Rational Hypergeometric Functions in two Variables

Eduardo Cattani, U. of Massachusetts

Alicia Dickenstein, U. of Buenos Aires

Fernando Rodriguez-Villegas, U. of Texas

Rational A-Hypergeometric Functions

We denote as usual:

$$A = [a_1|a_2|\cdots|a_n] \in \mathbb{Z}^{d\times n}$$

and assume that:

•
$$\operatorname{span}_{\mathbb{Z}}\{a_1,\ldots,a_n\}=\mathbb{Z}^d.$$

• $(1,\ldots,1)\in\operatorname{rowspan}_{\mathbb{Q}}(A).$

•
$$(1,\ldots,1)\in \mathsf{rowspan}_{\mathbb{Q}}(A)$$
.

We set dim(A) := d - 1; codim(A) := n - d.

Given $\beta \in \mathbb{C}^d$ we define

$$H_{A}(\beta) = \langle \partial^{u} - \partial^{v} : u, v \in \mathbb{N}^{n}, A \cdot u = A \cdot v;$$

$$\sum_{i} a_{ij} x_{i} \partial_{i} - \beta_{j}; j = 1, \dots, d \rangle$$

$$\subset \mathbb{C}\langle x_{1}, \dots, x_{n}, \partial_{1}, \dots, \partial_{n} \rangle.$$

We are interested in rational hypergeometric functions F(x), i.e. rational functions with:

$$H_A(\beta) \cdot F = 0.$$

Definition: A rational function is said to be stable if it is not annihilated by any partial derivative operator ∂^u .

- Which configurations A admit stable rational hypergeometric functions?
- Characterize all such functions.

Conjecture [CDS]: If A admits a stable RHF, then A is affinely equivalent to an <u>essential</u> Cayley configuration, i.e. d = 2r + 1 and there exist configurations $A_0, \ldots, A_r \in \mathbb{Z}^r$ such that

$$A = \{e_0\} \times A_0 \cup \cdots \cup \{e_r\} \times A_r \subset \mathbb{Z}^{r+1} \times \mathbb{Z}^r,$$

and dim $(\sum_{i \in I} A_i) \ge |I|$ for all proper subsets $I \subset \{0, \ldots, r\}$.

It holds if:

 $dim(A) \leq 3$ or if codim(A) = 1 [CDS, 2001].

Some codimension two cases [CD, 2004].

Theorem: The conjecture holds for codimensiontwo configurations.

Key ingredients of the proof

- We understand hypergeometric Laurent series.
- A diagonal series of a two-variable rational hypergeometric series must be algebraic (Furstenberg, 1967) and is a classical univariate hypergeometric function.
- We are able to transform the diagonal to an algebraic univariate hypergeometric function of the type classified by Beukers and Heckman (1989).

Laurent Expansions

Let F(x) = P(x)/Q(x) be a stable RHF of degree β and let $\operatorname{codim}(A) = 2$. Then $\mathcal{NP}(Q)$ is two-dimensional and

F has a Laurent series expansion supported in a region of the form:

$$\gamma_0 + \mathbb{N} \cdot \nu_1 + \mathbb{N} \cdot \nu_2$$

where ν_1, ν_2 are a \mathbb{Z} -basis of $\ker_{\mathbb{Z}}(A)$.

The series converges in:

$$\mathcal{U} = \{ x \in (\mathbb{C}^*)^n : |x^{\nu_1}| < \varepsilon, |x^{\nu_2}| < \varepsilon. \}$$

Hypergeometric Series

Let $M_{\beta} = \{v \in \mathbb{Z}^n : A \cdot v = \beta\} = v_0 + \ker_{\mathbb{Z}}(A)$.

For $v \in M_{\beta}$ set: $\operatorname{nsupp}(v) = \{i : v_i < 0\}$ and $N_v := \{u \in \ker_{\mathbb{Z}}(A) : \operatorname{nsupp}(u+v) = \operatorname{nsupp}(v)\}.$

A subset $I \subset \{1, ..., n\}$ is called *minimal* iff:

- $\Sigma(I) := \{v \in M_{\beta} : \operatorname{nsupp}(v) = I\} \neq \emptyset.$
- For $J \subset I, J \neq I, \Sigma(J) = \emptyset$.

For v in a minimal region $\Sigma(I)$ the formal series

$$\Phi_{\Sigma}(x) := \sum_{u \in N_v} \frac{[v]_{u_-}}{[v+u]_{u_+}} \cdot x^{u+v}$$

is hypergeometric, where $u=u_+-u_-$, and

$$[a]_w = \prod_{i:w_i \neq 0} \prod_{k=1}^{w_i} (a_i - k + 1), \quad a \in \mathbb{C}^n, w \in \mathbb{N}^n.$$

Gale Duality

Via the \mathbb{Z} -basis $u_1,
u_2$ we identify $\ker_{\mathbb{Z}}(A) \cong \mathbb{Z}^2$ $M_{\beta} \cong v_0 + \mathbb{Z}^2$

The intersection of the coordinate hyperplanes with $M_{\beta}\otimes\mathbb{R}\cong\mathbb{R}^2$ defines an oriented line arrangement in \mathbb{R}^2 and the minimal regions are cells of the arrangement.

The arrangement consists of lines normal to the vectors

$$b_i := ((\nu_1)_i, (\nu_2)_i)$$

and their position is determined by $\beta \in \mathbb{Z}^n$.

Theorem: For an appropriate choice of v_0 , the RHF F(x) is a linear combination $\sum_j \lambda_j \Phi_{\sum_j}(x)$, where the minimal regions \sum_j are contained (up to translation) in the first quadrant.

Taking derivatives we may assume that one of the minimal regions is a cone with vertex at the origin.

The diagonal series corresponding to a minimal region Σ_I and to a direction $\delta \in \mathbb{Z}^2$ is of the form:

$$\xi_{\delta}(t) = \sum_{k=0}^{\infty} \frac{\prod_{i \in I} (p_i k + c_i)!}{\prod_{j \notin I} (q_j k)!} t^k,$$

where $p_i = -\langle b_i, \delta \rangle$, $q_j = \langle b_j, \delta \rangle$, and $c_i \in \mathbb{N}$.

Theorem [Furstenberg (1967)]: $\xi_{\delta}(t)$, being a diagonal series of a rational bivariate series, is algebraic.

Theorem: The function

$$\widehat{\xi}_{\delta}(t) = \sum_{k=0}^{\infty} \frac{\prod_{i \in I} (p_i k)!}{\prod_{j \notin I} (q_j k)!} t^k, \tag{1}$$

is also algebraic.

The proof uses the fact that these functions are hypergeometric and monodromy results by Beukers-Heckman (1989) and Levelt (1961).

Observation: Pairs $\{b, -b\}$ are "lost".

Factorial Ratios and Hypergeometric Series

Algebraic functions of the form (1) have been classified (Beukers and Heckman, Rodriguez-Villegas, Bober):

•
$$p_1 = a + b$$
, $q_1 = a$, $q_2 = b$, $gcd(a, b) = 1$.

•
$$p_1 = 2a, p_2 = b; q_1 = a, q_2 = 2b, q_3 = a - b,$$

 $gcd(a, b) = 1, a > b.$

•
$$p_1 = 2a, p_2 = 2b$$
; $q_1 = a, q_2 = b, q_3 = a + b,$
 $gcd(a, b) = 1.$

Fifty-two except anal cases, including

$$\sum \frac{(30k)!k!}{(15k)!(10k)!(6k)!} t^k$$
 (Chebyshev).

Punch line

Each direction δ in the minimal region gives rise to a different one-variable, algebraic hypergeometric function. Thus, infinitely many functions of the first three types may appear. However, the second and third types involve a Gale configuration with 5 vectors and this is not possible. Hence, we must have three relevant b-vectors and for infinitely many δ 's,

$$\langle b_1, \delta \rangle = -(a+b) = -\langle b_2, \delta \rangle - \langle b_3, \delta \rangle$$

Hence

$$b_1 + b_2 + b_3 = 0$$

This is easily seen to be the Gale dual of a Cayley configuration.