, for the ring

R = K[u, v, w, x, y, z]/(vz − wy,wx − uz, uy − vx).
Recall from Example 1.32 that the elements u, v − x,w − y, z form a system of
parameters for R. Now

R/(u, v − x,w − y, z) = K[x, y]/(x2, xy, y2).

is not Gorenstein (look at its socle), and hence neither is R.

One is now in a position to extend Theorem 11.14 to arbitrary local rings.

Theorem 11.25. Let (R,m,K) be a local ring with dimR = d. The following
conditions are equivalent.

(1) R is Gorenstein;
(2) injdimRR = d;

(3) R is Cohen-Macaulay and rankK ExtdR(K, R) = 1;
(4) some (equivalently, every) system of parameters for R generates an irre-

ducible ideal.

Remark 11.26. P. Roberts proved that in condition (3) above, one can drop the

requirement that R is Cohen-Macaulay; thus, ExtdR(K, R) ∼= K already implies that
R is Gorenstein, [132]. The type of an finitely generated R-module M is the number

typeR(M) = dimK ExtnR(K, R),

where n = depthRM . Thus, the equivalence of (1) and (3) is the statement that
Gorenstein rings are precisely Cohen-Macaulay rings of type 1.

Proof of Theorem 11.25. Conditions (1) and (2) are equivalent by Proposition 11.11
and Corollary 11.12.

(1) ⇐⇒ (3): Corollary 11.12 lets us assume that R is Cohen-Macaulay. Let
x = x1, . . . , xd be a maximal R-sequence. Rees’ theorem 11.18 yields isomorphisms

ExtdR(K, R) ∼= Extd−1
R (K, R/x1R) ∼= · · · ∼= HomR(K, R/(x)).

Now apply Proposition 11.17 and Theorem 11.14.
(1) =⇒ (4): Again, reduce to dimension 0 and then apply Theorem 11.14.
(4) =⇒ (1): Induce on dimR. If dimR = 0, apply Theorem 11.14. If dimR > 1,

we find a nonzerodivisor as follows: Let x = x1, . . . , xd be a system of parameters
for R, and note that x

t = xt1, . . . , x
t
d is a system of parameters for all t > 1.

By Theorem 11.14, each Rt = R/(xt) is Gorenstein, and so its socle, being 1-
dimensional, is contained in every ideal, and hence in the ideal (xt−1)/(xt). Thus

((xt) : m) ⊆ (xt−1)
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for each t > 1. Since soc(R) is contained in (xt) : m for each t, we conclude that

socR ⊆
⋂

t

(xt−1) = 0.

Hence depthR > 0. Choose a nonzerodivisor x, and apply the induction hypothesis
to R/xR. �

Injective resolutions of Gorenstein rings

We now turn to the structure of minimal resolutions of Gorenstein rings.

Theorem 11.27. Let R be a Noetherian ring and p a prime ideal in R. The
following conditions are equivalent:

(1) Rp is Gorenstein;
(2) µiR(p, R) = 0 for each integer i > height p;
(3) µiR(p, R) = 0 for some integer i > height p;

(4) µiR(p, R) =

{
0 if i < height p,

1 if i = height p.

Proof. We may assume that R is local with p = m.
The equivalence of (1) and (4) follows from Theorem 11.25. Proposition 11.11

yields (1) =⇒ (2), while it is clear that (2) =⇒ (3). Finally, (3) =⇒ (1) is an
immediate consequence of Theorem 11.9. �

Remark 11.28. Let R be a Gorenstein ring and I• a minimal injective resolution
of R. Since, for all prime ideals p, the ring Rp is Gorenstein and furthermore I•p is
a minimal resolution of Rp by Proposition A.23, Theorem 11.27 implies that

Ii ∼=
⊕

height p=i

ER(R/p)

for each i. Thus each ER(R/p) appears exactly once in the complex I•, namely in
degree height p.

Local duality for Gorenstein rings

One direction of the result below is called the ‘Grothendieck duality theorem’
for Gorenstein rings; ‘Grothendieck’ because it was proved by the man himself, and
‘duality’ for reasons explained in Lecture 18.

Theorem 11.29. Let (R,m,K) be a local ring of dimension d. Then R is Goren-
stein if and only if

Hi
m(R) =

{
0 for i 6= d,

ER(K) for i = d.

Proof. When R is Gorenstein, its local cohomology with respect to m is evident
from Example 7.5 and the minimal injective resolution of R, see Remark 11.28. As
to the converse, since Hi

m(R) = 0 for i 6= d, the ring R is Cohen-Macaulay, see
Theorem 9.1. Now solve Exercise 11.30 below and apply Proposition 11.14. �
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Exercise 11.30. Let (R,m,K) be a local ring, M a finitely generated R-module,
and x = x1, . . . , xn a regular sequence on M . Set d = depthM . Prove that there
is a natural isomorphism

Hd−n
m (M/xM) ∼= ExtnR(R/xR,Hd

m(M)).

Hint: induce on n.

Using the preceding theorem and Theorem 7.10, one can obtain an explicit de-
scription of ER(K) for any local Gorenstein ring:

Remark 11.31. Let x = x1, . . . , xd be a system of parameters for R. Note that
Hn

m(−) = Hn
(x)(−) for each n. For t > 1, set x

t = xt1, . . . , x
t
d. It is easy to see that

Hd(HomR(K(xt), R)) = R/(xt),

and that, in the direct system in Theorem 7.10, the induced homomorphism

R/(xt) = Hd(HomR(K(xt), R)) −→ Hd(HomR(K(xt+1), R)) = R/(xt+1)

is given by multiplication by the element x =
∏d
i=1 xi. Thus, according to Theo-

rem 11.29, when R is Gorenstein, one has

ER(K) = lim−→
(
R/(x)

x−→ R/(x2)
x−→ R/(x3)

x−→ · · ·
)
.

Now we come to one of the principal results on Gorenstein rings: local duality.
There is a version of the local duality theorem for Cohen-Macaulay rings with a
canonical modules, and, better still, for any local ring with a dualizing complex.
For the moment, however, we focus on the case of Gorenstein rings. The connection
to Serre duality on projective space is explained in Lecture 18. It is an important
point that the isomorphisms below are ‘natural’; once again, this is explained in
Lecture 18.

Theorem 11.32. Let (R,m) be a Gorenstein local ring of dimension d. For each
finitely generated R-module M , there are isomorphisms

Hi
m(M) ∼= Extd−iR (M,R)∨ for 0 6 i 6 d,

where (−)∨ = HomR(−, ER(K)).

Proof. Set E = ER(K), and let x = x1, . . . , xd be a system of parameters for R.
By Theorem 7.13, for each integer i, the R-module Hi

m(M) is the ith cohomology of
the complex Cx(R)⊗RM , where Cx(R) is stable Koszul complex associated with
the sequence x. Since R is Gorenstein, Theorem 11.29 yields

Hi(Cx(R)) =

{
0 if i < d,

E if i = d.

Therefore, Cx(R) is a finite resolution of E by flat modules, and hence

Hi
m(M) = Hi(Cx(R)⊗RM) = TorRd−i(E,M).

We claim that the module on the right is precisely Extd−iR (M,R)∨. To see this, let
I• be a minimal injective resolution of R; note that In = 0 for n > d since R is
Gorenstein. Thus, the canonical morphism of complexes

(11.32.1) HomR(I•, E)⊗RM −→ HomR(HomR(M, I•), E)
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is bijective. Moreover, HomR(I•, E) is a bounded complex of flat R-modules with

Hn(HomR(I•, E)) =

{
0 if n 6= 0,

E if n = 0.

Thus, HomR(I•, E) is a flat resolution of E. Hence taking homology in (11.32.1)
yields, for each integer n, an isomorphism of R-modules

TorRn (E,M) ∼= HomR(ExtnR(M,R), E).

�

The proof is admittedly terse. Exercise: fill in the details! The preceding theorem
gives a description of local cohomology over any complete local ring: Any such ring
is a surjective image of a regular local ring, and then the following corollary applies:

Corollary 11.33. If (R,m,K) is a homomorphic image of a Gorenstein local ring
Q of dimension c, and M is a finitely generated R-module, then

Hn
m(M) ∼= Extc−iQ (M,Q)∨

where (−)∨ = HomQ(−, EQ(K)). �

But this is not so satisfactory: One would like is an intrinsic duality theorem,
involving only cohomology groups overR itself. This is given by Serre-Grothendieck
duality, Theorem 18.14, for which one needs canonical modules.

Canonical modules

The following exposition of canonical modules follows that of [16]. The graded
and non-local cases are covered in Lectures 13 and 18, respectively. The latter also
explains the duality theorem for Cohen-Macaulay rings with canonical modules.

Definition 11.34. Let R be a Cohen-Macaulay local ring. A maximal Cohen-
MacaulayR-module C of finite injective dimension and type one is called a canonical
module for R. Thus, a finitely generated R-module C is a canonical module for R
if and only if

µnR(C) =

{
0 for n 6= dimR,

1 for n = dimR.

We have already seen examples of canonical modules: When R is Gorenstein,
R itself is a canonical module, by Theorem 11.27. When R is Artinian, ER(K) is
a canonical module for R. The following theorem establishes, among other things,
that when a canonical module exists, it is unique; you may consult [16] for a proof.

Theorem 11.35. Let R be a Cohen-Macaulay local ring. For any two canonical
modules C and C′ for R, one has

(1) C/xC ∼= ER/xR(K);
(2) C ∼= C′;
(3) The canonical homomorphism R −→ HomR(C,C) is bijective. �

Henceforth, we use ωR to denote the canonical module of R. Theorem 11.35
implies the following change of rings statements:

Corollary 11.36. Let R be a Cohen-Macaulay local ring with canonical module
ωR. Then there are isomorphisms
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(1) ωR/xR ∼= ωR/xωR for any R-sequence x;
(2) ωRp

∼= (ωR)p for any prime ideal p;
(3) ω bR

∼= ω̂R.

We turn next to the question of its existence. A first result is provided by
Theorem 11.27.

Proposition 11.37. Let R be a Cohen-Macaulay local ring. The following condi-
tions are equivalent.

(1) R is Gorenstein;
(2) ωR exists and ωR ∼= R.

The following change of rings result is useful in finding canonical modules.

Theorem 11.38. Let ϕ : R −→ S be a local homomorphism of Cohen-Macaulay
local rings such that S is a finitely generated module over the image of ϕ. If R has
a canonical module, then S has a canonical module, and, setting t = dimR−dimS,
there is an isomorphism

ωS ∼= ExttR(S, ωR).

Sketch of Proof. Let K = R/m and L = S/n denote the respective residue fields.
One can choose an R-sequence x1, . . . , xt of length t = dimR − dimS in kerϕ.
Lemma 11.18 and Corollary 11.36 (1) yield that

ExttR(S, ωR) ∼= HomR/xR(S, ωR/xR),

and so we may assume that dimR = dimS.
Next, one can choose a maximal R-sequence y1, . . . , yd and proceed to reduce in

a straightforward way to the case where dimR = dimS = 0. In this case, since
ωR is an injective R-module, HomR(S, ωR) is an injective S-module. Since S is
zero-dimensional, HomR(S, ωR) must be isomorphic to a finite sum of copies of
ES(L) ∼= ωS . By length counting using Lemma A.30, one can see that it must be
a single copy, that is, HomR(S, ωR) ∼= ωS . �

Note one consequence of the theorem above: if a ring is a homomorphic image
of a Gorenstein local ring, then it has a canonical module. The converse is true as
well, and its proof uses the following construction.

Remark 11.39. Let R be a ring and let M be an R-module. Then the trivial
extension of R by M , written R ⋉ M , is the R-algebra formed by endowing the
direct sum R⊕M with the following multiplication:

(r,m)(s, n) = (rs, rn + sm).

The submodule 0⊕M is an ideal whose square is zero, and taking the quotient by
this ideal yields R again. If R is Noetherian and M finitely generated, then R⋉M
is Noetherian and dim(R ⋉M) = dimR. If R is local with maximal ideal m, then
R⋉M is local with maximal ideal m⊕M .

Exercise 11.40. Let (R,m,K) be a local ring and let M be a finitely generated
R-module. Prove that

soc(R ⋉M) = {(r,m) | r ∈ soc(R) ∩ annRM, and m ∈ soc(M)}.
Here is the definitive result on the existence of canonical modules:
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Theorem 11.41. Let R be a Cohen-Macaulay local ring. The following conditions
are equivalent.

(1) R has a canonical module;
(2) R is a homomorphic image of a Gorenstein local ring.

Proof. The implication (2) =⇒ (1) follows from Theorem 11.38.
Suppose that R has a canonical module ω, set S = R ⋉ ω. We prove that S is

Gorenstein; R is its image under the canonical surjection S −→→ R. Pick a maximal
R-regular sequence x that is also a regular sequence on ω; this can be done because
ω is maximal Cohen-Macaulay; also, see the exercise below. Thus, (the image of)
x in S is an S-regular sequence, and

S/xS ∼= (R/xR) ⋉ (ωR/xωR).

Since it suffices to prove that S/xS is Gorenstein by Proposition 11.17, and ωR/xωR
is the canonical module of R/xR by Corollary 11.36, passing to R/xR, we may
assume that R is Artinian. Now use Exercise 11.40 and Theorem 11.14 to conclude
that S is Gorenstein. �

Exercise 11.42. Let R be a Cohen-Macaulay ring and ω a canonical module for
R. Prove that any R-regular sequence is also regular on ω. Is this true of any
maximal Cohen-Macaulay R-module?

Theorem 11.43. Let (R,m,K) be a d-dimensional Cohen-Macaulay local ring with
a canonical module ω. Then there is an isomorphism

Hd
m(R) ∼= HomR(ω,ER(K)).

Proof. This is left as an exercise using Theorem 11.41, Theorem 11.33, and Theo-
rem 11.38. �

Thought exercise: in the definition of canonical modules, why we do we begin
with Cohen-Macaulay rings?
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Lecture 12. Connections with sheaf cohomology (GL)

You may have noticed that in previous lectures we have attached two meanings to
the phrase “Čech complex”. In Lecture 2, a complex Č•(U,F) was defined for any
sheaf F on a topological space and any open cover U of X . Later, in lecture 5, we
defined a complex C•(x;R) for any commutative ring R and sequence of elements
x. In one sense, the goal of this lecture is to reconcile this apparent overload of
meaning: the two Čech complexes are “really” the same thing, at least up to a
shift. In particular, the Čech cohomology of a ring is an invariant of the scheme
structure. Specifically, we will prove that for an R-module M ,

Hj+1
a (M) ∼= Hj(SpecR \ V (a), M̃)

for all j ≥ 1. See Theorem 12.28 for the precise statement and notation.
Our goal will take us fairly far afield, through the dense thickets of scheme

theory and sheaf cohomology, flasque resolutions and cohomology with supports.
We’ll only have time to point out the windows at the menagerie of topics in this
area. A more careful inspection is well worth your time. In particular, nearly
everything in this lecture is covered more thoroughly in [63] and more intuitively
in [33]. See also the prologue and epilogue of [110].

We begin with some background on sheaves.

Sheaf Theory from definitions to cohomology

Sheaves are global objects that are completely determined by local data. In fact,
one of the points of sheaf theory is that sheaves make it possible to speak sensibly of
“local properties”. Historically, the notion of a sheaf seems to go back to complex
analysis at the end of the 19th century, under the guise of analytic continuation,
and was developed further in Weyl’s 1913 book [159]. The first rigorous definition
is due to Leray, and the basic properties were worked out in the Cartan seminar
in the 1940s and 50s. Sheaves were imported to algebraic geometry by Serre in
1955 [140], when he also established the basics of sheaf cohomology. Grothendieck,
in his 1955 Kansas lectures, introduced presheaves and the categorical approach to
cohomology.

Here is the definition.

Definition 12.1. Let X be a topological space. A sheaf F of abelian groups on
X consists of the data:

• an abelian group F(U) for every open set U ⊆ X , and
• a restriction map ρV U : F(U) −→ F(V ) for each pair of open sets V ⊆ U ,

also sometimes written |V ,

subject to the following restrictions.

(0) (Sanity) F(∅) = 0 and ρUU = idU for all open U ⊆ X .
(1) (Functoriality) If W ⊆ V ⊆ U are open sets, then composition of restriction

maps behaves well, i.e., the diagram

F(W )

ρW V
##HH

HH
HH

HH
H

ρWU // F(U)

F(V )

ρV U

;;wwwwwwwww

commutes.
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(2) (Locally zero implies zero) If s, t ∈ F(U) become equal after restriction to
each Vα in an open cover U =

⋃
α Vα, then they are equal.

(3) (Gluing) For any open cover U =
⋃
α Vα, and any collection of elements

{sα ∈ F(Vα)} satisfying

sα|Vα∩Vβ
= sβ|Vα∩Vβ

for all α, β, there exists s ∈ F(U) so that s|Vα = sα.

The first two axioms are fairly straightforward; they could be fancied up as, “F is
a contravariant functor from the topology on X to abelian groups,” or simplified as,
“F is a sensible generalization of sending a set S to the continuous maps S −→ C.”
The axiom of local zeroness and the gluing axiom codify the fact that sheaves are
determined by their local data, and that local data varies “smoothly” over the space
X . Note that (3) is an existence statement, while (2) asserts uniqueness. The two
are sometimes combined into a single “sheaf axiom.”

Before muddying the waters further with more definitions, let us have a concrete
example which is also dear to our hearts.

Example 12.2. Let X = SpecR for some (Noetherian and commutative, like all
rings in this lecture) ring R. Give X the Zariski topology (see Lecture 1), so that
X has a base of open sets of the form

Uf = SpecR \ V (f)

= {p ∈ SpecR | p does not contain f}

for each f ∈ R. Define a sheaf of rings on X , called the structure sheaf and denoted
OX , by

OX(Uf ) = Rf .

In other symbols, OX assigns to every distinguished open set the ring of fractions
R[ 1

f ]. In particular, OX(X) = R. For two elements f, g ∈ R, we have

Ug ⊆ Uf ⇐⇒ V (f) ⊆ V (g)

⇐⇒ f | g
⇐⇒ there is a natural localization map Rf −→ Rg .

Exercise 12.3. Check that OX really is a sheaf. Specifically, check the axioms
(0) − (3) for the open sets Uf . Then show that any collection {F(Uα)} satisfying
the axioms and such that the {Uα} form a base for the topology of X defines a
unique sheaf on X .

Example 12.4. If K is a field, then Spec K is a single point, (0), which is both
open and closed, and OSpec K((0)) = K.

Example 12.5. Let R = Z. Then SpecR consists of one point for each prime
p ∈ Z, plus a “generic” point corresponding to the zero ideal, whose closure is all
of Spec Z. The distinguished open sets are the cofinite sets of primes, of the form

Un = {p ∈ Spec Z | p 6 | n}

for n ∈ Z \ {0}. For each nonzero n, we have OZ(Un) = Z[ 1
n ].
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Notation 12.6. We write Γ(U,F) as a synonym10 for F(U). The elements of
the abelian group, or module, or ring, Γ(U,F) are the sections of F over U . In
particular, the elements of Γ(X,F) are the global sections of F .

Example 12.7. Let X = SpecR. The sections of the structure sheaf OX over a
distinguished open set Uf are just fractions r

fn with r ∈ R and n ≥ 0. In particular,

global sections of OX are just elements of R.

A word of caution: while the sections of OX over a distinguished open set are
easy to identify from the definition, unexpected sections can crop up. In particular,
not every section over an open set comes from restriction of a global section. Here
are two examples.

Example 12.8. Let X = C with the usual complex topology, and let F be the
sheaf of bounded holomorphic functions on X . Then the global sections of F are
the bounded entire functions C −→ C. By Liouville’s theorem, there are hardly
any of these – only the constant functions qualify! For proper open sets, like discs,
there are of course many nonconstant sections, which can’t possibly be restrictions
of global ones.

Example 12.9. Let R = K[s4, s3t, st3, t4] (see Example 10.6), where K is some
field. Set X = SpecR and let U be the open set X \ {(s4, s3t, st3, t4)}. As in
Example 12.7, the global sections of OX are just the elements of R. In particular,
s2t2 is not a global section. The sections over U , however, include something new.
To see this, we can use the surjection K[a, b, c, d] −→ R to think ofX as an algebraic
set embedded in K4. The open set U then corresponds to X with the origin deleted;
equivalently, U is the subset of X where not all the coordinate functions a, b, c, d
vanish simultaneously. If a 6= 0, then b2/a represents (s3t)2/s4 = s2t2, while if
d 6= 0, then c2/d represents s2t2. Since a = d = 0 forces b = c = 0, the two open
sets defined by a 6= 0 and b 6= 0 cover all of U , and the sections b2/a and c2/d glue
together to give s2t2 ∈ Γ(U,F).

Being essentially categorical notions, sheaves of course come equipped with a
notion of morphisms . These are the only reasonable thing: A morphism of sheaves
ϕ : F −→ G is a collection of (group, module, ring...) homomorphisms ϕ(U) :
F(U) −→ G(U) commuting with the restriction maps of F and G.
Definition 12.10. Let ϕ : F −→ G be a morphism of sheaves. Define the kernel,
image, and cokernel of ϕ by

(1) kerϕ(U) = ker(ϕ(U) : F(U) −→ G(U));
(2) imageϕ(U) = image(ϕ(U) : F(U) −→ G(U));
(3) cokerϕ(U) = coker(ϕ(U) : F(U) −→ G(U));

As benign as this definition is, it leads to serious difficulties very quickly.

Exercise 12.11. Let ϕ : F −→ G be a morphism of sheaves.

(1) Check that kerϕ is a sheaf.
(2) Show that imageϕ and cokerϕ satisfy the Sanity and Functoriality axioms

to be sheaves.
(3) Try (for a little while) to show that imageϕ and cokerϕ are sheaves.

10This apparently unnecessary proliferation of symbols to represent the same thing is supposed
to hint at the connections to come; see Lecture 7.
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This is where the smooth landscape of sheaf theory begins to show some wrinkles,
not to say crevasses. Since it’s the wellspring of much of what follows, we emphasize:

The image and cokernel of a morphism of
sheaves need not be a sheaf.

Here are two examples to indicate what goes wrong. One should be familiar from
basic complex analysis, while one is from closer to home.

Example 12.12. Let X = C again, and define two sheaves over X : F(U) is the
(additive) group of holomorphic functions U −→ U , and G(U) is the (multiplicative)
group of nowhere vanishing holomorphic functions U −→ U . Define exp : F −→ G
by

exp(f)(z) = e2πif(z) .

Then the image of exp is not a sheaf. For any choice of a branch of the logarithm
function, f(z) = z is in the image of exp on the open subset of C defined by the
branch. These open sets cover C, but f(z) = z has no global preimage on all of C,
so is not in the image of exp. In other words, e2πiz is locally invertible, but has no
analytic global inverse.

Example 12.13. Let (R,m) be a local ring and let {x1, . . . , xn} be a set of gener-
ators for m. Set X = SpecR \ {m}, the punctured spectrum of R. Let OU be the
sheaf obtained by restricting the structure sheaf of SpecR to U . Define a morphism
ϕ : OnU −→ OU by ϕ(s1, . . . , sn) =

∑
i sixi. Then the image of ϕ is not a sheaf.

To see this, put Ui = Uxi and note that U1, . . . , Un cover U . On each Ui we have
ϕ(0, . . . , 1

xi
, . . . , 0) = 1. Thus we have an open cover of U and a section of imageϕ

on each constituent so that the sections agree on the overlaps, but the sections
cannot be glued together.

Routing around the failure of the category of sheaves to be closed under the
operations of taking images and cokernels involves two definitions: presheaves and
sheafification.

Definition 12.14. A collection {F(U), ρV U} satisfying the Sanity and Functori-
ality axioms of Definition 12.1 is a presheaf .

Example 12.15. Let X = {a, b} be the two-point space with the discrete topology.
Define F({a}) = F({b}) = 0 and F(X) = Z. Check that F is a presheaf (of abelian
groups) and not a sheaf.

It follows from Example 12.11(b) that the image and cokernel of a morphism
of sheaves are presheaves. Even if this weren’t enough reason to consider them,
we’ll see that one can do cohomology with presheaves as well. First, we mention
the procedure for obtaining a sheaf from a presheaf. This requires one preliminary
definition, which is the counterpart in sheaf theory of the local notion of a germ of
functions.

Definition 12.16. Let x ∈ X and let F be a presheaf on X . The stalk of F at x
is

Fx,X := lim−→F(U) ,

where the direct limit is taken over the directed system of all open sets U containing
x, partially ordered by inclusion.
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Exercise 12.17. Check that for p ∈ X = SpecR, the stalk of the structure sheaf
OX over p is the local ring Rp. We say that (X,OX) is a locally ringed space.

Now we define the sheafification of a presheaf.

Definition 12.18. Let F be a presheaf on X . The sheafification of F is the unique

sheaf F̃ and morphism of presheaves F −→ F̃ so that the stalk Fx,X −→ F̃x,X is
an isomorphism for all x ∈ X .

We remark that sheafifications always exist ([63, II.1.2]).
We can now remedy our embarrassing lack of images and cokernels.

Definition 12.19. Let ϕ : F −→ G be a morphism of (pre)sheaves.

(1) The image sheaf of ϕ is the sheafification of the presheaf imageϕ.
(2) The cokernel sheaf of ϕ is the sheafification of the presheaf cokerϕ.
(3) We say that ϕ is surjective if the image sheaf of ϕ is equal to G.
(4) A sequence of morphisms of sheaves F ϕ−→ G ψ−→ H is exact at G if kerψ is

equal to the image sheaf of ϕ.

Lemma 12.20. A morphism of sheaves ϕ : F −→ G over X is surjective (bijective)
if and only if the stalk ϕx : Fx −→ Gx is so for each x ∈ X. In particular, a sequence
F −→ G −→ H is exact if and only if the sequence of stalks Fx,X −→ Gx,X −→
Hx,X is exact for every x ∈ X.

Exercise 12.21. Check that in Exercise 12.13 above, ϕ is surjective. Note that a
surjective sheaf morphism need not restrict to surjective maps over open sets! In
each case, however, ϕ restricts to a surjective map over “small enough” open sets.
What about Exercise 12.12?

We also define the important notion of sheaves associated to modules .

Definition 12.22. Let R be a ring and X = SpecR. For an R-module M we

define the sheafification of M to be the unique sheaf M̃ with M̃(Uf ) ∼= Mf for all
f ∈ R. A sheaf obtained by sheafifying an R-module is called quasi-coherent ; if the
module is finitely generated over R, then the sheaf is coherent.

Note that this definition must be modified slightly in the graded case; see Lec-
ture 13.

The sheafification of an R-module actually gives rise to a sheaf of OX-modules ,

that is, Γ(U, M̃) is a Γ(U,OX)-module for every U .
Sheafification of R-modules is an exact functor, since by Lemma 12.20 we can

measure exactness on stalks. We do, however, lose some information. For example,
our best candidate for a projective object is the sheafification of the free module R,
that is, OX itself. It turns out, though, that there are surjective maps to OX that
are not split! See the next lecture. In particular, it’s not at all clear how to take a
projective resolution of an OX -module. We’ll deal with this shortly.

First, let’s investigate the functor that goes in the opposite direction: “take
global sections.”

Proposition 12.23. The global sections functor Γ(X,−) is left-exact. Specifically,
if

0 −→ F −→ G −→ H −→ 0
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is an exact sequence of sheaves, then

0 −→ Γ(X,F) −→ Γ(X,G) −→ Γ(X,H)

is an exact sequence of abelian groups.

This proposition points toward the solution of the problem of the missing pro-
jectives, and we finally reach the object of this lecture.

Definition 12.24. Let R be a ring and F a sheaf of modules over X = SpecR
(i.e., an OX -module). Let

0 −→ F −→ I0 d1−→ I1 d2−→ . . .

be an injective resolution of F . Apply the global sections functor to the truncation
of this resolution to obtain

0 −→ Γ(X, I0)
Γd1−→ Γ(X, I1)

Γd2−→ . . . ,

a complex of R-modules. Then the jth sheaf cohomology of F is then

Hj(X,F) = ker Γdj+1/ imageΓdj .

In particular, we have H0(X,F) = Γ(X,F).

Remark 12.25. In order for this definition to make sense, we must be able to take
injective resolutions of OX -modules. Given our hardships with projectives noted
above, this is cause for trepidation. Luckily, the category of modules over any
locally ringed space (X,OX) has enough injectives . We can see this as follows: for
any OX -module F , the stalk Fx at a point x ∈ X embeds in an injective module Ex
over the local ring OX,x. Set E =

∏
x Ex. Then the natural composition F −→ E is

an embedding and E is an injective OX -module.

Exercise 12.26. Why doesn’t Remark 12.25 work for projectives?

The definition of sheaf cohomology given here has two slight problems. It’s
essentially impossible to compute, and it lengthens our already lengthy list of co-
homology theories to keep track of. We can solve both these problems at once.

12.27. Let R be a Noetherian ring and a = (x1, . . . , xn) an ideal of R. Put
X = SpecR, V (a) the closed set of X defined by a, and U = X \ V (a). Let
U = {Ui} be the open cover of U given by Ui = X \ V (xi). Let M be an arbitrary

R-module and M̃ the sheafification. Then Γ(Ui, M̃) ∼= Mxi .
We have two complexes associated to this data: the Čech complex C•(x;M) of

the sequence x = x1, . . . , xn and the module M , which has the R-module
⊕

1≤i1,<···<ik≤n

Mxi1xi2 ···xik

in the kth position, and the topological Čech complex Č•(U, M̃ |U ) associated to the

open cover U and sheaf M̃ |U , which has
∏

1≤i1<···<ik+1≤n

Γ(Ui1 ∩ · · · ∩ Uik+1
, M̃ |U )

in the kth spot. Recall that Γ(U, M̃ |U ) does not appear in the topological complex,
but (see Exercise 2.9) is naturally isomorphic to the kernel of the zeroth differential.
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Theorem 12.28. In the situation of 12.27, we have an exact sequence

0 −→ H0
a(M) −→ H0(X, M̃) −→ H0(U, M̃ |U ) −→ H1

a(M) −→ 0

and isomorphisms for all j ≥ 1

Hj+1
a (M) ∼= Hj(U, M̃ |U )

between the local cohomology of M with support in a and the sheaf cohomology of

M̃ over U .

Remark 12.29. In the exact sequence of the Theorem, the inclusion of H0
a(M)

into H0(X, M̃) = Γ(X, M̃) ∼= M is the natural one; its elements correspond to

sections s of M̃ supported only on V (a), so that sp = 0 unless p ⊇ a. Such a
section dies when restricted to U = X \ V (a). The cokernel H1

I (M) measures the

obstruction to extending a section of M̃ over U to a global one. In particular, this
has the following useful consequence.

Corollary 12.30. Let R be a Noetherian ring, M a finitely generated R-module,
and a an ideal. If a contains a regular sequence of length 2 on M , then every section

of M̃ over U = SpecR \ V (a) extends to a global section.

Remark 12.31. The functorial road to sheaves that we’ve followed above is the
most common modern approach. In Godement’s influential book [47], however,
the order of exposition (open sets  stalks) was the reverse. Suppose that F
is a sheaf on some space X , and let E be the topological space with underlying
set

∏
x∈X Fx,X , the product of all stalks of F . Topologize E by (1) defining a

map π : E −→ X sending each Fx,X to x and (2) insisting that each stalk have the
discrete topology and π be continuous. One can then prove ([47][Théorème I.1.2.1])
that the thus constructed espace étalé (“flattened”) or total sheaf space E has the
property that for every open U , F(U) is naturally identified with the set C0(U,E)
of continuous maps f : U −→ E such that f(x) ∈ Fx,X . Thus every sheaf is a
sheaf of functions, as in Lecture 2.

Flasque sheaves and cohomology with supports

It follows immediately from the definition that injective sheaves of OX -modules
are acyclic for sheaf cohomology, i.e., Hj(X, I) = 0 for any j > 0 and any injective
sheaf I. In fact, injective objects in any category are acyclic for any right-derived
functors of covariant functors, since we compute such things from injective reso-
lutions. In some sense, injectivity is overkill for our purposes. As part of their
extreme acyclicity, injective objects are also extremely complicated in general (for
example, over a Noetherian ring R, indecomposable injective R-modules are in one-
to-one correspondence with SpecR itself). For the particular application we have in
mind, then, it’s worth searching for another class of sheaves which are still acyclic
for the global sections functor (that is, for sheaf cohomology), but perhaps more
manageable in whatever sense we can manage. If we’re lucky, this new class will also
be more “intrinsic” to sheaf cohomology, rather than being a generic categorical
notion, depending on the whole category of sheaves.

Definition 12.32. A sheaf F on a topological space X is flasque (also “flabby”
or “scattered”) if for every pair of open sets V ⊆ U in X , the restriction map
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F(U) −→ F(V ) is surjective. In particular, sections on open subsets always extend
to sections on the whole space.

Here are three examples. The third, of course, is the point.

Example 12.33. Let X be connected and F a constant sheaf over X , so for each
open set U , F(U) = A for some fixed abelian group A. Then F is flasque.

Example 12.34. Skyscraper sheaves are flasque. Fix x ∈ X and some abelian
group A, and define F (U) = A if x ∈ U , F(U) = 0 otherwise. Then every section
of F extends to all of X .

Example 12.35. Injective sheaves are flasque. More specifically, if a sheaf M of
modules over a locally ringed space (X,OX) is an injective object in the category of
OX -modules, thenM is flasque. To see this, let V ⊆ U be open sets in X , and let
OV , OU be the structure sheaf extended by 0 outside V and U respectively. Then
OV −→ OU is an embedding of OX -modules, so HomOX (OU ,M) surjects onto
HomOX (OV ,M). (We haven’t talked about Hom of sheaves, but you can pretend
it works just like for modules.) Now, HomOX (OU ,M) is naturally isomorphic to
Γ(U,M) (check this!). It follows that Γ(U,M) −→→ Γ(V,M), and M is flasque.

Remark 12.36. Here are some further basic properties of flasque sheaves, most of
which are easy, or can be taken for granted at a first pass, or both. We give only
first-order approximations to the proofs.

(1) If, in the short exact sequence of sheaves

0 −→ F −→ G −→ H −→ 0 ,

F is flasque, then

0 −→ Γ(X,F) −→ Γ(X,G) −→ Γ(X,H) −→ 0

is exact. Remember, Γ is left-exact in general, so all we need check is
surjectivity. Note that G −→ H is surjective on stalks, and use the definition
of stalks as direct limits to get surjectivity for small neighborhoods. Zorn’s
Lemma provides a maximal extension from such neighborhoods, which by
the flasque condition must be all of X .

(2) Quotients of flasque sheaves by flasque subsheaves are flasque. Use the
surjectivity from above to extend a section of the quotient to a global
section of the large sheaf.

(3) Direct limits of flasque sheaves are flasque over Noetherian topological
spaces. (The point here is that lim−→(Fi(U)) = (lim−→Fi)(U) when X is Noe-

therian; see below). In particular, arbitrary direct sums of flasque sheaves
are flasque.

(4) The sheafification of an injective module over a Noetherian ring R is a
flasque sheaf. See [63, III.3.4].

Exercise 12.37. This exercise fills in the gaps in (3) above, which makes only
approximate sense as it stands. The reader may find a review of Lecture ?? helpful.

(1) Let X be any topological space, I an index poset, and {Fi}i∈I a direct
system of presheaves on X . Define the direct limit presheaf lim−→i

Fi by

(lim−→i
Fi)(U) = lim−→i

(Fi(U)), and check that it is indeed a presheaf.
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(2) Using Definition 12.16, identify the stalk of lim−→i
Fi at a point x ∈ X as the

direct limit over i ∈ I of the stalks of the Fi at x. You’ll want to swap the
order of two direct limits, which is legal by Example 4.33.

(3) If the Fi are sheaves, define the direct limit sheaf of the system {Fi}i∈I to
be the sheafification of the presheaf from part 1. Prove that the direct limit
sheaf is the direct limit of the system {Fi}i∈I in the category of sheaves
over X .

(4) Assume finally that I is confluent and X is a Noetherian space. Prove that
the presheaf from part 1 is already a sheaf, as follows.
(a) (The axiom of local zeroness) Let s ∈ (lim−→α

Fα)(U) and assume that

the restrictions s|Vα = 0 are zero for all Vα constituting an open cover
of U ; replace {Vα} by a finite subcover, and use the confluence of I to
show that s = 0.

(b) (The gluing axiom) Suppose we are given an open cover {Vα} of U and
sections sα ∈ (lim−→i

Fi)(Vα) so that they agree on the overlaps; replace

the cover by a finite subcover and use confluence again to patch the
sections together into a section in Fi(U) for some i ∈ I, thence a gluing
of the sα in (lim−→i

Fi)(U).

(5) Let X = {x, y} be a space with two points, both open. Then a sheaf of
abelian groups on X is just an assignment of three groups Gx, Gy, and GX

so that the sheaf axioms are satisfied; we picture such a sheaf as
x

X
-

y
- .

Let G be any nontrivial abelian group, and define three sheaves of groups
on X :

F1 :
G

G
-

G
-

F2 :
G

G
-

0
-

F3 :
0

G
-

G
-

with the obvious maps in each case. Check that each of these is a sheaf on
X . Define two morphisms of sheaves, p : F1 −→ F2 and q : F1 −→ F3,
each of which is the natural surjection. Prove that the direct limit of the

system
F2

F1
-

F3

- is

0
G

-

0
- ,

which is a presheaf, but not a sheaf.

Example 12.38. Let X = P1 = ProjK[x, y] be the projective line over an alge-
braically closed field (e.g., the Riemann sphere C∪{∞}). Let OX be the structure

sheaf of X , and K the constant sheaf associated to the function field K̃ of X . Then
OX embeds naturally in K. The quotient sheaf K/OX can be thought of (stalkwise)
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as the direct sum over all x ∈ X of the skyscraper sheaf K/OX,x at x, so is flasque.
Thus

0 −→ OX −→ K −→ K/OX −→ 0

is a flasque resolution of OX . If we take global sections, we get an exact sequence

0 −→ K[x, y] −→ K̃ −→ K̃/K[x, y] −→ 0 .

As soon as we prove that sheaf cohomology can be computed via flasque resolutions,
this will show that Hj(P1,OP1) = 0 for all j ≥ 1. This example can be souped up
beyond recognition and has connections with the Residue Theorem ([63, p. 248]).

If you’re willing to accept the assertions above, then you must accept

Proposition 12.39. A flasque sheaf on a Noetherian locally ringed space (X,OX)
is acyclic for the global sections functor, i.e., Hj(X,F) = 0 for all j ≥ 1 if F is
flasque. In particular, resolutions by flasque sheaves may be used to compute sheaf
cohomology in place of injective resolutions.

Proof. Let F be flasque, and embed F into an injective sheaf I. The quotient
Q = I/F is also flasque. Taking global sections gives an exact sequence

0 −→ Γ(X,F) −→ Γ(X, I) −→ Γ(X,Q) −→ 0 .

The long exact sequence of cohomology thus gives that H1(X,F) vanishes and
Hj(X,F) ∼= Hj−1(X,Q) for all j > 1. By induction on j, Hj(X,F) = 0 for all
j ≥ 1. �

Remark 12.40. Weirdly enough, sheaf cohomology is trivial for quasi-coherent
sheaves over Noetherian affine schemes, that is, spaces of the form SpecR for Noe-
therian commutative rings R. Perhaps we should have mentioned this earlier, since
this situation would appear to be one of our main motivations. To be specific, let R
be such a ring, and let M be an arbitrary R-module. Then an injective resolution

of M sheafifies to a flasque resolution of M̃ (since sheafification is exact), which we

can use to compute Hj(X, M̃). Applying Γ, though, just gets us back the original

injective resolution of M ! This is exact by design, so Hj(X, M̃) = 0. In fact, the
converse is true as well.

Theorem 12.41 (Serre [142]). Let X be a Noetherian scheme. Then the following
are equivalent.

(1) X is affine;
(2) Hk(X,F) = 0 for all quasi-coherent sheaves F on X and all j > 0.

Consider again the exact sequence and isomorphisms of Theorem 12.28:

0 −→ H0
a(M) −→M −→ H0(U, M̃ |U ) −→ H1

a(M) −→ 0 ,

and Hj+1
a (M) ∼= Hj(U, M̃ |U for j ≥ 1. One way of looking at this theorem is that

sheaf cohomology of M̃ on SpecR away from V (a) controls the local cohomology
of M with support in a. In other words, only the support of a matters. Following
this idea leads naturally to cohomology with supports .

Definition 12.42. Let Z be a close set in some topological space X . For any
sheaf F over X , the group of sections of F with support in Z is the kernel of the
restriction map from Γ(X,F) to Γ(X \ Z,F). That is,

ΓZ(X,F) := ker(Γ(X,F) −→ Γ(X \ Z,F)) .
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As with global sections, the functor “take sections with support in Z” is left-
exact. (Check this! The Snake Lemma should come in handy.)

Definition 12.43. The jth local cohomology of F with support in Z is

Hj
Z(X,F) := RjΓZ(X,F) .

In other words, to compute the cohomology of F with support in Z, take an injective
resolution of F , apply ΓZ = H0

Z , and take cohomology.

Remark 12.44. Let X,Z, and F be as in the definition above, and put U = X \Z.
Then there is a natural exact sequence

(12.44.1) 0 −→ H0
Z(X,F) −→ H0(X,F) −→ Γ(U,F)

given by the definition of ΓZ . Assume for the moment that F is flasque. Then
every section of F over U extends to a global section, so (12.44.1) can be extended
to a full short exact sequence.

It follows by taking flasque resolutions that for any F , there is a long exact
sequence of cohomology groups

0 −−−−→ H0
Z(X,F) −−−−→ H0(X,F) −−−−→ H0(U,F|U ) −−−−→ · · ·

· · · −−−−→ Hj(X,F) −−−−→ Hj(U,F|U ) −−−−→ Hj+1
Z (X,F) −−−−→ · · ·

Together with Theorem 12.41 and the Snake Lemma, this gives our best connection
with local cohomology.

Theorem 12.45. Let R be a Noetherian ring, a an ideal, and M an R-module.
Set X = SpecR, Z = V (a), and U = X \ Z. Then for each j ≥ 1 we have

Hj+1
a (M) ∼= Hj(U, M̃ |U ) ∼= Hj

Z(X, M̃) .
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Lecture 13. Graded modules and sheaves on the projective space
(AL)

In this lecture we explore sheaves on the projective space associated to graded
modules. It turns out that considering the same module over same ring, but
equipped with various gradings may lead to different sheaves.

Next we show the link between the local and sheaf cohomology established in
Lecture 12 in the projective setting. This is followed by the discussion of the sheaf
cohomology of a pullback of a coherent sheaf on the projective space.

In the last part, we add ‘*’ to several objects introduced in the non-graded
case to get *local rings, *maximal ideals, functors as ∗ Ext, etc. (See [15] for a
much more detailed treatment.) We define canonical modules for Cohen-Macaulay
local rings and then reiterate the definition to introduce *canonical modules for the
Cohen-Macaulay *local rings.

13.1. Projective space. Let K be a field, recall that the projective n-space is
defined as PnK = Proj(K[x0, · · · , xn]), the homogeneous prime ideals in R that do
not contain the ideal (x0, · · · , xn).

If f ∈ R is a homogeneous polynomial, let

D+(f) = {p ∈ PnK : f 6∈ p}.
Then PnK may be seen as a union of n+ 1 affine patches

D+(xi) = Spec(K[
x0

xi
, · · · , xn

xi
]), i = 0, ..., n.

Note that the topology on these patches defines a topology on PnK.

13.2. Sheaves associated to modules. The regular functions X = Spec(S), for
any ring S, are elements of S. They can be viewed as functions on the set of
maximal ideals that send

m 7→ f mod m ∈ S/m
for a maximal ideal m ∈ S. The sheaf of regular functions OX is set up by

OX(U) = {elements of S, considered as functions, restricted to U},
for all open U ⊂ X .

In a projective space, this does not work. However, we may consider elements

of (
R ) that are homogeneous and of degree zero; these do give functions.
The same approach works for graded modules M over a graded ring R (through-

out this section “graded” = “Z-graded”, see Lecture 5 for definitions). We can take

homogeneous degree 0 elements in (
R )⊗

R
M , i.e.: sums of f

g ⊗m where f , g, m are

homogeneous and deg(fg ) + deg(m) = 0. If M is graded, we form M̃ — the sheaf

associated to the graded module M — that, on D+(xi), has sections

M̃(D+(xi)) =

(
R[x−1

i ]⊗
R
M

)

0

.

Example 13.1. On P1, we shall try to understand what the global sections of M̃
are for the module M = R = K[x0, x1] with 3 different gradings:

(1) R has the usual degree grading. Then

M̃(D+(x0)) = K[
x1

x0
] and M(D+(x1)) = K[

x0

x1
].



115

Also, M̃(D+(x0x1)) = K[x0

x1
, x1

x0
]. Given f ∈ K[x1

x0
], we can not write it as a

polynomial in x0

x1
unless deg(f) = 0. Therefore, f can be extended to all of P1 only

if it is a constant; the global sections are

Γ(P1, M̃) = H0(P1, R) ∼= K.

(2) R has a shifted grading: the degree of an element equals the usual degree
plus 1. Call this graded module M = R(−1): we have R(−1)m = Rm−1. On one
of the standard patches we have

M̃(D+(x0)) =

(
R[x−1

0 ]⊗
R
R(−1)

)

0

= R[x−1
0 ](−1)

These elements are linear combinations of monomials xa0x
b
1 where a ∈ Z, b ∈ N,

and a+ b = −1.
Now consider the other patch, to be a section there, one needs to be a linear

combination of xa0x
b
1 where a ∈ N, b ∈ Z, and a+ b = −1. To be in both patches is

impossible, since −1 6∈ N, therefore, H0(P1, R̃(−1)) = 0.
(3) Consider R(1). The same argument as above leads to the conclusion that

for a section to live on both patches D+(x0) and D+(x1) means to be a linear
combination of xa0x

b
1 where a ∈ N, b ∈ N, and a+ b = 1. Hence, the global sections

are H0(P1, R̃(1)) = {αx0 + βx1 | α, β ∈ K}.
The sheaves constructed in the example are usually denoted by OP1 = OP1(0),

OP1(−1), and OP1(1), respectively. The latter two are also known as “twisted
sheaves”. More generally, for a coherent sheaf F on Pn set F(m) = F ⊗OPn(m).

Exercise 13.2. Show that the global sections of the twisted sheaf OP1(3) form a
K-vector space of dimension 4.

13.3. Functor Γ∗. Define the functor Γ∗ from the category of coherent sheaves to
the category of graded modules:

Γ∗F =
⊕

m∈Z

Γ(Pn,F(m)).

For a graded R-module M there is a homomorphism of graded R-modules M −→
Γ∗M̃ , which is an isomorphism in high degrees.

For a graded R- module M , a sequence related to the one in Theorem 12.28 is
exact:

(13.2.1) 0 −→ H0
m(M) = Γm(M) −→M −→ Γ∗M̃ −→ H1

mM −→ 0.

13.4. Cohomology. How do you calculate the cohomology on projective space?
One can use the Čech approach. That is to say, one must cover Pn with open sets,
evaluate the sheaf on them, form the Čech complex, and then take cohomology. If
n = 1, then P1 = D+(x0) ∪D+(x1), the resulting Čech complex is

(13.2.2) 0 −→ Γ(D+(x0),F)
⊕

Γ(D+(x1),F) −→ Γ(D+(x0x1),F) −→ 0.

If the sheaf F is the associate sheaf to a module M , then

Γ(D+(x0),F) = (M [x−1
0 ])0,

Γ(D+(x1),F) = (M [x−1
1 ])0,
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Γ(D+(x0x1),F) = (M [x−1
1 x−1

0 ])0.

Compare this to the stable Koszul complex of M with respect to m:

(13.2.3) 0 −→M −→M [x−1
0 ]
⊕

M [x−1
1 ] −→M [x−1

1 x−1
0 ] −→ 0

We have almost the same complex, except that the first piece of (13.2.3) is missing
in (13.2.2); the latter also restricts only to the degree 0 homogeneous components.

If we sum over all M̃(i) of (13.2.2), we will obtain the following isomorphism
(this is called Serre-Groethendieck correspondence in [15]), similar to the second
part of the Theorem 12.28:

Hk
m(M) ≃

⊕

i∈Z

Hk−1(Pn, M̃(i))

for k ≥ 1. For k = 0, there is the sequence (13.2.1).

Looking at this sequence, we deduce that M = Γ∗M̃ if and only if depth(M) ≥ 2;

also, M ⊆ Γ∗M̃ if and only if depth(M) ≥ 1.
From the above follows (the proof is given as an exercise)

Theorem 13.3. (1) H0(Pn;OPn(t)) = {monomials in R of degree t};
(2) Hi(Pn;OPn(t)) = 0 for 0 < i < n;
(3) Hn(Pn;OPn(t)) = {monomials in ER(K) of degree t}.

13.5. Pullback of a sheaf. Let F be a sheaf on a topological space X . Let Z ⊆ X
be a closed subspace of X and let f : Z −→ X be the inclusion map. We define
the pullback of the sheaf F to be the sheaf on Z such that for an open set U in Z

(f∗F)(U) = lim−→F(V ),

where the limit is taken over all open subsets V ⊂ X which contain U .

Proposition 13.4. If F is a coherent sheaf on Pn, then for every closed Z ⊂ PN

(1) Hi(Z; f∗F) is a finite dimensional vector space over K;
(2) Hi(Z; f∗(F(t))) = 0 for all i ≥ 1, if t≫ 0;
(3) Hi(Z; f∗F) = 0 if either i > dim(Z) or i > dimSupp(F).

Proof. To compute any of these homologies, begin by using the Čech approach on
Z. Consider Z as a subset of Pn and use a cover of Pn to cover Z. As a result, one
can pretend that f∗F is a sheaf on Pn: for an open set U ⊂ PN

(f∗F)(U ∩ Z) = F(U)⊗R R/I(Z).

To obtain (1) and (2), note that the statements hold for F = R̃, because of the
well understood properties of Hi

m(R). Then, see the coherent sheaf F locally as an
associated sheaf to a module M = Rm/N for some m and N ⊂ Rm. Now use the
exact sequence 0 −→ N −→ Rm −→M −→ 0 to complete the proof.

To prove part 3, observe that if dim(Z) = d, then d + 1 generic linear forms
L1, ..., Ld+1 have an empty intersection with Z. Now, Z ⊂ D+(L1 · ... · Ld+1)
implies that the Čech complex has length at most d+ 1, and the cohomology is 0
beyond d.

The proof is similar for dimSupp(F) = d. �
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13.6. Grading local cohomology. Let R be a graded ring. Then a maximal
graded ideal in R is called a *maximal ideal . R is a *local ring if it has only one
*maximal ideal.

Roughly speaking, ‘*’ preceding any term introduced in the non-graded case
modifies this term making it suitable for the graded case. For example, for two
graded R-modules M and L

∗ ExtiR(M,L) = Hi(∗ HomR(M, I•))

defines ∗ Ext with the help of *injective resolution I• and ∗ Hom that refers to
homogeneous homomorphisms of graded R-modules.

A detailed treatment of the graded case can be found in [15, §§12, 13].

Let M be a graded module over a graded ring R. The main question that
interests us at this point is, of course, how to grade the local cohomology modules
of M at a graded ideal a ⊂ R.

Each of the three definitions of local cohomology provide an answer.

• Cech complex: Hi
a(M) ∼= Hi(C∗(a;M)), where (a) = a. Here it would be

natural to induce the grading on Hi
a(M) via the grading on the components

of the Čech complex.
Is this grading independent of choice of a?

• Direct limit: ∗ Ext Hi
a(M) ∼= lim−→ExtiR(R/an,M), as n −→ ∞. Since

R/an −→ R/am is homogeneous for n > m, the induced homomorphism

∗ ExtiR(R/an,M) −→ ∗ ExtiR(R/am,M)

is a graded homomorphism. Then, naturally, lim−→ExtiR(R/an,M) is graded.
But is this grading the same as above?

• Torsion functor Γa in the category of graded R-modules: we can get
∗Hi

a(M) using standard homological methods in this category. Forgetting
the grading, would we have

∗Hi
a(M) ∼= Hi

a(M)?

If so, is the induced grading the same as those that came from the other
two approaches?

The answers to all the questions above are positive (see the “reconciliation” section
[15, §12.3]), thus establishing the fact that the grading on the local cohomology is
intrinsic.

13.7. *Canonical modules. The notion of canonical module (Definition 11.34)
given in the local Cohen-Macaulay setting can be transplanted to a Cohen-Macaulay
*local graded ring. Note that, when (R,m) is *local, heightm = ∗ dimR.

A finitely generated graded R-module C is *canonical iff there are homogeneous
isomorphisms

ExtiR(R/m, C) ∼=
{

0 if i 6= n,
R/m if i = n,

where n = dimR = heightm.

Lemma 13.5. With the above assumptions, let C be a finitely generated graded
R-module such that Cm is canonical for the Cohen-Macaulay local ring Rm.

Then there is a ∈ Z such that ∗En(C) ∼= ∗E(R/m)(−a), moreover, the shifted
module C(a) is then a *canonical module for R.
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Proof. See the proof of Lemma 13.3.7 in [15]. �

Corollary 13.6. If (R,m) is a Gorenstein *local graded ring, then there exists
a ∈ Z such that R(a) is a *canonical module for R.

Proof. This follows from Lemma 13.5, since Rm is a canonical module of itself
according to Theorem 11.27. �

Example 13.7. Let K be a field and letR = K[x1, ..., xn] be the ring of polynomials
in n variables graded by degree.

Note that R is Gorenstein *local (positively) graded ring, with the unique max-
imal ideal m = (x1, ..., xn). According to Corollary 13.6, there is a ∈ Z such that
R(a) is a *canonical module for R.

To compute a, we notice that there are homogeneous isomorphisms
∗E(R/m) ∼= Hn

m(R(a)) = Hn
m(R)(a).

We know the last module (see 7.17) before the shift by a:

Hn
m(R) = K[x−1

1 , ..., x−1
n ] · 1

x1 · ... · xn
.

This module has the usual grading.
On the other hand, the graded submodule R/m of ∗E(R/m) is generated by a ho-

mogeneous element of degree 0 annihilated by m. The only candidates in Hn
m(R)(a)

are the constant multiples of the generator 1
x1·...·xn

, since no other elements have

m for the annihilator. Since deg
(

1
x1·...·xn

)
= −n in Hn

m(R), the shift a equals −n.
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Lecture 14. The Hartshorne-Lichtenbaum Vanishing Theorem (CM)

For any ideal a in a Noetherian ring R, one has cdR(a) 6 dimR by Propo-
sition 9.16. This upper bound is sharp: when R is local with maximal ideal m,
Grothendieck’s theorem 9.3 implies that cdR(m) = dimR.

The main result of this lecture, the Hartshorne-Lichtenbaum vanishing theorem
[60] stated below, provides a better upper bound on cohomological dimension when
a is not primary to a maximal ideal.

Theorem 14.1. Let a be an ideal in a complete local domain R. If dimR/a > 1,
then cdR(a) 6 dimR− 1.

Remark 14.2. Let X be a scheme of finite type over a field K. The number

cd(X) = inf{s | Hn(X,F) = 0 for all n > s+ 1 and quasi-coherent sheaves F}
is the cohomological dimension of X . A theorem of Serre asserts that cd(X) = 0 if
and only if X is affine. At the other end of the spectrum, a theorem of Lichtenbaum
states that an irreducible scheme X is proper over K if and only if cd(X) = dimX .

In [60], Hartshorne uses Theorem 14.1 above to prove that if Y is a closed,
connected subset of Pd of dimension at least 1, then cd(Pd − Y ) 6 d− 2.

Proof of Theorem 14.1. First we consider the case where the ideal a is a prime
ideal, say, p, with dimR/p = 1; then we give the reduction from the general case.

Since dimR/p = 1, for each integer t the primary decomposition of pt has the
form p(t)

⋂
Jt for some m-primary ideal Jt. The ring R is a domain, so

⋂
p(t) = 0,

since this holds in the localization Rp. Therefore, Chevalley’s Theorem 14.3 yields

that, for each integer t, there is a kt such that Jt ⊇ p(kt). Thus any pt ⊇ p(max(t,kt)),
and hence the sequences {pt} and {p(t)} are cofinal. Therefore, for any R-module
M , and each integer n, Theorem 7.8 implies

(∗) lim−→
t

ExtnR(R/p(t),M) ∼= Hn
a (M).

Now assume further that R is Gorenstein.
The depth of the R-module R/p(t) is one, because the only prime associated to

it is p, and hence it is Cohen-Macaulay. Using this property, and the local duality
theorem 11.32 one deduces that

(∗∗) ExtnR(R/p(t), R) = 0 for n 6= dimR− 1.

Then (∗) and Theorem 9.6 imply cdR(p) = dimR− 1.
This completes the proof of the case where dimR/p = 1 when R is Gorenstein.

Now for the proof when R is not Gorenstein.
By Cohen’s Structure Theorem, R has a coefficient ring K →֒ R which is either

a field or a discrete valuation ring (d.v.r.) with uniformizing parameter q, where q
is the characteristic of the residue field.

Note that height p = d − 1 since R is a complete domain. We claim that we
can choose x1, . . . , xd−1 ∈ p such that height(x1, . . . , xd−1) = d − 1. Indeed, one
may choose any x1 6= 0 in p and get height(x1) = 1 since R is a domain. Now
suppose that x1, . . . , xi have been chosen so that height(x1, . . . , xi) = i < d − 1.
If p1, . . . , ps are the minimal primes of (x1, . . . , xi) (these have height i by Krull’s
Principal Ideal Theorem), then p *

⋃
pj , else p ⊆ pj for some j and then height p 6

height pj < d− 1, a contradiction. Choose an element xi+1 ∈ p\⋃ pj ; then clearly



120

the height of (x1, . . . , xi+1) is at least i+1 and so exactly i+1 by Krull’s Principal
Ideal Theorem. The claim follows by induction.

Note that x1, . . . , xd−1 are part of a system of parameters for R: indeed, each
xi+1 is not any minimal prime pj of (x1, . . . , xi), and so for each i

dimR/(x1, . . . , xi, xi+1) = dimR/(x1, . . . , xi)− 1.

Also note that if K is a d.v.r. with q ∈ p we may (and do) choose x1 = q.
Next choose an element xd ∈ p not in any of the other minimal primes (if any)

of x1, . . . , xd−1. Then p is the only minimal prime of x1, . . . , xd and so one has

rad(x1, . . . , xd) = p.

Further note that

a) If K is a field or if it is a d.v.r. with q ∈ p, then choose any y /∈ p. The
elements x1, . . . , xd−1, y form a system of parameters for R.

b) If K is a d.v.r. with q /∈ p, then the elements x1, . . . , xd−1, q form a system
of parameters for R since dimR/(x1, . . . , xd−1) = 1, q is prime, and q /∈
(x1, . . . , xd−1) imply that (x1, . . . , xd−1, q) is m-primary. In this case, set
y = 0.

Now consider the inclusion of rings

A = K[[x1, . . . , xd−1, y]] →֒ B = A[xd] →֒ R.

Since R is finite over the complete regular local ring A by Cohen’s Structure
Theorem, so is B and so xd is integral over A. If f(x) is the minimal polynomial of
xd over A, then B ∼= A[x]/(f(x)) and so B is a hypersurface and thus Gorenstein.

Let q = p
⋂
B. One can show that q = rad(x1, . . . , xd)B by using the Going

Up Theorem applied to the extension B →֒ R. Therefore p = rad(x1, . . . , xd)R =
rad qR and so we have that

Hd
p (R) = Hd

qR(R) = Hd
q (B)⊗B R,

where the first equality is by 7.16.2 and the second is by Exercise 9.7. Since B is
Gorenstein, we know already that Hd

q (B) = 0, so Hd
p (R) = 0.

This completes the proof in the case that a is a prime ideal p with dimR/p = 1.
Now for the reduction to this case from the general case:

We may assume that R is complete by 7.16(3) and the faithful flatness of R −→
R̂. Take a prime filtration R = R0 ⊃ R1 ⊃ · · · ⊃ Rn = 0 of R with Ri/Ri+1

∼= R/pi
for primes ideals pi. Since Hd

a (−) is a half-exact functor, it suffices to show that
Hd

a (R/pi) = 0 for each i. Notice that if dimR/pi < dimR it is immediate from
Corollary 9.16 that Hd

a (R/pi) = 0, leaving the case that dimR/pi = dimR.
Replacing R by R/pi, we may assume that R is a complete local domain of

dimension d and show that dimR/a > 0 implies that Hd
a (R) = 0. If not, choose

a maximal counterexample a with dimR/a > 0. We claim that a is prime and
dimR/a = 1. If either fails, then there is an x /∈ a such that dimR/(a, x) > 0.

The end of the Brodmann sequence from Exercise 14.4 has the form

· · · −→ Hd
(a,x)(R) −→ Hd

a (R) −→ Hd
ax

(Rx) −→ · · ·
Since R is local, dimRx < d and so Hd

ax
(Rx) = 0. Therefore, Hd

a (R) 6= 0 implies

that Hd
(a,x)(R) 6= 0, a contradiction to the maximality of a. So, indeed a is prime

and that dimR/a = 1; hence Theorem 14.1 yields Hd
a (R) = 0.

�
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Here is the theorem due to Chevalley that was used in the preceding argument.

Theorem 14.3. Let (R,m,K) be a complete local ring, M a finitely generated R-
module, and let {Mt}t∈Z be a non-increasing filtration of M . Then

⋂
t∈Z Mt = 0 if

and only for each integer n there exists a t such that Mt ⊆ mnM .

And here is the long exact sequence from [12] that was used in the same proof.

Exercise 14.4. For any ideal a of R and element x ∈ R, there is a long exact
sequence

· · · −→ Hi
(a,x)(R) −→ Hi

a(R) −→ Hi
ax

(Rx)
δ−→ Hi+1

(a,x)(R) −→ · · ·
The non-connecting homomorphisms in the sequence are the natural ones. This
sequence is sometimes referred to as the Brodmann sequence.

There is an enhancement of the Hartshorne-Lichtenbaum theorem which char-
acterizes ideals a with cdR(a) 6 dimR − 1; its derivation from Theorem 14.1 is
routine, so the details are left to the reader.

Theorem 14.5. Let R be a local ring and a an ideal in R. Then cdR(a) 6 dimR−1

if and only if height(aR̂+ p) < dimR for each p ∈ Spec R̂ with dim(R̂/p) = dimR.

The following theorem characterizes ideals a with cdR(a) 6 dimR − 2. It was
proved by Hartshorne [60, Theorem 7.5] in the projective case, by Ogus [125, Corol-
lary 2.11] in the characteristic zero case, and by Peskine and Szpiro [127, Chap-
ter III, Theorem 5.5] in the case of positive characteristic. Huneke and Lyubeznik
gave a characteristic free proof of this theorem in [80, Theorem 2.9] using a gener-
alization of a result of Faltings, [36, Satz 1].

Theorem 14.6. Let (R,m) be a complete regular local ring containing a separably
closed coefficient field, and let a be an ideal of R. Then cdR(a) 6 dimR− 2 if and
only if dimR/a > 2, and Spec(R/a) \ {m} is connected in the Zariski topology.

Improved bounds for the cohomological dimension, under various additional hy-
potheses, are obtained by Huneke and Lyubeznik in [80].
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Lecture 15. Connectedness of algebraic varieties (SI)

This lecture contains various results which illustrate connections between coho-
mological dimension and connectedness of varieties. An important ingredient in all
of this is a local cohomology version of the Mayer-Vietoris theorem encountered in
topology, Theorem 15.2 below. For its statement, it is convenient to introduce the
following notation:

Notation 15.1. Let a′ ⊇ a be ideals in R and letM be an R-module. The inclusion
Γa′(−) ⊆ Γa(−) induces, for each n, an R-module homomorphism

θna′,a(M) : Hn
a′(M) −→ Hn

a (M).

This homomorphism is functorial in M ; that is to, say, θna′,a(−) is a natural trans-

formation from Hn
a′(−) to Hn

a (−).
Given ideals a and b in R, for each integer n we set

ιna,b(M) : Hn
a+b(M) −→ Hn

a (M)⊕Hn
b (M),where z 7→ (θna+b,a(z),−θna+b,b(z)),

πa,b(M) : Hn
a (M)⊕Hn

b (M) −→ Hn
a∩b(M),where (x, y) 7→ θna,a∩b(x) + θnb,a∩b(y).

It is clear that the homomorphisms ιna,b(M) and πna,b(M) are also functorial in M .

Theorem 15.2 (Mayer-Vietoris sequence). Let R be a Noetherian ring and let a

and b be ideals in R. For each R-module M , there is an exact sequence of R-modules

0 −→ H0
a+b(M)

ι0a,b(M)
−−−−−→ H0

a(M)⊕H0
b(M)

π0
a,b(M)
−−−−−→ H0

a∩b(M)

−→ H1
a+b(M)

ι1a,b(M)−−−−−→ H1
a(M)⊕H1

b(M)
π1

a,b(M)−−−−−→ H1
a∩b(M) −→ · · · ,

and this sequence is functorial in M .

Proof. It is an elementary exercise to verify that one has an exact sequence

0 −−−−→ Γa+b(M)
ι0a,b(M)−−−−−→ Γa(M)⊕ Γb(M)

π0
a,b(M)−−−−−→ Γa∩b(M).

We claim that π0
a,b(M) is surjective whenever M is an injective R-module. Since

Γa′(−) commutes with direct sums for any ideal a′, it suffices to consider the case
where M = ER(R/p) for a prime ideal p of R. But then the asserted exactness is
immediate from Example 7.5.

Let I• be an injective resolution of M . In view of the preceding discussion, we
have an exact sequence of complexes,

0 −→ Γa+b(I
•) −→ Γa(I

•)⊕ Γb(I•) −→ Γa∩b(I•) −→ 0.

The homology exact sequence arising from this is the one we seek. The functoriality
in M of the sequence is a consequence of the functoriality of ιna,b(−) and πna,b(−),
and of the connecting homomorphisms in homology long exact sequences. �

Definition 15.3. The punctured spectrum of a local ring (R,m) is the set

Spec◦R = SpecR \ {m},
with topology induced by the Zariski topology on SpecR. Similarly, if R is graded
with homogeneous maximal ideal m, then its punctured spectrum refers to the topo-
logical space SpecR \ {m}.
Exercise 15.4. Prove that the punctured spectrum of a local domain is connected.
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Connectedness of the punctured spectrum can be interpreted entirely in the
language of ideals:

Remark 15.5. Let (R,m) be a local ring and a an ideal in R. The punctured
spectrum Spec◦(R/a) of the local ring R/a is connected if and only if the following
property holds: given ideals a′ and a′′ in R with

rad(a′ ∩ a′′) = rad a and rad(a′ + a′′) = m,

either rad a′ or rad a′′ equals m; equivalently, either rad a′ or rad a′′ equals rad a.
Indeed, this is a direct translation of the definition of connectedness, given that

V (a′) ∪ V (a′′) = V (a′ ∩ a′′) and V (a′) ∩ V (a′′) = V (a′ + a′′).

Exercise 15.6. Let R = R[x, y, ix, iy] where i2 = −1. Note that

R ∼= R[x, y, u, v]/(u2 + x2, v2 + y2, xy + uv, xv − uy).
Show that the punctured spectrum of R is connected, but that of R⊗R C is not.

The next few results identify conditions under which the punctured spectrum
is connected. The first one is a straightforward application of the Mayer-Vietoris
sequence 15.2.

Proposition 15.7. Let R a local ring. If depthR > 2, then Spec◦R is connected.

Proof. Suppose that there are ideals a′ and a′′ of R with rad(a′ ∩ a′′) = rad(0) and
rad(a′ + a′′) = m, where m is the maximal ideal of R. Then Proposition 7.2.2 and
the depth sensitivity of local cohomology, Theorem 9.1, imply that

H0
a′∩a′′(R) = R and H0

a′+a′′(R) = H1
a′+a′′(R) = 0.

Given these, the Mayer-Vietoris sequence 15.2 yields an isomorphism of R-modules

H0
a′(R)⊕H0

a′′(R) ∼= R.

By Exercise 15.8 R is indecomposable as a module over itself, so, without loss of
generality, we may assume that H0

a′(R) = R and H0
a′′(R) = 0. This implies that

rad a′ = rad (0), as desired. �

Exercise 15.8. Let R be a quasi-local ring (i.e., R has a unique maximal ideal but
may not be Noetherian). Show that R is indecomposable as a module over itself.

The hypothesis on depth in Theorem 15.7 is optimal in view of Example 15.6 as
well as the following example:

Example 15.9. The ring R = K[[x, y]]/(xy) is local with depthR = 1. Moreover

Var(x) ∪Var(y) = SpecR and Var(x) ∩Var(y) = ∅.

Thus, Spec◦R is not connected.

Here is an amusing application of Proposition 15.7, pointed out by one of the
participants at the summer school.

Example 15.10. Let K be a field and let R = K[[x, y, u, v]]/(x, y)∩(u, v). It is not
hard to check that dimR = 2. On the other hand, Spec◦R is disconnected (why?),
so depthR 6 1 by Proposition 15.7. In particular, R is not Cohen-Macaulay!
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More sophisticated results on connectedness of punctured spectra are derived
from the Hartshorne-Lichtenbaum vanishing theorem, proved in Lecture 14. The
one below was originally proved in the equicharacteristic case by Faltings [37, 38]
using a different method; the argument we present is due to Brodmann and Rung
[14]. The invariant araa, the arithmetic rank of a, was introduced in Definition 9.10.

Theorem 15.11. Let R be a complete local domain. If a is an ideal of R with
ara a 6 dimR − 2, then Spec◦(R/a) is connected.

Proof. Let a′ and a′′ be ideals of R with rad(a′ ∩ a′′) = rad a and rad(a′ + a′′) = m,
where m is the maximal ideal of R. We prove that one of rad a′ or rad a′′ equals m.

Set d = dimR. Since araa 6 d− 2, we have

Hn
a′∩a′′(R) = Hn

a (R) = 0 for n = d− 1, d,

where the first equality holds by Proposition 7.2.2 and the second by Proposi-
tion 9.12. Keeping in mind that Hn

a′+a′′(R) = Hn
m(R) for each n, again by Propo-

sition 7.2.2, the Mayer-Vietoris sequence 15.2 associated to the pair a′, a′′ reads

0 = Hd−1
a′∩a′′(R) −→ Hd

m(R) −→ Hd
a′(R)⊕Hd

a′′(R) −→ Hd
a′∩a′′(R) = 0.

Grothendieck’s theorem 9.3 yields that Hd
m(R) 6= 0, so the exact sequence above

implies that one of Hd
a′(R) or Hd

a′′(R) must be nonzero; we may assume without
loss of generality that Hd

a′(R) 6= 0. This implies that cdR(a′) > d, and hence, by
the Hartshorne-Lichtenbaum Theorem 14.1, that rad a′ = m. �

Faltings’ theorem leads to another connectedness result; this one is due to Fulton
and Hansen [43]. An interesting feature of the proof is the use of ‘reduction to the
diagonal’ encountered earlier in the proof of Theorem 1.31.

Theorem 15.12. Let K be an algebraically closed field, and let X and Y be closed
irreducible subschemes of PnK. If dimX + dimY > n+ 1, then X ∩ Y is connected.

Sketch of proof. Let p and q be homogeneous prime ideals in K[x0, . . . , xn] such
that

K[x0, . . . , xn]/p and K[x0, . . . , xn]/q

are homogeneous coordinate rings of X and Y , respectively. Then

K[x0, . . . , xn]/(p + q)

is a homogeneous coordinate ring for the intersectionX∩Y . IfX∩Y is disconnected,
then so is the punctured spectrum of the local ring

K[[x0, . . . , xn]]

(p + q)
∼= K[[x0, . . . , xn, y0, . . . , yn]]

(p + q′ + ∆)
,

where q′ is the ideal generated by polynomials obtained by substituting yi for xi in
a set of generators for q, and ∆ = (x0 − y0, . . . , xn − yn) is the ideal defining the
‘diagonal’ in P2n

K . The complete local ring

K[[x0, . . . , xn, y0, . . . , yn]]/(p + q′)

is a domain (exercise!) of dimension dimX + 1 + dimY + 1 > n + 3. Evidently
ara∆ = n + 1 = (n + 3) − 2. But this contradicts Faltings’ connectedness theo-
rem 15.11. �
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Lecture 16. Polyhedral applications (EM)

Local cohomology and the concepts surrounding it have a lot to say about com-
mutative algebra in quite general settings, as we have seen in previous lectures.
This is, of course, not to say that there aren’t examples; indeed, we’ve seen a lot so
far, ranging from the arithmetic (over the integers) to the geometric (graded rings).
In this lecture, we begin to see interactions with combinatorics: focusing on specific
classes of rings can allow deep applications in the context of polyhedral geometry.

16.1. Polytopes and faces. To begin, suppose that one has a subset V ⊂ Rd

in d-dimensional Euclidean space. The smallest convex set in Rd containing V is
called the convex hull of V and denoted by conv(V ).

Definition 16.1. The convex hull P = conv(V ) of a finite set V ⊂ Rd is called a
polytope. The dimension of P is the dimension of its affine span.

Example 16.2. Consider the six unit vectors in R3 along the (positive and nega-
tive) coordinate axes. The convex hull of these points is a regular octahedron:

(−1, 0, 0)

(1, 0, 0)(0,−1, 0)

(0, 1, 0)

(0, 0,−1)

(0, 0, 1)

More generally, the convex hull of the 2d unit vectors along the (positive and
negative) axes in Rd is the regular cross-polytope of dimension d.

A closed halfspace H+ is the set of points weakly to one (fixed) side of an affine
hyperplane H in Rd. It is a fundamental and nontrivial (but intuitively obvious)
theorem that a polytope P can be expressed as an intersection P =

⋂n
i=1H

+
i of

finitely many closed half-spaces H+
i [163, Theorem 1.1]. This description makes it

much easier to prove the following.

Exercise 16.3. The intersection of a polytope P in Rd with any affine hyper-
plane H is another polytope in Rd.

In general, slicing a polytope P with affine hyperplanes yields infinitely many
new polytopes, and their dimensions can vary from dim(P ) down to 0. But if we
only consider P ∩ H for support hyperplanes H , meaning that P lies on one side
of H , say P ⊂ H+, then only finitely many new polytopes occur. An intersection
F = P ∩H with a support hyperplane is called a face of P ; that P = conv(V ) has
only finitely many faces follows because each face F is the convex hull of F ∩ V .

Example 16.4. Consider the octahedron from Example 16.2. Any affine plane in
R3 passing through (0, 0, 1) and whose normal vector is sufficiently close to vertical
is a support hyperplane; the corresponding face is the vertex (0, 0, 1). The plane
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x+ y + z = 1 is a support hyperplane; the corresponding face is the triangle with
vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1).

Definition 16.5. Let P be a polytope of dimension d. The f -vector of P is the
vector (f−1, f0, . . . , fd−1, fd) in which fi equals the number of dimension i faces
of P . Here, f−1 = 1 counts the empty face of P , and fd = 1 counts P itself (which
is also considered to be a face). The numbers f0, f1, and fd−1 count the number
of vertices, edges, and facets, respectively.

The vertices of P = conv(V ) are all elements of the finite set V , but in general
V might contain points interior to P that are therefore not vertices of P .

Example 16.6. The octahedron has a total of 28 faces: 6 vertices, 12 edges,
8 facets, plus the whole octahedron itself and one empty face. Hence the f -vector
of the octahedron is (1, 6, 12, 8, 1).

Exercise 16.7. What is the f -vector of the cross-polytope in Rd? You might find
it easier to calculate the f -vector of the hypercube in Rd and reverse it; why does
this work?

Counting faces raises the following basic issue, our main concern in this lecture.

Question 16.8. How many faces of each dimension could P ⊂ Rd possibly have,
given that it has (say) a fixed number of vertices?

On the face of it, Question 16.8 has nothing at all to do with commutative
algebra, let alone local cohomology; but we shall later see that it does, given the
appropriate class of rings.

16.2. The Upper Bound Theorem. Fix a polytope P = conv(V ) in Rd with
n vertices, and assume that V equals the vertex set of P . Each face of P is
determined by the set of vertices it contains, which is by definition the subset of V
minimized by some (perhaps not uniquely determined) linear functional.

Now suppose that we wiggle the vertices V in Rd a tiny bit to get a set V ′, the
vertex set of a new polytope P ′ = conv(V ′). Each face G of P ′ has a vertex set
V ′
G ⊆ V ′. Unwiggling V ′

G yields a subset VG ⊆ V whose affine span equals the affine
span of some face F of P , although VG might be a proper subset of the vertex set
of F . In this way, to each face of P ′ is associated a well-defined face of P .

If our vertex-wiggling is done at random, what kind of polytope is P ′?

Definition 16.9. A polytope of dimension i is a simplex if it has precisely i + 1
vertices. A polytope P is simplicial if every proper face of P is a simplex.

To check that a polytope is simplicial, it enough to know its facets are simplices.

Exercise 16.10. Any simplex of any dimension is itself a simplicial polytope. The
octahedron—and more generally, any cross-polytope—is a simplicial polytope.

Exercise 16.11. Define a notion of generic for finite point sets in Rd so that

• the convex hull of every generic set is a simplicial polytope, and
• every finite set V can be made generic by moving each point in V less than

any fixed positive distance.

Exercise 16.12. If P ′ is obtained by generically wiggling the vertices of P , prove
that every dimension i face of P is associated to some dimension i face of P ′.
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[Hint: Let F be a given i-face of P , and call its vertex set VF . Fix a support hyper-
plane H for F and a vector ν perpendicular to H . If F ′ is the orthogonal projection
of conv(V ′

F ) to the affine span of F , then construct a regular subdivision [163, Def-
inition 5.3] of F ′ using the orthogonal projection of V ′

F to the affine span of F + ν.
Use a face of maximal volume in this subdivision to get the desired face of P ′.]

Exercise 16.12 implies that the collection of subsets of V that are vertex sets
of i-faces can only get bigger when V is made generic by wiggling. Consequently,
among all polytopes with n vertices, there is a simplicial one that maximizes the
number of i-faces. This reduces Question 16.8 to the simplicial case.

In fact, there is a single simplicial polytope with n vertices that we shall see
maximizes the numbers fi for all i simultaneously. It is constructed as follows.

Definition 16.13. Consider the rational normal curve (t, t2, t3, . . . , td) in Rd para-
metrized by real numbers t. If n ≥ d + 1, then the convex hull of any n distinct
points on the rational normal curve is a cyclic polytope C(n, d) of dimension d.

Exercise 16.14. Use the nonvanishing of (d+ 1)× (d+ 1) Vandermonde determi-
nants to show that a cyclic C(n, d) polytope is indeed simplicial of dimension d.

It is nontrivial but elementary [163, Theorem 0.7] that the combinatorial type
of C(n, d) is independent of which n points on the rational normal curve are chosen
for its vertices. It is similarly elementary [163, Corollary 0.8] that for i ≤ d

2 , every
set of i vertices of C(n, d) is the vertex set of an (i−1)-face of C(n, d); equivalently,
fi−1(C(n, d)) =

(
n
i

)
for i ≤ d

2 . Thus C(n, d) is said to be neighborly.

Exercise 16.15. Find a simplicial non-neighborly polytope.

For obvious reasons, fi−1(P ) is bounded above by
(
n
i

)
for all polytopes with n

vertices. Therefore, no polytope with n vertices has more (i−1)-faces than C(n, d)
when i ≤ d

2 . What about faces of higher dimension?

Theorem 16.16 (Upper Bound Theorem, polytope f -vector version). For any
polytope P ⊂ Rd with n vertices, fi(P ) ≤ fi(C(n, d)) for all i.

Exercise 16.17. Verify that the octahedron appearing in Example 16.2 has the
same f -vector as the cyclic polytope C(6, 3). Now, using the result of Exercise 16.7,
verify the statement of Theorem 16.16 for the 4-dimensional cross-polytope. By
Example 16.6, this amounts to computing the f -vector of the appropriate cyclic
polytope (which one is it?).

Theorem 16.16 was proved by McMullen [116]. Following Stanley [149], our
present goal is to generalize the statement to simplicial spheres and see why it
follows from the Cohen-Macaulay (actually, Gorenstein) property for certain rings.

16.3. The h-vector of a simplicial complex. We have assumed for these notes
(starting in Lecture 1) that the reader has seen a little bit of algebraic topology,
so simplicial complexes should be familiar, though perhaps not as combinatorial
objects. For a reminder, recall that a simplicial complex with vertices 1, . . . , n is a
collection ∆ of subsets of {1, . . . , n} that is closed under taking subsets: if σ ∈ ∆
and τ ⊆ σ, then also τ ∈ ∆. For example, the boundary of a simplicial polytope is
a simplicial complex.

We can record the numerical data associated to a general simplicial complex the
same way we did for polytopes: let fi(∆) be the number of i-faces (in other words,
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simplices of dimension i, meaning i+ 1 vertices) of ∆. Note, however, that if P is
a simplicial polytope with boundary simplicial complex ∆, then we do not count
the polytope itself as a face of ∆.

For simplicial complexes there is another, seemingly complicated but in fact often
elegant, way to record the face numbers.

Definition 16.18. The h-vector (h0, h1, . . . , hd) of a dimension d− 1 simplicial
complex ∆ is defined by

d∑

i=0

hit
i =

d∑

i=0

fi−1t
i(1− t)d−i,

where fi−1 = fi−1(∆). The left-hand side above is called the h-polynomial of ∆. If
P is a polytope, write hi(P ) for the ith entry of the h-vector of the boundary of P .

The next section will tell us (i.e., commutative algebraists) conceptual ways to
compute h-polynomials, so the octahedron example will appear later, in Exam-
ple 16.24. For now, we observe that there is a direct translation from the h-vector
back to the f -vector.

Lemma 16.19. For any simplicial complex ∆ of dimension d − 1, each fi is a
positive integer linear combination of h0, . . . , hd. More precisely,

fi−1 =

i∑

j=0

(
d− j
i− j

)
hj .

Proof. Dividing both sides of Definition 16.18 by (1− t)d yields

d∑

i=0

hi
ti

(1 − t)i ·
1

(1 − t)d−i =

d∑

i=0

fi−1
ti

(1− t)i .

Setting s = t
1−t , we find that 1

1−t = s+ 1, and hence

d∑

i=0

his
i(s+ 1)d−i =

d∑

i=0

fi−1s
i.

Now take the coefficient of si on both sides. �

As a consequence of Lemma 16.19, if we wish to bound the number of i-faces
of a simplicial complex ∆ by the number of i-faces of a cyclic polytope, then it is
certainly enough to bound the h-vector of ∆ entrywise by the h-vector of the cyclic
polytope. This is what we shall do in Theorem 16.20.

It might seem from the discussion leading to Theorem 16.16 that its statement
is geometric, in the sense that it says something fundamental about convexity. But
in fact the statement turns out to be topological, at heart: the same result holds
for simplicial complexes that are homeomorphic to spheres, without any geometric
hypothesis akin to convexity. It should be noted that in a precise sense, most
simplicial spheres are not convex [86]. Here is the more general statement.

Theorem 16.20 (Upper Bound Theorem, simplicial sphere h-vector version). For
any dimension d− 1 simplicial sphere ∆ with n vertices, hi(∆) ≤ hi(C(n, d)) for

all i, and consequently fi(∆) ≤ fi(C(n, d)) for all i.
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16.4. Stanley-Reisner rings. The connection between the Upper Bound Theo-
rem and commutative algebra lies with certain rings constructed from simplicial
complexes. For notation, if σ ⊆ {1, . . . , n}, then write xσ =

∏
j∈σ xj for the corre-

sponding squarefree monomial.

Definition 16.21. Let ∆ be a simplicial complex vertex set {1, . . . , n}. The
Stanley-Reisner ring of ∆ is the quotient

K[∆] = K[x1, . . . , xn]/〈xσ | σ 6∈ ∆〉
of the polynomial ring by the Stanley-Reisner ideal I∆ = 〈xσ | σ 6∈ ∆〉.
Example 16.22. Let ∆ be the boundary of the octahedron from Example 16.2.
Let R = K[x−, x+, y−, y+, z−, z+], with the positively and negatively indexed x, y,
and z-variables on the corresponding axes:

x−

x+y−

y+

z−

z+

The Stanley-Reisner ring of ∆ is

K[∆] = R/〈x−x+, y−y+, z−z+〉,
since every subset of the vertices not lying in ∆ contains one of the main diagonals
of the octahedron.

Geometrically, each set σ corresponds to a vector subspace of Kn, namely the
subspace spanned by the basis vectors {ej | j ∈ σ}. Hence a simplicial complex ∆
corresponds to a configuration of subspaces of Kn, and K[∆] is simply the affine
coordinate ring of this configuration.

The easiest way to understand the algebraic structure of K[∆] is to use the
Nn-grading of the polynomial ring:

K[x1, . . . , xn] =
⊕

a∈Nn

K · xa,

where xa = xa1
1 · · ·xan

n for a = (a1, . . . , an). The Stanley-Reisner ideal I∆ is an
Nn-graded ideal because it is generated by monomials. Let us say that a monomial
xa has support σ ⊆ {1, . . . , n} if aj 6= 0 precisely for j ∈ σ. By Definition 16.21,
then, the monomials that remain nonzero in the quotient K[∆] are precisely those
supported on faces of ∆.

Proposition 16.23. The h-polynomial of a dimension d− 1 simplicial complex ∆
equals the numerator of the Hilbert series of its Stanley-Reisner ring K[∆]:

P (K[∆]; t) =
h0(∆) + h1(∆)t+ h2(∆)t2 + · · ·+ hd(∆)td

(1− t)d .
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Proof. Begin by calculating the Nn-graded Hilbert series H(K[∆];x), which is by
definition the sum of all of the monomials that are nonzero in K[∆]:

H(K[∆];x) =
∑

σ∈∆

xσ
∏

j∈σ

1

1− xj
.

The summand indexed by σ is simply the sum of all monomials with support
exactly σ. Now specialize xj = t for all j to get the Hilbert-Poincaré series

P (K[∆]; t) =
∑

σ∈∆

t|σ| · 1

(1− t)|σ|

=

d∑

i=0

fi−1(∆)
ti

(1− t)i

=
1

(1− t)d
d∑

i=0

fi−1(∆)ti(1 − t)d−i,

whose numerator is the h-polynomial of ∆ by definition. �

Example 16.24. The h-vector of octahedron is now easy for us, as commutative
algebraists, to compute: the Stanley-Reisner ideal I∆ is a complete intersection
generated by three quadrics, so the Hilbert-Poincaré series of K[∆] is

P (K[∆]; t) =
(1− t2)3
(1− t)6 =

(1 + t)3

(1− t)3 .

Therefore the h-polynomial of ∆ is 1 + 3t+ 3t2 + t3, and its h-vector is (1, 3, 3, 1).

Exercise 16.25. Let ∆ be a simplicial complex such that the Stanley-Reisner ideal
I∆ is (de, abe, ace, abcd). Find the Betti numbers and Hilbert series of K[∆].

16.5. Local cohomology of Stanley-Reisner rings. The salient features of the
h-vector in Example 16.24 are that (i) every hi is positive, and moreover, (ii) the
h-vector is symmetric. These combinatorial observations are attributable to ho-
mological conditions from commutative algebra: (i) K[∆] is Cohen-Macaulay, and
moreover, (ii) K[∆] is Gorenstein. In this section we explain how the proofs of these
statements go, although a detail here and there is too nitpicky—and too ubiqui-
tously found in the literature—to warrant including here (our exposition in this
section follows [117, Section 13.2], sometimes nearly verbatim).

The key point is a formula, usually attributed as an unpublished result of
M. Hochster, for the local cohomology of Stanley-Reisner rings. More precisely,
the formula is for the Zn-graded Hilbert series of the local cohomology. To state it,
we need an elementary notion from simplicial topology.

Definition 16.26. The link of a face σ inside the simplicial complex ∆ is

linkσ(∆) = {τ ∈ ∆ | τ ∪ σ ∈ ∆ and τ ∩ σ = ∅},
the set of faces that are disjoint from σ but whose unions with σ lie in ∆.

For the reader who has not seen links before, the precise definition is not so im-
portant at this stage; one can think of it simply as a way to associate a subcomplex
of ∆ to each face of ∆. In a precise sense, the link records how ∆ behaves near σ;
see the proof of Theorem 16.28 for the relevant property of links here.

The Zn-graded Hilbert series H(Hi
m(K[∆]);x) in the variables x = x1, . . . , xn,

where m = 〈x1, . . . , xn〉, is expressed in terms of reduced cohomology of links in ∆.
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Theorem 16.27 (Hochster’s formula). The Zn-graded Hilbert series of the ith local
cohomology module with maximal-support of a Stanley-Reisner ring satisfies

H(Hi
m(K[∆]);x) =

∑

σ∈∆

dimK H̃
i−|σ|−1(linkσ(∆); K)

∏

j∈σ

x−1
j

1− x−1
j

,

where H̃ denotes reduced cohomology and |σ| = dim(σ) + 1 is the cardinality of σ.

Let us parse the statement. The product over j ∈ σ is the sum of all Laurent
monomials whose exponent vectors are nonpositive and have support exactly σ.
Therefore, the formula for the Hilbert series ofHi

m(K[∆]) is just like the one for K[∆]
itself in the first displayed equation in the proof of Proposition 16.23, except that
here we consider monomials with negative exponents and additionally take into

account the nonnegative coefficients dimK H̃
i−|σ|−1(linkσ(∆); K) depending on i

and σ.
The proof of Theorem 16.27 is accomplished one Zn-graded degree at a time: the

Čech complex of K[∆] in each fixed Zn-graded degree is (essentially) the cochain
complex for the desired link. Details of the proof of Hochster’s formula can be
found in [150, Chapter II], [16, Chapter 5], or [117, Chapter 13].

Theorem 16.28. Let ∆ be a simplicial sphere. Then K[∆] is a Gorenstein ring.
In fact, K[∆] is its own canonical module, even taking into account the Zn-grading.

Proof. Set d = dim(∆) + 1. First of all, we need that K[∆] is Cohen-Macaulay.
By Theorem 16.27 and the characterization of the Cohen-Macaulay condition by
the vanishing of Hi

m for i < d, the ring K[∆] is Cohen-Macaulay if and only if

H̃i−|σ|−1(linkσ(∆); K) is nonzero only for i = d. As ∆ is a sphere, the link of each
face σ is a new sphere of dimension d−|σ|−1. Since the only nonvanishing reduced
cohomology of a sphere is at the top, the desired vanishing holds.

Furthermore, the sole nonvanishing reduced cohomology H̃d−|σ|−1(linkσ(∆); K)
is isomorphic to K, since the link is a sphere. Hence the top local cohomology has
Zn-graded Hilbert series

H(Hd
m(K[∆]);x) =

∑

σ∈∆

∏

j∈σ

x−1
j

1− x−1
j

.

Taking the Matlis dual of Hd
m(K[∆]) results in the replacement x−1

j  xj at the

level of Hilbert series. Therefore Hd
m(K[∆])∨, which is the canonical module ωK[∆]

in any case, has the same Zn-graded Hilbert series as K[∆]; see the proof of Proposi-
tion 16.23. In particular, ωK[∆] has a Zn-graded degree zero generator that is unique
up to scaling. Since ωK[∆] is a faithful K[∆]-module [16, Proposition 3.3.11], the
K[∆]-module map sending 1 ∈ K[∆] to a Zn-graded degree zero generator of ωK[∆]

is injective on each Zn-degree, and hence K[∆]→ ωK[∆] is an isomorphism. �

16.6. Proof of the Upper Bound Theorem. The key point about the Cohen-
Macaulay condition in this combinatorial setting is that it implies positivity in the
h-vector: each hi counts the vector space dimension of a Z-graded piece of a certain
finite-dimensional K-algebra.

Proposition 16.29. Let M be a finitely generated Z-graded Cohen-Macaulay mod-
ule over K[x1, . . . , xn], where deg(xj) = 1 for all j. If Θ is a linear system of
parameters for M , then the numerator of P (M ; t) equals P (M/ΘM ; t).
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Proof. If θ ∈ K[x1, . . . , xn] is a nonzerodivisor onM , then P (M/θM ; t) = P (M ; t)−
P (M(−1); t) = (1−t)P (M ; t) by the usual short exact sequence computation. Now
repeat for the sequence Θ = θ1, θ2, . . ., which is a regular sequence by the Cohen-
Macaulay condition on M . �

Remark 16.30. R. Stanley observed that for a graded module M over the ring
K[x1, . . . , xn], where deg(xj) = 1 for all j, the converse of Proposition 16.29 holds
as well: if the numerator of P (M ; t) equals P (M/ΘM ; t) for a linear system of
parameters Θ, then M is Cohen-Macaulay; see [117, Theorem 13.37.6].

Corollary 16.31. Let R be a graded Gorenstein ring generated in degree 1. If the
numerator of P (R; t) is

∑r
i=0 hit

i with hr 6= 0, then hi = hr−i for all i.

Proof. By Proposition 16.29, P (R; t) equals the Hilbert-Poincaré series of a finite-
dimensional K-algebra that is isomorphic to its own K-vector space dual. �

Definition 16.32. When the ring R in Corollary 16.31 is the Stanley-Reisner ring
K[∆] of a dimension d− 1 simplicial sphere, the relations hi = hd−i for all i, which
hold by Theorem 16.28, are called the Dehn-Sommerville equations.

The Dehn-Sommerville equations are extraordinarily simple when viewed in
terms of h-vectors, but they represent quite subtle conditions on f -vectors. Note
that if ∆ has dimension d− 1, then indeed hd(∆) is the highest nonzero entry of
the h-vector, by Proposition 16.23.

Corollary 16.33. If ∆ is a dimension d − 1 simplicial complex with n vertices
such that K[∆] is Cohen-Macaulay, then hi(∆) ≤

(
n−d−1+i

i

)
for all i.

Proof. Fix a linear system of parameters Θ in the Stanley-Reisner ring K[∆]. Then
hi(∆) equals the vector space dimension of the degree i piece (K[∆]/Θ)i by Propo-
sition 16.23 and Proposition 16.29. Extending Θ to a basis of the linear polynomials
K[x1, . . . , xn]1, we see that K[∆]/Θ is isomorphic to a quotient of a polynomial ring
in n − d variables. Therefore the dimension of (K[∆]/Θ)i is at most the number(
n−d−1+i

i

)
of degree i monomials in n− d variables. �

Exercise 16.34. Consider any neighborly simplicial polytope P of dimension d
with n vertices; for example, the cyclic polytope C(n, d) satisfies this hypothesis.
Using the argument of Corollary 16.33, prove that

hi(C(n, d)) =

(
n− d− 1 + i

i

)
for i = 0, . . . ,

⌊
d

2

⌋
.

At this point, we are now equipped to complete the proof of the Upper Bound
Theorem for simplicial spheres.

Proof of Theorem 16.20. Assume that a given simplicial sphere ∆ has di-
mension d− 1 and n vertices. We need only show that hi(∆) ≤ hi(C(n, d)) for
i = 0, . . . , ⌊d2⌋, because the result for the remaining values of i will then hold by
the Dehn-Sommerville equations from Definition 16.32. Using the explicit compu-
tation of hi(C(n, d)) in Exercise 16.34 for the desired values of i, the Upper Bound
Theorem follows from Corollary 16.33. �

In retrospect, what has happened here?

(1) An explicit local cohomology computation allowed us to conclude that K[∆]
is Gorenstein when ∆ is a simplicial sphere.
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(2) The Cohen-Macaulay property for K[∆] allowed us to write the h-poly-
nomial as the Hilbert-Poincaré series of a finite-dimensional algebra, and
to bound the entries of the h-vector by certain binomial coefficients.

(3) The Gorenstein property reduced the Upper Bound Theorem to checking
only half of the h-vector.

(4) Finally, an explicit computation for neighborly simplicial polytopes de-
monstrated that equality with the binomial coefficients indeed occurs for
cyclic polytopes, at least on the first half of the h-vector.

Note that equality with the binomial coefficients does not occur, even for cyclic
polytopes, on the second half of the h-vector: although hi = hd−i, the same sym-
metry does not occur with the binomial coefficients, which keep growing with i.
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Lecture 17. Computational D-module theory (AL)

In this lecture we restrict ourselves to the realm of algebraic D-modules as op-
posed to analytic D-modules; moreover, for computational purposes, we would deal
mainly with modules over the Weyl algebra, the algebra of the differential operators
with polynomial coefficients.

Equipped with the machinery of Gröbner bases — the Weyl algebra turns out to
be “Gröbner friendly” — there has been a considerable progress made in the field
of computational D-module theory resulting in many striking algorithms, several
of which will be discussed in Lecture 23. We will revisit monomial orders from
Lecture 5 in order to regear Gröbner bases theory for the Weyl algebra.

The study of D-modules is mainly focused on the class of holonomic D-modules,
which is a class possessing a lot of nice properties. Not only that, this class is rich
in examples coming from other areas (e.g. hypergeometric differential equations;
see [136]). We will show how to compute the characteristic ideal of a D-module
and use it to determine holonomicity algorithmically.

17.1. Weyl algebra. Let K be a field of characteristic 0.

Definition 17.1. The algebra

An(K) = K〈x, ∂〉 = K〈x1, ∂1, . . . , xn, ∂n〉, ∂jxi − xi∂j = δij

is called the Weyl algebra over K in n variables or simply the n-th Weyl algebra.

The n-th Weyl algebra is isomorphic to the algebra of differential operators (with
polynomial coefficients) acting on the affine space Kn; see a proof, for instance, in
Coutinho’s book [23, Theorem 2.3]. The Weyl algebra An acts on the polynomial
ring Rn naturally: for f ∈ Rn the action of the generators is

∂i · f =
∂f

∂xi
, xi · f = xif.

It is easy to see that monomials xα∂β ∈ An(K), α, β ∈ Zn≥0 form a K-basis of
An. Thus, every element of Q ∈ An may be presented in the right normal form

Q =
∑

aαβx
α∂β ,

where all but finitely many of aαβ are zeros. We refer to the degree of this polyno-
mial expression as the total degree of Q.

The Weyl algebra is simple: the only two-sided ideals are 0 and the whole of An.
In what follows, all An-ideals we mention are left one-sided ideals unless otherwise
stated. It has been discovered by Stafford (see [8, Ch.1,§7]) that for every An-
ideal one can find a generating set of two elements. Such a set may be obtained
algorithmically as shown in [100].

In what follows we frequently write D instead of An.

Exercise 17.2. For M = A1/A1∂, find a generator for M ⊕ M . Also, find a
generator for M ⊕A1/A1x.

Exercise 17.3. Show that A1 has proper left ideals that are not principal. In
contrast, letW1 be the ring of K-linear differential operators on K(x). (I.e.: W1 is as
K-space identified with K(x)⊗K[x]A1, but the product is twisted: in (q⊗P )·(q′⊗P ′),
the operator P acts on q′ ⊗ P ′ via the product rule). Show that every proper left
ideal of W1 is principal.
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17.2. Gröbner bases for Weyl algebra. The right normal form of an element
in the Weyl algebra looks as a polynomial, although clearly the multiplication of
two such form is not as trivial as in the case of a (commutative) polynomial ring.
For example, in A1 = K〈x, ∂〉 the following holds for all i and j:

∂lxm =

min{l,m}∑

i=0

l(l − 1)...(l − i+ 1)m(m− 1)...(m− i+ 1)

i!
xm−i∂l−i.

Nonetheless, there is a way to transplant Gröbner bases techniques to this non-
commutative setting.

First of all, we can filter An by the total degree: let F = {Fi}, where Fi =
{Q | Q ∈ An, total degree of Q is at most i}. The associated graded algebra
grF(An) with respect to this filtration is commutative; indeed, it is not hard to
check that for any P,Q ∈ Fi, i > 0, the commutator [P,Q] = PQ−QP belongs to
Fi−1.

More generally, take a weight vector (u, v) ∈ Zn×Zn such that ui+vi ≥ 0 for all
i. Then we can consider gr(u,v)(An) — the associated graded algebra with respect

to the filtration by the weighted (u, v)-degree.

Exercise 17.4. We have seen that for u = v = (1, 1, ..., 1) the associated graded
algebra of the Weyl algebra is commutative. Prove that

(i) gr(u,v)(An) = K[x, ξ], the ring of polynomials in n variables x and n variables
ξ (images of ∂), if and only if ui + vi > 0 for all i;

(ii) the filtration defined by a weight (u, v) is good — i.e. every component of
gr(u,v)(An) is finite-dimensional — iff ui > 0 and vi > 0 for all i;

(iii) if u = −v then gr(u,v)(An) = An.

Therefore, where the initial ideal in(u,v)(I) of a left ideal I ⊂ An lives depends
on the weight (u, v). However, no matter whether it is an ideal of K[x, ξ] or An, we
need Buchberger’s algorithm in the Weyl algebra in order to compute it.

If the order ≥(u,v) — refined with, for instance, lexicographic order — is a term
order (this is the case when ui > 0 and vi > 0 for all i), then the usual Buchberger’s
algorithm (Algorithm 5.30) can be used: the initial (u, v)-forms of the produced
Gröbner basis of I would form a generating set of in(u,v)(I).

But can we do anything if ≥(u,v) is non-term? A positive answer is provided in
the form of the following homogenization process.

Definition 17.5. The free associative algebra generated by h, x1, ..., xn, ∂1, ..., ∂n
with the relations ∂jxi− xi∂j = δijh

2 is called the homogenized Weyl algebra A
(h)
n .

We call h the homogenization variable. The dehomogenization map A
(h)
n → An is

defined by substitution h = 1, i.e. Q 7→ Q|h=1 for Q ∈ A(h)
n .

If a term order ≻ on monomials of A
(h)
n is such that h2 ≺ xi∂i for all i, then

Algorithm 5.27 for the normal form NF (f,G) terminates provided G consists of

homogeneous elements in A
(h)
n . Also, the Buchberger’s algorithm (Algorithm 5.30)

terminates on homogeneous inputs in A
(h)
n . See Proposition 1.2.2 of [136] for proof.

Exercise 17.6. Starting with the weight (u, v) ∈ Zn × Zn (for An) show that the

weight (t, u, v) (for A
(h)
n ) — subject to the condition 2t ≤ ui+ vi for all i — defines

the weight order ≥(t,u,v), which — refined with an order where h < xi and h < ∂i
for all i — gives an order needed in the previous paragraph.
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Algorithm 17.7. G = BuchbergerWA(F )

Require: F ⊂ An, (u, v) ∈ Zn × Zn such that ui + vi ≥ 0 for all i.
Ensure: G is a Gröbner basis of the ideal An · {F}.

(1) Homogenize the generators from F to get H(F ) ⊂ A(h)
n .

(2) Compute Gh := Buchberger(H(F )) (use the order ≻ discussed above).
(3) Dehomogenize: G := Gh|h=1.

What follows is a script that shows how to create a Weyl algebra and a homog-
enized Weyl algebra in Macaulay 2 [?]. Then we create an ideal generated by three
random elements of total degree 2 and show that it equals the whole ring.

i1 : A = QQ[x,y,Dx,Dy, WeylAlgebra=>{x=>Dx,y=>Dy}];

i2 : Dx*x

o2 = x*Dx + 1

o2 : A

i3 : B = QQ[x,y,Dx,Dy,h,WeylAlgebra=>{x=>Dx,y=>Dy,h}];

i4 : Dx*x

2
o4 = x*Dx + h

o4 : B

i5 : I = ideal (random(2,A), random(2,A), random(2,A))

5 8 2 2 2 ...
o5 = ideal (-*x*y - -*y + x*Dx - -*y*Dx - -*y*Dy - ...

2 9 5 3 ...
o5 : Ideal of A

i6 : gb I

o6 = | 1 |

o6 : GroebnerBasis

The package D-modules for Macaulay 2 [99] broadens the arsenal of functions
for the algebraic D-modules. Below, we illustrate Exercise 17.4 with a computation
of initial ideals with respect to two weights of different type.

i7 : load "D-modules.m2";

i8 : use A;

i9 : I = ideal (x*Dx+2*y*Dy-3, Dx^2-Dy)

2
o9 = ideal (x*Dx + 2y*Dy - 3, Dx - Dy)

o9 : Ideal of A

i10 : inw(I, {1,3,3,-1})

2 2 2
o10 = ideal (x*Dx, y Dy , y*Dx*Dy, Dx )

o10 : Ideal of QQ [x, y, Dx, Dy]

i11 : inw(I, {-1,-3,1,3})
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o11 = ideal (x*Dx + 2y*Dy - 3, Dy)

o11 : Ideal of A

17.3. Bernstein’s inequality. Let I be a left ideal of An and a weight (u, v) such
that ui+ vi > 0. We define the dimension of I as the dimension of gr(u,v)(I), a.k.a.

in(u,v)(I), the ideal that lives in the commutative ring K[x, ξ] as in Exercise 17.4(i).
(The definition does not depend on the weight vector.)

This dimension is clearly bounded from above by 2n, the dimension of the whole
ring An. The striking fact is that the lower bound is nontrivial:

Theorem 17.8 (Bernstein’s inequality). Let I be a nonzero left An-ideal. Then
n ≤ dim(I) ≤ 2n.

The special case of this theorem for the weight vector (0, e), where e = (1, ..., 1),
is known as the weak FTAA (fundamental theorem of algebraic analysis) and first
was proved in [7] (see [23] for an elementary proof).

In this special case the initial ideal of I has a special name:

Definition 17.9. For an ideal I ⊂ An, the characteristic ideal is defined as
in(0,e)(I).

A stronger statement can be made about the characteristic ideal:

Theorem 17.10 (Strong FTAA; Sato, Kawai, Kashiwara [137]). Let I be a nonzero
left An-ideal. Then n ≤ dim(J) ≤ 2n, for every minimal prime J of in(0,e)(I).

17.4. Holonomic D-modules. An ideal I ⊂ D = An is called holonomic if its
characteristic ideals has dimension n (minimal possible dimension).

The D-module M = D/I is called holonomic if I is holonomic.

Alternatively, given a D-module M (not necessarily presented as a quotient of
D) we may define holonomicity by developing the dimension theory from scratch.
From Lecture 5, recall that a filtration F on M is good if all components of the
associated graded module grF (M) are finitely generated.

Proposition 17.11. A D-module M is finitely generated iff there exists a good
filtration on M .

Proof. See [8, Ch.1: Propositions 2.6,2.7]. �

Let F = {Fi} be a good filtration on M . Then there is a polynomial ξ(i) =
dimK(Fi) (Hilbert polynomial), the degree of which defines the dimension of M .
The module M is holonomic iff dimM = n.

The above definitions are equivalent for a finitely generated module M , since if
it holonomic (in the sense of the latter definition), then it is cyclic (i.e. generated
by one element) [8, Ch.1: Theorem 8.18 ]. Indeed, M is then isomorphic to the
quotient of the Weyl algebra An by the annihilator of a cyclic generator.

Remark 17.12. From the homological point of view a holonomic D-module M is
a D-module for which ExtjAn

(M,An) vanishes unless j = n.

Exercise 17.13. Show that the modules below are holonomic.

• The polynomial ring Rn, which can be viewed as the quotient of An by the
left ideal An · (∂1, ..., ∂n);
• The module A1/A1 ·Q for any nonconstant Q ∈ A1;
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17.5. Holonomicity of localization. For what follows we need

Lemma 17.14. Let M be a D-module (not necessarily finitely generated).
If there is a filtration {Γd} on M and c1, c2 ∈ Z>0 such that dimK(Γd) ≤ c1dn +

c2(d+ 1)n−1 for all d, then M is holonomic.

Proof. See [8, Ch.1, Theorem 5.4] �

For example, R = Rn is a holonomic D-module: we may prove this by showing
that {Γd = {g ∈ R | deg(g) ≤ d}} is a filtration that satisfies Lemma 17.14.

Localize R by inverting a polynomial f ∈ R to get Rf = K[x, f−1], which
possesses the natural structure of a D-module:

xi ·
g

fd
=
xg

fd
, ∂i ·

g

fd
=
∂g/∂xi
fd

− dg(∂f/∂xi)

fd+1
,

for all 1 ≤ i ≤ n, f, g ∈ R, d ∈ Z>0.

Theorem 17.15. The D-module Rf is a holonomic.

Proof. Let df = deg(f) and put

Γd = { g
fd
| deg(g) ≤ (df + 1)d}.

The dimension of Γd over K equals the dimension of the space of polynomial of
degree at most (df + 1)d, therefore, for some constant c2

dim(Γd) ≤
(df + 1)n

n!
dn + c2(d+ 1)n−1,

for all d. Now we apply Lemma 17.14 to finish the proof. �

Here is an example a computation in Macaulay 2: the localized module Rf is
computed for R = R2 and f = x2 + y2.

i12 : f = x^2+y^2;

i13 : L = Dlocalize(A^1/ideal(Dx,Dy), f)

o13 = cokernel | yDx-xDy xDx+yDy+4 x2Dy+y2Dy+4y |

1
o13 : A-module, quotient of A

i14 : isHolonomic L

o14 = true

How localization can be computed algorithmically is explained in Lecture 23.
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Lecture 18. Local duality revisited, and global duality (SI)

The aim of this lecture is to explain the adjective ‘duality’ in Grothendieck’s
duality theorem 11.29 by describing its connection to the classical Poincaré duality
theorem for manifolds, and to provide another of perspective on the local duality
theorem 11.32, which clarifies its relationship with Serre duality for sheaves on
projective spaces. It also discusses global canonical modules, which are required to
state and prove Serre duality.

Poincaré duality versus Grothendieck duality

Definition 18.1. Let K be a field, and R =
⊕d

n=0Ri a graded K-algebra with
rankKR finite and R0 = K. We may as well assume that Rd 6= 0. For now, we do
not assume that R is commutative.

The product on R provides, for each integer 0 6 n 6 d, a bilinear pairing:

(18.1.1) Rn ×Rd−n −→ Rd.

We say that R has Poincaré duality, or that R is a Poincaré duality algebra, if the
pairing above is non-degenerate for each 0 6 n 6 d.

The name originates from the prototypical example of such an algebra: the coho-
mology algebra of a compact, connected, orientable manifold; the non-degeneracy
of the pairing 18.1.1 is then Poincaré duality. Perhaps the following consequence
of Poincaré duality is more familiar:

Exercise 18.2. Let R be a K-algebra as above. Prove that when R has Poincaré
duality, rankK(Rn) = rankK(Rd−n) for each 0 6 n 6 d. Give examples that show
that the converse does not hold.

Here is why this notion is relevant to these proceedings:

Exercise 18.3. Let R be a graded K-algebra as in 18.1, and assume furthermore
that it is commutative. Prove that R is Gorenstein if and only if it is a Poincaré
duality algebra.

Claim. Grothendieck duality, encountered in Theorem 11.29, is an extension of
Poincaré duality to higher dimensional Gorenstein rings.

In order to explain this claim we re-interpret Poincaré duality as follows.

18.4. The pairing 18.1.1 yields, for each 0 6 n 6 d, a K-linear map

Rn −→ HomK(Rd−n, Rd).

The non-degeneracy of the pairing is equivalent to this map, and its counterpart
Rd−n −→ HomK(Rn, Rd), being bijective. In any case, taking a direct sum of the
maps above yields a map of graded K-vector spaces

R =

d⊕

n=0

Rn −→
d⊕

n=0

HomK(Rd−n, Rd) = HomK(R,Rd).

Note that as a graded K-vector space, HomK(R,Rd) is situated between degrees
−d and 0, and the map above has degree −d: it maps Rn to HomK(R,Rd)n−d.
However, we can make it a map of degree zero by shifting HomK(R,Rd) by d
degrees to the left, to get a morphism of graded K-vector spaces:

(18.4.1) χ : R −→ Homk(R,Rd)[−d].
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Now the natural R-module structure on R passes to an R-module structure on
HomK(R,Rd). Here is the crucial point:

Exercise 18.5. Prove that the morphism χ is one of R-modules, and that the
following conditions are equivalent:

(1) The K-algebra R has Poincaré duality;
(2) The homomorphism χ is bijective;
(3) For some a ∈ Z, the R-modules R and HomK(R,K)[−a] are isomorphic.

Perhaps you recognize that the R-module HomK(R,K) is the (graded) injective
hull of K; if not, then wait for Exercise 18.7 below.

Now we are ready to explain the connection between Poincaré duality and
Grothendieck duality.

18.6. In the following paragraphs, a graded K-algebra will mean a commutative,
finitely generated, graded K-algebraR =

⊕
n>0Rn, with R0 = K. Its homogeneous

maximal ideal R>1 will be denoted m. The Hilbert basis theorem implies that R is
Noetherian. For such algebras, the (graded) injective hull of K is easy to describe:

Exercise 18.7. Let R be a graded K-algebra. Prove that the graded K-dual

HomK(R,K) =
⊕

n>0

HomK(Rn,K)

situated in degrees 6 0, is the (graded) injective hull of K.

The graded version of Grothendieck’s theorem 11.29 thus reads:

Theorem 18.8. Let R be a graded K-algebra. When R is Gorenstein, there exists
an integer a such that

Hn
m(R) =

{
0 if n 6= dimR,

HomK(R,K)[−a] if n = dimR.

The integer a that appears in the result is called, well, the a-invariant of R. You
will find calculations of the a-invariant in Lecture 21.

Exercise 18.9. Assume that dimR = 0; equivalently, that Rn = 0 for n ≫ 0.
Prove that Hn

m(R) = R for n = 0 and that Hn
m(R) = 0 for n > 0.

This exercise, and Grothendieck’s theorem, yield:

Corollary 18.10. If R is Gorenstein and dimR = 0, then there exists an a ∈ Z
such that the R-modules R and HomK(R,K)[−a] are isomorphic.

Compare this result with Exercise 18.5. In this way does Grothendieck duality
extend Poincaré duality.

Remark 18.11. We mentioned that cohomology algebra of compact, connected,
orientable manifolds is a Poincaré duality algebra. Thus, they may be seen as
analogues in topology of zero-dimensional Gorenstein rings; this analogy is further
strengthened when we note that the cohomology algebra of any topological space
is commutative, albeit in the graded sense: a · b = (−1)|a||b|b · a.

One may then ask if higher dimensional Gorenstein rings have counterparts in
topology, and indeed they do: Inspired by commutative algebra, Felix, Halperin,
and Thomas [39] introduced and developed a theory ‘Gorenstein spaces’. Recently,
Dwyer, Greenlees, and Iyengar [30] proved that there is a version of Grothendieck’s
duality theorem ?? for such spaces.
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Local duality revisited

The basic context of this discussion is fairly general: let R be a ring, and let M
and N be (left) R-modules. Let I• and J• be injective resolutions of M and N
respectively. Then one can form the ‘Hom complex’ HomR(I•, J•) with

HomR(I•, J•)n =
∏

i∈Z

HomR(Ii, J i+n),

∂(f) = ∂J
• ◦ f − (−1)|f |f ◦ ∂I• .

The homology of this complex is a familiar object: for each integer n one has

Hn
(
HomR(I•, J•)

)
= ExtnR(M,N).

For a proof of this result, see, for instance, [158, ??].

18.12. Now suppose that F is an additive, covariant functor on the category of
R-modules. For the moment, think of, say, L⊗R − or HomR(L,−), for some fixed
R-module L; eventually, we would like to think of local cohomology functors, but
not yet. Then each f ∈ HomR(I•, J•) induces a homomorphism

F (f) : F (I•) −→ F (J•)

which, in homology, provides for each n, d in Z, a pairing

Extd−nR (M,N)×RFn(M) −→ RF d(N).

Here RF i(−) is the ith right derived functor of F . The slogan here is “Extensions
are universal cohomology operations.” A natural question then is: Is there a fixed
R-module N and integer d, for which this is an isomorphism for each M? Or, at
least the induced map

RFnm(M) −→ HomR(Extd−nR (M,N), RF d(N))

is bijective? The point is that if there were such an N and a d, then we would have
expressed the derived functors of M , which is presumably the object of our interest,
in terms of a more familiar gadget, that is to say, Extd−nR (M,N). In practice, we
may want to restrict M to a certain class of modules, for example, the finitely
generated ones.

Let us now return to our context.

18.13. Let (R,m,K) be a local ring, and set d = dimR. The preceding discussion
specialized to F = Γm(−) yields, for each n ∈ Z, a pairing

Extd−nR (M,N)×Hn
m(M) −→ Hd

m(N).

This gives rise to an induced homomorphism of R-modules

Hn
m(M) −→ HomR(Extd−nR (M,N), Hd

m(N)).

Given this discussion, the formulation of the result below—which extends local
duality for Gorenstein rings 11.32—should come as no surprise.

Theorem 18.14. Let (R,m,K) be a Cohen-Macaulay local ring with a canonical
module ω, and let M be a finitely generated R-module. Set d = dimR. Then
Hd

m(ω) = ER(K), and for each integer n the pairing

Extd−nR (M,ω)×Hn
m(M) −→ Hd

m(ω) = ER(K)
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induces a bijection of R-modules

Hn
m(M) −→ HomR(Extd−nR (M,ω), ER(K)).

If, in addition, R is complete, then this pairing is perfect.

Sketch of proof. The first part, i.e., that Hd
m(ω) = ER(K), is contained in Theo-

rem 11.43. The bijectivity of the natural homomorphism

χn(M) : Hn
m(M) −→ HomR(Extd−nR (M,ω), ER(K))

is proved by a descending induction on n. Its basis is n = d (why?), and in
this case Theorem 11.43 yields that χd(R) is bijective. Both functors Hd

m(−) and
HomR(HomR(−, ω), ER(K)) are right exact and additive, so the bijectivity of χd(R)
implies that of χd(M) for each finitely generated R-module M .

Assuming that χn(−) is bijective for some integer n 6 d. Using the long exact
sequences associated with Γm(−) and HomR(−, ω) one now proves that χn−1(−) is
bijective as well.

When R is complete, then the homomorphism

Extd−nR (M,ω) −→ HomR

(
Hn

m(M), ER(K)
)

is the Matlis dual of χn(M), and hence bijective. Thus, the pairing is perfect. �

Remark 18.15. The crucial point in the proof of Theorem 18.14 is the existence
of natural maps, the χn(M); the rest of proof is more or less ‘standard’ homological
algebra, that is to say, ‘general nonsense’.

In particular, the argument would work with ω replaced by any complex D,
with Hn(D) finitely generated for each n, of finite injective dimension, and with
Hd

m(D) = ER(K). Such an object exists whenever R is a quotient of a Gorenstein
ring (for example, when R is complete) and is called a dualizing complex for R.
With this on hand, one has a local duality statement even for rings which may not
be Cohen-Macaulay; see Hartshorne [59] and Roberts [131].

There are more efficient, if more sophisticated, proofs of local duality; see [59,
131]. The argument given here has the merit that it immediately adapts to schemes.

18.16. Let X be a scheme of dimension d over a field K. The discussion in 18.12
and 18.13 carries over to the context of schemes—for sheaves F and G, one has, for
each integer n, pairings

Extd−nOX
(F ,G) ×Hn(X ;F) −→ Hd(X ;G).

Serre’s duality theorem for projective spaces then reads

Theorem 18.17. Let K be a field, X = PdK, and F a coherent sheaf on X. Let Ω
denote the sheaf of differential forms on X, and set ω = ∧dΩ. Then Hd(X ;ω) ∼= K,
and for each integer n the pairing below is perfect

Extd−nOX
(F , ω)×Hn(X ;F) −→ Hd(X ;ω) ∼= K.

Compare this result to Theorem 18.14. The analogy goes deeper than that: the
proof of the latter is modelled on Serre’s proof of the former. There is more to Serre’s
theorem than stated above: Serre proves that there is a canonical isomorphism

Hd(X ;ω) −→ K,

called the residue map, and this is crucial for the proof.



143

Global duality

Let R be a Cohen-Macaulay ring. It need not be local—what we mean is that
Rp is Cohen-Macaulay for each prime ideal p in R, and the Krull dimension of R
be finite; this last assumption is in line with the notion of Gorenstein rings adapted
in Lecture ??.

Definition 18.18. A canonical module for R is a finitely generated R-module ω,
with the property that ωm is a canonical module for Rm for each maximal ideal m

of R. It follows from Corollary 11.36 that if ω is a canonical module for R, then ωp

is a canonical module for Rp for each prime ideal of R.

For example, when R is Gorenstein, R is itself a canonical module. It turns out
that, as in the local case, a ring has a canonical module if and if it is a quotient of
a Gorenstein ring. The following exercises lead to that result.

Exercise 18.19. Let R be a ring. Prove the following statements:

(1) SpecR = V1⊔V2 if and only if there is an isomorphism of rings R ∼= R1×R2,
with SpecRi = Vi.

(2) When R is Noetherian, there exists an isomorphism R ∼= R1×· · ·×Rd, where
each SpecRi is connected.

Exercise 18.20. Let R1, . . . , Rd be rings, and set R = R1 × · · · × Rd. Prove the
following statements:

(1) A R-module M is canonically isomorphic to M1 × · · · ×Md, where Mi is an
Ri-module for each i.

(2) The ring R is Cohen-Macaulay if and only if each Ri is Cohen-Macaulay.
(3) Suppose that R is Cohen-Macaulay. Let ω be an R-module and write ω =

ω1× · · · ×ωd, as in (1). Then ω is a canonical module for R if and only if ωi
is a canonical module for Ri, for each i.

Exercise 18.21. Let R be a Noetherian ring. Then SpecR is connected if and
only if given minimal primes p and p′ in R, there is a sequence of ideals

p = p0,m0, p1,m1, . . . , pn,mn, pn+1 = p′,

such that p1, . . . , pn are minimal primes, and mi contains pi and pi+1 for 0 6 i 6 n.
Evidently, the ideals mi may be chosen to be maximal.

Proposition 18.22. Let Q −→ R be a surjective homomorphism of Cohen-Macaulay
rings. Assume that SpecR is connected. If ω̃ is a canonical module for Q, then
ExthQ(R, ω̃), where h = dimQ− dimR, is a canonical module for R.

Proof. Suppose that R = Q/a. We claim that height(am) = h for any prime ideal
m ∈ SpecQ containing a.

Indeed, if p and p′ are minimal primes of a contained in a maximal ideal m of Q,
then Rm is Cohen-Macaulay, so height(ap) = height(ap′); see ??. Therefore, since
SpecR is connected, it follows from Exercise 18.21 that height(ap) = height(ap′)
for any pair p, p′ of minimal primes of a. This settles the assertion.

Set ω = ExthQ(R, ω̃); this is a finitely generated R-module. For each maximal
ideal m ∈ SpecQ containing a, since Qm is Cohen-Macaulay with canonical module
(ω̃)m and h = height(am), it follows from Theorem 11.38 that ωm is a canonical
module for Rm. Thus, ω is a canonical module for R. �
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The following result is a global version of Theorem 11.41.

Proposition 18.23. Let R be a Cohen-Macaulay ring. Then R has a canonical
module if and only if it is a homomorphic image of a Gorenstein ring.

Proof. Indeed, suppose that R has a canonical module, say ω. Set Q = R ⋉ ω,
the trivial extension of R by ω. This is Gorenstein ring: for each p ∈ SpecR, the
local ring Qp = Rp ⋉ωp is Gorenstein because ωp is a canonical module for Rp; see
Theorem 11.41. It remains to note that the canonical projection Q −→ R exhibits
R as a canonical image of Q.

Suppose that Q −→ R is a surjective homomorphism of rings with Q Gorenstein.
When SpecR is connected, since Q itself is canonical module for Q, it follows from
Proposition 18.22 that ExthQ(R,Q), where h = dimQ−dimR, is a canonical module
for R. In general, one has an isomorphism R ∼= R1 × · · · × Rd, where SpecRi
connected for each i; see Exercise 18.19. Since R is a quotient of a Gorenstein ring,
so is each Ri. Hence, Ri has a canonical module, say ωi. Now ω1 × · · · × ωd is a
canonical module for R, by Exercise 18.20. �

The preceding result settles the question of existence of canonical modules. The
one below deals with uniqueness. One could not have expected a stronger result
since, over a Gorenstein ring, any rank one projective module is a canonical module.

Proposition 18.24. Let R be a Cohen-Macaulay ring with a canonical module ω.

(1) If P is a rank one projective, then P ⊗R ω is a canonical module for R.
(2) If ω′ is a canonical module for R, then the R-module HomR(ω, ω′) is rank

one projective, and the following homomorphism is bijective:

HomR(ω, ω′)⊗R ω −→ ω′ where f ⊗ w 7→ f(w).

Proof. Exercise, using localization. �

Proposition 18.24 is the best one can do for general rings, in that there is no
canonical choice of a canonical module; this is a problem when one wants to work
with schemes. Fortunately, this problem has a solution for schemes that arise in
(classical!) algebraic geometry. For the rest of this section we work in the following
context:

Notation 18.25. Let K be a field and R a K-algebra essentially of finite type.

Definition 18.26. The K-algebra R is said to be smooth if for each extension of
fields K −→ L, the ring L⊗K R is regular.

Remark 18.27. A number of comments are in order: First, since the K-algebra
R is essentially of finite type, the L-algebra L⊗KR is essentially of finite type, and
hence Noetherian. Moreover, the following conditions are equivalent:

(1) the K-algebra R is smooth;
(2) the ring L⊗K R is regular for each finite inseparable extension L of K;
(3) the ring L⊗K R is regular for the smallest perfect field extension L of K;
(4) the ring L⊗K R is regular for the algebraic closure L of K.

In particular, when K has characteristic zero or is a perfect field, the K-algebra
R is smooth if and only if the ring R is regular.

We will not discuss the proof of the equivalence of conditions (1)–(4) in the
preceding remark. Instead, we will provide examples and exercises.
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Example 18.28. Polynomial rings K[x1, . . . , xn], where x1, . . . , xn are indetermi-
nates, are smooth over K, as are localizations of polynomials rings.

Exercise 18.29. Let K be a field and set

R = K[x, y]/
(
y3 − x(x − 1)(x− 2)

)
.

Prove that R is a smooth K-algebra if and only if the characteristic of K is not 2.

Evidently, when R is smooth, it is regular. But the converse does not hold:

Example 18.30. Let K be a field with of characteristic p > 0. Assume that K is
not perfect, so that there exists an element a ∈ K \ Kp. Set R = K[x]/(xp − a).
Note that R is a field, and in particular, a regular local ring. However, for L = R,
the ring L⊗K R is isomorphic to L[y]/(yp). Thus, R is not a smooth K-algebra.

The preceding example extends to the following general result; see [114, ??].

Remark 18.31. A finite field extension K −→ L is smooth if and only if L is
separable over K.

Our objective is to construct canonical modules over smooth algebras. This calls
for more definitions.

Definition 18.32. Let M be an R-module. A K-derivation of R, with coefficients
in M , is a K-linear map θ : R −→M that satisfies the Leibniz rule:

θ(rs) = θ(r)s + rθ(s) for all r, s ∈ R.
The K-linearity of θ implies that θ(1) = 0.

Definition 18.33. An R-module Ω is said to be a module of Kähler differentials
of R over K if there is a K-derivation δ : R −→ Ω with the following universal
property: Given a K-derivation θ : R −→M , there exists a unique homomorphism

of R-modules θ̃ : Ω −→M such that the following diagram commutes:

R

θ

��

δ // Ω

eθ~~}
}

}
}

M

Standard arguments show that a module of Kähler differentials, if it exists, is
unique up to a unique isomorphism. We denote it ΩR|K; the associated derivation
δ : R −→ ΩR|K is called the universal derivation of R over K.

The module of Kähler differentials exists, and may be constructed as follows.

Construction 18.34. The K-vector space R⊗KR is a ring with product given by

(r ⊗ s) · (r′ ⊗ s′) = (rr′ ⊗ ss′)
and this ring is commutative. In the following paragraphs, we view R ⊗K R as an
R-module, with product induced by the left-hand factor: r′ · (r ⊗ s) = r′r ⊗ s.

Since R is commutative, the map

µ : R⊗K R −→ R where µ(r ⊗ s) = rs

is a homomorphism of rings; set a = ker(µ). This inherits an R-module structure
from R⊗K R.
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As an R-module, a is spanned by {s ⊗ 1 − 1 ⊗ s | s ∈ R}. Moreover, if the
K-algebra R is generated by s1, . . . , sn, then the elements

{si ⊗ 1− 1⊗ si | 1 6 i 6 n}
generate the ideal a in R⊗K R.

Since a = ker(µ), the action of (R ⊗K R) on a/a2 factors through R, and hence
a/a2 has a canonical R-module structure. The action of r ∈ R on the residue class
in a/a2 of the element s⊗ 1− 1⊗ s is given by:

r · (s⊗ 1− 1⊗ s) = (rs⊗ 1− r ⊗ s).
Thus, this action coincides with the R-module structure induced by a ⊂ R⊗K R.

Claim. The map δ : R −→ a/a2 with δ(s) = s⊗ 1− 1⊗ s is well defined, and is a
K-derivation from R to a/a2.

Indeed, consider the K-linear maps

ι1 : R −→ (R⊗K R) where s 7→ s⊗ 1

ι2 : R −→ (R⊗K R) where s 7→ −1⊗ s.
One has then a diagram of K-vector spaces

R
∆−−−−→ (R ⊕R)

ι1⊕ι2−−−−→ (R⊗K R)⊕ (R⊗K R)
π−−−−→ R⊗k R,

where ∆(s) = (s, s) and π(y⊗z, y′⊗z′) = y⊗z+y′⊗z′. Let δ̃ denote the composed

map; this is again K-linear and a direct check shows that µδ̃ = 0, so δ̃(R) ⊆ a. The
map δ is the composition

R
eδ−−−−→ a −−−−→ a/a2,

and hence a well defined homomorphism of K-vector spaces. For elements r, s of
R, one has, in a/a2, the equation

0 = (r ⊗ 1− 1⊗ r)(s ⊗ 1− 1⊗ s)
= rs⊗ 1− s⊗ r − r ⊗ s+ 1⊗ rs
= (rs⊗ 1− 1⊗ rs) − (r ⊗ 1− 1⊗ r)s − r(s⊗ 1− 1⊗ s)

Thus, δ(rs) = δ(r)s + rδ(s), that is to say, δ is a derivation.

Claim. The R-module a/a2 is the module of Kähler differentials, with universal
derivation δ.

We need to prove that δ : R −→ a/a2 has the required universal property.
Let θ : R −→ M be a K-derivation. If there exists an R-linear homomorphism

θ̃ : a/a2 −→M with θ̃◦δ = θ, then it must be unique; this is because δ : R −→ a/a2

maps onto the R-module generators of a/a2.

As to the existence of θ̃, the map θ induces a homomorphism R-modules

R⊗K θ : R ⊗K R −→M, where r ⊗ s 7→ rθ(s).

Restriction yields a homomorphism of R-modules θ′ : a −→ M . Now for r, s in R,
one has

θ′
(
(r ⊗ 1− 1⊗ r)(s ⊗ 1− 1⊗ s)

)
= θ′

(
rs⊗ 1− s⊗ r − r ⊗ s+ 1⊗ rs

)

= −sθ(r) − rθ(s) + θ(rs)

= 0,
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where the second equality holds because θ(1) = 0, owing to its K-linearity, and the
third equality holds because θ is a derivation. Thus, θ′(a2) = 0, so θ induces a

homomorphism of R-modules θ̃ : a/a2 −→M . It is clear that θ̃ ◦ δ = θ, as desired.
This completes the justification of our claim.

Example 18.35. Let R = K[x1, . . . , xn] be a polynomial ring with variables
x1, . . . , xn. The module of Kähler differentials is free:

ΩR|K
∼=

n⊕

i=1

Rδxi,

and the universal derivation is given by

δ(f) =

n∑

i=1

∂f

∂xi
δxi for f ∈ R.

The next exercise can be solved using the preceding one and basic properties of
modules of differentials; see [114, ??].

Example 18.36. Let R = K[x1, . . . , xn]/(f1, . . . , fc). The module of Kähler dif-
ferentials is given by a presentation:

Rc
(∂fi/∂xj)−−−−−−→ Rn −→ ΩR|K −→ 0.

The matrix (∂fi/∂xj) is called the Jacobian matrix of R.

Combining this exercise with the next result, one can “write down” the module
of differentials of any K-algebra essentially of finite type.

Lemma 18.37. Suppose that R = U−1Q, where Q is a K-algebra and U is a
multiplicatively closed subset of Q. One has a canonical isomorphism of R-modules

U−1ΩQ|k
∼= ΩR|K.

Proof. Exercise: use universal property of Kähler differentials. �

Here is the result that addresses the question raised in the paragraph after 18.24.

Theorem 18.38. If the K-algebra R is smooth, then the R-module ΩR|K is finitely

generated and projective. If, in addition, SpecR is connected, then ∧dΩR|K, where
d = rankR ΩR|K, is a rank one projective, and hence a canonical module for R. �

Remark 18.39. Suppose that R is a finitely generated K-algebra (rather than a
localization of one such), and a domain, then rankR ΩR|K = dimR.

Theorem 18.40. If the K-algebra R is d-dimensional Cohen-Macaulay domain,
the non-smooth locus of R has codimension at least two, then

HomR(HomR(∧dΩR|K, R), R)

is a canonical module for R.

Example 18.41. Let X = (xij) be an n× (n + 1) matrix of indeterminates, and
set R = K[X ]/In(X), where In(X) is the ideal generated by the size n minors of
X . Then ωR is isomorphic to the ideal of size n− 1 minors of n− 1 columns of the
matrix X .
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Lecture 19. De Rham cohomology and local cohomology (UW)

Some of the most interesting theorems in calculus are those of Green, Stokes and
Gauß. In this section we shall start with discussing these theorems and then explore
their correctness on open subsets of Rn. In the course of these investigations we
shall link local cohomology of complex varieties X ⊆ Cn to de Rham and singular
cohomology of their complements Cn \ X , and consider a few examples how this
connection can be used.

We deal with this material in subsections that cover the real, complex, and
algebraic case respectively and finish with a subsection on the relationship of local
and de Rham cohomology. Before that, however, we need some details regarding
differentials.

To start with, recall that if R is a K-algebra then the K-linear differentials of R
form an R-module Ω1

R and there is a universal derivation

d : R −→ Ω1
R

on R (i.e., d(r1r2) = r1 d(r2) + r2 d(r1)). We shall refer to d as the gradient map
since if R = K[x1, . . . , xn] one may identify Ω1

R with Rn =
⊕
Rdxi and in this

notation d is precisely the classical gradient. If f ∈ R then any differential on R
extends to a differential on R[f−1] by the quotient rule and this identifies Ω1

R[f−1]

with Ω1
R ⊗R R[f−1].

From Ω1
R one may construct higher order K-linear differentials by setting ΩiR =∧iΩ1

R. In particular, ΩtR[f−1] = ΩtR⊗RR[f−1]. Of course, in this notation, Ω0
R = R.

The gradient map can be used to construct a K-linear map

dt : ΩtR −→ Ωt+1
R

for all t by d(f dxi1 ∧ . . . ∧ dxit) = df ∧ dxi1 ∧ . . . ∧ dxit in local coordinates. We
call this map the gradient map as well. One may verify that due to the sign rule in
the wedge product, dt ◦ dt−1 = 0.

If X is an affine algebraic variety, this construction can be carried out on
Γ(X ;OX), and by the localizing property of differentials this sets up a complex
with differential d• on all principal open subsets of X . If X is non-affine, one needs
to deal with the principal affine sets directly. In either case, one verifies that on
the intersection of two principal open sets the information obtained is identical.
This endows each K-scheme with sheaves of differential forms Ω•

X and morphisms

dt : ΩtX −→ Ωt+1
X which form the de Rham complex

Ω•
X =

(
Ω0
X

d0−→ Ω1
X

d1−→−→ · · ·
)

(19.0.1)

If X is algebraic over the field of real or complex numbers then there is a natural
continuous map ιX : Xan −→ X from the analytic space Xan to the algebraic space
X . Via (the pullback functor, see [63], of) this map, abusing notation, we view Ω1

X♣ should we

talk about

pullbacks/pushforwards?

as a complex of sheaves on Xan; there is an induced embedding on the level of all
differential forms and de Rham complexes: Ω•

X →֒ Ω•
Xan .

19.1. The real case: de Rham’s theorem. Let us take a look at the

Theorem 19.1 (of Green). Suppose f and g are C∞-functions in two variables,

f, g : R2 −→ R. Assume that ∂f
∂y = ∂g

∂x on all of R2. Then there is a C∞-function

H : R2 −→ R, called a potential function such that ∂H
∂x = f and ∂H

∂y = g.
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Technically, in fact, f and g just need to have continuous derivatives, but we
shall throughout consider smooth functions.

Let us take a look at the proof of this theorem. On a closed piecewise differ-
entiable path λ the path integral

∫
λ

f dx + g dy is zero, which means that one can

define

H(x0, y0) =

(x0,y0)∫

(0,0)

(f dx+ g dy)

where the integral goes along any (piecewise differentiable) path. The interesting
part is why the integral is zero along closed loops, and hence only dependent upon
the endpoints of the path. In order to define H it is sufficient to consider piecewise
linear paths parallel to the coordinate axes. Without loss of generality we may
assume the square in question to have corners (0, 0) and (ε, ε). One then computes

Figure 4.
∫
λ
(f dx+ g dy) along a square with vertices (0, 0) and (ε, ε)

ε∫

0

f(x, 0) dx

−ε∫

0

f(x, ε) dx

ε∫

0

f(ε, y) dy

ε∫

0

f(0, y) dy

-

6
�

? -

6

x

y

λ

∫

λ

f dx+ g dy =

∫ ε

0

(f(x, 0)− f(x, ε)) dx+

∫ ε

0

(g(ε, y)− g(0, y)) dy

=

∫ ε

0

(∫ ε

0

−fy(x, y) dy
)
dx+

∫ ε

0

(∫ ε

0

gx(x, y) dx

)
dy

(since the Fundamental Theorem of Calculus applies)

= 0

as fy(x, y) = gx(x, y). This shows that there is a function H with gradient (f, g).
In other words, d(H) = f dx+ g dy. It follows that the pathintegral is the same for
every differentiable path, not just piecewise linear ones.

Let’s discuss possible ways of Green’s Theorem to fail. If the equation fy = gx
fails to hold in any point of the domain of definition of fy, gx then there is obviously
no chance for f, g to be derivatives of a common integral H since by H.A. Schwarz’
lemma taking derivatives is independent of the order. It is more interesting to
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contemplate how matters are affected when fx = gy is unbounded somewhere in
R2. From the above calculation it is apparent that if a loop encloses only points
on which fy = gx is finite then the integral must vanish. However, consider the
following example.

Example 19.2. Let g(x, y) = x
x2+y2 and f(x, y) = − y

x2+y2 . Then gx = y2−x2

x2+y2 =

fy(x, y). On the other hand, integrating along the circle λ : (x2 + y2 = ε) with x =

ε cos(t), y = ε sin(t), we find
∫
λ f dx = −

∫ 2π

t=0
ε sin(t)
ε2 (−ε sin(t)) dt = π =

∫
λ g dy.

This means that not only does the method of proof break down, but in fact Green’s
Theorem must fail. Namely, if there were a function H such that f = Hx, g = Hy

then the integral along any closed curve over f dx and g dy would have to be zero
since they are just H evaluated at the start minus H evaluated at the endpoint of
the loop.

The example and the preceding discussion show the following. Let f, g be smooth
on a punctured disk around P ∈ R2 and assume that fy = gx holds on the punctured
disk. If f, g are smooth on the entire disk then the integral

∫
(f dx + g dy) is

independent of the path and (f, g) is its gradient. On the other hand, there are
pairs of smooth functions on the punctured disk that satisfy fy = gx but not the
conclusion of Green’s Theorem.

Paraphrasing we may say that f dx + g dy is locally a gradient if fy = gx, but
the topology of the domain of definition of fx = gy may get in the way of a
global potential function. More precisely, let U be an open set in the plane, pick
a point P ∈ U , and let Λ(U,P ) be the space of loops in U starting and ending at
P . Set π1(U,P ) to be the fundamental group of U , planted at P ∈ U . On the
other hand, let Ω1(U) be the differentials on U with smooth coefficients: Ω1(U) =
{ω = f dx + g dy|f, g ∈ C∞(U)}. Since U is open, each element of π1(U,P ) has
a smooth representative. Then integration along a differentiable path λ ∈ Λ(U,P )
gives a linear map from Ω1(U) to R, which we restrict to the differentials Ω1

0(U) =
{ω = f dx+ g dy|fy = gx}. Moreover, as potential functions are independent of the
integration path, homotopic paths produce the same integral for all forms in Ω1

0(U).
So we have a pairing π1(U,P )×Ω1

0(U) −→ R that is clearly R-linear in the second
component and additive in the first. Note that for two loops λ, λ′ the integral∫
λλ′(λ)−1(λ′)−1 ω is zero since it decomposes into the sum of the four separate loop

integrals. As the quotient of π1(U,P ) by its commutator subgroup is the singular
homology group H1(U ; Z), the pairing descends to homology and we can extend
coefficients to the reals:

∫
: H1(U ; R)× Ω1

0(U) −→ R.

Now note that ω = f dx+g dy is in Ω1
0(U) if and only if the second order differential

d(f dx+ g dy) = (fy − gx)dx ∧ dy ∈ Ω2(U) arising as the gradient of f dx+ g dy is
zero; such ω is called a closed 1-form. On the other hand one calls exact 1-forms
those which arise as the gradient d(H) = Hx dx+Hy dy of a 0-th order differential
(that is, a potential function) H ∈ Ω0(U) = O(U). Necessarily, an exact differential
gives a zero integral on all loops. So our pairing descends to an R-linear pairing

H1(U ; R)× ker(d : Ω1(U) −→ Ω2(U))

image(d : Ω0(U) −→ Ω1(U))
−→ R.(19.2.1)



151

It follows from Example 19.2 that the pairing is non-degenerate in H1(U ; R), for all
nonzero elements λ ∈ H1(U ; R) there exists a closed form ω = f dx+ g dy ∈ Ω1

0(U)
such that

∫
λ
ω 6= 0. On the other hand, pick a closed form ω = f dx + g dy

on U . If the pairing vanishes identically with this form, then integrating along
differentiable paths gives a potential function for ω and in particular then ω ∈
image(d : Ω0(U) −→ Ω1(U)). So the pairing is also faithful in the second argument.

In particular, ker(d:Ω1(U)−→Ω2(U))
image(d:Ω0(U)−→Ω1(U)) is the vector space dual to H1(U ; R) and hence

isomorphic to the singular cohomology group H1(U ; R) since R is a field.

Somewhat incredibly, a vast generalization of this scenario is true, Theorem 19.3
below. LetM be a differentiable manifold. Recall from (19.0.1) that the differentials
on M with the gradient map form a complex Ω•

M . We denote its i-th cohomology

ker(d : ΩiM (M) −→ Ωi+1
M (M))

image(d : Ωi−1
M (M) −→ ΩiM (M))

=: Hi
dR(M).

As before we call exact forms those which are the gradient of another form (the
denominator), and closed those whose gradient is zero (the numerator), so in this
notation Hi

dR(M) is the quotient of the closed i-forms modulo the exact i-forms on
M .

A singular smooth chain is an element of the real vector space Si(M) spanned
by all smooth maps {f : ∆i −→ M} from the standard i-simplex to M . The
main theorem relating differential forms and singular cohomology on real smooth
manifolds is

Theorem 19.3 (de Rham). Let M be a real, smooth (that is, C∞-)manifold.
Consider the pairing of integration

∫
: Si(M)× Ωi(M) −→ R

where if σ : ∆i −→M is smooth and ω ∈ Ωi(M) then

(σ, ω) 7→
∫

σ

ω :=

∫

∆i

σ∗(ω),

the integral over ∆i of the pullback of ω along σ. The pairing extends to all σ ∈
Si(M) by linearity.

If σ ∈ Si is a boundary then
∫
σ
ω = 0 for all closed differential forms ω. Simi-

larly, if ω is exact then
∫
σ
ω = 0 for all σ ∈ Si with zero boundary.

Every class in the singular homology Hi(M ; R) has a representative in Si(M),
hence integration gives a pairing

Hi(M ; R)⊗R H
i
dR(M) −→ R

between singular homology and de Rham cohomology. This pairing is R-linear and
perfect and sets up a natural isomorphism

Hi
dR(M) ∼= HomR(Hi(M ; R),R) ∼= Hi(M ; R)

that identifies the vector space of closed forms modulo exact forms with the singular
cohomology of M (the dual space of the singular homology of M).
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Example 19.4. We revisit the circle S1. In that case, the de Rham Theorem
is fancy language for two facts discovered in Lecture 2. Firstly, the de Rham
cohomology of S1 in degree zero is given by the constant functions, since constant
functions are closed and have a nonzero integral. These 0-forms are the dual to
the singular 0-chain in S1 that sends the 0-simplex (a point) to any point in S1.
Secondly, the first singular homology class of S1 is generated by the 1-chain that
travels along S1 precisely once. Its dual de Rham cohomology form in degree one
is the form ω = d t/2π where t is a local variable on S1 since its gradient must be
zero (there are no 2-forms) and

∫
S1 ω = 1.

Example 19.5. Consider real 3-space, M = R3. Then H0
dR(M ; R) ∼= R and all

higher singular cohomology groups are zero. In particular, all closed forms of order
i > 0 are exact.

If i = 1, this is known as Stokes’ Theorem: if the rotation of a global smooth
vector field is zero (so that the coefficients, when decorated with dx, dy and dz form
a closed differential) then the vector field is in fact a gradient.

If i = 2, this is Gauß’ theorem: if a global smooth vector field has zero divergence
(which is to say that the corresponding 2-form is closed) then it is equal to the
rotation of some vector field (i.e., the gradient of a 1-form).

As in the plane, the theorems of Stokes and Gauß have a tendency of failing if the
vector fields are not defined on all of R3. Holes arising from the removal of a zero
dimensional set may make Gauß’ Theorem fail, and those arising from the removal of
1-dimensional sets may make Stokes fail. For example, the form 1

x2+y2 (xdx− y dy)
is closed, but not exact. The reason is the same as in Example 19.2 (with the
variable z present but irrelevant): the domain of definition is not simply connected.
On the other hand, the form ω = 1

(x2+y2+z2)3/2 (xdy dz+y dz dx+z dx dy) is closed,

and the integral of ω over the 2-sphere (a boundary-free smooth simplicial 2-chain
in R3\0) is 2π so that ω cannot be a gradient. The point is that ω has an interesting
singularity at the origin.

Let us discuss some ideas that lead to a proof of Theorem 19.3. The full story
is beyond these notes, but we can give an idea of the techniques involved.

In the first place, one needs to prove that the de Rham Theorem holds for
M = Rn. In other words, one needs to show that on Rn every global i-form (i > 0)
is closed precisely when it is exact. This statement is known as the Poincaré Lemma,
which we have already met in Example 2.18. The proof is by explicit calculation
generalizing our computation in the proof of Green’s Theorem, see for example [11,
page 33].

Then observe that since sheaves are of local nature (that is, kernels and cokernels
of morphisms between sheaves are defined locally) the Poincaré Lemma assures us
that the de Rham complex is locally on any real C∞-manifold a resolution of the
constant sheaf R. Recall that in Example 2.18 we observed precisely that to be the
case for the circle.

The next crucial step is to realize that on any real smooth manifold M the
sheaves ΩiM that show up in the de Rham complex are locally free over the sheaf
OM of smooth functions and have no higher cohomology. This is because they allow
for partitions of unity, compare Example 2.16 (and see the discussion of soft sheaves
in see [29, Definition 2.1.7]). So the de Rham complex is an acyclic resolution of
the constant sheaf R on M . We discovered some of this in Example 2.18. It follows



153

from the Acyclicity Theorem 2.22 that the cohomology groups of the de Rham
complex on M are the derived functor cohomology groups of the constant sheaf R.

It follows that de Rham cohomology enjoys all the properties that derived functor
cohomology provides. It is worked out in [84] that derived functor cohomology with
coefficients inR satisfies the the Eilenberg–Steenrod Axioms which are characteristic
properties of singular cohomology, see [19]. Therefore de Rham cohomology, sheaf
cohomology with coefficient sheaf R, and singular cohomology with R-coefficients
all give the same result on every manifold M . As R is a field of characteristic
zero, this gives an identification of Hi(M ;R) with the dual space of the singular
homology Hi(M ; R).

In order to see that the isomorphism is induced by the integration pairing, just
note that the pairing is by definition functorial: if f : X −→ Y is a smooth map
then ∫

σ

f∗(ω) =

∫

f◦σ

ω =

∫

f∗(σ)

ω.

A calculation similar to the one in the proof of Green’s Theorem shows that inte-
grating a closed form over a boundary chain gives zero, and more generally one has
the general Stokes’ Theorem, :

∫
∂(σ) ω =

∫
σ d(ω).

Remark 19.6. One can see directly that de Rham cohomology fits into Mayer–
Vietoris sequences. Namely, if = U ∪ V is an open cover for a smooth manifold M
then there is an induced short exact sequence of complexes

Ω•(M) −→ Ω•(U)× Ω•(V ) −→ Ω•(U ∩ V )

where the last maps sends the pair (ωU , ωV ) of forms to ωU − ωV restricted to
U ∩V . The associated long exact sequence is the Mayer–Vietoris sequence, see [11,
Proposition 2.3].

19.2. Complex manifolds. We now investigate the case of complex manifolds.

Notation 19.7. Unless indicated otherwise, in this subsection the base field is C.
In particular, we abbreviate ΩtR;C, the module of C-linear differentials of order t on

the C-algebra R, by ΩtR. Similarly, ΩtM ;C, the sheaf of C-linear differentials of order

t on the complex analytic manifold M is abbreviated by ΩtM .
The sheaf on M that is of main interest in this subsection is C, which attaches

to the open set U ⊆ M the locally constant maps U −→ C (which are exactly the
continuous lifts f : U −→ M × C for the projection M × C −→ C if C has the
discrete topology). In particular, C(U) = Z(U)⊗Z C.

There is a substantial difference between the real and complex theory. Namely,
if a function f : C −→ C is (complex) differentiable (just once) then it is actually
holomorphic and can locally be represented by a power series with positive radius
of convergence. This is very much unlike the real case: the majority of real one time
differentiable functions are not smooth, and the majority of real smooth functions
cannot be represented by power series. This difference makes itself noticeable in the
absence of partitions of unity over the complex numbers. This in turn has the effect
that the sheaf of holomorphic functions on a complex manifold is a lot less flexible
than the C∞-functions on a real manifold. In particular, the structure sheaf and
the sheaves of higher holomorphic differentials may have nontrivial cohomology.
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Example 19.8. Let E be an elliptic curve defined by the polynomial f ∈ R =
C[x, y, z]. There is a short exact sequence of sheaves

0 −→ OP2
C

(−3) −→ OP2
C

−→ OE −→ 0

induced by

0 −→ R(−3)
f ·→ R −→ R/ (f) −→ 0.

The corresponding cohomology sequence includes a piece

H1(E;OE) −→ H2(P2
C;OP2

C

)(−3)
f ·→ H2(P2

C;OP2
C

)

The cohomology group H2(P2
C;OP2

C

)(t) is by Theorem 13.3 equal to the degree t

part of H3
(x,y,z)(R) ∼=

⊕
a,b,c∈Z∩(−∞,−1] C · 1

xaybzc . In particular, it is 1-dimensional

when t = −3 and 0-dimensional when t = 0. It follows from the exact cohomology
sequence that H1(E;OE) 6= 0.

As noted, the sheaves of holomorphic differential forms ΩtM on a complex analytic
manifold M are locally free. But even when the structure sheaf of M is acyclic,
then Ωi may still have interesting cohomology:

Example 19.9. Let M = P1
Can be the projective complex line (homeomorphic

to the 2-sphere) endowed with the sheaf of analytic functions OM . While the
structure sheaf OM itself has no higher cohomology, the sheaf of holomorphic first
differentials Ω1

M is cohomologically nontrivial. Namely, consider the covering of
the algebraic space P1

C = Proj(C[x1, x2]) by the two sets C1 = Spec(C[x2/x1]) and
C2 = Spec(C[x1/x2]), each algebraically isomorphic to the complex line. Their
intersection C1,2 is the (affine) punctured complex line Spec(C[x1/x2, x2/x1]). Let

U = {C1, C2} and y = x2/x1. The corresponding Čech complex for the rational
complex 1-forms Ω1

P1
C

is

0 −→ C[y] dy ⊕ C[1/y] d(1/y)
d0−→ C[y, 1/y] dy −→ 0.

Note the conversion rule d(1/y) = (−1/y2) · dy that describes d0 on the second
summand. It follows that d0 is injective and that the cokernel is isomorphic to the
C-vector space spanned by (1/y) dy.

This implies that on the analytic space P1
Can the sheaf of holomorphic 1-forms has

a nonzero first cohomology. Indeed, by Serre’s theorems in [141] the cohomology of
the analytic coherent sheaf Ω1

M induced by the algebraic sheaf Ω1
P1

C

is isomorphic

to the cohomology of ΩP1
C

on the algebraic space P1
C.

Given a complex differentiable manifold M , the complex of holomorphic differ-
ential forms 0 −→ OM (M) −→ Ω1

M (M) −→ · · · endowed with the gradient as
differential is the de Rham complex with complex coefficients; on complex manifolds
we always consider the de Rham complex with complex coefficients, unless expressly
indicated otherwise.

A version of the Poincaré Lemma holds also in the complex analytic world: if
M is biholomorphic to Cn then

0 −→ OM (M) −→ Ω1
M (M) −→ Ω2

M (M) −→ · · ·
has a unique cohomology group, in degree zero, isomorphic to C. This globalizes
to the corresponding statement on sheaves: Ω•

M is a resolution for C.
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However, Examples 19.9 and 19.8 show that sheaves of differential forms may
not be cohomologically trivial on complex analytic manifolds. It follows that on a
complex analytic manifold one cannot conclude that the complex of global sections
of the de Rham complex Ω•

M computes the sheaf cohomology of C on M . As an
example we will discuss below that the projective line P1

C has no second order
differential forms and yet the second cohomology group of its de Rham complex is
nonzero. In fact, it is a priori not even clear that the homology of the de Rham
complex is invariant under change of the differential structure. The following is the
key concept for coming to grips with this difficulty.

Definition 19.10. Suppose X is an analytic space. Then X is called Stein if for
every analytic coherent sheaf F on X one has Hi(X ;F) = 0 for all i > 0.

To be Stein hence means to be acyclic for the global section functor on the cate-
gory of analytic coherent sheaves. There is a competing definition in the literature:
X is sometimes called Stein if it arises as the common set of zeros of a collection of
analytic functions on some Cn. Our definition is slightly more inclusive than this
other one: a Stein space in our sense may not be embeddable as a whole in any Cn,
but for arbitrary compact subsets K ⊆ X one can find open neighborhoods of K
in X that embed in some Cn. (The problem is that for growing compact subsets
the n may have to rise.)

Let S be a Stein manifold and consider its de Rham complex. All sheaves
appearing in this complex are coherent, hence have no higher cohomology. It follows
that the de Rham complex is an acyclic resolution of C on S with respect to the
cover {S}. Using Theorem 2.22 one sees that singular and de Rham cohomology
on S are the same (see for example Serre’s works [139] and [138]):

Theorem 19.11. A Stein manifold S satisfies

Hi(S; C) = Hi(S; C) = Hi(Γ(Ω•
S , S)),

the singular cohomology of S with C-coefficients is the same as the cohomology of
the global sections of the de Rham complex of C-linear differentials on S, and both
agree with the derived functor cohomology of the sheaf C on S. �

As a particular consequence it follows that the singular cohomology groups of
S must be zero beyond dim(S) since the de Rham complex is zero there. If S
has complex dimension n (and hence real dimension 2n) then it therefore has only
“half as much cohomology” as one might have expected. While every non-compact
manifold fails Poincaré duality, Stein manifolds fail in particularly grand style.

Remark 19.12. There is a Morse theoretic proof of a much better theorem: every
Stein space S is homotopy equivalent to a (real) CW complex of dimension at most
dim(S). This proves the vanishing of all cohomology groups (even with integer
coefficients) beyond dim(S) but of course contains a good bit more information.
For the manifold case, see [119]; for more general results [57, 56], and for early
vanishing results on Stein spaces, [2].

The case that interests us most is the following. Let f = 0 be a holomorphic
divisor on the analytic manifold M = Cn,an. The complement Uf of the divisor is
always Stein since it can be identified with the submanifold of M × C defined by
the vanishing of 1− tf . Hence every coherent sheaf on Uf is generated by its global
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sections and in particular the complex

0 −→ OM (M)[f−1] −→ Ω1
M (M)[f−1] −→ · · · −→ ΩnM (M)[f−1] −→ 0

computes the singular cohomology of Uf . In the algebraic case this is exploited
in [123, 155, 124] to give algorithms, implemented in [?, 50], for computing these
cohomology groups.

Let us imagine now that the complex manifold M has a Stein cover ; so M is the
union of a collection of Stein spaces {Si}i = S and all finite intersections of the
Si are Stein as well. We plan to study the cohomology Hi(M ; C) of M . On each
intersection SI =

⋂
i∈I Si, the de Rham complex is a resolution of the sheaf C by

acyclic sheaves. By the Acyclicity Theorem the complex of global section of this
resolution computes H•(SI ; C). The space M itself, however, need not be Stein and
so the Acyclicity Theorem may not be applied to M , see Examples 19.9 and 19.8.

For a single sheaf F the Mayer–Vietoris principle dictates that computing co-
homology on M is best done by an acyclic open cover U and considering the Čech
complex Č•(U;F). Computing cohomology of a complex of sheaves is no different
in nature, just more involved; we outline the construction in our example.

Note that C1 is Stein, and two copies C1,C2 of C1 cover M , as in Example 19.9.
The intersection C1,2, a punctured line, is also Stein as it is an affine open subset of
a Stein space. (Notice how the Stein property is much better to work with than its
real counterpart, homotopy equivalence to a point: C1 \ {0} is Stein but certainly
not contractible.) These three open Stein subspaces of M produce three de Rham
complexes, whose complex of global sections gives the singular cohomologies of the
three spaces. In the notation of Example 19.9 we have for all i ∈ N:

Hi ( C{y, 1/y} −→ C{y, 1/y} dy ) = Hi(C1,2; C)

Hi (C{y} −→ C{y} dy) = Hi(C1; C)

Hi (C{1/y} −→ C{1/y} d(1/y)) = Hi(C2; C)

Note that there are natural maps from the lower two complexes into the top one
which correspond to restriction of functions and differential forms from C to the
punctured line. This allows to compose a commutative diagram

C{y} dy ⊕ C{1/y} d(1/y) - C{y, 1/y} dy

C{y} ⊕ C{1/y}

6

- C{y, 1/y}

6

The lower row of this diagram is the Čech complex for computing the cohomology
of the sheaf OM , the upper row is the Čech complex for computing the cohomology
of the sheaf Ω1

M , both with respect to the cover M = C1∪C2. The columns are the
de Rham complex on C1,2 (right) and the direct sum of the de Rham complexes

on C1 and C2 (left). Introducing negative signs in the top row we get the Čech–de
Rham complex of M relative to the chosen cover. The general construction is the
following.
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Definition 19.13. The Čech–de Rham complex relative to a Stein cover S =
{Si}i∈I (with totally ordered index set I) for the analytic manifold M has the form

...
...

...

∏

i0∈I

Ωn(Si0) -
∏

i0<i1∈I

Ωn(Si0 ∩ Si1) −→· · ·−→
∏

J⊆I
|J|=k+1

Ωn(
⋂

ij∈J

Sij ) - · · ·

...

6

...

6

...

6

∏

i0∈I

Ω1(Si0)

6

-
∏

i0<i1∈I

Ω1(Si0 ∩ Si1) −→

6

· · ·−→
∏

J⊆I
|J|=k+1

Ω1(
⋂

ij∈J

Sij )

6

- · · ·

∏

i0∈I

O(Si0 )

6

-
∏

i0<i1∈I

O(Si0 ∩ Si1) −→

6

· · · −→
∏

J⊆I
|J|=k+1

O(
⋂

ij∈J

Sij )

6

- · · ·

where the n-th row arises from the Čech complex of Ωn on M (with maps scaled
by (−1)n), and the k-th column from the de Rham complexes on the intersections⋂
i0<···<ik

Sij of k elements of U.

The following theorem is the complex analytic version of the de Rham Theorem:

Theorem 19.14. The cohomology of the total complex of the Čech–de Rham com-
plex is naturally isomorphic to the singular cohomology of M .

In view of Theorem 19.11, the proof is an application of the Mayer–Vietoris
principle which holds for both sheaf and singular cohomology.

In the case M = P1
C, we get a total complex

C{y} ⊕ C{1/y}︸ ︷︷ ︸
degree 0

−→ C{y} dy ⊕ C{1/y} d(1/y)⊕ C{y, 1/y}︸ ︷︷ ︸
degree 1

−→ C{y, 1/y} dy︸ ︷︷ ︸
degree 2

It is not hard to see that there is a nontrivial cohomology group in degree zero,
the vector space spanned by (1, 1) representing our old friend the constant function
1 : P1

C −→ C. Moreover, in degree two there is a (up to complex scaling unique)
non-vanishing cohomology class generated by the form (1/y) dy, the very same form
that generates H1(P1

C; Ω1). Finally, there is no cohomology in degree one. These
computations agree with the preconceptions one has about the singular cohomology
of P1

C
∼= S2 (namely Betti numbers 1, 0, 1).

We close this subsection with an example that shows that open subsets of Cn

need not be Stein:

Example 19.15. Let M = C2 \ {0}. As a topological space and real manifold,
this is R4 \ {0}, and hence diffeomorphic over R to the product of the 3-sphere S3
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with the real line R. In particular, H3(M ; C) ∼= C. But as a 2-dimensional complex
manifold, M cannot possibly have nonzero differentials of order 3. It follows that
taking global sections of the complex de Rham complex does not compute the
singular cohomology of M and the Acyclicity Theorem must fail for the triple
(U = {M}, C,M).

Remark 19.16. A fascinating branch of mathematics is concerned with the sheaf
cohomology of sheaves that locally look like C but have different global behavior.
For example, imagine that on a complex analytic manifold M the constant sheaf
C is replaced (locally) with the multiples of the function fλ where f is some mero-
morphic function and λ ∈ C. This is possible away from the pole and zero locus of
f and yields a locally constant sheaf there. One may generalize this idea by consid-
ering solutions to a differential equation with 1-dimensional solution space. These
ideas lead to hypergeometric functions and their cohomology which is discussed for
example in [126].

19.3. The algebraic case. In this subsection we investigate to what extent the
results regarding complex analytic manifolds remain true if we consider an algebraic
smooth variety X and compute in the Zariski topology. Let us explain by example
what we mean.

Example 19.17. Put R = C[x, y]. We consider the algebraic de Rham complex of
R

0 −→ (Ω0
R = R)

d0−→ Ω1
R

d1−→ Ω2
R −→ 0,

where ΩiR ⊆ ΩiX is the set of differential forms with polynomial rather than holo-
morphic coefficients. As in the analytic case, this complex has a kernel in degree
zero equal to the space of constant functions. Clearly each polynomial 2-form is the
gradient of a polynomial 1-form, in many different ways. If f dx+ g dy is a 1-form
in the kernel of d1, then fy = gx. Let F,G be polynomials such that Fx = f and
Gy = g. Since Fx,y = Gx,y, F and G agree on all monomials that are multiples
of xy. Hence F − G is a polynomial in C[x] + C[y], say F − G = a(x) − b(y).

Now let F̃ = F + b(y) and G̃ = G + a(x). Note that F̃x = f , G̃y = g and

F̃ − G̃ = F + b(y) − G − a(x) = 0. It follows that f dx + g dy is the gradient

of the polynomial F̃ = G̃. In particular, the algebraic de Rham complex of R
is exact apart from degree zero: R satisfies the Poincaré Lemma, and the com-
plex Ω•

R = Ω•
C2(C2) computes the singular cohomology of the analytic space C2,an

associated to Spec(R).

Suppose that in general X is an algebraic manifold over C (i.e., X is algebraic
and has no singularities). In the introduction we noted the embedding

Ω•
X →֒ Ω•

Xan

of the algebraic de Rham complex of X into the analytic de Rham complex of Xan.
One might wonder when this map is near to an isomorphism. This would be highly
convenient since Ω•

X is far smaller (it only contains regular algebraic functions). It
is reasonable to look first at affine X since then X is Stein. However, while the
Poincaré Lemma works just fine any polynomial ring, there are serious problems
with the complex algebraic de Rham complex being a resolution of the constant
sheaf on pretty much any other space, affine or otherwise, including proper open
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subsets of Cn. This is truly bad news for the “small” open sets in the Zariski
topology!

Example 19.18. We consider the punctured affine line X = C1 \ {0} and the
corresponding ring C[x, x−1]. The 1-form dx/x is not a global derivative, simply
because the branches of the local integral ln(x) do not patch to a global function.
The same problem continues to hold in the algebraic case. Now in the analytic
situation one is able to make the open set on which one computes so small that it
becomes simply connected (a tiny open disk avoiding zero) and on that open set
the logarithm function ln(x) is well defined if one picks a particular branch. In
the Zariski topology, however, all we are allowed to do is to remove Zariski-closed
sets (that is, finitely many points!!!) from X . This, of course, makes the space
even worse, since it becomes “less simply connected” with each removed point. In
particular, ln(x) never becomes a function on such set and the algebraic de Rham
complex has a nontrivial first cohomology group on all Zariski open subsets of X .

The example shows that on affine smooth X the associated algebraic de Rham
complex is usually not a resolution for the constant sheaf. At this point we record
a true miracle of mathematics:

Theorem 19.19 (Grothendieck–Deligne Comparison Theorem, [54, 63, 123]). Let
X be any smooth affine complex algebraic variety (i.e., X = Spec(R) for some
finitely generated C-algebra R with empty singular locus). The cohomology of the
algebraic de Rham complex of R is naturally isomorphic to the singular cohomology
of X.

There are several reasons why this statement ought to be a surprise. First
off, it says that the highly non-algebraic quantity “singular cohomology” can be
computed from algebraic data alone at all. The integral pairing returns periods∫
σ
ω which typically are transcendental, see Examples 19.2 and 19.4. Periods are

very interesting and are the subject of intense study, see [18].
Beyond that the Comparison Theorem asserts that even though the algebraic de

Rham complex is typically not a resolution of the constant sheaf, the errors that
occur and keep it from being a resolution are exactly the terms that we were hoping
to compute from a resolution in the first place.

For example, on the affine set X = C1 \ {0} = Spec C[x, x−1] the algebraic de
Rham complex is

0 −→ C[x, x−1] −→ C[x, x−1] dx −→ 0.

Its cohomology we already computed several times, it is precisely the singular co-
homology of the punctured (real) plane Xan.

Exercise 19.20. Show that the Comparison Theorem fails on varieties over R.
Hint: let X is the hyperbola defined by xy = 1.

Exercise 19.21. Compute the singular cohomology of the open affine subset of C2

obtained by removal of the coordinate axes.

Exercise 19.22. Compute the singular cohomology of the open affine subset of C1

obtained by removal of 0 and 1.

Exercise 19.23. Compute the cohomology of C2 minus the variety defined by the
vanishing of x ∗ (x− 1) ∗ y.
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Exercise 19.24. Compute the cohomology of C2 minus the variety defined by the
vanishing of x∗ (x−y)∗y. Hint: if you can’t deal with the Čech–de Rham complex
then learn what Macaulay2 [50] might do for you in this matter.

Remark 19.25 (Hypercohomology). The Grothendieck–Deligne Theorem gener-
alizes to schemes that are not affine. This requires hypercohomology, which relates
to sheaf cohomology the way complexes relate to modules. It is defined by the fol-
lowing construction that mirrors the computation of sheaf cohomology via acyclic
resolutions. Suppose we are given a finite complex G• of sheaves. One may produce
a complex F• consisting entirely of flasque sheaves together with a map of com-
plexes ϕ : G• −→ F• such that ϕ induces isomorphisms between all cohomology
sheaves: Hi(G•) = Hi(F•). There are several ways of making such a complex
G•, one goes under the name of Cartan–Eilenberg resolutions [47, 19], another is
sketched in [134, 156]. By definition, the i-th hypercohomology group Hi(X ;F•)
of F• is Hi(Γ(X ;G•)).

If now X is any smooth scheme over C then the full version of the Grothendieck–
Deligne Comparison Theorem says that the i-th singular cohomology group of X
arises naturally as the i-th hypercohomology group of the algebraic de Rham com-
plex on X . This mirrors the theme indicated before: one may either replace the
given sheaf (or complex of sheaves) by acyclic ones and compute on X , or stick
with the given input and use Čech cohomology. (This latter approach results in
a Čech–de Rham complex. Practically the Čech–de Rham approach is typically
better than a Cartan–Eilenberg resolution.) For algorithmic considerations in this
case consult [155].

Exercise 19.26. Compute the singular cohomology of the complement of Var(x(x−
1), xy).

Remark 19.27. The proper setting for de Rham cohomology, as pointed out al-
ready by Grothendieck and worked out in Kashiwara’s master thesis, is the theory of
D-modules, discussed in sketches Lecture 17. For more on this see [88, 10, 23, 8, 9].

19.4. Local versus de Rham cohomology, and an involved example. The
Čech–de Rham complex combines analytic information stored in differential forms
with combinatorial information contained in the cover that is used to construct the
Čech complex. In this subsection we use this interplay to construct an upper bound
on the index of the top singular cohomology of a Zariski-open set U in affine space
in terms of the local cohomological dimension of the complement of U . We use
this estimate in an example of Hochster which in conjunction with Example 21.26
will show that local cohomological dimension of a Z-scheme is not always constant
along Spec(Z). Indeed, in Example ?? we will even see an example (R, a) where
the set {p ∈ Spec Z| cd(R/pR, a) ≥ 4} is not locally closed in the Zariski topology.

Theorem 19.28. Let R = C[x1, . . . , xn], suppose g1, . . . , gr ∈ R and let a be the
ideal generated by g1, . . . , gr. Put U = Cn \Var(a).

If i > cd(a) + n − 1 then the singular cohomology group Hi(U ; C) is zero. In
particular, cd(a) represents a measure of the topological complexity of U .

Proof. If cd(a) = 1 then U is affine and hence Stein. So Hi(U ; C) = 0 whenever
i > n. From the Mayer–Vietoris principle one sees quickly that if U can be covered
by r open affine sets (as in the theorem) then Hi(U ; C) = 0 whenever i > r+n−1.
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Of course, in general one only knows the estimate r ≥ cd(a), so this is not the end
of the proof.

Let us suppose that Hn+c−1(U ; C) 6= 0 and assume that c is maximal with this
respect. We shall show that c > cd(a) is impossible. In order to do so, we shall
look at the (algebraic) Čech–de Rham complex of U corresponding to the cover
U =

⋃
iD+(gi) where D+(gi) is the open set Ui of Cn defined by the non-vanishing

of gi. For an integer r, let [r] := {1, . . . , r}; then the algebraic Čech–de Rham
complex of U with respect to the cover induced by the gi has the form

∏

i1∈[r]

Ωn(Ui1) -
∏

i1<i2∈[r]

Ωn(Ui1 ∩ Ui2) - · · · -
∏

I⊆[r]
|I|=r

Ωn(
⋂

i∈I

Ui)

...

6

...

6

...

6

∏

i1∈[r]

Ω1(Ui1)

6

-
∏

i1<i2∈[r]

Ω1(Ui1 ∩ Ui2)

6

- · · · -
∏

I⊆[r]
|I|=r

Ω1(
⋂

i∈I

Ui)

6

∏

i1∈[r]

O(Ui1)

6

-
∏

i1<i2∈[r]

O(Ui1 ∩ Ui2)

6

- · · · -
∏

I⊆[r]
|I|=r

O(
⋂

i∈I

Ui)

6

The dimension of the space U is n, so there are n independent first order differen-
tials. As there are r polynomials gi, the lower left corner has coordinates (0, 0) and
the upper right has coordinates (r − 1, n).

If J ⊆ [n], let us write dxJ for the wedge
∧
j∈J dxj (in ascending order), and

for a subset I of [r] we write gI =
∏
i∈I gi and UI =

⋂
i∈I Ui. We have Ωt(UI) =

Ωt(Cn)⊗R R[g−1
I ]. Note that, for any t, the complex Ω•,t with differential

ds
Č

: Ωs,t =
∏

I⊆[r],|I|=s+1

Ωt(UI) −→
∏

I⊆[r],|I|=s+2

Ωt(UI) = Ωs+1,t

computes the local cohomology groups of ΩtCn with respect to a:

Hi(Ω•,t) = Hi+1
a (Ωt(Cn)) = Hi+1

a (R)⊗Z

t∧
Zn.

It follows that if s+1 > cd(a) then each such horizontal cohomology group is zero.
Now consider any form ω =

∑
t=0,...,n

s+t=n+c−1

ωs,t with ωs,t ∈ Ωs,t in the kernel of the

total complex of the Čech–de Rham complex, and suppose c > cd(a). As t 6 n, the
only possibly nonzero terms in this sum have s ≥ c− 1 ≥ cd(a). Consider now just
the nonzero term ωs0,t0 with largest s (located furthest to the right in the above
diagram). Since ωs0+1,t0−1 = 0, we have ds0

Č
(ωs0,t0) = 0. Hence ωs0,t0 defines a

class in Hs0+1
a (Ωt0); this must be the zero class as s0 > cd(a) and hence ωs0,t0 is

a horizontal image, ωs0,t0 = ds0−1

Č
(ω′
s0−1,t0). Now subtract from ω the image of
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ω′
s0,t0−1 under the differential of the total Čech–de Rham complex. The result is

a class that is cohomologous to ω and it has no nonzero components with index
s ≥ s0.

Repeating this argument for s0−1, . . . , cd(a) we see that the form ω is cohomol-
ogous to zero, which proves the theorem. �

Remark 19.29. If the reader believes in the spectral sequence of a double complex,
then this proof becomes a triviality.

As an application we shall now provide one half of the proof that local coho-
mology “depends on the characteristic of the base field”. To make sense of this,
imagine that R is a Z-algebra and a ⊆ R an ideal. One might hope or even expect
that if for a prime ideal p ∈ Spec(Z) we put Rp = R⊗Z Frac(Z/p) and ap = a · Rp
then cd(ap, Rp) is independent of p. This is, however, not so.

Example 19.30 (Rank one 2× 2 matrices). Let RK = K[x1, x2, x3, y1, y2, y3] and

A =

(
x1 x2 x3

y1 y2 y3

)
where K is any field. Define aK to be the ideal generated by

the three 2× 2-minors of A:

aK = (x1y2 − x2y1, x1y3 − x3y1, x2y3 − x3y2) .

The variety XK of this ideal in K6 parameterizes the 2 × 3-matrices that have no
non-vanishing 2× 2-minor, and are hence those of rank less than 2. In order to be
of rank no more than 1, then one row must be a scalar multiple of the other. This
shows that one may choose 4 parameters in such a matrix, one row and the scaling
factor. In particular, aK is of height 6− 4 = 2 and since aK is 3-generated we infer
from ?? and Corollary 7.14 that the only cases for which Hi

aK
(RK) 6= 0 are i = 2, 3.♣ need a

reference

here, for

‘‘CM==> height

= min-index of

local coho’’

It will be shown in Example 21.26 that if the characteristic of K is positive then
H3

aK
(RK) = 0. In contrast, we shall show here that if Q ⊆ K then H3

aK
(RK) 6= 0. In

particular, this implies that the variety of complex 2× 3-matrices with rank defect
is defined minimally in C6 by precisely three equations.

Suppose Q ⊆ K. Since K is Q-free, it is enough to show the result when K = Q.
Using this argument one more time we may assume that K = C. In this case we
will prove that the de Rham cohomology H8

dR(U ; C) is nonzero, where U = C6 \X .
In that case Theorem 19.28 yields that with i = 8 then i 6 cd(a) + n − 1, and so
cd(a) ≥ 3. But 3 is the largest possible value for cd(a), so H3

a(R) 6= 0.
We shall hence study the manifold U and its topology. In fact, we shall identify

a deformation retract of U and compute its cohomology. Let u1, u2 be the two row
vectors of a matrix in U . Since U consists of matrices of rank two, u1 6= 0 6= u2.

Note first that we may continuously scale u1 to a unit vector without affecting
its direction, leaving invariant the space of all matrices where u1 already is a unit
vector. Now there is a complex number ω such that u1 and u2 − ωu1 6= 0 are
orthogonal. Replace u2 by u2−λωu1, where λ ∈ R moves in the unit interval. This
deformation leaves invariant the matrices where u1 is a unit vector and orthogonal
to u2. Finally, scale continuously u2 to a unit vector without affecting its direction.
This leaves invariant all matrices with orthogonal rows of length one. Let V be the
set consisting of the matrices in U whose rows have unit length and are orthogonal.
Then V is a deformation retract of U . In particular, Hi(U ; C) = Hi(V ; C) for all i.

Now we’ll try to understand V . Let v1, v2 be the rows of an element of V . For a
given v1 the vectors v2 that are perpendicular to v1 and of unit length sit on a 3-
sphere: 〈v1, v2〉 = 0 is one linear complex constraint, with solution space isomorphic
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to C2 = R4, and to be of unit length forces v2 to sit on the corresponding 3-sphere
in R4. Hence the map from V to C3 that sends a matrix to its top row is a fibration
with fiber S3. The image consists of all unit vectors and is hence a 5-sphere. In
particular, V is an 8-dimensional real compact manifold.

Note that both S3 and S5 inherit an orientation from their natural embedding
into C3 and C2 respectively. In a neighborhood of a point p ∈ S5 the fibration
is trivial and one can combine the two orientations to a local orientation of V .
Since the base S5 of the fibration is simply connected this procedure gives a well-
defined orientation on all of V . (Well-defined means in this context that for any
loop in V along which the orientation is constant, is also the same at start and
end point of the loop. Since loops in the base can be contracted, there is actually
no problem.) At this point Poincaré duality (see [84]) finishes the proof: on 8-
dimensional compact orientable manifolds V one has H8

dR(U ; C) ∼= H8(V ; C) ∼= C,
implying the non-vanishing of H3

a(R).

Remark 19.31. Suppose K is algebraically closed, of positive characteristic p, and
let ℓ be a prime different from p. The machinery of étale cohomology (see [118])
with coefficients in Z/ℓZ applies to varieties over fields of characteristic different

from ℓ; in particular it applies to K. Étale cohomology enjoys many of the formal
properties one is accustomed to from singular cohomology: long exact sequences,
functoriality, Mayer–Vietoris sequences, Poincaré duality and others. Formally in
exactly the same way above one can show that then H8

et(U ; Z/ℓZ) ∼= Z/ℓZ where
UK is the complement of Var(aK) in affine space K6; of course the proofs behind
the formalism are of entirely different nature. Despite this, H3

aK
(RK) = 0 as shown

in Example 21.26.

Exercise 19.32. Let X be the variety of all complex n × (n+ 1)-matrices whose
rank is less than n. Find the number of equations needed to define this variety in
Cn×(n+1).
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Lecture 20. Local cohomology over semigroup rings (EM)

Semigroup rings are generated by monomials. Geometrically, they give rise to
toric varieties. Their combinatorial polyhedral nature makes semigroup rings per-
haps the easiest reasonably broad class of algebras over which to compute local co-
homology explicitly. On the other hand, the singularities of semigroup rings are suf-
ficiently general for their local cohomology to exhibit a wide range of interesting—
and sometimes surprising—phenomena. The purpose of this lecture is to introduce
some of the Zd-graded techniques used to do homological algebra over semigroup
rings, including applications to quintessential examples. The key idea is to “resolve
modules by polyhedral subsets of Zd”.

20.1. Semigroup rings.

Definition 20.1. An affine semigroup ring is a subring of a Laurent polynomial
ring generated by monomials.

Most of the affine semigroup rings in these lecture notes are pointed (see Defini-
tion 20.19), which is equivalent to their being subrings of honest polynomial rings
instead of Laurent polynomial rings. The simplest example by a long shot is the
polynomial ring itself, but we have seen lots of other semigroup rings thus far, too.

Example 20.2. The Extended Example from Lecture 1 is an affine semigroup ring.
It appears also in Example 10.21, which draws a relation to invariant theory (this
relation is general for affine semigroup rings; see [117, Chapter 10], for instance).
Example 9.21 connects it with the Segre embedding P2 → P5. In Example 19.30,
local cohomology is taken with support on its defining ideal.

Example 20.3. The ring K[s4, s3t, st3, t4] is an affine semigroup ring by definition.
It has appeared in Examples 10.6, 10.11, and 10.18, which illustrate three distinct
ways to see the failure of the Cohen-Macaulay property; see Example 20.33 for yet
another. The completion of this semigroup ring at its maximal graded ideal comes
up in Example 12.6, which is essentially based on the failure of normality.

Example 20.4. Numerous other examples in these lecture notes up to this point
treat semigroup rings: all but the last item in Exercise 1.18 are localizations of
semigroup rings; the entirety of Exercise 1.23 is about semigroup rings; Exam-
ple 10.15 treats a semigroup ring (yes, even the parabola is a toric variety); and
Example 10.14 is the completion of a semigroup ring.

Example 20.5. The ring K[w, x, y, z]/〈wx−yz〉 whose localization appears in Ex-
ercise 1.18(c) is isomorphic to the affine semigroup ring K[r, rst, rs, rt] ⊂ K[r, s, t].
Certain local cohomology modules of this ring behave quite badly; in Example 20.49,
we will compute one explicitly.

Simply by virtue of being generated by monomials, semigroup rings carry a lot
of extra structure. Let us start by writing the monomials in a semigroup ring R
using variables t = t1, . . . , td. Thus tb for b ∈ Zd is shorthand for the (Laurent)

monomial tb11 · · · tbd

d . The set

Q = {b ∈ Zd | tb ∈ R}
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forms a subset of Zd that is closed under addition and contains 0 ∈ Zd; hence Q
is, by definition, a commutative semigroup.11 Given the extra condition that Q is
generated (under addition) by finitely many vectors—namely, the exponents on the
generators of R—the semigroup Q is said to be an affine semigroup.

Exercise 20.6. Find a subsemigroup of N2 containing 0 that is not finitely gener-
ated. Find uncountably many examples.

An affine semigroup Q ⊆ Zd generates a subgroup 〈Q〉 under addition and sub-
traction. In general, 〈Q〉 might be a proper subgroup of Zd, and there are many
reasons for wanting to allow 〈Q〉 6= Zd. Often in natural situations, the rank of 〈Q〉
can even be less than d; see [150, Chapter 1], for example, where the connection
with solving linear diophantine equations is detailed (in terms of local cohomology,
using techniques based on those in this lecture!). All of that being said, for the
purposes of studying the intrinsic properties of R itself,

Notation 20.7. We can and do assume for simplicity that 〈Q〉 = Zd.

Basic properties of R can be read directly off of the semigroup Q. The reason is
that, as a vector space,

R = K[Q] :=
⊕

b∈Q

K · tb

has a K-basis consisting of the monomials in R.

Lemma 20.8. If 〈Q〉 = Zd then the semigroup ring R = K[Q] has dimension d.

Proof. The main point is that inverting finitely many nonzerodivisors, namely the
monomials that generate R, yields a Laurent polynomial ring K[Zd] containing R
as a subring. The details are omitted. �

The previously mentioned extra structure induced by the decomposition of R
into one-dimensional vector spaces is a “fine grading”, as opposed to a “coarse
grading” by Z.

Definition 20.9. Let R be a ring and M an R-module.

(1) R is Zd-graded if R =
⊕

a∈Zd Ra and RbRc ⊆ Rb+c for all b, c ∈ Zd.
(2) M is Zd-graded if M =

⊕
a∈Zd Ma and RbMc ⊆Mb+c for all b, c ∈ Zd.

(3) A homomorphism M
ϕ−→M ′ of Zd-graded modules is Zd-graded (of degree

zero) if ϕ(Ma) ⊆M ′
a for all a ∈ Zd.

Of course, the group Zd in this definition could just as easily be replaced by any
Abelian group—or any commutative semigroup, such as Q.

Exercise 20.10. Verify that kernels, images, and cokernels of Zd-graded mor-
phisms are Zd-graded. Check that tensor products of Zd-graded modules are natu-
rally Zd-graded. Prove that if M is finitely presented, then Hom(M,N) is naturally
Zd-graded whenever M and N are. Why was M assumed to be finitely presented?

11The correct term here is really monoid, meaning “semigroup with unit element”. An affine

semigroup is defined to be a monoid; thus, when we say “Q is generated by a set A”, we mean
that every element in Q is a sum—perhaps with repeated terms and perhaps empty—of elements
of A. Allowing the empty sum, which equals the identity element, requires us to be generating Q

as a monoid, not just as a semigroup.
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(1, 0, 0)

(1, 1, 0)

(1, 1, 1)

(1, 0, 1)

Figure 5. The cone over a square in Example 20.13

Exercise 20.11. Fix a semigroup ring R = K[ta1 , . . . , tan ] and variables x =
x1, . . . , xn. Prove that the kernel of the map K[x]։ K[t] sending xi 7→ tai is

IA := 〈xu − xv | Au = Av〉,
where A is the d × n matrix with columns a1, . . . , an and u, v ∈ Zn are column
vectors of size n. The ideal IA is called the toric ideal for A; find all examples of
this notion in these 24 lectures. Hint: Use the Zd-grading and mimic Exercise 1.34,
using the one preceding it.

20.2. Cones from semigroups. Suppose thatQ is an affine semigroup, again with
〈Q〉 = Zd. Taking positive real combinations of elements of Q instead of positive
integer combinations yields a rational polyhedral cone CQ = R≥0Q. The adjective
“rational” means that CQ is generated as a cone by integer vectors, while “polyhe-
dral” means that CQ equals the intersection of finitely many closed halfspaces (see
Section 16.1).

Example 20.12. Consider the semigroup K[s4, s3t, st3, t4] from Example 20.3. By
our convention from Notation 20.7, the lattice 〈Q〉 = Z2 is not the standard lattice
in R2; instead, 〈Q〉 is generated as an Abelian group by (for instance) (4, 0) and
(−1, 1). Under the isomorphism of 〈Q〉 with Z2 sending these two generators to the
two basis vectors, Q is isomorphic to the semigroup generated by

{(1, 0), (1, 1), (1, 3), (1, 4)}.
The real cone CQ in this latter representation consists of all (real) points above the
horizontal axis and below the line of slope 4 through the origin.

Example 20.13. The ring K[r, rst, rs, rt] from Example 20.5 is K[Q] for the affine
semigroup Q generated by

{(1, 0, 0), (1, 1, 1), (1, 1, 0), (1, 0, 1)}.
These four vectors are the vertices of a unit square in R3, and CQ is the real cone
over this square from the origin (Fig. 5). The lattice points in CQ constitute Q itself.
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Theorem 20.14. K[Q] is normal if and only if Q = CQ ∩ Zd.

Proof. Suppose first that Q = CQ ∩ Zd, and write CQ =
⋂
H+
i as an intersection

of closed halfspaces. Then Q =
⋂

(H+
i ∩ Zd) is an intersection of semigroups each

of the form H+ ∩Zd. Hence K[Q] is an intersection of semigroup rings K[H+ ∩Zd]
inside the Laurent polynomial ring K[Zd]. Each of these subrings is isomorphic to
K[t1, . . . , td, t

−1
2 , . . . , t−1

d ], where t1 has not been inverted. This localization of a
polynomial ring is normal, and therefore so is K[Q].

Next let us assume that Q ( CQ ∩ Zd. Exercise 20.15 implies that there is a
monomial ta in the Laurent polynomial ring K[Zd] such that (ta)m ∈ K[Q] but
ta 6∈ K[Q]. This monomial is a root of the monic polynomial ym − tam. �

Exercise 20.15. Show that if a ∈ CQ ∩ Zd but a 6∈ Q, then m · a ∈ Q for all
sufficiently large integers m.

Example 20.16. The semigroup ring from Examples 20.3 and 20.12 is not normal,
since s2t2 6∈ K[s4, s3t, st3, t4] but

s2t2 =
s4 · st3
s3t

and (s2t2)2 ∈ K[s4, s3t, st3, t4].

Example 20.17. The semigroup ring from Example 20.5 is normal, by the last
sentence of Example 20.13.

Any rational polyhedral cone C has a unique smallest face (the definition of face
is unchanged from the notion for polytopes as in Section 16.1). This smallest face
clearly contains the origin, but it also contains any vector v ∈ C such that −v also
lies in C. The cone C is called pointed if 0 is the only vector in C whose negative
also lies in C. Geometrically, there is a hyperplane H such that C lies on one side
of H and intersects H only at 0. Thus C “comes to a point” at the origin.

Thinking of Q instead of CQ, any vector a ∈ Q such that −a ∈ Q corresponds to
a monomial ta ∈ K[Q] whose inverse also lies in K[Q]; that is, ta is a unit in K[Q].
Such a monomial can’t lie in any proper ideal of K[Q]. On the other hand, the ideal
generated by all nonunit monomials is a proper ideal, the maximal monomial ideal.
It is the largest ideal of K[Q] that is Zd-graded, but it need not be a maximal ideal.

Exercise 20.18. For an affine semigroup Q, the following are equivalent.

(1) The maximal monomial ideal of K[Q] is a maximal ideal.
(2) The real cone CQ is pointed.
(3) Q has no nonzero units (that is, a ∈ Q and −a ∈ Q implies a = 0).

Definition 20.19. Q is pointed if the conditions of Exercise 20.18 hold.

A cone C is pointed when there is a hyperplane H intersecting it in exactly one
point. Intersecting a (positively translated) parallel hyperplane with C yields a
transverse section of C, which is a polytope P . The geometry of P can depend on
the support hyperplane H , but the combinatorics of P is intrinsic to Q: the poset
of faces of P is the same as the poset of faces of Q.

Example 20.20. The square in Example 20.13, namely the convex hull of the four
generators of Q, is a transverse section of the cone CQ there.

In the coming sections, we will see how the homological properties of a semigroup
ring K[Q] are governed by the combinatorics of CQ.
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20.3. Maximal support: the Ishida complex. Let Q be a pointed affine semi-
group with associated real cone CQ, and choose a transverse section PQ. The
polytope PQ is a cell complex, so (after choosing relative orientations for its faces)
it has algebraic chain and cochain complexes.

Example 20.21. Let Q be as in Example 20.20, and let PQ be the square there.
The reduced cochain complex of PQ with coefficients in K has the form

0 −→ K
ϕ0

−→ K4 ϕ1

−→ K4 ϕ2

−→ K −→ 0.
∅ vertices edges all of PQ

The map ϕ0 takes the ∅-basis vector to the sum of the basis vectors in K4. The
map ϕ1 takes the basis vector corresponding to a vertex v to the signed sum of all
edges with v as an endpoint; the signs are determined by an (arbitrary) orientation:
plus if the edge ends at v, minus if the edge begins at v. Since PQ is convex—and
hence contractible—the cohomology of the above complex is identically zero.

In the same way that the cochain complex of a triangle gives rise to the stable
Koszul complex over the polynomial ring, the cochain complex of PQ gives rise to
a complex of localizations of any pointed affine semigroup ring K[Q]. Describing
this complex precisely and presenting its role in local cohomology is the goal of this
section. Let us first describe the localizations.

Recall that a face of the real cone CQ is by definition the intersection of CQ with
a support hyperplane. Since CQ is finitely generated as a cone, it has only finitely
many faces, just as the transverse section polytope PQ does, although most of the
faces of CQ are unbounded, being themselves cones.

Definition 20.22. The intersection of Q with a face of CQ is called a face of Q.

Lemma 20.23. Let F ⊆ Q be a face. The set of monomials {tb | b 6∈ F} is a prime
ideal pF of K[Q].

Proof. To check that pF is an ideal it is enough, in view of the ambient Zd-grading,
to check that it is closed under multiplication by monomials from K[Q]. Let ν be
a normal vector to a support hyperplane for F such that ν(Q) ≥ 0. Thus ν(f) = 0
for some f ∈ Q if and only if f ∈ F . Assume that tb ∈ pF and ta ∈ K[Q]. Then
ν(a+ b) ≥ ν(b) > 0, whence tatb = ta+b lies in pF .

The ideal pF is prime because the quotient K[Q]/pF is isomorphic to the affine
semigroup ring K[F ], which is an integral domain. �

Notation 20.24. Let F be a face of Q. Write K[Q]F for the localization of K[Q]
by the set of monomials tf for f ∈ F . For any K[Q]-module M , write MF =
M ⊗K[Q] K[Q]F for the localization of M along F .

Exercise 20.25. The localization K[Q]F is just the semigroup ring K[Q− F ] for
the (non-pointed, if F 6= ∅) affine semigroup

Q− F := {q − f | q ∈ Q and f ∈ F}.
Here now is the main definition of this lecture.

Definition 20.26. The Ishida complex ℧•
Q of the semigroupQ, or of the semigroup

ring K[Q], is the complex
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0 → K[Q] →
M

rays F

K[Q]F → · · ·
δi−1

−→
M

i-faces F

K[Q]F
δi

−→ · · · →
M

facets F

K[Q]F → K[Zd] → 0,

where an i-face is a face F of Q such that dim K[F ] = i (so a ray is a 1-face and a
facet is a (d− 1)-face). The differential δ is composed of natural localization maps
K[Q]F → K[Q]G with signs as in the algebraic cochain complex of the transverse
section PQ. The terms K[Q] and K[Zd] sit in cohomological degrees 0 and d.

Exercise 20.27. Write down explicitly the Ishida complex for the cone over the
square—the semigroup ring from Example 20.13—using Example 20.21.

Note that when Q = Nd, the Ishida complex is precisely the stable Koszul
complex on the variables t1, . . . , td. In general, we still have the following.

Theorem 20.28. Let K[Q] be a pointed affine semigroup ring with maximal mono-
mial ideal m. The local cohomology of any K[Q]-module M supported at m is the
cohomology of the Ishida complex tensored with M :

Hi
m(M) ∼= Hi(M ⊗ ℧•

Q).

The proof of Theorem 20.28 would take an extra lecture (... nah, probably less
than that); it is mostly straightforward homological algebra. To give you an idea,
it begins with the following.

Exercise 20.29. Check that H0(M ⊗ ℧•
Q) ∼= H0

m(M).

What’s left is to check that Hi(M ⊗℧•
Q) is zero when M is injective and i > 0,

for then Hi(−⊗℧•
Q) agrees with the derived functors of Γm. The polyhedral nature

of ℧•
Q, in particular the contractibility of certain subcomplexes of PQ, enters into

the proof of higher vanishing for injectives; see [16, Theorem 6.2.5] and its proof.
The natural maps between localizations in the Ishida complex are Zd-graded of

degree zero, so the local cohomology of a Zd-graded module is naturally Zd-graded
(we could have seen this much from the stable Koszul complex). Sometimes it is the
Zd-graded degrees of the nonzero local cohomology that are interesting, rather than
the cohomological degrees or the module structure; see Lecture 24. In any case,
the finely graded structure makes local cohomology computations over semigroup
rings much more tractable, since they can be done degree-by-degree.

We could, of course, have computed the local cohomology in Theorem 20.28
using a stable Koszul complex, but there is no natural choice of elements on which
to build one. In contrast, the Ishida complex is based entirely on the polyhedral
nature of Q. Combining this with the Zd-grading provides the truly polyhedral
description of the maximal support local cohomology in Corollary 20.32.

Notation 20.30. Write (℧•
Q)b for the complex of K-vector spaces constituting the

Zd-graded degree b piece of ℧•
Q. In addition, let PQ(b) be the set of faces of PQ

corresponding to faces F of Q with (K[Q]F )b = 0, or equivalently, b 6∈ Q− F .

Exercise 20.31. Let Q be a pointed affine semigroup.

(1) Prove that PQ(b) is a cellular subcomplex of the cell complex PQ.
(2) Show that (℧•

Q)b is the relative cochain complex for the pair PQ(b) ⊂ PQ,
up to shifting the cohomological degrees by 1.
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Corollary 20.32. Let Q be a pointed affine semigroup. The degree b part of the
maximal support local cohomology of K[Q] is isomorphic to the relative cohomology
of the pair PQ(b) ⊂ PQ with coefficients in K:

Hi
m(K[Q])b ∼= Hi−1(PQ, PQ(b); K).

Example 20.33. We have already seen in Example 20.3 that the semigroup ring
K[s4, s3t, st3, t4] from Example 20.12 not Cohen-Macaulay. Let us see it yet again,
this time by way of its local cohomology. Set b = (2, 2). Then K[Q]b = 0, so ∅
is a face of PQ(b), but every other localization of K[Q] appearing in the Ishida
complex ℧•

Q is nonzero in degree b. Thus the complex (℧•
Q)b of K-vector spaces is

C•(PQ,∅; K) : 0 −→ K⊕K −→ K

in cohomological degrees 0, 1, and 2. The cohomology is K in cohomological degree 1
and zero elsewhere. Hence H1

m(K[Q]) is nonzero, so K[Q] is not Cohen-Macaulay.
We leave it as an exercise to check that in fact H1

m(K[Q]) ∼= K.

The Ishida complex in Example 20.33 turns out to be a stable Koszul complex, as
is typical of two-dimensional pointed affine semigroup rings. For higher-dimensional
examples, stable Koszul complexes are almost always bigger and less natural than
Ishida complexes.

Exercise 20.34. In which Z3-graded degrees and cohomological degrees is the
local cohomology with maximal support of the pointed affine semigroup ring K[Q]
nonzero, if Q is generated by the columns of




0 1 3 0 1
0 0 0 1 1
1 1 1 1 1


?

Hint: These five vectors have equal last coordinates; plot the first two coordinates
of each in the plane. Try also drawing the intersection of Q with the coordinate
plane in R3 spanned by (1, 0, 0) and (0, 0, 1). Which lattice points are “missing”?

The local cohomology of normal affine semigroup rings behaves so uniformly that
we can treat them all at once.

Exercise 20.35 (Hochster’s Theorem [69]). Let K[Q] be a normal affine semigroup
ring. This exercise outlines a proof that K[Q] is Cohen-Macaulay.

(1) Show that if PQ(b) equals the boundary of PQ, consisting of all proper faces
of PQ, then (℧•

Q)b has K in cohomological degree d and 0 elsewhere.

(2) Prove that if PQ(b) is properly contained in the boundary of PQ, then PQ(b)
is contractible. Hint: Show that it has a convex homeomorphic projection.

(3) Deduce that ℧•
Q has nonzero cohomology only in cohomological degree d.

(4) Conclude that K[Q] is Cohen-Macaulay. What is its canonical module?

You will need to use normality, of course: by Theorem 20.14, checking whether a
Zd-graded degree b lies in Q (or in Q−F for some face F ) amounts to checking that b
satisfies a collection of linear inequalities coming from the facets of the real cone CQ.
A detailed solution can be found in [117, Section 12.2], although the arguments there
have to be Matlis-dualized to agree precisely with the situation here.

Exercise 20.36. Given an affine semigroup ring, exhibit a finitely generated max-
imal Cohen-Macaulay module over it.



171

The intrinsic polyhedral nature of the Ishida complex makes the line of reasoning
in the above proof of Hochster’s Theorem transparent. It would be more difficult
to carry out (though probably still possible) using a stable Koszul complex.

20.4. Monomial support: Zd-graded injectives. In the category of Zd-graded
modules over an affine semigroup ring, the injective objects are particularly uncom-
plicated. In this section we exploit the polyhedral nature of Zd-graded injectives to
calculate local cohomology supported on monomial ideals. As the motivating exam-
ple, we’ll discover the polyhedral nature of Hartshorne’s famous local cohomology
module whose socle is not finitely generated.

Notation 20.37. Given a subset S ⊂ Zd, write K{S} for the Zd-graded vector
space with basis S, and let −S = {−b | b ∈ S}.
Example 20.38. Let Q be a pointed affine semigroup.

(1) As a graded vector space, K[Q] itself is expressed as K{Q}.
(2) The injective hull EK[Q] of K as a K[Q]-module is K{−Q}.
(3) The localization of K[Q] along a face F of Q is K{Q−F} by Exercise 20.25.
(4) The vector space K{F −Q} is called the Zd-graded injective hull of K[F ].

By F −Q we mean −(Q−F ). The justification for the statement in (2) and the
nomenclature in (4) are essentially Matlis duality in the Zd-graded category; see
[117, Section 11.2].

Exercise 20.39. K{F −Q} can be endowed with a natural K[Q]-module structure
in which multiplication by the monomial tf is bijective for all f ∈ F .

The module structure you just found makes K{F −Q} injective in the category
of Zd-graded modules. This statement is not difficult [117, Proposition 11.24]; it is
more or less equivalent to the statement that the localization K[Q− F ] is flat. As a
consequence of injectivity, derived functors of left-exact functors on Zd-graded mod-
ules can be computed using resolutions by such modules. Let us be more precise.

Definition 20.40. Let Q be an affine semigroup. An indecomposable Zd-graded
injective is a Zd-graded translate of K{F −Q} for some face F of Q. A Zd-graded
injective resolution of a Zd-graded K[Q]-module M is a complex

I• : 0→ I0 → I1 → I2 → · · ·
of Zd-graded modules and homomorphisms such that

• each Ij is a Zd-graded injective;
• H0(I•) ∼= M ; and
• Hj(I•) = 0 if j ≥ 1.

The right derived functors that interest us are, of course, local cohomology. In
order to return a Zd-graded module, the support must be Zd-graded.

Theorem 20.41. Let a ⊂ K[Q] be a monomial ideal. The local cohomology of a
Zd-graded module M supported at a can be calculated as

Hi
a(M) = Γa(I

•),

where I• is any Zd-graded injective resolution of M .

What makes this theorem useful is the polyhedral nature of Zd-graded injectives
(in analogy with the polyhedral nature of the Ishida complex) combined with the
following extremely easy-to-use characterization of Γa on Zd-graded injectives.
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Exercise 20.42. ΓaK{F −Q} = 0 unless pF (Lemma 20.23) contains a, in which
case ΓaK{F −Q} = K{F −Q}.

Next we consider the Zd-graded Matlis dual to the Ishida complex.

Definition 20.43. Let Q be a pointed affine semigroup. The dualizing complex
Ω•
Q of the semigroup ring K[Q] is

0 → K[Zd] →
M

facets F

K[F − Q] → · · ·
ωd−i−1

−→
M

i-faces F

K[F − Q]
ωd−i

−→ · · · → K[−Q] → 0,

where the differential ω is composed of natural surjections K[F −Q] → K[G− Q]
with signs as in the algebraic chain complex of the transverse section PQ. The
terms K[Zd] and K[−Q] sit in cohomological degrees 0 and d, respectively.

The reader seeing the Zd-graded point of view for the first time should make
sure to understand the following exercise before continuing.

Exercise 20.44. The complex of K-vector spaces in the Zd-graded degree b piece of
the dualizing complex is exactly the K-dual of the complex in Zd-graded degree −b
of the Ishida complex, up to a cohomological degree shift by d:

(Ω•
Q)b[d] ∼= ((℧•

Q)−b)
∗ for all b ∈ Zd.

Remark 20.45. For readers familiar with dualizing complexes in general [59],
Ishida proved that the complex in Definition 20.43 really is one [82, 83]. (The
“normalized” dualizing complex would place K[Zd] in cohomological degree −d and
K[−Q] in cohomological degree 0.)

Exercise 20.44 combined with Hochster’s Theorem (Exercise 20.35) immediately
implies the following.

Corollary 20.46. If the affine semigroup ring K[Q] is Cohen-Macaulay, then its
dualizing complex Ω•

Q is a Zd-graded injective resolution of some module ωQ. In
fact, by local duality, the module ωQ is the canonical module ωK[Q].

As a first application, one can compute the Hilbert series of the local cohomology
of the canonical module when K[Q] is normal. Compare the next exercise, where
the support ideal a is an arbitrary monomial ideal but the module ωK[Q] is fixed,
with Theorem 16.27, where the support is maximal but the module is the quotient
by an arbitrary monomial ideal.

Exercise 20.47 (Yanagawa’s formula [161]; see also [117, Theorem 13.14]).
Let K[Q] be a normal affine semigroup ring, and fix a monomial ideal a ⊂ K[Q].

(1) Associate a polyhedral subcomplex ∆ ⊆ PQ to the (radical of) a.
(2) Write down a polyhedral homological expression in terms of ∆ and PQ for

the vector space dimension of the graded piece Hi
a(ωK[Q])b for b ∈ Zd.

Exercise 20.48. Let ∆ be the simplicial complex consisting of the isolated point z
and the line segment (x, y). Find I∆, H•

I∆
(K[x, y, z]), and H•

m(K[∆]).

Our final example is the main example in [61], although the methods here
are different, since they rely on the Zd-grading. Prior to Hartshorne’s example,
Grothendieck had conjectured that the socle of a local cohomology module should
always have finite dimension as a vector space over K.
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Example 20.49 (Hartshorne’s response to a conjecture of Grothendieck). Let Q
be the cone-over-the-square semigroup in Examples 20.5 and 20.13. Retain the
notation from those two examples.

The ideal a = 〈rst, rt〉 is the prime ideal pF for the 2-dimensional facet F of Q
generated by (1, 0, 0) and (1, 1, 0) and hence lying flat in the horizontal plane. Let
us compute the local cohomology modules Hi

a(ωQ) of the canonical module using
the dualizing complex.

Exercise 20.50. Prove that, ignoring the grading for the time being, K[Q] ∼= ωQ,
so the results below really hold for the local cohomology modules Hi

a(K[Q]) of the
semigroup ring itself.

Let A and B be the rays of Q forming the boundary of F , with A along the axis
spanned by (1, 0, 0) and B cutting diagonally through the horizontal plane. The
only monomial prime ideals containing a are a itself, the ideals pA and pB, and
the maximal monomial ideal m. By Exercise 20.42, applying Γp to the dualizing
complex therefore yields

ΓaI
• : 0 −→ K{F −Q} −→

K{A−Q}
⊕

K{B −Q}
−→ K{−Q} −→ 0.

cohomological
degree: 0 1 2 3

For lack of a better term, call each of the four indecomposable Z3-graded injectives
a summand.

Consider the nonzero contributions of the four summands to a Z3-graded degree
b = (α, β, γ). If γ > 0, then none of the four summands contribute, because then
K{G − Q}b = 0 whenever G is one of the faces F , A, B, or {0} of Q. However,
the halfspace beneath the horizontal plane, consisting of vectors b with γ ≤ 0, is
partitioned into five sectors. For degrees b in a single sector, the subset of the
four summands contributing a nonzero vector space to degree b remains constant.
The summands contributing to each sector are listed in Fig. 6, which depicts the
intersections of the sectors with the plane γ = −m as the five regions.

(0,0,−m)

(−m,0,−m)

(−m,−m,−m)

1

2

3

4

5

sector 1 : K{F − Q}
sector 2 : K{F − Q}, K{A − Q}
sector 3 : K{F − Q}, K{B − Q}
sector 4 : K{F − Q}, K{A − Q}, K{B − Q}
sector 5 : K{F − Q}, K{A − Q}, K{B − Q}, K{−Q}

Figure 6. Intersections of sectors with a horizontal plane

Only in sectors 1 and 4 does ΓaI
• have any cohomology. The cone of integer

points in sector 1 and the cohomology of ΓaI
• there are as follows:

sector 1 : γ ≤ 0 and α > β > 0 ⇐⇒ H1
a(ωQ)b = K.
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For sector 4, we get the cone of integer points and cohomology as follows:

sector 4 : 0 ≥ β ≥ α > γ ⇐⇒ H2
a(ωQ)b = K.

We claim that sector 4 has infinitely many degrees with socle elements ofH2
a(ωQ):

they occupy all degrees (0, 0,−m) for m > 0. This conclusion is forced by the
polyhedral geometry. To see why, keep in mind that sector 4 is not just the triangle
depicted in Fig. 6 (which sits in a horizontal plane below the origin), but the cone
from the origin over that triangle. Consider any element h ∈ H2

a(ωQ) of degree
(0, 0,−m). Multiplication by any nonunit monomial of K[Q] takes h to an element
whose Z3-graded degree lies outside of sector 4 (this is the polyhedral geometry at
work!). Since H2

a(ωQ) is zero in degrees outside of sector 4, we conclude that h
must be annihilated by every nonunit monomial of K[Q].

Exercise 20.51. What is the annihilator of H1
a(ωQ)? What elements in that local

cohomology module have annihilator equal to a prime ideal of K[Q]? Is H1
a(ωQ)

finitely generated? In what Z3-graded degrees do its generators lie?

Hartshorne’s example raises the following basic open problem. All that is known
currently is the criterion for K[Q] to possess a monomial ideal a and a finitely
generated Zd-graded module M such that Hi

a(M) has infinite-dimensional socle for
some i: this occurs if and only if PQ is a simplex [67].

Problem 20.52. Characterize the normal affine semigroup rings K[Q], monomial
ideals a ⊂ K[Q], and cohomological degrees i such that Hi

a(K[Q]) has infinite-
dimensional socle.
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Lecture 21. The Frobenius endomorphism (CM)

Definition 21.1. Let R be a ring containing a field of prime characteristic p > 0.
The Frobenius endomorphism f : R −→ R is the ring homomorphism f(r) = rp.
Its iterates are the maps fe : R −→ R with fe(r) = rp

e

.

The following theorem of Kunz [92, Theorem 2.1] is a key ingredient in some of
the characteristic p methods discussed in this lecture.

Theorem 21.2 (Kunz). Let R be a Noetherian ring of prime characteristic p > 0.
The following statements are equivalent:

(1) R is regular;
(2) fe is flat for all e > 0;
(3) fe is flat for some e > 0.

Proof. We sketch a proof of (1) =⇒ (2), and refer the reader to [92] for further
details. Since a composition of flat maps is flat, it suffices to prove the case e = 1.
The issue is local, so we may assume that (R,m) is a regular local ring. It suffices to
verify the flatness assertion after replacing R by its m-adic completion. By Cohen’s
structure theorem, every complete regular local ring of prime characteristic is a
power series ring over a field, so we may assume R = K[[x1, . . . , xd]]. The Frobenius
map f : R −→ R may be identified with the composition of the inclusions

Kp[[xp1, . . . , x
p
d]] ⊂ K[[xp1, . . . , x

p
d]] ⊂ K[[x1, . . . , xd]].

The first inclusion can be seen to be flat by the local criterion of flatness: indeed
a short computation using the Koszul complex resolution of the first factor yields
that

Tor
Kp[[xp

1,...,x
p
d]]

i (Kp,K[[xp1, . . . , x
p
d]]) = 0 for all i > 0

For the second inclusion, the monomials in the variables xi in which each exponent
is less than p form a basis for K[[x1, . . . , xd]] as a K[[xp1, . . . , x

p
d]]-module, hence the

inclusion is free, therefore flat. �

Exercise 21.3. Let R = Z/2Z[x2, xy, y2]. Verify that the Frobenius homomor-
phism f : R −→ R is not flat.

Exercise 21.4. Find a ring of prime characteristic such that R is flat over f(R),
but R is not flat over R via f (i.e., R is not regular).

Definition 21.5. Let M be a module over a ring R of characteristic p > 0. Then
fe

M denotes M with the R-module structure obtained via restriction of scalars
along the homomorphism fe : R −→ R, that is,

r ·m = fe(r)m = rp
e

m

for r ∈ R and m ∈ fe

M . In particular, f
e

R denotes R viewed as an R-module via
fe : R −→ R.

The following is a generalization of Theorem 21.2. The implication (1) =⇒ (2)
was proved by Peskine and Szpiro [127]; Herzog [68] proved the converse shortly
thereafter.

Theorem 21.6 (Peskine-Szpiro, Herzog). Let R be a Noetherian ring of charac-
teristic p > 0 and M a finitely generated R-module. The following are equivalent:

(1) pdRM <∞;
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(2) TorRi (M,f
e

R) = 0 for all i > 0 and all (equivalently, infinitely many) e > 0.

There are two ways in which the Frobenius is used in conjunction with local
cohomology theory. The first is through a natural Frobenius action on local co-
homology modules, and the second is via Frobenius powers of ideals. The second
approach has been very effective over regular rings in proving vanishing theorems,
and for studying associated primes of local cohomology modules. We discuss each
approach in turn in the remaining two subsections.

Frobenius action on local cohomology modules

21.7. Let ϕ : R −→ S be a ring homomorphism. If a is an ideal of R, then ϕ
induces a map

Hi
a(R) −→ Hi

aS(S).

In particular, if R has characteristic p > 0, then the Frobenius f : R −→ R induces
a map

Hi
a(R) −→ Hi

a[p](R) = Hi
a(R),

which we call the Frobenius action on Hi
a(R) and, abusing notation, denote by f .

Note that f : Hi
a(R) −→ Hi

a(R) is a map of Abelian groups, but is not an R-module
homomorphism in general.

Another way to consider f : Hi
a(R) −→ Hi

a(R) is as follows. The Frobenius
action on R extends to an action on any localization W−1R of R, via the formula

f
( r
w

)
=
rp

wp
, where r ∈ R and w ∈W .

Let a = (x1, . . . , xn) be an ideal of R. The local cohomology modules Hi
a(R) may

be computed as the cohomology modules of the stable Koszul complex (7.11)

0 −→ R −→
⊕

i

Rxi −→
⊕

i<j

Rxixj −→ · · · −→ Rx1···xn −→ 0.

As the modules in this complex have a natural Frobenius action that commutes
with the localisation maps in the complex, so do its cohomology modules Hi

a(R).

Example 21.8. Let R = K[x1, . . . , xd] be a polynomial ring over a field K of
characteristic p > 0, and let m denote the homogeneous maximal ideal of R. Since
R is Cohen-Macaulay, the modules Hi

m(R) are zero for i < d. We examine the
Frobenius action on Hd

m(R). By Corollary 7.14 we have

Hd
m(R) =

Rx1···xd∑
iRx1···bxi···xd

.

As a K-vector space, the module Hd
m(R) is spanned by the elements
[

1

xn1
1 · · ·xnd

d

]
,

where ni > 0 for all 1 6 i 6 d. The Frobenius action f on Hd
m(R) is a group

homomorphism under the additive group structure on Hd
m(R) and satisfies

f :

[
λ

xn1
1 · · ·xnd

d

]
7−→

[
λp

xpn1

1 · · ·xpnd

d

]
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for λ ∈ K. Note that f is injective in this example, and that it is a K-vector
space homomorphism if and only if K = Z/pZ. The module Hd

m(R) is supported
in degrees j 6 −d, and

f :
[
Hd

m(R)
]
j
−→

[
Hd

m(R)
]
pj
.

Example 21.9. Let R = K[x0, . . . , xd] be a polynomial ring over a field K of
characteristic p > 0, and m its homogeneous maximal ideal. Let h ∈ m be a homo-
geneous polynomial of degree n > d + 2. Let S = R/(h), which is a hypersurface
of dimension d. We shall see that the Frobenius action on Hd

m(S) is not injective.
The short exact sequence of graded R-modules

0 −−−−→ R(−n)
h−−−−→ R −−−−→ S −−−−→ 0

induces a long exact sequence of local cohomology modules, the nonzero part of
which is

0 −−−−→ Hd
m(S) −−−−→ Hd+1

m (R(−n))
h−−−−→ Hd+1

m (R) −−−−→ 0.

Examining the graded pieces of this exact sequence, we get
[
Hd

m(S)
]
n−d−1

6= 0 and
[
Hd

m(S)
]
>n−d−1

= 0.

Since n− d− 1 > 0, it follows that Frobenius

f :
[
Hd

m(S)
]
n−d−1

−→
[
Hd

m(S)
]
p(n−d−1)

= 0

must be the zero map.

Exercise 21.10. Let S = K[x, y]/(xy). Determine K-vector space bases for the
graded components of H1

m(S). If K has characteristic p > 0, describe the Frobenius
action on H1

m(S).

Exercise 21.11. Let K be a field of characteristic p > 3, and set

R = K[x, y]/(x2 + y2) and S = K[x, y]/(x3 + y3).

Show that Frobenius is injective on H1
m(R) but not on H1

m(S).

The Frobenius action on local cohomology modules was used by Hochster-Roberts
[76] in their proof that various rings of invariants are Cohen-Macaulay, and by
Smith in her work on F -rational rings [148].

We next use the Frobenius action on local cohomology modules to prove the
following theorem:

Theorem 21.12. Let (R,m) be a local ring of characteristic p > 0 and let x1, . . . , xd
be a system of parameters for R. Then

(x1 · · ·xd)t /∈ (xt+1
1 , . . . , xt+1

d )R

for each positive integer t.

Proof. If the assertion is false, there exist ri ∈ R and t > 1 such that

(x1 · · ·xd)t = r1x
t+1
1 + · · ·+ rdx

t+1
d .

Using the Čech complex on x1, . . . , xd to compute Hd
m(R), this implies that

η =

[
1

x1 · · ·xd

]
=

[
∑

i

ri
(x1 · · · x̂i · · ·xd)t+1

]
= 0.
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But then fe(η) = 0 for all e > 1. Since every element of Hd
m(R) has the form

[
a

(x1 · · ·xd)pe

]
= afe(η)

for some a ∈ R and e > 1, this implies that Hd
m(R) = 0, a contradiction. �

The proof of the previous theorem illustrates a basic strategy of positive charac-
teristic methods: start with an equation which is somewhat unlikely (η = 0 in the
situation above); apply Frobenius repeatedly to arrive at infinitely many equations,
(F e(η) = 0 for all e) which, put together, are downright impossible!

Remark 21.13. Let x1, . . . , xd be a system of parameters for a local ring R.
Hochster’s monomial conjecture states that

(x1 · · ·xd)t /∈ (xt+1
1 , . . . , xt+1

d )R

for all positive integers t. We saw a proof of this in the case that R has positive
characteristic. It is also known to be true for rings containing a field of character-
istic zero, and Heitmann recently proved it for local rings of mixed characteristic
of dimension at most three, [66]. It remains open for mixed characteristic rings of
higher dimension, and is equivalent to several other conjectures such as the direct
summand conjecture (which states that regular local rings are direct summands
of their module-finite extension rings), the canonical element conjecture, and the
improved new intersection conjecture, see [72]. Some related conjectures includ-
ing Auslander’s zerodivisor conjecture and Bass’ conjecture were proved by Paul
Roberts, [133].

Let R be a local ring or an N-graded ring over a field R0. Hartshorne asked
whether there exists a finitely generated Cohen-Macaulay R-module M (graded,
in the case R is graded) with dimM = dimR. Such a module has come to be
known as a small Cohen-Macaulay module—the word “small” here refers to the
finite generation condition on M . For local rings R containing a field, Hochster [70]
proved the existence of big Cohen-Macaulay modules, i.e., modules M which are
Cohen-Macaulay with dimM = dimR, but are not necessarily finitely generated.
In [75] Hochster and Huneke proved that every local ring containing a field has a
big Cohen-Macaulay algebra.

Exercise 21.14. If (R,m) is a local ring which has a big Cohen-Macaulay module,
prove that the monomial conjecture is true for every system of parameters for R.

If R is an excellent domain of dimension at most two, then the integral closure
of R is a small Cohen-Macaulay module. For rings of dimension greater than
two, very little is known about the existence of small Cohen-Macaulay modules.
The Frobenius action on local cohomology gives us affirmative answers in some
cases, Theorem 21.15 and, more generally, Exercise 21.17. This was discovered
independently by Hartshorne, by Peskine-Szpiro, and by Hochster.

Theorem 21.15. Let R be an N-graded domain of dimension three, which is finitely
generated over a perfect field R0 = K of characteristic p > 0. Then R has a small
Cohen-Macaulay module.

We first record a preliminary result:

Proposition 21.16. Let (R,m) be a local domain which is a homomorphic image
of a Gorenstein ring. Let M be a finitely generated torsion-free R-module such that
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Mp is Cohen-Macaulay for all prime ideals p ∈ SpecR \ {m}. Then Hi
m(M) has

finite length for all i < dimM = dimR.

Proof. By Matlis duality, specifically Theorem A.38 and Lemma A.30, and local
duality, Theorem 18.14, it suffices to show that the R-module

Hi
m(M)∨ ∼= ExtdimR−i

R (M,ωR)

has finite length. Since ExtdimR−i
R (M,ωR) is a finitely generated R-module, this is

equivalent to showing that the Rp-module

ExtdimR−i
R (M,ωR)p = ExtdimR−i

Rp
(Mp, ωRP

)

vanishes for all p ∈ SpecR \ {m}. Another application of local duality, now over
Rp, yields

ExtdimR−i
Rp

(Mp, ωRP
) ∼= H

dimRp−dimR+i
pRp

(Mp)
∨.

The vanishing of the latter module follows from the fact that

dimRp − dimR + i < dimRp = dimMp

and the hypothesis that Mp is Cohen-Macaulay. �

Proof of Theorem 21.15. Since R is a finitely generated domain over a field, the
integral closure R′ of R is a finitely generated R-module. Replacing R by R′, we
may assume that R is a normal domain. This implies that H0

m(R) = H1
m(R) = 0

and, using Proposition 21.16, that H2
m(R) has finite length.

Since K is perfect, f
e

R is a finitely generated R-module for all e ∈ N. Also, since
K is perfect, the length of a module is unchanged under restriction of scalars and
therefore the length of

fe

Hi
m(R) ∼= Hi

m(f
e

R)

does not depend on e. We note how the grading on fe

R interacts with restriction
of scalars: if

m ∈
[
fe

R
]
n

and r ∈ Rj , then r ·m = rp
e

m ∈
[
fe

R
]
jpe+n

.

Hence for each e, the R-module f
e

R is a direct sum of the pe modules

We,i = Ri +Rpe+i +R2pe+i +R3pe+i + · · · ,
where 0 6 i 6 pe − 1. Note that

H2
m(f

e

R) = H2
m(We,0)⊕H2

m(We,1)⊕ · · · ⊕H2
m(We,pe−1).

This module has constant length as e gets large, so there exists We,i 6= 0 with

H2
m(We,i) = 0.

But then We,i is a small Cohen-Macaulay module for R. �

Exercise 21.17. Let (R,m) be an N-graded domain, finitely generated over a
perfect field R0 = K of characteristic p > 0. Let M be a finitely generated graded
torsion-free R-module, such that Mp is Cohen-Macaulay for all p ∈ SpecR \ {m}.
Prove that R has a small Cohen-Macaulay module.

The Frobenius functor and a vanishing theorem
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Another way to use the Frobenius endomorphism to understand Hi
a(R) is via

Frobenius powers of ideals—the Frobenius powers of an ideal are a sequence of
ideals cofinal with the (ordinary) powers.

Definition 21.18. Let a = (x1, . . . , xn) be an ideal of a ring R of characteristic
p > 0. The ideals

a[pe] = (xp
e

1 , . . . , x
pe

n )R

are called the Frobenius powers (or, informally, the bracket powers) of a.

Exercise 21.19. Check that the ideals a[pe] do not depend on the choice of gener-
ators for a.

Remark 21.20. If a is generated by n elements, then

anp
e ⊆ a[pe] ⊆ ap

e

.

Therefore, the sequence of bracket powers of a is cofinal with the sequence of ordi-
nary powers, and so it can be used to compute local cohomology:

Hi
a(M) = lim−→ExtiR(R/a[pe],M),

see Remark 7.8.

A natural way to obtain the Frobenius powers of an ideal is to apply a base
change along Frobenius to the R-module R/a, as described next. Recall that for
any homomorphism R −→ S and any R-module M , the base change S ⊗RM has
a natural S-module structure.

Definition 21.21. The Frobenius functor (or Peskine-Szpiro functor) is a functor
F from the category of R-modules to the category of R-modules, which takes a
module M to the module

F (M) = fR⊗RM,

[127, Définition I.1.2]. More generally, we define F e(M) = fe

R⊗RM .

Note that
F e(R) = fe

R⊗R R ∼= R

as R-modules, and if ϕ : Rs −→ Rt is given by a matrix [aij ] with respect to some

choice of bases for Rs and Rt, then F e(ϕ) : Rs −→ Rt is given by the matrix [ap
e

ij ].

This implies that if M is finitely generated, so is F e(M).

Remark 21.22. For an ideal a = (x1, . . . , xn) of R, consider the exact sequence

Rn
[x1 ... xn]−−−−−−→ R −−−−→ R/a −−−−→ 0.

Applying F e(−), the right exactness of tensor gives us the exact sequence

Rn
[xpe

1 ... xpe

n ]−−−−−−−−→ R −−−−→ F e(R/a) −−−−→ 0,

which shows that F e(R/a) ∼= R/a[pe]. This can also be seen via the formulas

F e(R/a) =fe

R ⊗R R/a ∼= R/fe(a)R = R/a[pe]

If R is regular, then F is an exact functor by Theorem 21.2. Even when R is not
regular, Theorem 21.6 implies the following:

Proposition 21.23. Let R be a Noetherian ring of prime characteristic p > 0, and
let M be a finitely generated R-module of finite projective dimension. Then, for all
e ∈ N,
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(1) pdR F
e(M) = pdRM ; and

(2) AssF e(M) = AssM .

Proof. We may assume that R is local. If P• is a minimal free resolution of M ,
Theorem 21.6 implies that F e(P•) is a free resolution of F e(M). It is, in fact, a
minimal free resolution, since the matrices giving the maps in F e(P•) have entries
in m[pe], so (1) follows. Localizing at a given prime, (2) reduces to the verification
that over a local ring (R,m) the maximal ideal is an associated prime of M if and
only if it is an associated prime of F e(M). Since M has finite projective dimension,
m ∈ AssM if and only if pdRM = depthR, and likewise for F e(M). The result
now follows from (1). �

This proposition is a key ingredient in the following vanishing theorem of Peskine-
Szpiro, [127, Proposition III.4.1], from a paper in which they proved important cases
of several conjectures in local algebra.

Theorem 21.24 (Peskine-Szpiro). Let R be a regular domain of characteristic p.
If a ⊂ R is an ideal such that R/a is Cohen-Macaulay, then

Hi
a(R) = 0 for i 6= height a.

Proof. We have seen that Hi
a(R) = 0 for all i < height a = depthR(a,M) cf. Theo-

rem 9.1. There is no loss of generality in assuming that (R,m) is a regular local ring.
Recall that R/a[pe] ∼= F e(R/a) from Remark 21.20. Using Proposition 21.23(1), the
Auslander-Buchsbaum formula, and the assumption that R/a is Cohen-Macaulay,
we see that

pdR R/a
[pe] = pdRR/a = dimR− depthR/a = dimR− dimR/a = height a.

Thus for all i > height a, we have ExtiR(R/a[pe], R) = 0 and hence

Hi
a(R) = lim−→ExtiR(R/a[pe], R) = 0.

�

The following exercise gives an extension of Theorem 21.24. For another exten-
sion, due to Lyubeznik, see Theorem 22.1.

Exercise 21.25. Let R be a Noetherian ring of characteristic p > 0, and a be an
ideal such that R/a has finite projective dimension. Use Corollary 21.23 to show
that

Hi
a(R) = 0 for all i > depthR− depthR/a.

The assertion of Theorem 21.24 does not hold if, instead, R is a regular ring
of characteristic zero, by the following example due independently to Hartshorne-
Speiser [64, Example 5, page 75] and to Hochster.

Example 21.26. Let R = K[u, v, w, x, y, z] be a polynomial ring over a field K,
and a be the ideal generated by the size two minors of the matrix

X =

(
u v w
x y z

)
,

i.e., a = (∆1,∆2,∆3) where

∆1 = vz − wy, ∆2 = wx − uz, ∆3 = uy − vx.
Then height a = 2, so H2

a(R) 6= 0. Also, R/a is a Cohen-Macaulay ring.



182

Positive Characteristic: If K is a field of characteristic p > 0, then Theo-
rem 21.24 implies that H3

a(R) = 0.
Characteristic zero: The groupG = SL2(K) acts onR as in Example 10.30 where
n = 2 and d = 3. The ring of invariants for this action is RG = K[∆1,∆2,∆3]. If
n = (∆1,∆2,∆3)R

G denotes the homogeneous maximal ideal of RG, then H3
n(RG)

is nonzero—RG is a polynomial ring of dimension three, the three minors being
algebraically independent over K. Since K has characteristic zero, G is linearly
reductive, and hence RG is a direct summand of R, i.e., R ∼= RG ⊕ M for an
RG-module M . But then

H3
n(R) ∼= H3

n(RG)⊕H3
n(M),

so the local cohomology module H3
a(R) = H3

n(R) is nonzero as well.
Consequently the cohomological dimension cd(R, a) depends on the characteris-

tic of the ground field:

cd(R, a) =

{
3 if K has characteristic 0,

2 if K has characteristic p > 0.

In Example 22.5 we will construct a local cohomology module such that there
are infinitely many choices of the prime characteristic for which this module is zero,
and infinitely many for which it is nonzero.

Remark 21.27. In general, no algorithm exists to determine whether Hi
a(M) is

zero, even whenM is a finitely generated module over a polynomial ring R. However
the situation is much better in the case M = R. If R is a regular ring of prime
characteristic p > 0 and a is an ideal of R, Lyubeznik [106, Remark 2.4] gave the
following algorithm to determine if a local cohomology module Hi

a(R) is zero:
Recall from Remark 21.20 that

Hi
a(R) = lim−→ExtiR(R/a[pe], R),

where the maps in the direct limit system are induced by the natural surjections

R/a[pe+1] −→ R/a[pe].

Compositions of these maps gives us

βe : ExtiR(R/a, R) −→ ExtiR(R/a[pe], R).

Since R is Noetherian, the sequence of ideals

kerβ1 ⊆ kerβ2 ⊆ kerβ3 ⊆ . . .
stabilizes, and let r be the least integer such that kerβr = kerβr+1. Then Hi

a(R)
is zero if and only if

kerβr = ExtiR(R/a, R).

For a polynomial ring R over a field of characteristic 0, Walther gave an algorithm
to determine if Hi

a(R) is zero, and more generally, to compute a presentation for
Hi

a(R) as a module over a Weyl algebra, see [154].
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Lecture 22. Some curious examples (AS)

In Example 21.26 we saw that local cohomology may behave quite differently in
characteristic 0 and in characteristic p. In Example 22.5 we construct a local coho-
mology module which is zero for infinitely many choices of the prime characteristic
p, and also nonzero for infinitely many p. We will use the following theorem of
Lyubeznik, [109, Theorem 1.1]:

Theorem 22.1 (Lyubeznik). Let (R,m) be a regular local ring of dimension d con-
taining a field of positive characteristic, and let a be an ideal of R. Then Hi

a(R) = 0
if and only if there exists an integer e > 1 such that the eth Frobenius iteration

fe : Hd−i
m (R/a) −→ Hd−i

m (R/a)

is the zero map.

Sketch of proof. Recall that

Hi
a(R) = lim−→

e

ExtiR(R/a[pe], R) ∼= lim−→
e

F e
(
ExtiR(R/a, R)

)
,

so Hi
a(R) = 0 if and only if there exists an integer e such that

ExtiR(R/a, R) −→ F e
(
ExtiR(R/a, R)

)

is the zero map. Taking Matlis duals, this is equivalent to the following map being
zero:

F e
(
Hd−i

m (R/a)
) ∼= Hd−i

m (R/a)⊗Rf
e

R −→ Hd−i
m (R/a).

This map sends η ⊗ r to rfe(η), so it is zero precisely if fe(η) = 0 for all elements
η ∈ Hd−i

m (R/a). �

Exercise 22.2. Let R = K[w, x, y, z] where K is a field of prime characteristic, and
let

a = (x3 − w2y, x2z − wy2, xy − wz, y3 − xz2).

Note that R/a ∼= K[s4, s3t, st3, t4] as in Example 10.18. Use Theorem 22.1 to prove
that H3

a(R) = 0.

We next recall some facts about Segre embeddings of products of projective
varieties.

Definition 22.3. Let A and B be N-graded rings over a field A0 = B0 = K. The
Segre product of A and B is the ring

A#B =
⊕

n>0

An ⊗K Bn

which is a subring, in fact a direct summand, of the tensor product A ⊗K B. The
ring A#B has a natural N-grading in which [A#B]n = An ⊗K Bn. If U ⊆ Pr

and V ⊆ Ps are projective varieties with homogeneous coordinate rings A and B
respectively, then their Segre product A#B is a homogeneous coordinate ring for
the Segre embedding U × V ⊆ Prs+r+s.

If M and N are Z-graded modules over A and B respectively, their Segre product
is the A#B-module

M#N =
⊕

n∈Z

Mn ⊗K Nn with [M#N ]n = Mn ⊗K Nn.
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Remark 22.4. Let A and B be normal N-graded rings over a field K. If the ring
A ⊗K B is normal, which is always the case when K is algebraically closed, then
so is its direct summand A#B. For reflexive Z-graded modules M and N over
A and B respectively, we have the Künneth formula for local cohomology due to
Goto-Watanabe, [48, Theorem 4.1.5]:

Hk
mA#B

(M#N) ∼=
(
M#Hk

mB
(N)

)
⊕
(
Hk
mA

(M)#N
)

⊕
⊕

i+j=k+1

(
Hi
mA

(M)#Hj
mB

(N)
)

for all k > 0.

If dimA = r > 1 and dimB = s > 1, the above formula shows that dimR = r+s−1.

Example 22.5. This is due to Hartshorne-Speiser, [64, Example 3, page 75],
though we present a different argument based on Theorem 22.1. Let K be a field
of prime characteristic p 6= 3 and, as in Example 10.27, let

T = K[x0, x1, x2, y0, y1]/(x
3
0 + x3

1 + x3
2).

Let S be the subring of T which is generated, as a K-algebra, by the six monomials
xiyj. The ring S is the Segre product of the hypersurface

A = K[x0, x1, x2]/(x
3
0 + x3

1 + x3
2)

and the polynomial ring B = K[y0, y1]. Note that ProjA = E is an elliptic curve
and ProjB = P1, so ProjS = E × P1.

Let R = K[zij : 0 6 i 6 2, 0 6 j 6 1] be a polynomial ring. Then R has a
K-algebra surjection onto S where

zij 7−→ xiyj.

Let a be the kernel of this surjection, i.e., R/a ∼= S. It is not hard to see that a is
generated by the seven polynomials

z10z21 − z20z11, z20z01 − z00z21, z00z11 − z10z01,
z3−k
10 zk11 + z3−k

20 zk21 + z3−k
30 zk31 for 0 6 k 6 3.

We shall use the Künneth formula to computeH2
mS

(S). Note that the Čech complex

0 −→ A −→ Ax0 ⊕Ax1 −→ Ax0x1 −→ 0

may be used to compute H2
mA

(A), and shows that [H2
mA

(A)]0 is the 1-dimensional
K-vector space spanned by

[
x2

2

x0x1

]
∈ Ax0x1

Ax0 +Ax1

.

The Künneth formula now shows that the only nonzero graded component of
H2

mS
(S) is

[H2
mS

(S)]0 ∼= [H2
mA

(A)]0#[B]0,

which is the vector space spanned by [x2
2/x0x1]⊗1. In particular, S is a normal do-

main of dimension 3 which is not Cohen-Macaulay. SinceH2
mS

(S) is a 1-dimensional
vector space, an iteration fe of the Frobenius map

f : H2
mS

(S) −→ H2
mS

(S)
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is nonzero if and only if f is nonzero, and this is equivalent to the condition that

f

([
x2

2

x0x1

])
=

[
x2p

2

xp0x
p
1

]
6= 0 in

Ax0x1

Ax0 +Ax1

.

If x2p
2 /x

p
0x
p
1 ∈ Ax0 +Ax1 , then there exist a, b ∈ A and N ≫ 0 such that

x2p
2

xp0x
p
1

=
a

xN0
+

b

xN1
,

so x2p
2 (x0x1)

N−p ∈ (xN0 , x
N
1 )A. Since A is Cohen-Macaulay, this is equivalent to

x2p
2 ∈ (xp0, x

p
1)A.

We determine the primes p for which x2p
2 is an element of the ideal (xp0, x

p
1)A. If

p = 3k + 2, then

x2p
2 = x6k+4

2 = −x2(x
3
0 + x3

1)
2k+1 ∈ (x3k+3

0 , x3k+3
1 )A ⊆ (xp0 , x

p
1)A.

On the other hand, if p = 3k + 1, then the binomial expansion of

x2p
2 = x6k+2

2 = x2
2(x

3
0 + x3

1)
2k,

when considered modulo (xp0 , x
p
1), has a nonzero term

(
2k

k

)
x2

2x
3k
0 x3k

1 =

(
2k

k

)
x2

2x
p−1
0 xp−1

1 ,

which shows that x2p
2 /∈ (xp0, x

p
1)A. We conclude that

f : H2
mS

(S) −→ H2
mS

(S)

is the zero map if p ≡ 2 mod 3, and is nonzero if p ≡ 1 mod 3. Using Theo-
rem 22.1, it follows that

H4
a(R) 6= 0 if p ≡ 1 mod 3, H4

a(R) = 0 if p ≡ 2 mod 3.

Exercise 22.6. Let K be a field, and consider homogeneous polynomials g ∈
K[x0, . . . , xm] and h ∈ K[y0, . . . , yn] where m,n > 1. Let

A = K[x0, . . . , xm]/(g) and B = K[y0, . . . , yn]/(h).

Prove that the ringA#B is Cohen-Macaulay if and only if deg g 6 m and deg h 6 n.

Remark 22.7. Let E be a smooth elliptic curve over a field K of characteristic
p > 0. There is a Frobenius action

f : H1(E,OE) −→ H1(E,OE)

on the 1-dimensional cohomology group H1(E,OE). The elliptic curve E is super-
singular (or has Hasse invariant 0) if f is zero, and is ordinary (Hasse invariant
1) otherwise. If E = ProjA, then the map f above is precisely the action of the
Frobenius on

H1(E,OE) = [H2
m(A)]0

For example, the cubic polynomial x3
0 + x3

1 + x3
2 defines a smooth elliptic curve E

in any characteristic p 6= 3. Our computation in Example 22.5 says precisely that
E is supersingular for primes p ≡ 2 mod 3, and is ordinary if p ≡ 1 mod 3.

Let g ∈ Z[x0, x1, x2] be a cubic polynomial defining a smooth elliptic curve
EQ ⊂ P2

Q. Then the Jacobian ideal of g in Q[x0, x1, x2] is primary to the maximal

ideal (x0, x1, x2). Hence, after localizing at an appropriate nonzero integer u, the
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Jacobian ideal of g in Z[u−1][x0, x1, x2] contains high powers of x0, x1, and x2.
Consequently, for all but finitely many prime integers p, the polynomial g mod p
defines a smooth elliptic curve Ep ⊂ P2

Z/p. If the elliptic curve EC ⊂ P2
C has complex

multiplication, then it is a classical result [28] that the density of the supersingular
prime integers p, i.e.,

lim
n−→∞

|{p prime : p 6 n and Ep is supersingular}|
|{p prime : p 6 n}|

is 1/2, and that this density is 0 if EC does not have complex multiplication. How-
ever, even if EC does not have complex multiplication, the set of supersingular
primes is infinite by [34]. It is conjectured that if EC does not have complex multi-
plication, then the number of supersingular primes less than n grows asymptotically
like C(

√
n/ logn), where C is a positive constant, [95].

Let a ⊂ R = Z[zij : 0 6 i 6 2, 0 6 j 6 n] be the ideal defining the Segre
embedding E × Pn ⊂ P3n+2. Imitating the methods in Example 22.5, we shall see
that

cd(R/pR, a) =

{
2n+ 1 if Ep is supersingular,

3n+ 1 if Ep is ordinary.

The ring R/(a + pR) may be identified with the Segre product A#B where

A = Z/pZ[x0, x1, x2]/(g) and B = Z/pZ[y0, . . . , yn].

Let p be a prime for which Ep is smooth, in which case the ring A ⊗Z/pZ B, and
hence its direct summand A#B, are normal. The Künneth formula shows that

Hi
m(R/(a + pR)) =

{
Z/pZ if i = 2,

0 if 3 6 i 6 n+ 1.

The Frobenius action on the one-dimensional vector space H2
m(R/(a+pR)) may be

identified with the Frobenius

H1(Ep,OEp)
f−→ H1(Ep,OEp),

which is the zero map precisely when Ep is supersingular. Consequently every
element of H2

m(R/(a + pR)) is killed by Frobenius (equivalently, by a Frobenius
iteration) if and only if Ep is supersingular. The assertion now follows from Theo-
rem 22.1.

Exercise 22.8. Let R = Z/pZ[x, y, z]/(x3 + xy2 + z3) and

η =

[
z2

xy

]
∈ Rxy
Rx +Ry

= H1
m(R).

For which primes p is f(η) = 0, i.e., for which p is the elliptic curve ProjR super-
singular? (Hint: Consider p mod 6.)

Associated primes of local cohomology modules

As we have seen, local cohomology modules Hi
a(R) are often not finitely gener-

ated as R-modules. However they do possess useful finiteness properties in certain
cases, e.g., for a local ring (R,m), the modules Hi

m(R) satisfy the descending chain
condition. This implies, in particular, that for all i > 0,

HomR

(
R/m, Hi

m(R)
) ∼= 0 :Hi

m(R) m
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is a finitely generatedR-module. Grothendieck conjectured that for all ideals a ⊂ R,
the modules

HomR

(
R/a, Hi

a(R)
) ∼= 0 :Hi

a(R) a

are finitely generated, [55, Exposé XIII, page 173]. In [61, § 3] Hartshorne gave a
counterexample to this conjecture, as we saw in Example 20.49. A related ques-
tion on the torsion in local cohomology modules was raised by Huneke [79] at the
Sundance Conference in 1990, and will be our focus for the rest of this lecture.

Question 22.9 (Huneke). Is the number of associated prime ideals of a local
cohomology module Hi

a(R) always finite?

This issue were discussed briefly in Lecture 9. The first general results were
obtained by Huneke and Sharp, [81, Corollary 2.3]:

Theorem 22.10 (Huneke-Sharp). Let R be a regular ring containing a field of
positive characteristic, and a ⊂ R an ideal. Then for all i > 0,

AssHi
a(R) ⊆ Ass ExtiR(R/a, R).

In particular, AssHi
a(R) is a finite set.

Proof. Let p ∈ AssHi
a(R). Localizing at p, we assume that R is local with maximal

ideal p. The assumption p ∈ AssHi
a(R) implies that the socle of Hi

a(R) is nonzero.
By Remark 21.20

Hi
a(R) = lim−→ExtiR(R/a[pe]),

so ExtiR(R/a[pe]) must have a nonzero socle for some integer e. But then p is an

associated prime of ExtiR(R/a[pe], R). Since R is regular,

F e
(
ExtiR(R/a, R)

) ∼= ExtiR(R/a[pe], R).

But

Ass ExtiR(R/a[pe], R) = Ass ExtiR(R/a, R)

by Proposition 21.23, completing the proof. �

Remark 22.11. The proof of the Huneke-Sharp theorem relies heavily on the flat-
ness of the Frobenius endomorphism, which characterizes regular rings of positive
characteristic, Theorem 21.2. The containment

AssHi
a(R) ⊆ Ass ExtiR(R/a, R)

may fail for regular rings of characteristic zero: consider a ⊂ R as in Exam-
ple 21.26, where R is a polynomial ring over a field of characteristic zero. Then
Ext3R(R/a, R) = 0 since pdR R/a = 2. However, as we saw, H3

a(R) is nonzero.

Though AssHi
a(R) may not be a subset of AssExtiR(R/a, R), Question 22.9

does have an affirmative answer for all unramified regular local rings by combining
the result of Huneke-Sharp with the following two theorems of Lyubeznik, [105,
Corollary 3.6 (c)] and [108, Theorem 1];

Theorem 22.12 (Lyubeznik). Let R be a regular ring containing a field of char-
acteristic zero and a be an ideal of R. Then for every maximal ideal m of R, the set
of associated primes of a local cohomology module Hi

a(R) contained in m is finite.
If the regular ring R is finitely generated over a field of characteristic zero, then

AssHi
a(R) is a finite set.
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To illustrate the key point here, consider the case where R = C[x1, . . . , xn], and
let D be the ring of C-linear differential operators on R. It turns out that D is
left and right Noetherian, that Hi

a(R) is a finitely generated D-module, and con-
sequently that AssHi

a(R) is finite. Lyubeznik’s result below also uses D-modules,
though the situation in mixed characteristic is more subtle.

Theorem 22.13 (Lyubeznik). If a is an ideal of an unramified regular local ring
of mixed characteristic, then AssHi

a(R) is a finite set.

In general Lyubeznik conjectured that if a is an ideal of a regular ring R, then
Hi

a(R) has only finitely many associated primes, [105, Remark 3.7 (iii)]. This
remains open for ramified regular local rings of mixed characteristic, and also for
regular rings such as Z[x1, . . . , xd]; see [145] for some observations regarding this.

If M is a finitely generated R-module, then H0
a(M) may be identified with the

submodule of M consisting of elements which are killed by a power of the ideal
a, and consequently H0

a(M) is a finitely generated R-module. If i is the smallest
integer for which Hi

a(M) is not finitely generated, then the set AssHi
a(M) is also

finite, see [13, 90] and Remark 9.2. Other positive answers to Question 22.9 include
the following result of Marley, [112, Corollary 2.7]:

Theorem 22.14 (Marley). Let R be a local ring and M be a finitely generated R-
module of dimension at most three. Then AssHi

a(M) is finite for all ideals a ⊂ R.

In general AssHi
a(R) need not be a finite set, as we see from the following

example, [144, § 4]:

Example 22.15. Consider the hypersurface

R = Z[u, v, w, x, y, z]/(ux+ vy + wz)

and the ideal a = (x, y, z)R. We show that for every prime integer p, the local coho-
mology module H3

a(R) has a p-torsion element; consequently H3
a(R) has infinitely

many associated prime ideals.
Using the Čech complex on x, y, z to compute Hi

a(R), we have

H3
a(R) =

Rxyz
Ryz +Rzx +Rxy

.

For a prime integer p, the fraction

λp =
(ux)p + (vy)p + (wz)p

p

has integer coefficients, and is therefore an element of R. We claim that the element

ηp =

[
λp

(xyz)p

]
∈ H3

a(R)

is nonzero and p-torsion. Note that

p · ηp =

[
pλp

(xyz)p

]
=

[
up

(yz)p
+

vp

(zx)p
+

wp

(xy)p

]
= 0,

so all that remains to be checked is that ηp is nonzero. If ηp = 0, then there exist
ci ∈ R and an integer N ≫ 0 such that

λp
(xyz)p

=
c1

(yz)N
+

c2
(zx)N

+
c3

(xy)N
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Clearing denominators, this gives the equation

λp(xyz)
N−p = c1x

N + c2y
N + c3z

N .

We assign weights to the Z-algebra generators of the ring R as follows:

x : (1, 0, 0, 0), u : (−1, 0, 0, 1),

y : (0, 1, 0, 0), v : (0,−1, 0, 1),

z : (0, 0, 1, 0), w : (0, 0,−1, 1).

With this grading, λp is a homogeneous element of degree (0, 0, 0, p), and there is
no loss of generality in assuming that the ci are homogeneous. Comparing degrees,
we see that deg(c1) = (−p,N − p,N − p, p), i.e., c1 must be an integer multiple
of the monomial upyN−pzN−p. Similarly c2 is an integer multiple of vpzN−pxN−p

and c3 of wpxN−pyN−p. Consequently

λp(xyz)
N−p ∈ (xyz)N−p (upxp, vpyp, wpzp)R,

and so λp ∈ (upxp, vpyp, wpzp)R. After specializing u 7→ 1, v 7→ 1, w 7→ 1, this
implies that

xp + yp + (−1)p(x+ y)p

p
∈ (p, xp, yp) Z[x, y],

which is easily seen to be false.

This example, however, does not shed light on Question 22.9 in the case of local
rings or rings containing a field. Katzman [89] constructed the first examples to
demonstrate that Huneke’s question has a negative answer in these cases as well:

Example 22.16 (Katzman). Let K be an arbitrary field, and consider the hyper-
surface

R = K[s, t, u, v, x, y]/
(
sv2x2 − (s+ t)vxuy + tu2y2

)
.

Katzman showed that the local cohomology module H2
(x,y)(R) has infinitely many

associated prime ideals. To obtain a local example, one may localize at the homo-
geneous maximal ideal m = (s, t, u, v, x, y).

For n ∈ N, let
τn = sn + sn−1t+ · · ·+ tn

and

zn =

[
sxyn

uvn

]
∈ Ruv
Ru +Rv

= H2
(u,v)(R).

Exercises 22.17–22.19 show that ann(zn) = (u, v, x, y, τn)R. Consequently for every
n ∈ N, the module H2

(u,v)(R) has an associated prime pn of height 4 with

(u, v, x, y, τn) ⊆ pn ( m.

Exercise 22.20 shows that the set {pn}n∈N is infinite.

In the following four exercises, we use the notation of Example 22.16.

Exercise 22.17. Show that (u, v, x, y) ⊆ ann(zn).

Exercise 22.18. Let A be the subring of the ring R which is generated as a K-
algebra by s, t, vx = a, uy = b. If f ∈ K[s, t], show that fzn = 0 if and only if
fabn ∈ (an+1, bn+1)A. You may find the following multigrading useful:

deg s = (0, 0, 0), deg u = (1, 0, 1), deg x = (1, 0, 0),

deg t = (0, 0, 0), deg v = (0, 1, 1), deg y = (0, 1, 0).
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Exercise 22.19. Let A = K[s, t, a, b]/(sa2 − (s+ t)ab+ tb2). Show that

(an+1, bn+1)A :K[s,t] ab
n

is the ideal of K[s, t] generated by τn. This exercise completes the proof that

ann(zn) = (u, v, x, y, τn)R.

Exercise 22.20. Let K[s, t] be a polynomial ring over a field K and

τn = sn + sn−1t+ · · ·+ tn for n ∈ N.

If m and n are relatively prime integers, show that

rad(τm−1, τn−1) = (s, t).

Remark 22.21. Since the defining equation of the hypersurface factors as

sv2x2 − (s+ t)vxuy + tu2y2 = (svx − tuy)(vx− uy),
the ring in Example 22.16 is not an integral domain. In [146] Singh and Swanson
generalized Katzman’s construction to obtain families of examples which include
examples over normal domains and, in fact, over hypersurfaces with mild singular-
ities (e.g., rational singularities). We next record one of the examples from [146].

Example 22.22. Let K be an arbitrary field, and consider the hypersurface

T =
K[r, s, t, u, v, w, x, y, z](

su2x2 + sv2y2 + tuxvy + rw2z2
)

Then T is a unique factorization domain for which the local cohomology module
H3

(x,y,z)(T ) has infinitely many associated prime ideals. This is preserved if we

replace T by the localization at its homogeneous maximal ideal. The hypersurface
T has rational singularities if K has characteristic zero, and is F -regular in the case
of positive characteristic.
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Lecture 23. Computing localizations and local cohomology using
D-modules (AL)

This lecture deals with computational aspects of the theory of D-modules related
to local cohomology. (Here we assume D = An(K) and all D-modules are left.) One
basic observation is that the computation of local cohomology modules is obstructed
by the fact that, usually, they are not finitely generated as modules over the ring
of polynomials. Departing from classical commutative algebra and introducing
”slightly” non-commutative rings, the theory of D-modules makes it possible to
describe in a finite way many of the objects that require infinite data for their
representation in the commutative world.

The ultimate goal of this lecture is to describe a method for computing local
cohomology. This method relies on the algorithm that recovers the localized module
Rf of the polynomial ring R = K[x1, ..., xn], where f ∈ R \ {0}. This algorithm, in
turn, depends on having certain information about the roots of the Bernstein-Sato
polynomial (a.k.a. b-polynomial) of f . As applications of b-polynomials are not
limited to computing local cohomology, they shall make one of the central topics
of our discussion.

23.1. Bernstein-Sato polynomials.

Theorem 23.1. For every polynomial f∈ Rn(K) there are b(s) ∈ K[s] and Q(x, ∂, s) ∈
An(K)[s] such that

(23.1.1) b(s)fs = Q(x, ∂, s) · fs+1.

Proof. Let M be the free K(s)[x, f−1]-module generated by the symbol fs. It may
be viewed as a An(K(s))-module, derivation being defined naturally:

∂i · gfs = (∂ig + sg(∂if)f−1)fs, g ∈ K(s)[x, f−1].

It takes an argument similar to that of Theorem 17.15 to prove that M is a holo-
nomic An(K(s))-module.

Consider the sequence of An(K(s))-modules M ⊃ fM ⊃ f2M ⊃ .... Since M
is holonomic this sequence stabilizes: assume fd+1M = fdM . Then there is an
element T (s, x, ∂) ∈ An(K(s)) such that fs+d = T (s, x, ∂) · fs+d+1. Substituting
symbol s with s− d we get

fs = T (s− d, x, ∂) · fs+1.

Finally, we can clear the denominators, i.e. find b(s) ∈ K[s] such that Q(s, x, ∂) =
b(s)T (s− d, x, ∂) ∈ An(K)[s] as in the functional equation (23.1.1). �

The polynomials b(s) for which the equation (23.1.1) exists form an ideal in K[s].
The monic generator of this ideal is denoted by bf(s) and called the Bernstein-Sato
polynomial or simply the b-polynomial of f .

There is an algorithm for computing the b-polynomial in the general case due
to Oaku [122]. However, the complexity of the algorithm is high, since it employs
Gröbner bases techniques in the Weyl algebras.

For every nonzero f , the factor (s+1) is always present in its b-polynomial bf (s).
Indeed, the functional equation (23.1.1) should hold when s = 1, therefore, forcing
bf(−1) = 0. Moreover, it turns out that the b-polynomial can be factored over Q.

Theorem 23.2 (Kashiwara). For every nonzero f ∈ Rn(K), the roots of bf (s) are
negative rational numbers.



192

This is a less trivial result, whose proof can be looked up in either [88] or [8]. In
particular, that proof involves Hironaka’s desingularization theorem.

23.2. Examples of b-polynomials. Before we prove the existence of the (nonzero)
b-polynomial for any f , let us consider several examples that are easy to compute
by hand.

Example 23.3. Consider f = x ∈ R = R1 = K[x], then

(s+ 1)xs = ∂x · xs+1.

Therefore, bf (s) = s+ 1.

As a matter of fact the b-polynomial obtained in this example is rather common.

Theorem 23.4. The polynomial f ∈ R = Rn is regular if and only if bf(s) = s+1.

Proof. Let f be a regular polynomial, then R = 〈f, ∂f∂x1
, ..., ∂f∂xn

〉. Therefore, there
exist ci ∈ R, i = 0, ..., n, such that

1 = c0f + c1
∂f

∂x1
+ ...+ cn

∂f

∂xn
.

One may check that the following functional equation holds:

(s+ 1)fs = (c0(s+ 1) + c1∂1 + ...+ cn∂n) · fs+1.

The proof in the other direction is less trivial and may be looked up in [9]. �

Example 23.5. Let f = x2
1 + ...+x2

n ∈ R = Rn. Consider the first two derivatives
of fs+1 with respect to xi:

∂f

∂xi
= 2(s+ 1)xif

s,

∂2f

∂x2
i

= 4(s+ 1)sx2
i f
s−1 + 2(s+ 1)fs.

If ∆ = ∂2
1 + ...+ ∂2

n, then

∆ · fs+1 = 4(s+ 1)sfs + 2n(s+ 1)fs = 4(s+ 1)(s+
n

2
)fs.

Since f has a singularity at the origin, by Theorem 23.4, bf (s) 6= s+ 1. However,
every b-polynomial is divisible by s+1, hence, bf(s) is equal to (s+1)(s+n/2) that
was discovered above for it is the monic polynomial of minimal degree satisfying
the functional equation for f .

There are few formulas known for b-polynomials in special cases. For example, a
thorough treatment for the case of hyperplane arrangements is given in [157]. A lot
is known in the case of isolated singularities; below, we will consider polynomials
defining a hypersurface with a single quasi-homogeneous isolated singularity.

Recall that x0 ∈ f−1(0) is called an isolated singularity if there exists an open
neighborhood U ∋ x0 such that ∇f(x0) = 0, but ∇f(x) 6= 0 for all x ∈ U \ {x0}.
The point x0 is called a quasi-homogeneous isolated singularity , if in addition there
exists a vector field v =

∑
vi(x)∂f/∂xi such that vf = f .
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Theorem 23.6. For any quasi-homogeneous isolated singularity x0 there is a local
coordinate system with the origin at x0 such that

∑
aixi

∂f

∂xi
f = f,

where ai are positive rational numbers.

For proof see [135].
If there is only one singularity on the hypersurface f = 0, it is possible to make

a global analytic coordinate change such that the conclusion of the Theorem 23.6
holds. As a corollary, then, it follows that, in new coordinates, f is a linear combi-
nation of monomials xα satisfying

∑
aiαi = 1.

It is possible to calculate the b-polynomial for such a linear combination:

Theorem 23.7. Let f ∈ R = Rn be a polynomial with a single quasi-homogeneous
isolated singularity at the origin and

∑
aixi(∂f/∂xi) = f . Let λj be the eigenvalues

of v =
∑
aixi∂ on the (finite-dimensional) space R/R·∇f = R/(∂f/∂x1, ..., ∂f/∂xn).

Then the b-polynomial bf is equal to

(s+ 1)
∏

j

(s+ λj +
∑

i=1

nai),

where
∏̃

stands for the square-free product.

Example 23.8. Let us extend Example 23.5 by considering f = xmi
1 + ... + xmi

n ,
where mi ≥ 2. Then f together with the vector field v =

∑
(1/mi)xi∂i fits the

hypothesis of the Theorem 23.7. The quotient ring R/R · ∇f has the set {xαi | 0 ≤
αi ≤ mi − 2} as a basis of eigenvectors. Hence, the eigenvalues of v are

∑
αi/mi

and, since
∑
αi/mi +

∑
1/mi =

∑
(αi + 1)/mi,

bf (s) = (s+ 1)
∏̃

ν

(s+
n∑

i=1

νi
mi

),

where 1 ≤ νi ≤ mi − 1 for all i and
∏̃

indicates that the square-free product is
taken.

For example, let n = 2 and f = x3
1 + x4

2. Then v = 1
3x1∂1 + 1

4x2∂2 and

bf(s) = (s+ 1)(s+
1

3
+

1

4
)(s+

1

3
+

2

4
)(s+

1

3
+

3

4
)

(s+
2

3
+

1

4
)(s+

2

3
+

2

4
)(s+

2

3
+

3

4
)

= (s+ 1)(s+
7

12
)(s+

5

6
)(s+

11

12
)(s+

13

12
)(s+

7

6
)(s+

17

12
).

Macaulay 2 confirms the last calculation:

i1 : load "D-modules.m2"

i2 : A = QQ[x_1,x_2,Dx_1,Dx_2,
WeylAlgebra=>{x_1=>Dx_1,x_2=>Dx_2}];

i3 : bf = globalBFunction (x_1^3+x_2^4)

7 6 499 5 815 4 227563 3 ...
o3 = $s + 7$s + ---*$s + ---*$s + ------*$s + ...

24 24 6912 ...

o3 : QQ [$s]
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i4 : factorBFunction bf

5 17 13 7 ...
o4 = ($s + -)($s + 1)($s + --)($s + --)($s + --) ...

6 12 12 12 ...

o4 : Product

Exercise 23.9. (i) Compute bf (s) for f = xy, x3 + y3, x3 + xy.
(ii) Let fm = xm1 + . . .+ xmn ∈ Q[x1, . . . , xn]. Prove that

lim
m−→∞

inf ({α|bfm(α) = 0}) = −n.

23.3. Lyubeznik’s result. We know that the roots of bf are restricted to Q<0,
can we make any further statements in case there are additional conditions on the
polynomial f?

One of the most basic characteristics of a polynomial is its degree; let Bd =
{bf |f ∈ Rn(K), deg(f) ≤ d, char(K) = 0} be the set of possible b-polynomials for
polynomials of the degree at most d over any field K of characteristic 0.

Theorem 23.10 (Lyubeznik). The set Bd is finite for all d.

Proof. (Sketch) The idea of the proof is to consider the dense polynomial g =∑
aαx

α of degree d with parametric coefficients aα, |α| ≤ d. Viewed as an element
of Rn(Q(a)), the polynomial g has the b-polynomial bg(s) associated with it and
satisfies a functional equation

(23.10.1) bg(s)g
s = Q · gs+1,

where Q ∈ An(Q(aα))[s].
Let the polynomial E ∈ Q[aα] equal the common denominator of the coefficients

of Q. Now take a polynomial f =
∑
cαx

α with the specialized coefficients cα ∈ K.
If E(cα) 6= 0 then the b-polynomial bK

f divides bg, since the functional equation
23.10.1 can be specialized for these cα. The number of the monic divisors of a
univariate polynomial is finite.

The exceptional cases, i.e. such that E(cα) = 0, are treated inductively. We
consider the zero set Y = V (E) ⊂ X = ANQ , where ANQ is the affine Q-space
of dimension N equal to the number of the monomials of degree at most d. A
modification of our argument (laid out for X above) applied to each irreducible
component of Y (notice: dimY < dimX) leads to the proof of the theorem by
induction on the dimension. �

This result can be generalized by considering a polynomial F ∈ Rn(K[a]) with
parametric coefficients in the indeterminates a: the set BF of b-polynomials for
all possible specializations of the parameters a is finite. Moreover, it has been
conjectured by Lyubeznik [107] and proved in [97] that for a fixed b(s) ∈ BF the
set of all parameters a that produce b(s) as the b-polynomial is a constructible
subset of Spec(K[a]).

23.4. Localization. Let M be a holonomic D-module, for computational purposes
it is usually assumed that M is cyclic and is presented as the quotient M = D/I,
where I is a holonomic ideal in D. Let f ∈ R = K[x1, ..., xn]. We would like to
compute Rf ⊗M as a holonomic cyclic D-module, i.e. we would like to find an
ideal J ⊂ D such that Rf ⊗M ∼= D/J .
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There are several algorithms known that find such J , we shall mention two. In
case when M is f -saturated, i.e. f · m = 0 iff m = 0 for all m ∈ M , we refer
the reader to Walther’s paper [154] for a detailed description of the localization
algorithm. Here we point out the main steps of it.
• First of all, one wants to find JI(fs), the ideal of operators in D[s] annihilating

fs ⊗ 1 ∈ Rf [s]f
s ⊗M , where 1 is the cyclic generator of M = D/I and fs the

generator of Rf [s]f
s.

• Another component is the b-polynomial bIf (s) relative to the the ideal I — a
generalization of the usual b-polynomial — defined as the monic generator of the
ideal formed by all b(s) ∈ K[s] such that

b(s)fs ⊗ 1 = Q(x, ∂, s)(fs+1 ⊗ 1),

holds in the D[s]-module Rf [s]f
s⊗M for some Q(x, ∂, s) ∈ D[s]. This polynomial

exists if M is holonomic.
• The final step consists of finding the smallest integer root a of bIf (s) and

“plugging in” a for s in the generators of JI(fs). The obtained operators generate
J ⊂ D that we started our discussion with.

23.5. Local cohomology via Čech complex. Let X = Kn with the coordinate
ring R = K[x1, ..., xn] and Y = V (I), where I = (f1, ..., fd). To calculate Hk

I (R)

consider the following Čech complex:

0→ C0 → C1 → ...→ Cd → 0,

where

Ck =
⊕

1≤i1<...<ik≤d

Rfi1 ...fik

and the map Ck → Ck+1 is the alternating sum of maps

Rfi1 ...fik
→ Rfj1 ...fjk+1

,

which are zero if {i1, ..., ik} 6⊆ {j1, ..., jk+1} and are natural, i.e. send 1 7→ 1. The
signs in the sum are alternated in such a way that the sequence above is indeed a
complex.

The local cohomology groupsHk
I (R) are equal to the cohomology groupsHk(C•)

of the constructed Čech complex.
The complex C• enables us to compute the local cohomology algorithmically

viewing Ck as holonomic D-modules and the maps between them as D-linear maps.
An explicit algorithm for local cohomology is written out in [154] and depends on
the localization algorithm, which is used to calculate the components Rfi1 ...fik

of

Ck.
There is an alternative approach to computation of local cohomology using the

restriction functor in the D-module category developed in [124].
At the end, let us compute Hi

I(R) for i = 1, 3 with R = R6 and the ideal I as in
Example 19.30.

i5 : W = QQ[x_1..x_6, dx_1..dx_6,
WeylAlgebra => toList (1..6) / (i -> x_i => dx_i)];

i6 : I = minors(2, matrix{{x_1, x_2, x_3}, {x_4, x_5, x_6}})

o6 = ideal (- x x + x x , - x x + x x , - x x + x x )
2 4 1 5 3 4 1 6 3 5 2 6
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o6 : Ideal of W

i7 : LC = localCohom ({1,3}, I,
W^1 / ideal {dx_1, dx_2, dx_3, dx_4, dx_5, dx_6},
Strategy=>Walther, LocStrategy=>Oaku);

i8 : pruneLocalCohom LC

o8 = HashTable{1 => 0

3 => | x_4dx_4+x_5dx_5+x_6dx_6+6 ...

o8 : HashTable

This direct computation reconfirms the fact that H3
I (R) 6= 0, which was estab-

lished theoretically before.
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Lecture 24. Holonomic ranks in families of hypergeometric systems

In previous lectures, we have seen applications of D-modules to the theory of
local cohomology. In this lecture, we shall see an application of local cohomology to
certain D-modules. Specifically, associated to any affine semigroup ring is a family
of holonomic D-modules, and the Zd-graded local cohomology of the semigroup
ring indicates how the ranks of these D-modules behave in the family. Substantial
parts of this lecture are based, sometimes nearly verbatim, on [115].

24.1. GKZ A-hypergeometric systems.
“One of the main branches of Mathematics which interacts with D-module the-
ory is doubtlessly the study of hypergeometric functions, both in its classical and
generalized senses, in its algebraic, geometric and combinatorial aspects.”

– from the webpage http://caul.cii.fc.ul.pt/DModHyp/ for the Workshop on D-

modules and Hypergeometric Functions in Lisbon, Portugal, 11 to 14 July 2005

Generally speaking, hypergeometric functions are power series solutions to cer-
tain systems of differential equations. Classical univariate hypergeometric functions
go back at least to Gauss, and by now there are various multivariate generalizations.
One class was introduced in the late 1980s by Gelfand, Graev, and Zelevinsky [44].
These systems, now called GKZ systems or A-hypergeometric systems, are closely
related to affine semigroup rings (and geometrically, toric varieties). They are con-
structed as follows.

For the rest of this lecture, fix a d × n integer matrix A = (aij) of rank d. We
do not assume that the columns a1, . . . , an of A lie in an affine hyperplane, but we
do assume that A is pointed, meaning that the affine semigroup

QA =
{ n∑

i=1

γiai | γ1, . . . , γn ∈ N
}

generated by the column vectors a1, . . . , an is pointed. To get the appropriate
interaction with D-modules, we express the semigroup ring C[QA] as the quotient
C[∂1, . . . , ∂n]/IA, where

IA = 〈∂µ − ∂ν | µ, ν ∈ Zn, A · µ = A · ν〉
is the toric ideal of A (Exercise 20.11). Notice that C[QA] and C[∂] are naturally
graded by Zd if we define deg(∂j) = −aj , the negative of the jth column of A.

Our choice of signs in the Zd-grading of C[QA] is compatible with a Zd-grading
on the Weyl algebra D in which deg(xj) = aj and deg(∂j) = −aj. Under this
Zd-grading, the ith Euler operator

Ei =

n∑

j=1

aijxj∂j ∈ D

is homogeneous of degree 0 for i = 1, . . . , d. The terminology arises from the
case where A has a row of 1’s, in which case the corresponding Euler operator is
x1∂1+· · ·+xn∂n. When applied to a homogeneous polynomial f(x1, . . . , xn) of total
degree λ, this operator returns λ · f(x1, . . . , xn). Therefore, series solutions f to

(E1 − β1) · f = 0, . . . , (Ed − βd) · f = 0

can be thought of as being homogeneous of (multi)degree β ∈ Cd.
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Definition 24.1. Given a parameter vector β ∈ Cd, write E − β for the sequence
E1−β1, . . . , Ed−βd. The A-hypergeometric system with parameter β is the left ideal

HA(β) = D · (IA, E − β)

in the Weyl algebra D. The A-hypergeometric D-module with parameter β is

MA
β = D/HA(β).

Example 24.2. Letting d = 2 and n = 4, consider the 2× 4 matrix

A =

[
1 1 1 1
0 1 3 4

]
.

The semigroup ring associated to A is then

C[QA] = C[s, st, st3, st4],

which is isomorphic to the semigroup ring C[s4, st3, s3t, t4] from Example 20.33
(and all the examples mentioned there) via the isomorphism in Example 20.12. As
we have seen repeatedly before, in different notation, the toric ideal for A is

IA = 〈∂2∂3 − ∂1∂4, ∂
2
1∂3 − ∂3

2 , ∂2∂
2
4 − ∂3

3 , ∂1∂
2
3 − ∂2

2∂4〉,
these generators corresponding to the equations

A




0
1
1
0


 = A




1
0
0
1


 , A




2
0
1
0


 = A




0
3
0
0


 , A




0
1
0
2


 = A




0
0
3
0


 , A




1
0
2
0


 = A




0
2
0
1


 .

Given β = (β1, β2), the homogeneities from A are the classical Euler operator

x1∂1 + x2∂2 + x3∂3 + x4∂4 − β1

and the “0134” equation

x2∂2 + 3x3∂3 + 4x4∂4 − β2.

The left ideal HA(β) is generated by IA and the above two homogeneities.

The first fundamental results about the systems HA(β) were proved by Gelfand,
Graev, Kapranov, and Zelevinsky (the inclusion of Kapranov here explains the ‘K’
in “GKZ”). These results concerned the case where C[QA] is Cohen-Macaulay and
graded in the standard Z-grading [44, 45]. Subsequently, the Cohen-Macaulay and
standard Z-graded assumptions were relaxed. For example, results of [45, 1, 78, 136]
imply the following nontrivial statement.

Proposition 24.3. The module MA
β is holonomic of nonzero rank.

This observation is what motivates the story here.

Question 24.4. For fixed A, what is the holonomic rank ofMA
β as a function of β?

As we shall see in the coming sections, when C[QA] is Cohen-Macaulay, or when
the parameter β is generic, the rank is an easily described constant. However,
although we will see that the qualitative change in rank as β varies is partially
understood, we still know quite little about the quantitative behavior.
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Remark 24.5. Solutions of A-hypergeometric systems appear as toric residues
[21], and special cases are mirror transforms of generating functions for intersection
numbers on moduli spaces of curves [25]. In the latter case, the A-hypergeometric
systems are Picard-Fuchs equations governing the variation of Hodge structures for
Calabi-Yau toric hypersurfaces. In general, A-hypergeometric systems constitute
an important class of D-modules, playing a role similar to that of toric varieties
in algebraic geometry and semigroup rings in commutative algebra: they possess
enough combinatorial underpinning to make calculations feasible, but enough di-
versity of behavior to make them interesting as a test class for conjectures and
computer experimentation.

24.2. Rank vs. volume. In Question 24.4, one might wonder what role the integer
matrix A plays in determining the rank. The answer is pleasantly combinatorial
(well, polyhedral). It requires a simple lemma and definition.

Lemma 24.6. Fix a lattice L of full rank d in Rd. Among all simplices of dimen-
sion d having lattice points for vertices, there is one (infinitely many, actually) with
minimum Euclidean volume.

Proof. Assuming that the origin is a vertex, by translating if necessary, the volume
of any d-simplex in Rd (with nonrational vertices allowed) is 1

d! times the absolute
value of the determinant of the remaining d vertices. The minimal absolute value
for the determinant is attained on any basis of L. �

A polytope with its vertices at lattice points is called a lattice polytope; if the
polytope is a simplex, then it is a lattice simplex.

Definition 24.7. Fix a lattice L ⊂ Rd of rank d, and let P be a polytope. The
(normalized) volume of P is the ratio volL(P ) between the Euclidean volume of P
and the smallest volume of a lattice simplex.

Example 24.8. When L = Zd the normalized volume volZd(P ) of a lattice poly-
tope P is simply d! times the usual volume of P , since the smallest Euclidean
volume of a lattice simplex is 1

d! .

Notation 24.9. We write vol(P ) = volZd(P ). Given a d× n integer matrix A, set
vol(A) equal to the normalized volume of the convex hull of the columns of A and
the origin 0 ∈ Zd.

Theorem 24.10 ([44, 45]). If the affine semigroup ring C[QA] is Cohen-Macaulay
and can be Z-graded in such a way that it is generated in degree 1, then the A-
hypergeometric D-module MA

β has holonomic rank vol(A).

The remarkable fact here is that the rank formula holds independently of the
parameter β. What about when C[QA] isn’t Cohen-Macaulay, or without the Z-
graded hypothesis? Adolphson further proved that, for all “generic” parameters β,
the characterization of rank through volume in Theorem 24.10 is still correct.

Theorem 24.11 ([1]). The rank ofMA
β equals vol(A) as long as β lies outside of a

certain closed locally finite arrangement of countably many “semi-resonant” affine
hyperplanes. If C[QA] is Cohen-Macaulay then rank(MA

β ) = vol(A) for all β.

Adolphson made no claim concerning the parameters β lying in the semi-resonant
hyperplanes; he did not, in particular, produce (or even prove the existence of)
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a parameter β where the rank did not equal vol(A). Hence it seemed natural
enough to conjecture that perhaps the rank is actually always constant, even though
Adolphson’s proof did not show it. It came as quite a surprise when an example was
given by Sturmfels and Takayama showing that if C[QA] is not Cohen-Macaulay
then not all parameters β have to give the same rank [151]. Which example did
they give? Why, 0134, of course!

Example 24.12 ([151]). Let A be as in Example 24.2 and set β = (1, 2). Then
rank(MA

β ) = 5, whereas vol(A) = 4, the latter because the convex hull of A and

the origin is a triangle with base length 4 and height 1 in R2.

Sturmfels and Takayama produced five linearly independent series solutions when
β = (1, 2). They also showed that rank(MA

β ) = vol(A) for all β 6= (1, 2), so that

β = (1, 2) is the only exceptional parameter, where the rank changes from its generic
value. Nearly at the same time, the case of projective toric curves (the 2×n case in
which the first row is [1 1 · · · 1 1]) was discussed completely by Cattani, D’Andrea
and Dickenstein [20]: the set of exceptional parameters is finite in this case, and
empty precisely when C[QA] is Cohen-Macaulay; moreover, at each exceptional
parameter β, the rank exceeds the volume by exactly 1. These observations led to
the following reasonable surmise.

Conjecture 24.13 (Sturmfels). MA
β has rank vol(A) for all β ∈ Cd precisely when

C[QA] is Cohen-Macaulay.

24.3. Euler-Koszul homology. The question quickly becomes: what is it about a
parameter β ∈ Cd where the rank jumps that breaks the Cohen-Macaulay condition
for C[QA]? Stepping back from hypergeometric systems for a little while, what is
it about vectors in Cd in general that witness the failure of the Cohen-Macaulay
condition for C[QA]?

These being 24 lectures on local cohomology, you might have guessed by now
where the answer lies. Recall from Lecture 20 that the local cohomology of C[QA]
is Zd-graded, since the columns of A lie in Zd.

Definition 24.14. Let Li = {a ∈ Zd | Hi
m(C[QA])a 6= 0} be the set of Zd-

graded degrees where the ith local cohomology of C[QA] is nonzero. The exceptional
setexceptional set

EA =

d−1⋃

i=0

−Li

is the negative of the set of Zd-graded degrees where the local cohomology of C[QA]
is nonzero in cohomological degree < d. Write EA for the Zariski closure of EA.

Warning 24.15. Try not to be confused about the minus sign on Li in the defi-
nition of EA. Keep in mind that the degree of ∂j is the negative of the jth column
of A, and our convention in this lecture is that C[QA] is graded by −QA rather than
the usual QA. These sign conventions are set up so that the Zd-grading on the Weyl
algebra “looks right”. The simplest way to think of the sign on the exceptional set
is to pretend that C[QA] is graded by QA, not −QA; with this pretend convention,
a ∈ EA if and only if Hi

m(C[QA])a 6= 0 for some i < d. In particular, the Zd-graded
degrees of nonvanishing local cohomology in Lecture 20 are exceptional degrees; no
minus signs need to be introduced.
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Example 24.16. For A in Example 24.2, L0 = ∅ and −L1 = {(1, 2)} = EA = EA.
This is the “hole” in the semigroup QA generated by the columns of A; see Ex-
ample 20.33, where the degree (2, 2) of nonvanishing local cohomology corresponds
under the isomorphism of Example 20.12 to our degree (1, 2) here.

Anytime EA contains infinitely many lattice points along a line, the Zariski clo-
sure EA contains the entire (complex) line through them.

Exercise 24.17. Calculate the exceptional set EA for the matrix A displayed in
Exercise 20.34. Hint: the Zariski closure of L2 is a line; which line is it?

Exercise 24.18. What conditions on a set of points in EA lying in a plane guarantee
that the Zariski closure EA contains the entire (complexified) plane they lie in?

Exercise 24.19. To get a feel for what the Zariski closure means generally in this
context, prove that EA is a finite union of affine subspaces in Cd, each of which is
parallel to one of the faces of QA (or of CQA). Hint: Use local duality to show that
the only associated primes of the Matlis dual Hi

m(C[QA])∨ come from faces of QA.

Lemma 24.20. Definition 24.14 associates to the matrix A a finite affine subspace
arrangement EA in Cd that is empty if and only if C[QA] is Cohen-Macaulay.

Proof. Exercise 24.19 says that the Zariski closure EA is a finite subspace arrange-
ment. It is empty if and only if EA is itself empty, and this occurs precisely when
Hi

m(C[QA]) = 0 for i < d. By Theorem 9.3 and Theorem 10.34, this condition is
equivalent to the Cohen-Macaulay property for C[QA]. �

We had been after rank jumps, but then we took a detour to define an affine
subspace arrangement from local cohomology. How does it relate to D-modules?

Inside the Weyl algebra is a commutative polynomial subalgebra C[Θ] ofD, where

Θ = θ1, . . . , θn and θj = xj∂j .

Each of the Euler operators Ei lies in C[Θ], as do the constants. Therefore

Ei − βi ∈ C[Θ] for all i.

Consequently, the Weyl algebra has a commutative subalgebra C[E − β] ⊂ D. The
linear independence of the rows of A (we assumed from the outset that the d × n
matrix A has full rank d) implies that C[E − β] is isomorphic to a polynomial ring
in d variables.

Recall the Zd-grading of D from Section 24.1. Suppose that N is a Zd-graded
left D-module. If y ∈ N is a homogeneous element, then let degi(y) be the ith

component in the degree of y, so

deg(y) =
(
deg1(y), . . . ,degd(y)

)
∈ Zd.

The Zd-grading allows us to define a rather nonstandard action of C[E − β] on N .

Notation 24.21. Let N be a Zd-graded left D-module. For each homogeneous
element y ∈ N , set

(Ei − βi) ◦ y = (Ei − βi − degi(y))y,

where the left-hand side uses the left D-module structure.

The funny ◦ action is defined on each Zd-graded piece of N , so N is really just
a big direct sum of C[E − β]-modules, one for each graded piece of N .



202

Definition 24.22. Fix a Zd-graded C[∂]-module M . Then D ⊗C[∂] M is a Zd-
graded left D-module. The Euler-Koszul complex is the ordinary Koszul complex

K•(E − β;M) = K•(E − β;D ⊗C[∂] M)

over C[E − β] using the sequence E − β under the ◦ action on D⊗C[∂] M . The ith

Euler-Koszul homology of M is Hi(E − β;M) = Hi(K•(E − β;M)).

Why the curly K instead of the usual Koszul complex K? First of all, we’ve done
more to M than simply placed it in a Koszul complex: we’ve tensored it with D
first. But more importantly, we want to stress that the Euler-Koszul complex is
not just a big direct sum (over Zd) of Koszul complexes in each degree.

Exercise 24.23. Prove that K•(E − β;−) constitutes a functor from Zd-graded
C[∂]-modules to complexes of D-modules. In particular, prove that the maps in
Definition 24.22 are homomorphisms of D-modules. Hint: See [115, Lemma 4.3].

In a less general form, Euler-Koszul homology was known to Gelfand, Kapranov,
and Zelevinsky, as well as to Adolphson, who exploited it in their proofs. In the
remainder of this lecture, we shall see why Euler-Koszul homology has been so
unreasonably effective for dealing with ranks of hypergeometric systems. A first
indication is the following, which GKZ already knew.

Exercise 24.24. For the Zd-graded C[∂]-module C[QA] = C[∂]/IA, prove that

H0(E − β; C[QA]) =MA
β .

The next indication of the utility of Euler-Koszul homology is that it knows
about local cohomology. This result explains why we bothered to take the Zariski
closure of the exceptional degrees in Definition 24.14.

Theorem 24.25. Hi(E − β; C[QA]) 6= 0 for some i ≥ 1 if and only if β ∈ EA.

A more general and precise statement, in which C[QA] is replaced by an arbi-
trary finitely generated Zd-graded C[QA]-module, appears in [115, Theorem 6.6].
The proof involves a spectral sequence that combines holonomic duality and local
duality; it relies on little (if anything) beyond what is covered in these 24 lectures.

Corollary 24.26. Euler-Koszul homology detects Cohen-Macaulayness: C[QA] is
Cohen-Macaulay if and only if Hi(E − β; C[QA]) = 0 for all i ≥ 1 and all β ∈ Cd.

Proof. The higher vanishing of Euler-Koszul homology is equivalent to EA = ∅ by
Theorem 24.25, and EA = ∅⇔ C[QA] is Cohen-Macaulay by Lemma 24.20. �

The content of this section has been, more or less, that we have a hypergeometric
D-module criterion for the failure of the Cohen-Macaulay condition for semigroup
rings. To complete the picture, we need to see what this criterion has to do with
changes in the holonomic ranks of hypergeometric systems as β varies.

24.4. Holonomic families. The connection from Euler-Koszul homology to rank
defects of hypergeometric systems proceeds by characterizing rank defects in general
families of holonomic modules. This, in turn, begins with Kashiwara’s fundamental
algebraic characterization of holonomic rank.

Theorem 24.27 (Kashiwara). For any module M over C[x] = C[x1, . . . , xn], de-
note by M(x) the localization M ⊗C[x] C(x). Then rank(M) = dimC(x)M(x) when-
ever M is a holonomic D-module.
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Now suppose thatM is an algebraic family of D-modules over Cd. By definition,
we mean to say thatM is a finitely generated left D[b]-module, where b = b1, . . . , bd
is a collection of commuting variables.

Definition 24.28. M is a holonomic family if

(1) the fiber Mβ = M/〈b − β〉M is a holonomic D-module for all β ∈ Cd,
where b− β is the sequence b1 − β1, . . . , bd − βd in D[b]; and

(2) M(x) is a finitely generated module over C[b](x).

Condition (2) here is a subtle coherence requirement. It is quite obvious that
M(x) is finitely generated as a left module over D[b](x), and it follows from con-
dition (1) along with Theorem 24.27 that the fibers of M(x) over Cd are finite-
dimensional C(x)-vector spaces, but this does not guarantee that M(x) will be
finitely generated over C[b](x).

Exercise 24.29. Take M = D[b]/〈bx∂ − 1〉. When β 6= (b− 0), the fiber over β
is the rank 1 holonomic module corresponding to the solution x1/β . But when
β = (b− 0) the fiber of M is zero. We leave it as an exercise to prove that M(x)
is not finitely generated as a module over C[b](x).

The point of looking atM(x) is that its fiber over β ∈ Cd is a C(x)-vector space
of dimension rank(Mβ). Condition (2) in Definition 24.28 implies that constancy
of holonomic rank in a neighborhood of β is detected by ordinary Koszul homology.

Proposition 24.30. The rank function β 7→ rank(Mβ) of any holonomic family
M is upper-semicontinuous on Cd, and it is is constant near β ∈ Cd if and only if
the ordinary Koszul homology Hi(b− β;M(x)) is zero for all i ≥ 1.

Proof. Upper-semicontinuity follows from the coherence condition; there are details
omitted here. The fiber dimension ofM(x) is constant near β if and only if (by the
coherence condition again)M(x) is flat near β ∈ Cd, and this occurs if and only if
Hi(b − β;M(x)) = 0 for all i ≥ 1. �

Upper-semicontinuity means that the holonomic ranks of the fibers in a holo-
nomic family can only jump up on closed sets. In particular, for any holonomic
family there is a well-defined “generic” rank taken on by the fibers over a Zariski
open subset of Cd.

Example 24.31. In Exercise 24.29, the holonomic rank of Mβ equals 1 if β 6= 0,
but the rank drops to zero when β = 0. This actually constitutes a solution to
Exercise 24.29, if one is willing to accept Proposition 24.30!

The motivating application for holonomic families is the hypergeometric case.

Definition 24.32. Set MA = D[b]/D[b]〈IA, E − b〉.
The definition of MA is obtained from that of MA

β by replacing the constants

β1, . . . , βd ∈ Cd with the commuting variables b1, . . . , bd.

Proposition 24.33 ([115]). MA is a holonomic family whose fiber over each pa-
rameter vector β ∈ Cd is the A-hypergeometric D-module MA

β .

The proof of the first part of this proposition requires some criteria for when an
algebraic family of D-modules is a holonomic family. It is not particularly difficult,
but we will not go into it here. In contrast, we leave it as an easy exercise to check
the second part: namely, that the fiber (MA)β isMA

β .
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Example 24.34. Proposition 24.33 implies that the upper-semicontinuity dictated
by Proposition 24.30 should hold for the algebraic familyMA constructed from the
matrix A in Example 24.2. And indeed it does, by Example 24.12.

Now what we have is a D-module homological theory (Euler-Koszul homology
on E−β) for detecting failures of Cohen-Macaulayness in hypergeometric systems,
and a commutative algebraic homological theory (ordinary Koszul homology on
b−β) for detecting jumps of holonomic ranks in hypergeometric families. The final
point, then, is that these two homological theories coincide.

Theorem 24.35 ([115]). Hi(b − β;MA) ∼= Hi(E − β; C[QA]).

Corollary 24.36. Conjecture 24.13 is true: rank(MA
β ) = vol(A) for all β ∈ Cd if

and only if C[QA] is Cohen-Macaulay. In general, rank(MA
β ) ≥ vol(A), and

rank(MA
β ) > vol(A) ⇔ β ∈ EA.

Proof. The left side of Theorem 24.35 detects when β yields rank(MA
β ) > vol(A),

while the right side detects when β violates the Cohen-Macaulayness of C[QA], by
way of the exceptional set (Theorem 24.25 and Corollary 24.26). �

Example 24.37. For the 0134 matrix in Example 24.2, the coincidence of the
jump in rank ofMA

β at β = (1, 2) in Example 24.12 and the inclusion of β = (1, 2)

in the exceptional set EA from Example 24.16 is a consequence of Corollary 24.36.

Exercise 24.38. Prove that the set of exceptional parameters for a GKZ hyper-
geometric systemMA

β has codimension at least 2 in Cd.
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Appendix A. Injective Modules and Matlis Duality

These notes are intended to give the reader an idea what injective modules are,
where they show up, and, to a small extent, what one can do with them. Let R
be a commutative Noetherian ring with an identity element. An R-module E is
injective if HomR(−, E) is an exact functor. The main messages of these notes are

• Every R-module M has an injective hull or injective envelope, denoted by
ER(M), which is an injective module containing M , and has the property
that any injective module containing M contains an isomorphic copy of
ER(M).
• A nonzero injective module is indecomposable if it is not the direct sum

of nonzero injective modules. Every injective R-module is a direct sum of
indecomposable injective R-modules.
• Indecomposable injective R-modules are in bijective correspondence with

the prime ideals of R; in fact every indecomposable injective R-module is
isomorphic to an injective hull ER(R/p), for some prime ideal p of R.
• The number of isomorphic copies of ER(R/p) occurring in any direct sum

decomposition of a given injective module into indecomposable injectives is
independent of the decomposition.
• Let (R,m) be a complete local ring and E = ER(R/m) be the injective

hull of the residue field of R. The functor (−)∨ = HomR(−, E) has the
following properties, known as Matlis duality:
(1) If M is an R-module which is Noetherian or Artinian, then M∨∨ ∼= M .
(2) If M is Noetherian, then M∨ is Artinian.
(3) If M is Artinian, then M∨ is Noetherian.

Any unexplained terminology or notation can be found in [4] or [114]. Matlis’
theory of injective modules was developed in the paper [113], and may also be found
in [114, § 18] and [16, § 3].

A.1. Injective Modules. Throughout, R is a commutative ring with an identity
element 1 ∈ R. All R-modules M are assumed to be unitary, i.e., 1 ·m = m for all
m ∈M .

Definition A.1. An R-module E is injective if for all R-module homomorphisms
ϕ : M −→ N and ψ : M −→ E where ϕ is injective, there exists an R-linear
homomorphism θ : N −→ E such that θ ◦ ϕ = ψ.

Exercise A.2. Show that E is an injective R-module E if and only if HomR(−, E)
is an exact functor, i.e., applying HomR(−, E) takes short exact sequences to short
exact sequences.

Theorem A.3 (Baer’s Criterion). An R-module E is injective if and only if every
R-module homomorphism a −→ E, where a is an ideal, extends to a homomorphism
R −→ E.

Proof. One direction is obvious. For the other, if M ⊆ N are R-modules and ϕ :
M −→ E, we need to show that ϕ extends to a homomorphismN −→ E. By Zorn’s
lemma, there is a module N ′ with M ⊆ N ′ ⊆ N , which is maximal with respect to
the property that ϕ extends to a homomorphism ϕ′ : N ′ −→ E. If N ′ 6= N , take
an element n ∈ N \ N ′ and consider the ideal a = N ′ :R n. By hypothesis, the

composite homomorphism a
n−→ N ′ ϕ′

−→ E extends to a homomorphism ψ : R −→
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E. Define ϕ′′ : N ′ + Rn −→ E by ϕ′′(n′ + rn) = ϕ′(n′) + ψ(r). This contradicts
the maximality of ϕ′, so we must have N ′ = N . �

Exercise A.4. Let R be an integral domain. An R-module M is divisible if rM =
M for every nonzero element r ∈ R.

(1) Prove that an injective R-module is divisible.
(2) If R is a principal ideal domain, prove that an R-module is divisible if and

only if it is injective.
(3) Conclude that Q/Z is an injective Z-module.
(4) Prove that any nonzero Abelian group has a nonzero homomorphism to

Q/Z.
(5) If (−)∨ = HomZ(−,Q/Z) and M is any Z-module, prove that the natural

map M −→M∨∨ is injective.

Exercise A.5. Let R be an A-algebra.

(1) Use the adjointness of ⊗ and Hom to prove that if E is an injective A-
module, and F is a flat R-module, then HomA(F,E) is an injective R-
module.

(2) Prove that every R-module can be embedded in an injective R-module.
Hint: If M is the R-module, take a free R-module F with a surjection
F −→→ HomZ(M,Q/Z). Apply (−)∨ = HomZ(−,Q/Z). See Lecture 4 for
more on adjointness.

Proposition A.6. Let M 6= 0 and N be R-modules, and let θ : M →֒ N be a
monomorphism. Then the following are equivalent:

(1) Every nonzero submodule of N has a nonzero intersection with θ(M).
(2) Every nonzero element of N has a nonzero multiple in θ(M).
(3) If ϕ ◦ θ is injective for a homomorphism ϕ : N −→ Q, then ϕ is injective.

Proof. (1) =⇒ (2) If n is a nonzero element of N , then the cyclic module Rn has
a nonzero intersection with θ(M).

(2) =⇒ (3) If (3) fails then kerϕ has a nonzero intersection with θ(M), contra-
dicting the assumption that ϕ ◦ θ is injective.

(3) =⇒ (1) Let N ′ be a nonzero submodule of N , and consider the canonical
surjection ϕ : N −→ N/N ′. Then ϕ is not injective, hence the composition ϕ ◦ θ :
M −→ N/N ′ is not injective, i.e., N ′ contains a nonzero element of θ(M). �

Definition A.7. If θ : M →֒ N satisfies the equivalent conditions of the previous
proposition, we say that N is an essential extension of M .

Example A.8. If R is a domain and Frac(R) is its field of fractions, then R ⊆
Frac(R) is an essential extension. More generally, if S ⊆ R is the set of nonzerodi-
visors in R, then S−1R is an essential extension of R.

Example A.9. Let (R,m) be a local ring and N be an R-module such that every
element of N is killed by a power of m. The socle of N is the submodule soc(N) =
0 :N m. Then soc(N) ⊆ N is an essential extension: if n ∈ N is a nonzero element,
let t be the smallest integer such that mtn = 0. Then mt−1n ⊆ soc(N), and mt−1n
contains a nonzero multiple of n.

Exercise A.10. Let I be an index set. Then Mi ⊆ Ni is essential for all i ∈ I if
and only if

⊕
i∈IMi ⊆

⊕
i∈I Ni is essential.
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Example A.11. Let R = C[[x]] which is a local ring with maximal ideal (x), and
take N = Rx/R. Every element of N is killed by a power of the maximal ideal, and
soc(N) is the 1-dimensional C-vector space generated by [1/x], i.e., the image of
1/x in N . By Example A.9, soc(N) ⊆ N is an essential extension. However, prove
that

∏
N soc(N) ⊆∏N N is not an essential extensionby studying the element

(
[1/x], [1/x2], [1/x3], . . .

)
∈
∏

N

N

Proposition A.12. Let L,M,N be nonzero R-modules.

(1) M ⊆M is an essential extension.
(2) Suppose L ⊆M ⊆ N . Then L ⊆ N is an essential extension if and only if

both L ⊆M and M ⊆ N are essential extensions.
(3) Suppose M ⊆ N and M ⊆ Ni ⊆ N with N =

⋃
iNi. Then M ⊆ N is

an essential extension if and only if M ⊆ Ni is an essential extension for
every i.

(4) Suppose M ⊆ N . Then there exists a module N ′ with M ⊆ N ′ ⊆ N ,
which is maximal with respect to the property that M ⊆ N ′ is an essential
extension.

Proof. The assertions (1), (2), and (3) elementary. For (4), let

F = {N ′ | M ⊆ N ′ ⊆ N and N ′ is an essential extension of M}.
Then M ∈ F so F is nonempty. If N ′

1 ⊆ N ′
2 ⊆ N ′

3 ⊆ . . . is a chain in F ,
then

⋃
iN

′
i ∈ F is an upper bound. By Zorn’s Lemma, the set F has maximal

elements. �

Definition A.13. The module N ′ in Proposition A.12 (4) is a maximal essen-
tial extension of M in N . If M ⊆ N is essential and N has no proper essential
extensions, we say that N is a maximal essential extension of M .

Proposition A.14. Let M be an R-module. The following conditions are equiva-
lent:

(1) M is injective;
(2) M is a direct summand of every module containing M ;
(3) M has no proper essential extensions.

Proof. (1) =⇒ (2) =⇒ (3) is left as an exercise, and we prove the implication (3)
=⇒ (2). Consider an embedding M →֒ E where E is injective. By Zorn’s lemma,
there exists a submodule N ⊆ E which is maximal with respect to the property
that N ∩M = 0. This implies that M →֒ E/N is an essential extension, and hence
that it is an isomorphism. But then E = M +N implies E = M ⊕N . Since M is
a direct summand of an injective module, it must be injective. �

Proposition A.15. Let M and E be R-modules.

(1) If E is injective and M ⊆ E, then any maximal essential extension of M
in E is an injective module, hence is a direct summand of E.

(2) Any two maximal essential extensions of M are isomorphic.

Proof. (1) Let E′ be a maximal essential extension of M in E and let E′ ⊆ Q be
an essential extension. Since E is injective, the identity map E′ −→ E lifts to a
homomorphism ϕ : Q −→ E. Since Q is an essential extension of E′, it follows that
ϕ must be injective. This gives us M ⊆ E′ ⊆ Q →֒ E, and the maximality of E′
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implies that Q = E′. Hence E′ has no proper essential extensions, and so it is an
injective module by Proposition A.14.

(2) Let M ⊆ E and M ⊆ E′ be maximal essential extensions of M . Then E′

is injective, so M ⊆ E′ extends to a homomorphism ϕ : E −→ E′. The inclusion
M ⊆ E is an essential extension, so ϕ is injective. But then ϕ(E) is an injective
module, and hence a direct summand of E′. Since M ⊆ ϕ(E) ⊆ E′ is an essential
extension, we must have ϕ(E) = E′. �

Definition A.16. The injective hull or injective envelope of an R-module M is a
maximal essential extension of M , and is denoted by ER(M).

Definition A.17. Let M be an R-module. A minimal injective resolution of M is
a complex

0 −→ E0 −→ E1 −→ E2 −→ . . .

such that E0 = ER(M), E1 = ER(E0/M), and

Ei+1 = ER(Ei/ image(Ei−1)) for all i > 2.

Note that the modules Ei are injective, and that image(Ei) ⊆ Ei+1 is an essential
extension for all i > 0.

A.2. Injectives over a Noetherian Ring.

Proposition A.18 (Bass). A ring R is Noetherian if and only if every direct sum
of injective R-modules is injective.

Proof. We show first that if M is a finitely generated R-module, then

HomR(M,
⊕

i

Ni) ∼=
⊕

i

HomR(M,Ni).

Independently of the finite generation of M , there is a natural injective homomor-
phism ϕ :

⊕
iHomR(M,Ni) −→ HomR(M,

⊕
iNi). If M is finitely generated,

the image of a homomorphism from M to
⊕

iNi is contained in the direct sum
of finitely many Ni. Since Hom commutes with forming finite direct sums, ϕ is
surjective as well.

Let R be a Noetherian ring, and Ei be injective R-modules. Then for an ideal
a of R, the natural map HomR(R,Ei) −→ HomR(a, Ei) is surjective. Since a

is finitely generated, the above isomorphism implies that HomR(R,
⊕
Ei) −→

HomR(a,
⊕
Ei) is surjective as well. Baer’s criterion now implies that

⊕
Ei is

injective.
If R is not Noetherian, it contains a strictly ascending chain of ideals

a1 ( a2 ( a3 ( . . . .

Let a =
⋃
i ai. The natural maps a →֒ R −→→ R/ai →֒ ER(R/ai) give us a ho-

momorphism a −→ ∏
iER(R/ai). The image lies in the submodule

⊕
i ER(R/ai),

(check!) so we have a homomorphism ϕ : a −→ ⊕
iER(R/ai). Lastly, check that

ϕ does not extend to a homomorphism R −→⊕
i ER(R/ai). �

Theorem A.19. Let E be an injective module over a Noetherian ring R. Then

E ∼=
⊕

i

ER(R/pi),

where pi are prime ideals of R. Moreover, any such direct sum is an injective
R-module.
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Proof. The last statement follows from Proposition A.18. Let E be an injective
R-module. By Zorn’s Lemma, there exists a maximal family {Ei} of injective
submodules of E such that Ei ∼= ER(R/pi), and their sum in E is a direct sum.
Let E′ =

⊕
Ei, which is an injective module, and hence is a direct summand of E.

There exists an R-module E′′ such that E = E′ ⊕ E′′. If E′′ 6= 0, pick a nonzero
element x ∈ E′′. Let p be an associated prime of Rx. Then R/p →֒ Rx ⊆ E′′, so
there is a copy of ER(R/p) contained in E′′ and E′′ = ER(R/p)⊕E′′′, contradicting
the maximality of family {Ei}. �

Definition A.20. Let a be an ideal of a ring R, and M be an R-module. We say
M is a-torsion if every element of M is killed by some power of a.

Theorem A.21. Let p be a prime ideal of a Noetherian ring R, and let E =
ER(R/p) and κ = Rp/pRp, which is the fraction field of R/p. Then

(1) if x ∈ R \ p, then E
x−→ E is an isomorphism, and so E = Ep;

(2) 0 :E p = κ;
(3) κ ⊆ E is an essential extension of Rp-modules and E = ERp

(κ);
(4) E is p-torsion and Ass(E) = {p};
(5) HomRp

(κ,E) = κ and HomRp
(κ,ER(R/q)p) = 0 for primes q 6= p.

Proof. (1) κ is an essential extension of R/p by Example A.8, so E contains a copy
of κ and we may assume R/p ⊆ κ ⊆ E. Multiplication by x ∈ R \ p is injective on
κ, and hence also on its essential extension E. The submodule xE is injective, so
it is a direct summand of E. But κ ⊆ xE ⊆ E are essential extensions, so xE = E.

(2) 0 :E p = 0 :E pRp is a vector space over the field κ, and hence the inclusion
κ ⊆ 0 :E p splits. But κ ⊆ 0 :E p ⊆ E is an essential extension, so 0 :E p = κ.

(3) The containment κ ⊆ E is an essential extension of R-modules, hence also of
Rp-modules. Suppose E ⊆M is an essential extension of Rp-modules, pick m ∈M .
Then m has a nonzero multiple (r/s)m ∈ E, where s ∈ R \ p. But then rm is a
nonzero multiple of m in E, so E ⊆M is an essential extension of R-modules, and
therefore M = E.

(4) Let q ∈ Ass(E). Then there exists x ∈ E such that Rx ⊆ E and 0 :R x = q.
Since R/p ⊆ E is essential, x has a nonzero multiple y in R/p. But then the
annihilator of y is p, so q = p and Ass(E) = {p}.

If a is the annihilator of a nonzero element of E, then p is the only associated
prime of R/a →֒ E, so E is p-torsion.

(5) For the first assertion,

HomRp
(κ,E) = HomRp

(Rp/pRp, E) ∼= 0 :pRp
E = κ.

Since elements of R \ q act invertibly on ER(R/q), we see that ER(R/q)p = 0 if
q * p. In the case q ⊆ p, we have

HomRp
(κ,ER(R/q)p) ∼= 0 :pRp

ER(R/q)p = 0 :pRp
ER(R/q).

If this is nonzero, then there is a nonzero element of ER(R/q) killed by p, which
forces q = p since AssER(R/q) = {q}. �

We are now able to strengthen Theorem A.19 to obtain the following structure
theorem for injective modules over Noetherian rings.
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Theorem A.22. Let E be an injective over a Noetherian ring R. Then

E =
⊕

p∈SpecR

ER(R/p)αp ,

and the numbers αp are independent of the direct sum decomposition.

Proof. Theorem A.19 implies that a direct sum decomposition exists. By Theo-
rem A.21 (5), αp is the dimension of the Rp/pRp-vector space

HomRp
(Rp/pRp, Ep),

which does not depend on the decomposition. �

The following proposition can be proved along the lines of Theorem A.21, and
we leave the proof as an exercise.

Proposition A.23. Let S ⊂ R be a multiplicative set.

(1) If E is an injective R-module, then S−1E is an injective module over the
ring S−1R.

(2) If M →֒ N is an essential extension (or a maximal essential extension) of
R-modules, then the same is true for S−1M →֒ S−1N over S−1R.

(3) The indecomposable injectives over S−1R are the modules ER(R/p) for
p ∈ SpecR with p ∩ S = ∅.

Definition A.24. Let M be an R-module, and let E• be a minimal injective
resolution of R where

Ei =
⊕

p∈SpecR

ER(R/p)µi(p,M).

Then µi(p,M) is the i-th Bass number of M with respect to p. The following
theorem shows that these numbers are well-defined.

Theorem A.25. Let κ(p) = Rp/pRp. Then

µi(p,M) = dimκ(p) ExtiRp
(κ(p),Mp).

Proof. Let E• be a minimal injective resolution of M where the i-th module is
Ei = ⊕ER(R/p)µi(p,M). Localizing at p, Proposition A.23 implies that E•

p is a
minimal injective resolution of Mp over the ring Rp. Moreover, the number of
copies of ER(R/p) occurring in Ei is the same as the number of copies of ER(R/p)

in Eip. By definition, ExtiRp
(κ(p),Mp) is the i-th cohomology module of the complex

0 −→ HomRp
(κ(p), E0

p) −→ HomRp
(κ(p), E1

p) −→ HomRp
(κ(p), E2

p) −→ . . .

and we claim all maps in this complex are zero. If ϕ ∈ HomRp
(κ(p), Eip), we need

to show that the composition

κ(p)
ϕ−→ Eip

δ−→ Ei+1
p

is the zero map. If ϕ(x) 6= 0 for x ∈ κ(p), then ϕ(x) has a nonzero multiple in
image(Ei−1

p −→ Eip). Since κ(p) is a field, it follows that

ϕ(κ(p)) ⊆ image(Ei−1
p −→ Eip),

and hence that δ ◦ ϕ = 0. By Theorem A.21 (5)

HomRp
(κ(p), Eip)

∼= κ(p)µi(p,M),
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so ExtiRp
(κ(p),Mp) is the i-th cohomology module of the complex

0 −→ κ(p)µ0(p,M) −→ κ(p)µ1(p,M) −→ κ(p)µ2(p,M) −→ . . . .

where all maps are zero, and the required result follows. �

Remark A.26. We next want to consider the special case in which (R,m,K) is a
Noetherian local ring. Recall that we have natural surjections

. . . −→ R/m3 −→ R/m2 −→ R/m −→ 0,

and that the m-adic completion R̂ of R is the inverse limit of this system, i.e.,

lim←−
k

(R/mk) =

{
(r0, r1, r2, . . . ) ∈

∏

k

R/mk | rk − rk−1 ∈ mk−1

}
.

Morally, elements of the a-adic completion of R are power series of elements of R
where “higher terms” are those contained in higher powers of the ideal a. There
is no reason to restrict to local rings or maximal ideals—for topological purposes,
completions at other ideals can be very interesting; see, for example, [62].

Note that R̂/mkR̂ ∼= R/mk. Consequently if M is m-torsion, then the R-module

structure on M makes it an R̂-module. In particular, ER(R/m) is an R̂-module.

Theorem A.27. Let (R,m,K) be a local ring. Then ER(K) = E bR(K).

Proof. The containment K ⊆ ER(K) is an essential extension of R-modules, hence

also of R̂-modules. If ER(K) ⊆M is an essential extension of R̂-modules, then M

is m-torsion. (Prove!) If m ∈M is a nonzero element, then R̂m∩ER(K) 6= 0. But

R̂m = Rm, so ER(K) ⊆ M is an essential extension of R-modules, which implies
M = ER(K). It follows that ER(K) is a maximal essential extension of K as an

R̂-module. �

Theorem A.28. Let ϕ : (R,m,K) −→ (S, n, L) be a homomorphism of local rings
such that ϕ(m) ⊆ n, the ideal ϕ(m)S is n-primary, and S is module-finite over R.
Then

HomR(S,ER(K)) = ES(L).

Proof. By Exercise A.5, HomR(S,ER(K)) is an injective S-module. Every element
of HomR(S,ER(K)) is killed by a power of m and hence by a power of n. It follows
that HomR(S,ER(K)) is a direct sum of copies of ES(L), say HomR(S,ER(K)) ∼=
ES(L)µ. To determine µ, consider

HomS(L,HomR(S,ER(K))) ∼= HomR(L ⊗S S,ER(K)) ∼= HomR(L,ER(K)).

The image of any element of HomR(L,ER(K)) is killed by n, hence

HomR(L,ER(K)) ∼= HomR(L,K) ∼= HomK(L,K)

and Lµ ∼= HomK(L,K). Considering vector space dimensions over K, this implies
µ dimK L = dimK L, so µ = 1. �

Corollary A.29. Let (R,m,K) be a local ring and let S = R/a where a is an ideal
of R. Then the injective hull of the residue field of S is

HomR(R/a, ER(K)) ∼= 0 :ER(K) a.
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Since every element of ER(K) is killed by a power of m, we have

ER(K) =
⋃

t∈N

(0 :ER(K) mt) =
⋃

t∈N

ER/mt(K).

This motivates the study of ER(K) for Artinian local rings.

A.3. The Artinian case. Recall that the length of a module M is the length of a
composition series for M , and is denoted ℓ(M). The length is additive over short
exact sequences. If (R,m,K) is an Artinian local ring, then every finitely generated
R-module has a composition series with factors isomorphic to R/m.

Lemma A.30. Let (R,m,K) be a local ring. Then (−)∨ = HomR(−, ER(K)) is a
faithful functor, and ℓ(M∨) = ℓ(M) for every R-module M of finite length.

Proof. Note that (R/m)∨ = HomR(R/m, ER(K)) ∼= K. If M is a nonzero R-
module, we need to show that M∨ is nonzero. Taking a nonzero cyclic submodule
R/a →֒M , we have M∨ −→→ (R/a)∨, so it suffices to show that (R/a)∨ is nonzero.
The surjection R/a −→→ R/m yields (R/m)∨ →֒ (R/a)∨, and hence (−)∨ is faithful.

For M of finite length, we use induction on ℓ(M) to prove ℓ(M∨) = ℓ(M). The
result is true for modules of length 1 since (R/m)∨ ∼= K. For a module M of finite
length, consider m ∈ soc(M) and the exact sequence

0 −→ Rm −→M −→M/Rm −→ 0.

Applying (−)∨, we obtain an exact sequence

0 −→ (M/Rm)∨ −→M∨ −→ (Rm)∨ −→ 0.

Since Rm ∼= K and ℓ(M/Rm) = ℓ(M)− 1, we are done by induction. �

Corollary A.31. Let (R,m,K) be an Artinian local ring. Then ER(K) is a finite
length module and ℓ(ER(K)) = ℓ(R).

Theorem A.32. Let (R,m,K) be a Artinian local ring and E = ER(K). Then
the map R −→ HomR(E,E), which takes a ring element r to the homomorphism
“multiplication by r,” is an isomorphism.

Proof. By the previous results, ℓ(R) = ℓ(E) = ℓ(E∨), so R and HomR(E,E) have
the same length, and it suffices to show the map is injective. If rE = 0, then
E = annE(r) = ER/Rr(K) so ℓ(R) = ℓ(R/Rr), forcing r = 0. �

Theorem A.33. Let (R,m,K) be a local ring. Then R is an injective R-module
if and only if the following two conditions are satisfied:

(1) R is Artinian, and
(2) soc(R) is 1-dimensional vector space over K.

Proof. If R = M⊕N then K ∼= (M⊗RK)⊕(N⊗RK), so one of the two summands
must be zero, say M ⊗RK = 0. But then Nakayama’s lemma implies that M = 0.
It follows that a local ring in indecomposable as a module over itself. Hence if R is
injective, then R ∼= ER(R/p) for some p ∈ SpecR. This implies R that is p-torsion
and it follows that p is the only prime ideal of R and hence that R is Artinian.
Furthermore, soc(R) is isomorphic to soc(ER(K)), which is 1-dimensional.

Conversely, if R is Artinian with soc(R) = K, then R is an essential extension
of its socle. The essential extension K ⊆ R can be enlarged to a maximal essential
extension K ⊆ ER(K). Since ℓ(ER(K)) = ℓ(R), we must have ER(K) = R. �
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A.4. Matlis duality.

Theorem A.34. Let (R,m,K) be a local ring and let E = ER(K). Then E is also

an R̂-module, and the map R̂ −→ HomR(E,E), which takes an element r ∈ R̂ to
the homomorphism “multiplication by r,” is an isomorphism.

Proof. Since E = E bR(K), there is no loss of generality in assuming that R is
complete. For integers t > 1, consider the rings Rt = R/mt. Then Et = 0 :E mt is
the injective hull of the residue field of Rt. If ϕ ∈ HomR(E,E), then ϕ(Et) ⊆ Et, so
ϕ restricts to an element of HomRt(Et, Et), which equals Rt by Theorem A.32. The
homomorphism ϕ, when restricted to Et, is multiplication by an element rt ∈ Rt.
Moreover E =

⋃
tEt and the elements rt are compatible under restriction, i.e.,

rt+1 − rt ∈ mt. Thus ϕ is precisely multiplication by the element (r1 − r2) + (r2 −
r3) + · · · ∈ R. �

Corollary A.35. For a local ring (R,m,K), the module ER(K) satisfies the de-
scending chain condition (DCC).

Proof. Consider a descending chain of submodules

ER(K) = E ⊇ E1 ⊇ E2 ⊇ . . . .
Applying the functor (−)∨ = HomR(−, E) gives us surjections

R̂ ∼= E∨ −→→ E∨
1 −→→ E∨

2 −→→ . . . .

Since R̂ is Noetherian, the ideals ker(R̂ −→→ E∨
t ) stabilize for large t, and hence

E∨
t −→→ E∨

t+1 is an isomorphism for t ≫ 0. Since (−)∨ is faithful, it follows that
Et = Et+1 for t≫ 0. �

Theorem A.36. Let (R,m,K) be a Noetherian local ring. The following conditions
are equivalent for an R-module M .

(1) M is m-torsion and soc(M) is a finite-dimensional K-vector space;
(2) M is an essential extension of a finite-dimensional K-vector space;
(3) M can be embedded in a direct sum of finitely many copies of ER(K);
(4) M satisfies the descending chain condition.

Proof. The implications (1) =⇒ (2) =⇒ (3) =⇒ (4) follow from earlier results,
so we focus on (4) =⇒ (1). Let x ∈M . The descending chain

Rx ⊇ mx ⊇ m2x ⊇ . . .
stabilizes, so mt+1x = mtx for some t. But then Nakayama’s lemma implies mtx =
0, and it follows that M is m-torsion. Since soc(M) is a vector space with DCC, it
must be finite-dimensional. �

Example A.37. Let (R,m,K) be a discrete valuation ring with maximal ideal
m = Rx. (For example, R may be a power series ring K[[x]] or the ring of p-adic

integers Ẑp.) We claim that ER(K) ∼= Rx/R. To see this, note that soc(Rx/R)
is a 1-dimensional K-vector space generated by the image of 1/x ∈ Rx, and that
every element of Rx/R is killed by a power of x. It follows tht Rx/R is an essential
extension of K. ♣ and now???

The next result explains the notion of duality in the current context.

Theorem A.38. Let (R,m,K) be a complete Noetherian local ring, and use (−)∨

to denote the functor HomR(−, ER(K)).
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(1) If M has ACC then M∨ has DCC, and if M has DCC then M∨ has ACC.
Hence the category of R-modules with DCC is anti-equivalent to the category
of R-modules with ACC.

(2) If M has ACC or DCC, then M∨∨ ∼= M .

Proof. Let E = ER(K). If M has ACC, consider a presentation

Rm −→ Rn −→M −→ 0.

Applying (−)∨, we get an exact sequence 0 −→ M∨ −→ (Rn)∨ −→ (Rm)∨. Since
(Rn)∨ ∼= En has DCC, so does its submodule M∨. Applying (−)∨ again, we get
the commutative diagram with exact rows

(Rm)∨∨ - (Rn)∨∨ - M∨∨ - 0

Rm

6

- Rn

6

- M

6

- 0

6

Since R −→ R∨∨ is an isomorphism, it follows that M −→M∨∨ is an isomorphism
as well.

If M has DCC, we embed it in Em and obtain an exact sequence

0 −→M −→ Em −→ En.

Applying (−)∨ gives an exact sequence (En)∨ −→ (Em)∨ −→M∨ −→ 0. The sur-
jection Rn ∼= (Em)∨ −→→M∨ shows that M has ACC, while a similar commutative
diagram gives the isomorphism M∨∨ ∼= M . �

Remark A.39. Let M be a finitely generated module over a complete local ring
(R,m,K). Then

HomR(K,M∨) ∼= HomR(K ⊗RM,ER(K)) ∼= HomR(M/mM,ER(K))

∼= HomK(M/mM,K),

so the number of generators of M as an R-module equals the vector space dimension
of soc(M∨).
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duality, 163
Lemma, 21, 152, 158
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exact sequence of, 22

flasque, 19

injective, 110

locally constant, 158
morphism, 21

of C∞-functions, 20

of differentials, 153

of holomorphic functions, 153
of rings, 104

skyscraper, 110

soft, 152

structure, 104

total space, see also espace étalé

sheaf space, 13

sheafification, 107
exactness of, 107

sheafify, 107

simplex, 126

simplicial complex, 127
singular algebraic set, 9

singularity

isolated, 192

isolated quasi-homogeneous, 192
skyscraper sheaf, 110, 112

small Cohen-Macaulay module, 178

Smith, 177

smooth algebraic set, 9
smooth points, 72

smoothness

definition, 144

field extensions, 145
smuggling, 29, 59

Snake Lemma, 113

socle, 206

of local cohomology, 172
spectrum, 12

spectrum of a ring, 4

Speiser, 181, 184

standard simplex, 151
Stanley-Reisner ideal, 129

Stanley-Reisner ring, 129

Stein

cover, 156
space, 155

Stokes’ theorem, 152, 153

structure sheaf, 104

sum

amalgamated, 33
categorical, 36

free, 36

support (of a monomial), 129

support hyperplane, 125
surjectivity of a morphism of sheaves, 107

Suslin, Andrei, 26

system of parameters, 4

Szpiro, 121, 175, 178, 181

tangent space, 9, 72
tensor product

of complexes, 57

test object, 36

theorem
Seifert–van Kampen, 32

topology

discrete, 12

trivial, 12
Zariski, 12

Tor, 29

toric ideal, 166

toric residue, 199
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toric variety, 197
transcendence degree, 5
transverse section, 167
trivial bundle, 15
trivial extension, 101
type, 97

UFD, 26
unique factorization domain, 26
universal lifting property, 25
universal property, 33
Upper Bound Theorem, 127, 128

van Kampen, Egbert Rudolf, 32
vanishing theorem

Hartshorne-Lichtenbaum, 119
variety, 12
vector field, 26
Veronese subring, 85

Walther, 182
Watanabe, 184
weak dimension, 28
weakly regular, 59
Weyl algebra

–, 134
grading on, 197
homogenized, 135

Weyl, Hermann, 103
word, 33

Zariski topology, 4
Zorn’s Lemma, 110
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[151] B. Sturmfels and N. Takayama, Gröbner bases and hypergeometric functions, in: Gröbner
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[153] R. G. Swan, Néron-Popescu desingularization, Algebra and geometry (Taipei, 1995), Lect.

Algebra Geom. 2, 135–192, Internat. Press, Cambridge, MA, 1998. 26
[154] U. Walther, Algorithmic computation of local cohomology modules and the local cohomo-

logical dimension of algebraic varieties, in: Effective methods in algebraic geometry (Saint-
Malo, 1998), J. Pure Appl. Algebra 139 (1999), 303–321. 182, 195

[155] U. Walther, Algorithmic computation of de Rham cohomology of complements of complex
affine varieties, in: Symbolic computation in algebra, analysis, and geometry (Berkeley, CA,
1998), J. Symbolic Comput. 29 (2000), 795–839. 156, 160

[156] U. Walther, Computing the cup product structure for complements of complex affine vari-
eties, in: Effective methods in algebraic geometry (Bath, 2000), J. Pure Appl. Algebra 164

(2001), 247–273. 160
[157] U. Walther, Bernstein-Sato polynomial versus cohomology of the Milnor fiber for generic

hyperplane arrangements, Compos. Math. 141 (2005), 121–145. 192
[158] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced

Mathematics 38, Cambridge University Press, Cambridge, 1994. 11, 141
[159] H. Weyl, The concept of a Riemann surface, Addison-Wesley Publishing Co., Inc., Reading,

Mass.-London, 1964. 103
[160] H. Weyl, The classical groups. Their invariants and representations, Princeton University

Press, Princeton, New Jersey, 1997. 89
[161] K. Yanagawa, Sheaves on finite posets and modules over normal semigroup rings, J. Pure

Appl. Algebra 161 (2001), 341–366. 172
[162] T. Yano, On the theory of b-functions, Publ. Res. Inst. Math. Sci. 14 (1978), 111–202.
[163] G. M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics 152, Springer–Verlag,

New York, 1995. 125, 127


