EXAM 1

1. Circle the letters corresponding to statements which are true for any two square matrices A and B such that AB = 0:

A. Either A = 0 or B = 0.

B. $\mathcal{C}(A) \subset \mathcal{N}(B)$.

C. $\mathcal{C}(A^T) \supset \mathcal{N}(B^T)$.

D. BA = 0.

E. Either A = 0 or B is singular.

2. Which of the following is a subspace of the vector space C[0,1] of continuous functions on [0,1]? Circle the letters corresponding to correct answers.

- A. Functions with f(1) = 0.
- B. Functions with f(0) = 1.
- C. Functions with $\int_0^1 f(x) dx = 0$.
- D. Functions with f(0) = f(1).
- E. Functions with $f(0) \leq f(1)$.

3. Which of the following is a linear transformation T of the space of 3×3 matrices? Circle the letters corresponding to correct answers.

A. T(A) = U where U is the row echelon form of A. B. $T(A) = A^{-1}$. C. $T(A) = A^{T}$. D. T(A) = P where p = Pb is the orthogonal projection of b to C(A). E. $T(A) = E_{2,1}(3)A$ where $E_{2,1}(3)$ is an elementary matrix.

4. Let
$$A = \begin{pmatrix} 1 & 2 & 2 \\ -6 & -11 & -12 \\ 1 & -4 & 3 \end{pmatrix}$$
.

a) Factor A = L U.

b) Find A^{-1} .

5. Let T be the transformation of the space \mathbf{P}_2 of polynomials of degree 2 defined as T(p(x)) = p(x) - p(1).

- a) Write the matrix of T in the basis 1, x, x^2 of \mathbf{P}_2 .
- b) Find the rank of T.
- c) Find the fundamental subspaces $\mathcal{C}(T)$ and $\mathcal{N}(T)$.

Let
$$\mathbf{v_1} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
, $\mathbf{v_2} = \begin{bmatrix} 4\\0\\0 \end{bmatrix}$, $\mathbf{v_3} = \begin{bmatrix} 2\\1\\1 \end{bmatrix}$, $\mathbf{v_4} = \begin{bmatrix} 1\\1\\2 \end{bmatrix}$, $\mathbf{v_5} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$.

6. With \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 , \mathbf{v}_5 as above, which one of the following is a spanning set for R^3 ?

A. v_1 , v_2 , v_3 B. v_2 , v_3 , v_5 C. v_1 , v_5 D. v_1 , v_2 , v_3 , v_4 E. v_1 , v_2 , v_3 , v_5

7. With $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5$ above, which set is linearly independent?

- A. v_1, v_2, v_3
- B. v_2, v_3, v_5
- C. v_1, v_5
- D. v_1, v_2, v_3, v_4
- E. v_1 , v_2 , v_3 , v_5
- 8. With $\mathbf{v_1}$, $\mathbf{v_2}$, $\mathbf{v_3}$, $\mathbf{v_4}$, $\mathbf{v_5}$ as above, which set is a basis for \mathbb{R}^3 ?
- A. v_1, v_2, v_3
- B. $\mathbf{v_2},\ \mathbf{v_3},\ \mathbf{v_4}$
- C. v_1, v_5
- D. v_1, v_2, v_3, v_4
- E. v_1, v_2, v_3, v_5

9. Which of the following are subspaces of R^3 .

- (1) The set of all (x, y, z) such that xy = 0.
- (2) The set of all (x, y, z) such that y = 2x and z = 3x.
- (3) The set of all (x, y, z) such that x + y = 7z + 1
- (4) The set of all (x, y, z) such that $x^2 + y^2 z^2 = 0$
- (5) The set of all (x, y, z) such that x + y + z = 4
- A. (2) B. (1) and (2) C. (3) and (5) D. (2), (3) and (5) E. (1), (2) and (4)
- E. (1), (2) and (4)

10. Determine which matrix A represents the linear transformation $T : \mathcal{P}_3 \to \mathcal{P}_3$ defined by $T(p) = x \frac{dp}{dx}$, and with the ordered basis $\{1, x, x^2, x^3\}$ for \mathcal{P}_3 : A. $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ B. $\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$ C. $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$ D. $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ E. $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

11. Let
$$a = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $b = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

- i) Find the projection matrix that projects onto the line through a.
- ii) Find the point on the line through a which is closest to b.

iii) Find the projection of b onto the column space of $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$.

12. Let
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 6 & 8 & 10 & 12 \end{bmatrix}$$
.

- i) Find a basis for the null space of A.
- ii) Find a basis for the row space of A.
- iii) Find a basis for the column space of A.