1. Let a = (2, 1, -2) and b = (2, -1, -3).

(a) Apply the Gram-Schmidt procedure to construct orthonormal vectors q_1 and q_2 in the plane spanned by a and b.

(b) Find the projection of c = (1, 2, 1) onto the plane spanned by a and b.

(c) Find a unit vector q_3 orthogonal to a and b.

2. Let V be the vector space spanned by the functions $\phi_1(x) = 1$, $\phi_2(x) = x$, $\phi_3(x) = x^3$ on the interval [-1, 1]. Use the Gram-Schmidt algorithm to find an orthogonal set of functions which span V.

3. Evaluate the determinant

a	3	0	$5 \mid$
0	b	0	2
7	8	С	3
0	0	0	d

4. (a) Find a third column so that

$$U = \begin{pmatrix} 1/\sqrt{3} & i/\sqrt{2} & \dots \\ 1/\sqrt{3} & 0 & \dots \\ i/\sqrt{3} & 1/\sqrt{2} & \dots \end{pmatrix}$$

is unitary.

(b) How many solutions does problem (a) have?

5. Find the exponentials of the following matrices:

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}.$$

6. In the vector space of all 2×2 matrices, consider the linear operator L that transposes a matrix, that is $L(A) = A^T$.

- (a) What are the eigenvalues of L ?
- (b) Describe the eigenspace of each eigenvalue and find its dimension.
- (c) Is L diagonalizable ?

7. True or false:

(a) Every non-singular matrix is diagonalizable.

(b) If A and B are Hermitian matrices of the same size then A+B is also Hermitian.

(c) If A and B are real symmetric matrices of the same size then AB is also symmetric.

(d) For every square matrix A we have $AA^H = A^H A$.

(e) If A is symmetric and orthogonal then $A^2 = I$.

8. (a) Compute the following determinants:

						0	0	1 .	0	0	0	0	1
$\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix},$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1		0 0 0 1	$\begin{vmatrix} 1 \\ 0 \\ 0 \end{vmatrix}, \begin{vmatrix} 0 \\ 0 \end{vmatrix}$	0	0	0	1	0		
		$0 \mid$,	$0 , _0^0$	1	0		0	0	1	0	0		
	0	1 0	$0 _{1}$			0		0	1	0	0	0	
					1	0	0	01	1	0	0	0	0

(b) Use the results from (a) to evaluate the 101×101 determinant

0	0	•••	0	1
0	0	•••	1	0
.	•		•	•
•	•	• • •	•	
•	•		•	•
1	0	• • •	0	$0 \mid$

9. One solution to $y' = \begin{pmatrix} 3 & 0 \\ 1 & 2 \end{pmatrix} y$ is $y = \begin{pmatrix} 0 \\ e^{2t} \end{pmatrix}$. Find another independent solution.

10. The system

$$y_1' = y_1 + 3y_2$$
$$y_2' = 4y_1 + 2y_2$$

is (a) unstable, (b) stable, (c) neutrally stable.