Lyubeznik numbers of projective schemes

Wenliang Zhang

April 6th, 2008

 For any Noetherian commutative ring *R* and an ideal *I* of *R*, one can define a functor Γ_I as

 $\Gamma_I(M) = \{x \in M | I^n x = 0 \text{ for some integer } n\}$ for any *R*-module *M*.

•
$$H^i_I(M) = \mathcal{R}^i \Gamma_I(M).$$

• also $H_I^i(M) = \varinjlim_n \operatorname{Ext}_R^i(A/I^n, M).$

- If (R, m) is a regular local ring containing a field, the following properties are known (Huneke-Sharp; Lyubeznik)
 - 1. $Ass_R(H_I^i(R))$ is finite for all *i*;
 - 2. the Bass numbers of $H_I^i(R)$ are finite for all *i*.
 - 3. $H^{i}_{\mathfrak{m}}(H^{j}_{I}(R))$ are injective.

Remark: to prove this result in char. 0, one has to use D-module theory!

 If A is a local ring containing a field k and admits a surjection R → A where (R, m) is a n-dim regular local ring containing k, then one can define the Lyubeznik numbers

$$\lambda_{i,j}(A) := \dim_k(\mathsf{Ext}^i_R(R/\mathfrak{m}, H^{n-j}_I(R))).$$

- $\lambda_{i,j}(A)$ do NOT depend on the choice of $R \to A$ (Lyubeznik'93).
- If A is a local ring containing a field k, then one can define (due to Lyubeznik'93)

$$\lambda_{i,j}(A) := \lambda_{i,j}(\widehat{A}).$$

- $\lambda_{i,j}(A)$ are finite (cf. 2nd slide).
- $H^{i}_{\mathfrak{m}}(H^{n-j}_{I}(R)) \cong \mathsf{E}^{\lambda_{i,j}(A)}$ (due to Lyubeznik)
- By the highest Lyubeznik number, we mean $\lambda_{d,d}(A)$, $d = \dim(A)$.

Let X be a projective scheme over a field k (assume $k = \overline{k}$). Given an embedding η : $X \to \mathbb{P}_k^n$, one can write $X = \text{Porj}(k[x_0, \dots, x_n]/I)$, where I is a homogeneous ideal. Let $A = (k[x_0, \dots, x_n]/I)_{(x_0, \dots, x_n)}$. Then one can consider the Lyubeznik numbers of A.

In 2007, it is proven (by myself) that the highest Lyubeznik number of A is a numerical invariant of X, i.e., it depends only on X itself, but NOT on the embedding, which provides supporting evidence to a positive answer to the following question

Question: With notations as above, is it true that all $\lambda_{i,j}(A)$ depend only on X, but not on the embedding?

Why interesting?

Short Answer: connection with topology! **Example** (essentially due to Garcia-Lopéz and Sabbah): Let X be a smooth complex projective variety. Then

$$\lambda_{0,j+1}(A) = b_j(X),$$

where $b_j(X)$ is the *j*-th Betti number of X, and other $\lambda_{i,j}(A)$ can be determined by $\lambda_{0,j}(A)$ s.

Remark. If the variety X in the above example is singular, then we can not say anything about those numbers. However, if char(k) = p > 0, then we have the following

Main Theorem When char(k) = p > 0, each $\lambda_{i,j}(A)$ can only achieve finitely many possible values for all choices of embeddings.

The proof of this result is based on (or inspired by) Lyubeznik's F-module theory.

Before we can outline the proof, let's introduce some notations.

• $R = k[x_0, ..., x_n]$, I is the defining ideal of the projective scheme X. Since field extentions do not change Lyubeznik numbers, we assume $k = \overline{k}$. Let

$$\mathcal{M} = \mathsf{Ext}_R^{n+1-i}(\mathsf{Ext}_R^{n+1-j}(R/I,R),R).$$

• Let $\{L_i, \theta_{ij}\}$ be an inverse system of Rmodules and assume that L_i are graded and all θ_{ij} are degree-preserving. Then define * $\varprojlim_i L_i$ as follows

$$(\underset{i}{*} \varprojlim_{i} L_{i})_{l} = \varprojlim_{i} (L_{i})_{l}$$

 $\ensuremath{\mathcal{M}}$ is a very interesting object.

• \mathcal{M} is naturally graded and its degree-0 piece only depend on X but not on the embedding.

<u>Reason</u>. When $i \geq 2$,

 $\mathcal{M}_0 \cong \operatorname{Hom}_k(H^{i-1}(X, \mathcal{E}xt^{n+1-j}(\mathcal{O}_X, \omega_{\mathbb{P}^n})), k)$ where $\mathcal{E}xt^{n+1-j}(\mathcal{O}_X, \omega_{\mathbb{P}^n})$ depends only on X since it is the (-j)-th cohomology sheaf of the dualizing complex on X. The proof of the case $i \leq 1$ is done by considering some exact sequences, which will be skipped here.

• There is a natural action of Frobenius (or a p-linear endomorphism) on \mathcal{M} .

$$\mathcal{M} \xrightarrow{\alpha} R^{(1)} \otimes_R \mathcal{M}$$
$$\xrightarrow{\beta} \mathsf{Ext}_R^{n+1-i} (\mathsf{Ext}_R^{n+1-j} (R/I^{[p]}, R), R)$$
$$\xrightarrow{\gamma} \mathcal{M}$$

where $\alpha(m) = 1 \otimes m$, β is the natural isomorphism, and γ is induced by $R/I^{[p]} \rightarrow R/I$. Then the action of Frobenius $f : \mathcal{M} \rightarrow \mathcal{M}$ is defined to be $\gamma \circ \beta \circ \alpha$, noticing that β and γ are *R*-linear and α is *p*-linear.

An important feature of f: deg $(f(m)) = p \deg(m)$, for all homogeneous $m \in \mathcal{M}$.

Once we have such an action of Frobenius on $\mathcal{M},$ we can consider

$$\mathcal{M}_s := \bigcap_e (f^e(\mathcal{M}))$$

called the stable part of \mathcal{M} . Theorem

- 1. $\mathcal{M}_s \subseteq \mathcal{M}_0$ and is a finite-dimensional *k*-space.
- 2. dim_k(\mathcal{M}_s) = $\lambda_{i,j}(A)$

The first part of the above theorem is fairly easy. To prove the second part, let \mathcal{N} be the *R*-submodule of \mathcal{M} genearted by \mathcal{M}_s , and then prove the following:

- 1. $\lim_{e} F^{e}(\mathcal{N}) \cong \lim_{e} F^{e}(\mathcal{M})$
- 2. * $\varprojlim_e F^e(\mathcal{N}) \cong R^{\dim_k(\mathcal{M}_s)}$

3. *
$$\varprojlim_e F^e(\mathcal{M}) \cong R^{\lambda_{i,j}(A)}$$

where F is the Frobenius on R.

From what we have seen, one can notice that actually we are very close to a complete solution. Namely, if we can show that this action of Frobenius restricted to \mathcal{M}_0 does not depend on the embedding, then it follows that $\lambda_{i,j}(A)$ do not depend on the embedding. We believe this should be the case and we pose it here as a conjecture:

Conjecture. With notations as above, the action of Frobenius $f : \mathcal{M} \to \mathcal{M}$ restricted to \mathcal{M}_0 does not depend on the embedding.