
• Does x7 − 33x4 + 12x3 + 2x2 + 3 have rational roots? If so, find them.

• How many quadrics are there in Z/11Z[x]? How many are reducible? How many are
irreducible? How many reducible cubics are there?

(For the quadrics, note that reducibility of a quadric is tantamount to both roots being
in Z/11Z. How many degree 2 polynomials have this latter property? The cubics part
is more tricky; you need to do the quadric part first and then ask how a factorization
could happen.)

• Find the gcd between f(x) = x5 + 3x3−5x2−2x+ 1 and g(x) = x4 + 5x3 + 5x2 +x−1
in Z/11Z[x]. Factor the gcd as much as possible and write it as linear combination of
f, g.

• Find the total number of fields contained in GF(23, 48). What is the longest chain of
field inclusions within this set?

• The polynomial f(x) = x3 + 2x+ 2 is irreducible in Z/3Z[x]. Explain why. Then

Z/3Z[x]

〈x3 + 2x+ 1〉
= Kron(Z/3Z, f)

is a field with 27 elements. Let α be the Kronecker root α = x̄ of f in this field.

Find the other two roots of f(x) in Kron(Z/3Z, f) as linear combinations of 1̄, α, α2.

• Let F1 = Q(
√

2), F2 = Q(
√

5), F = Q(
√

2,
√

5). Let α =
√

2 +
√

5. Show that
F1 6= F2 6= F 6= F1.

Find [F : F2], [F : F1], [F : Q], [F1 : Q] and [F2 : Q].

Find the minimal polynomial of
√

2 +
√

5 over Q. Why is the polynomial that consti-
tutes your answer minimal?

Then show that F = Q(
√

2 +
√

5).

• Of the three polynomials f(x) = x2+x+5, and g(x) = x2+x+6, and h(x) = x2+x+7,
which one is irreducible modulo 23?

• Of the three polynomials f(x) = x8 + x4 + x2 + x + 1, g(x) = x8 + x4 + x6 + x2 + 1
and h(x) = x8 + x6 + x4 + x+ 1, one will have multiple roots in some field containing
Z/2Z. Which one of f, g, h does?

• Is the polynomial x4 − 96x2 + 4x− 26 reducible in Q[x]?

• Find the inverse of 11 − 4
√

3 in Q(
√

3). Write it as a + b
√

3 with a, b ∈ Q. Find the
minimal polynomial of 11− 4

√
3 over Q. Find the minimal polynomial of 1 + 91/3 over

Q. (In particular, explain in both cases why your answer is minimal).

• Why is F = Z/11Z[x]/(x3 + 2x + 2) a field? Why does it have 1331 elements? What
are the minimal polynomials of α := x̄ and of β := x̄2 − 3̄ over Z/11Z?



• Which fields F allow a surjective ring morphism Z/105Z→ F?

• In Z[
√
−15], use the norm function a + b

√
−15 7→ a2 + 15b2 to investigate which of

3 + 4
√
−15, 4 + 3

√
−15 are not factorizable in Z[

√
−15].

• Is Q[x]/(x2 + 3x+ 2) a domain?

• What is a prime ideal in Z[x] that is not a maximal ideal?

• Display an infinite field extension F of Q.

• Describe the splitting field of x4 + 5x3 + 5x2 + x− 1 over Z/11Z. (It can be made very
concrete).

• Express the number of reducible quadrics over a finite field with pe elements in terms
of p and e.

• Let β be the coset of 2x + 3 in F = Kron(Z/7Z, x2 + 5x + 2). Compute (with 3
multiplications) its 8-th power. From information obtained in this way, determine its
order as element of the cyclic group U(7, 2). How many elements does this group have?

• Discuss the possible orders of elements in U(7, 2). Explain why for any element of F
the order of the element is the same as the order of its Frobenius image. (Starter: what
does the Frobenius do? Then: what do you know about orders of k-powers of elements
with known order n—look back to the chapter on cyclic groups).

• Suppose GF(p, e) is a field such that its group of units is simple (has no proper sub-
groups). What does that tell you about p? How many such fields can you think of?
(If you can find more than 51, you probably would get some kind of prize).
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