Compressible hydrodynamic flow of liquid crystals in 1-D
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Abstract

We consider the equation modeling the compressible hydrodynamic flow
of liquid crystals in one dimension. When the initial density function pgy has a
positive lower bound, we obtain the existence and uniqueness of global classical,
and strong solutions and the existence of weak solutions. For py > 0, we obtain

the existence of global strong solutions.
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1 Introduction

In this paper, we consider the one dimensional initial-boundary value problem for
(pv U, TL) : [07 1] X [07+OO) — Ry xR x 52
pt + (pu)x = 07

ne + ung = 0(nge + |nz|*n),

for (z,t) € (0,1) x (0,+00), with the initial condition:

(p, u, n)‘tzo = (po, uo, mo) in [0, 1], (1.2)
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where ng : [0,1] — S? and the boundary condition:
(u, n2)|y; = (0, 0), t >0, (1.3)

where p > 0 denotes the density function, v denotes the velocity field, n denotes
the optical axis vector of the liquid crystal that is a unit vector (i.e., |n| = 1),
w > 0,X > 0,0 > 0 are viscosity of the fluid, competition between kinetic and
potential energy, and microscopic elastic relaxation time respectively. P = Rp”, for
some constants v > 1 and R > 0, is the pressure function.

The hydrodynamic flow of compressible (or incompressible) liquid crystals was
first derived by Ericksen [2] and Leslie [3] in 1960’s. However, its rigorous mathe-
matical analysis was not taken place until 1990’s, when Lin [4] and Lin-Liu [5, 6, 7]
made some very important progress towards the existence of global weak solutions
and partial regularity of the incompressible hydrodynamic flow equation of liquid
crystals.

When the Ossen-Frank energy configuration functional reduces to the Dirichlet
energy functional, the hydrodynamic flow equation of liquid crystals in @ c R can

be written as follows (see Lin [4]):

pt + div(pu) =0,
(pu)r + div(pu @ u) + V(P(p)) = pAu — Adiv(Vn © Vn — %Id), (%)

ne +u-Vn = 0(An + |Vn|?n),

where u ® u = (uiuj)lgi’jgd, and Vn © Vn=(ng, - ng;)1<i j<d-

Observe that for d = 1, the system (%) reduces to (1.1). When the density
function p is a positive constant, then (x) becomes the hydrodynamic flow equation
of incompressible liquid crystals (i.e., div u = 0). In a series of papers, Lin [4] and
Lin-Liu [5, 6, 7] addressed the existence and partial regularity theory of suitable
weak solution to the incompressible hydrodynamic flow of liquid crystals of variable
length. More precisely, they considered the approximate equation of incompressible

hydrodynamic flow of liquid crystals: (i.e., p = 1, and |Vn|? in ()3 is replaced

by (L= [l

3 ), and proved [5], among many other results, the local existence of

€
classical solutions and the global existence of weak solutions in dimension two and



three. For any fixed € > 0, they also showed the existence and uniqueness of global
classical solution either in dimension two or dimension three when the fluid viscosity
w is sufficiently large; in 7], Lin and Liu extended the classical theorem by Caffarelli-
Kohn-Nirenberg [1] on the Navier-Stokes equation that asserts the one dimensional
parabolic Hausdorff measure of the singular set of any suitable weak solution is zero.
See also [9, 10, 18] for relevant results. For the incompressible case p = 1 and
div v = 0, it remains to be an open problem that for ¢ | 0 whether a sequence of
solutions (ue, n¢) to the approximate equation converges to a solution of the original
equation (x). It is also a very interesting question to ask whether there exists a global
weak solution to the incompressible hydrodynamic flow equation (x) similar to the
Leray-Hopf type solutions in the context of Naiver-Stokes equation. We answer this
question in [8] for d = 2.

When dealing with the compressible hydrodynamic flow equation (*), there seems
very few results available. This motivates us to address the existence and uniqueness
of global classical, strong solutions and the existence of weak solutions for 0 < ¢y 1<
po < co and the existence of strong solutions for pg > 0 when the dimension d = 1.

We remark that when the optical axis n is a constant unit vector, (1.1) becomes
the Navier-Stokes equation for compressible isentropic flow with density-independent
viscosity, which has been well studied recently. For example, the existence of global
strong solutions to the compressible Navier-Stokes equation for py > 0 was obtained
by Choe-Kim [17] in one dimension and by Choe-Kim [16] in higher dimensions.
Notice that p = 0 corresponds to the vacuum state, whose existence makes the anal-
ysis much more complicated. Okada [12] investigated the free boundary problem
for one-dimensional Navier-Stokes equations with one boundary fixed and the other
connected to vacuum and proved the existence of global weak solutions. Luo, Xin,
and Yang [13] studied the free boundary value problem of the one-dimensional vis-
cous gas which expands into the vacuum and established the regularity, behaviors of
weak solutions near the interfaces (separating the gas and vacuum) and expanding
rate of the interfaces. The reader can also refer to [14, 15] for related works.
Notations:

(1) I =10,1],0I ={0,1}, Qr =1 x [0,T] for T > 0.



(2) For p > 1, denote LP = LP(I) as the LP space with the norm || - ||zr. For k > 1
and p > 1, denote W*P = W¥P(I) for the Sobolev space, whose norm is denoted as

|- lwwe, HF = WHE2(I), and
WhP(I,8%) = {u e WRP(ILRY) | |u(z)] = 1 ae. o € I}'

(3) For an even integer k > 0 and 0 < o < 1, let C’k+°"k+Ta(QT) denote the Schauder
space of functions on @7, whose derivatives up to kth order in z-variable and up to
%th order in t-variable are Holder continuous with exponents o and § respectively,
with the norm || - HCHQ’HTQ.
Our first main theorem is concerned with the existence of global classical solu-

tions.

Theorem 1.1 For0 < a < 1, assume that py € CH* satisfies 0 < cal < po < ¢ for
some cg, ug € C*% and ng € C**(1,S52). Then there exists a unique global classical
solution (p,u,n) : I x Ry — Ry x R x S? to the initial boundary value problem

(1.1)-(1.3) satisfying that for any T > 0 there exists ¢ = c(co,T) > 0 such that

24a

(pzs ) € C*3(Qr), ¢ <p<e, (u, ) € C*F737(Qr).

Our second main theorem is concerned with the existence of global strong solu-
tions and weak solutions under the assumption that pg € H'(I) satisfies 0 < ¢; <

po < cg. More precisely,

Theorem 1.2 (i) If po € H', 0 < cal < po < co for some cgy, ug € L*(I), and ng €
H'(I,S?), then there exists a global weak solution (p,u,n): I xRy — Ry x R x 52
to (1.1)-(1.3) such that for any T > 0 there ezists ¢ = c(co,T") > 0 such that

pr € L®(0,T; L), p, € L*(0,T;L?), 0<c ' <p<e,
we L®(0,T; L) N L*0,T; HY),
n e L>®(0,T; H) N L*(0,T; H?).

(ii) If po € H', 0 < cgl < po < ¢ for some cg, ug € H&, and ng € H*(I,5%), then

there exists a unique global strong solution to the initial boundary value problem



(1.1)-(1.3) satisfying that for any T > 0 there exists ¢ = c(co,T) > 0 such that

peL®0,T;HY), p,eL™0,T;L%), 0<cl<p<e,
u € L0, T; H) N L*(0,T; H?), wus € L*(0,T;L?),

ne L>®(0,T; H*) N L*0,T; H®), n, € L*(0,T;HY) N L>®(0,T; L?).

When pg is only nonnegative, we establish the existence of global strong solutions

0 (1.1)-(1.3).

Theorem 1.3 Assume 0 < pg € H', ugp € H} and no € H*(I,S5?). Then there
exists a global strong solution to the initial boundary value problem (1.1)-(1.8) such

that for any T > 0,

peL>0,T;HY), preL®(0,T;L?), p>0,
we L>(0,T; Hy) N L*(0,T; H?), /puy € L*(0,T; L?),

n € L>(0,T; H*) N L*(0,T; H*), ny € L*(0,T; H') N L>(0,T; L?).

Remark 1.1 (i) It is unknown whether the strong solution obtained in Theorem

1.3 is unique. If, in additions, uy € H? satisfies the compatibility condition:

(t102)2 — (P(p0))z — Mlnoal?)e = P30,

for some g € L?, then, by a method similar to [16] or [17], we can prove that the

strong solution (p, u,n) obtained in Theorem 1.2 satisfies
u € L>(0,T; H?), /puy € L°(0,T; L?),u; € L*(0,T; H')

and hence the uniqueness of solutions can be shown by the argument similar to
Theorem 1.2 and that of [16] and [17].

(ii) We believe that there exists a global weak solution (p,u,n) to (1.1)-(1.3) under
the assumption that 0 < pg € L7, ug € L?, and ng € H'(I,S?). This will be

discussed in a forthcoming paper.

Since the constant R and pu, A, 0 in (1.1) don’t play any role in the analysis, we
assume henceforth that

p=A=0=R=1.



The paper is organized as follows. In section 2, we prove the existence of the
short time classical solutions of (1.1). In section 3, we derive some a priori estimates
for classical solutions of (1.1), and prove the existence and uniqueness for both
classical and strong solutions and the existence of weak solutions to (1.1)-(1.3) for

po > co > 0. In section 4, we prove the existence of strong solution for pg > 0.

2 Existence of local classical solutions

In this section, we employ the contraction mapping theorem to prove that there
exists a unique short time classical solution to (1.1)-(1.3) when py has a positive
lower bound.

The main result of this section can be stated as follows.

Theorem 2.1 For a € (0,1), assume that py € CT% satisfies 0 < 061 < po < co,
ug € C*%, and ng € C%>*(1,S%). Then there exists T > 0 depending on po,ug, no
such that the initial boundary value problem (1.1)-(1.3) has a unique classical solu-

tion (p,u,n) : I x [0,T) — Ry x R x S? satisfying
a2 _ .2t
(pz, pt) €C¥2(Qr), ¢t <p<e, (u, n) € C*H* 7 (Qr).

We may assume throughout this section that

/0 po(€)de = 1. (2.1)

To prove Theorem 2.1, we introduce for any 7" > 0 the Lagrangian coordinate (y, 7)
on I x[0,T):
x
) = [ ple.n)de, 7ot =t
0

It is easy to check that (z,t) — (y,7) is a Cl-bijective map from I x [0,T) —
I x [0,T), provide p(z,t) € CY(I x [0,T)) is positive and fol p(&,t)d¢ = 1 for all
tel[0,T).

Direct calculations imply
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and (p,u,n)(z,t) solves (1.1)-(1.3) is equivalent to (p,u,n)(y,7) = (p,u,n)(x,t)

solves the following system:
pr + p*uy =0,
ur + (P(p))y = (puy)y — (p*[ny*)y, (2:2)
ne = p(pny)y + p*|ny*n,
and
(p,u,n)|r=0 = (po, uo,no), in I (2.3)
(u,ny)lor =0, 7> 0. (2.4)
Now we use the contraction mapping theorem to establish the existence and
uniqueness of local, classical solutions to (2.2)-(2.4).
Proof of Theorem 2.1:

Let o > 0 and (po, ug,no) be given by Theorem 2.1. For K > 0 and T' > 0, to
be determined later, define the space X = X(T, K) by

{@m): Qr = R xR | (0,m) € C**5° (v, m)]_y = (w0, m0), ||(w.m)llx < K}

where

@m0l = 1ol o 25 )+ 0l o 25 -

It is evident that (X, |||y) is a Banach space. For any (v,m) € X, we let
(p,u,n) : I x[0,T) — Ry x R x R3 solve the following system:
2, _
pr+ p7vy =0,
/
ur + (P(p))y = (puy)y — (P2|ny|2)y» (2.2)
ne = plpny)y + p?lmy|*n.

along with the initial-boundary condition:

(paua n)‘TZO = (p0>u0>n0); (pv U, Ny ’a] 9070 O) 7> 0. (25)

The first equation of (2.2)’ yields that

po(y)
L+ po(y) Jy vy(y, s)ds’

p(y,7) =



Since (v,m) € X, we have ||v[|c1(g,) < K and hence (2.6) implies

o o

< < < 2c¢y, 2.7
P=1_ lpo [y vy(y,s)ds| = 1 —coKT (2.7)
Po €o Co
> > > 2 2.8
=17y lpo [y vy(y,s)ds| = 14+coKT — 2 (2:8)
provided
1
T<Ty= .
=0 200 K

Since v € CFte: 5" “(Qr) and py € C'**(I), (2.6) implies that p,p, € C%2(Qr).
Since m € C¥te "5 “(Q1), p,py € C%2(Qr), it follows from (2.7), (2.8), and the
Schauder theory that there is a unique solution (p, u, n), with (p,u,n) € C*2 (Qr) X
oo =5 “(Qr) x e * 5 “(Qr) to (2.2)" and (2.5). Define the solution map:

H(v,m) = (u,n) : X — CQ+°"2+TQ(QT,R x R?).

Claim. There exist sufficiently large K > 0 and sufficiently small T > 0 such that
H: X — X is a contraction map.

Proof of Claim. We will first prove that H maps X into X. Set C1 = ||pol|ct.e +
[uollc2.e + [Inollc2.0-

Direct differentiation of (2.6) implies that

. Poy POLOY foT vy (v, s)ds + P?) foT Vyy (Y, s)ds
py - T - T 2 (29)
1 =+ po fo Uy(yas)ds (]- =+ po fo Uy(y,S)dS>
It follows from (2.6) and (2.9) that
max {pll o (0,00 10t ) | < €(CD); (2.10)
where T' < T} := min{ﬁ, (%)ﬁ}
Apply the Schauder theory to (2.1)5, we obtain that for any 7' < T,
lase 252 ., < Cllmallossoqn + 0P myPrllgeg@r) (211)
Direction calculations imply
HnHCO(QT) <1 +KT7 [ ]CO‘ 2(Qr) — (Cl)(l =+ KT%)7 (2'12)

Iyl ooy < My — moyllco@qp) + Imoyllcogpy < e(C)A+ KT?),  (2.13)

8



[my]Ca’%(QT) < [my - mOy]Ca,%(QT) + [moy]Co"%(QT) < C(Cl)(l + KTE)' (2'14)

Hence if we choose T' < T = min{T7, (%)5}, then
102 1my [*nll o < e(Ch), (2.15)
and

2 2
Pl g,

< oliBogamllmulZoin ol e gp + ImslEaomnleo@nlplas .,
iy g o, 19120001 7l oo
< o(Cy). (2.16)

It follows from (2.11), (2.15) and (2.16) that for T" < T,

”n|’02+a,2+TD‘(QT) < C(Cl)- (217)

Now we need to estimate ||ul| £ op) 2 follows. It follows from (2.1)5 and
T

C2+“’ZT
the Schauder theory that

ol o 2 2 o
||UHCQ+D"2+TQ(QT) < C(||u0||02+a(1) ||(p )yHCavj(QT) H(p ’ny| )y”oavj(QT)
< + ’yila a
= C(Cl)[l Hp||ca,7(QT)||Py||Ca,2(QT)

2
Hlellgeos (@ lPullces (@ IPwllce s g

2
1 i 17l o Il )

< C<Cl)7

provide T' < T5. Thus we conclude that if K > 0 is sufficiently large and T' < T,
then H maps X into X.
Next we want to show H : X — X is a contraction map. For ¢ = 1,2, let

(vi,m;) € X, and (u;,n;) = H(v;,m;). Set p = p1 — p2, T = v1 — v2, M = my — ma,

u=wu; —uz and n = n1 —no. Then it is easy to see
p _
—— ), = —T,. 2.18
L=, (2.18)

Since p|r—¢ = 0, integrating (2.18) with respect to 7 yields
T
D= —plpg/ Ty ds. (2.19)
0

9



Since both p; and po satisfy (2.10), we obtain

s[5l s gy 17 o gy} < AT 30l o, (220)
For n, we have
nr = p%ﬁyy +pp1 + p2)n2yy + PP1yN1y + P2Py N1y + P2P2y Ty

+5(p1 + p2)lmay|*ny + psy(miy + may)ny + palmay[*n.  (2.21)

Since p;, mi,n; (i = 1,2) satisfy (2.11)-(2.12), (2.13)-(2.14), we have by the
Schauder theory that for T' < T,

a < 0 a 0. a n a
il o ) S OOl gy + Pl ety + 1l

+||ﬁy”0a7%(QT) + Hmyncav%(QT)]

IN

1—-< —
ACOT 20l e 2 )+ Il o5

"‘”ﬁyuoa% (Qr) + Hmy”ca QT)]

Since M|;—p = Ti|;=0 = 0, we see that

e[l e g g Pl (g} < CTEI g 250

(@r)’
and
Il gy < OTH 1l v 20
Thus we obtain
e 20 ) < COVTE N o2+ 7 g o (2:22)
Finally, we need to estimate HHHC2 bo 22 (0 B follows. For @, we have that
’ T

ﬂ7+(p¥—pg)y = (puiy)y + (p2tiy)y — [p(p1 +P2)’”1y|2]y_ [Pg(”1y+n2y)-ﬁy]y- (2.23)

Hence, by the Schauder theory, we have

o < 0D a 0, a T — ) a
Hu||c2+a Ha T (Qr) C(Cl)[HpHC&aQ Q1) + ||py||ca72 Q1) + ||(101 p2)y||ca,2 Q1)

+HﬁyHC&,%(QT) + Hﬁyy Hca«% (QT)]

< (VT3 (|[v 20 o+ (7|

lgase2 g, L

o2 5 (Qr)

10



where we have used both (2.11) and (2. 22) in the last step. It follows from (2.22)
and (2.24) that if T < T3 = mln{Tg,( ) }, then

1

5 o F lgain2ie o) < 50T arn 2o

Il o 252, |+ I

).

o5 Q)

Therefore H is a contraction map. By the fixed point theorem, there exists a unique
(u,n) € X such that H(u,n) = (u,n). Furthermore, there is a unique p, with
py pr € C*%(Qry), solving

pr+ pPuy =0
Hence (p,u,n) is the unique classical solution to problem (2.2)-(2.4) on I x [0, T3].
Multiplying (2.2)3 by n and applying the Gronwall’s inequality, we can obtain |n| =
1 for (y,7) € Qry. The proof of Theorem 2.1 is completed. O

3 Existence of global classical, strong, and weak solu-

tions

In this section, we first prove that the short time classical solution, obtained in
Theorem 2.1, can be extended to a global classical solution. This is based on several
integral estimates for the short time classical solutions. The global weak, and strong
solution are then achieved by both the approximation scheme and integral type a
priori estimates for classical solutions.

For 0 < T < +oo, let (p,u,n) : I — [0,T) — Ry x R x S? be the classi-
cal solutions obtained by Theorem 2.1. The first estimate we have is the energy

inequality.
Lemma 3.1 For any 0 <t < T, it holds

2 2
/(”2+p+|nx1 //u +2‘nm+\nm\2n‘
I

U 'Y
= [ L ) (31)

Proof. Multiplying (1.1)2 by u and integrating the resulting equation over I, we get

—/p”u;,;—i—/ui :/|nw|2u$. (3.2)
I I I

11



Now we claim that

d v
/p”ux:/ r_. (3.3)
I dt Jry—1
In fact, by (1.1)1, we have

—/P“’ux = /p”‘l(thrpmu)
I I
dt J; v 1( v )z

d [ p / o7
= — [ —— | —u,.
dat Jr~v Jr~
Multiplying (1.1)3 by (n4s + |nz|?n) and integrating it over I, we obtain

d 2
d/|nx|2+/|nx|2ux+2/‘nm+\nm|2n‘ =0. (3.4)
tJr I I

It follows from (3.2), (3.3), and (3.4) that

This clearly yields (3.3).

d u? 2
dt I 2 ’7—1

+ |nz?) + /ug + 2/ |00 + ]nz|2n‘2 =0.
I I
This clearly implies (3.1). The proof is complete. O

Lemma 3.2 For any 0 <t < T, it holds

/t/|nm|2 < c(Ep)(1+1t), (3.5)
0 JI

where

denotes the total energy of the initial data.
Proof. By the Gagliardo-Nirenberg inequality, we have

1
J el < elinaliagyllzzgy < 5 [ Inael? + o 1naf2)

Since |n| = 1, this implies

/|nmc2 = /|nmc+|n:1:|2n|2+/‘nw|4
I I I

1
: / Ingal? + / Inaa + o 20]? + / Inaf2)?.
I I I

12
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Hence

/|nmc’2 < 2/ ’nzx + |nac|2n|2 + C(/ |nx|2)3'
1 I I

This, combined with (3.1), yields (3.5). The proof of the Lemma is complete. O
Now we want to estimate ||nzz| o (jo,77,2(r)) in terms of both Eo and |[nol| g2y

as follows.
Lemma 3.3 For any 0 <t < T, it holds
t
/l Inaal2(t) + /0 / (natl? + [nasel?) < e(Eo, noll sy exple(BEo)t}.  (3.6)

Proof. Differentiating (1.1)s with respect to z, multiplying the resulting equation

by ns¢, and integrating it over I, we have

d 1
2 i - 2

= [|n1’|2nx s Nyt + 2(”1‘ . na:a:)n : na:t] - UgMyg - Nyt — UNgy - Nyt

I I I

1

<5 [P e [ (nal® + Pl + u2lnaf? + e ).
I I
Thus
d
In t|2da:—|—/|n |2

<e / (Inal® + Inel? sl + 121 l? + w¥{ngl?)
I

4
<c [nnxnm [ sl + sl [ a2+ ol + ) [ rnm\Z]

I
< o1+ Bo)( / Inael?)? + ¢ / 2 / a2,
I I I

where we have used the Sobolev embedding inequality:
12| oo (1) < ellnaz 2y, ullpery < elluallz2r)-

This, combined with Lemma 3.1, 3.2 and the Gronwall inequality, implies that any

telo0,7),
t
/1 Inaal2(t) + /0 /I el < (B, [0l ) expl{e(Eo)t}.

Since

Ngzx = Nzt + UgNy + UNgy — Z(nx : nxm)n - |nx|2nma

13



we also obtain
t
/ /mma%gdammﬂWu»wdem}
o JrI

The proof is now completed. O
Now we want to improve the estimation of both lower and upper bounds of p in
terms of Ey, ||pol|z1, and the upper and lower bounds of pg. This turns out to be

the most difficult step.

Lemma 3.4 There exist ¢ = c(co, ||poll g1, Eo,v) > 0 and C = C(co, ||pol| g1, Eo) >

0 depending only on co, ||pollg1, v, and Ey such that for any 0 <t < T, we have

Ampﬁw+4ﬂm3@smmwm (3.7)
and
cexpl(Ct) < p(x,t) < cexp(Ct), =z € I. (3.8)

Proof. Using (1.1);, we have

& [ = [nlG)R+2 [ 600

= [l 2 [ )5,

= — [l +2 [ o8,

=~ [0 +2 [ )l s+ (22)

= = [0 +2 [ A G)aPus + 51C )P
31 C0uPous] 42 [ AC)Pur+2 [ o

= 2 /1 (;)xu:px-

Thus we obtain

i [ AP = [t (39)

Multiplying (1.1)2 by (%)x, integrating the resulting equation over I, and utilizing

14



(3.9), we obtain

571 ] AG)E <7 [0t 4 [0,
1d 1. 1, d 1
53 [ ACIE =[Gt = [,

~ [@1tnaPre = [ oS+ [0,

=2 [z e = [ (0)a %%~ [ ().

< [ Stk [DIG)PIne + [0l = (%))
<lllioe [ naal +linalle [ o)+ [ a2

<O lm+ [ oGP [ Inusl?+ [ u2. (3.10)

Since (1.1); implies [; p(&,t) = [;po(§) = 1, there exists a(t) € I such that
pla(t),t) = [; p(&, t)dE = 1. Hence we have

1 1 z 1
FEO mwmw*L@%@w*

J/'_
:1+/ p&

a

1
1+ I i /px )?

< 13l + 5 AP

IN

Taking the supremum over x € I, this implies

1 1
Lw§2+/p 2, 3.11
IIPII f I(p)x\ (3.11)

Plugging (3.11) into (3.10), we obtain

s [alC )|+v/ it g o=

C[/Ilnml +/I\nm| / +/Iu (3.12)

IA
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Integrating (3.12) over (0,t), we obtain

5 [AC) 2+v/t/p”f 32
€T
2 ) p o JI v

! /IPO‘(plo)xP_/IPOUO(plO)x

i)+ [ il [P

e [1f k[ A0

/Pu +/ /u + |z ] )] /P0|( ) \2—/IPOUO(p10)x-

Since
9 1
PU + u ‘Hnm‘ PO|< ) | — [ pouo(—)a
I Po
_C(Eo)(l ) *H*HmllpollHﬁrll IILoollpouollLl||po||Hl
SC(EO,CoaHPOHHl)(lJFt)a
we obtain

fupron ]

< C(Eo, co, [|poll g2 ) (1 + 1)

//|nm| [ Ap.

Since Lemma 3.2 implies f(f [7 Inaal® < e(Eo)(1 +t), we have, by the Gronwall’s

inequality, that

i [ f

This yields (3.7). It follows from (3.11) and (3.7) that

IN

C(Eo, co, [lpoll ) (1 + £2) exp(c / / al?)

C(Eo, co, llpoll 1) exp{c(Eo)t}

IN

1
= Coxple(Bo)t}’

Since v > 1, we can write v = 1 4+ 26 for some § > 0. Hence we have

/Ip5+5/1p5‘1lpz|
([t o[ 3 AP

c(Eo, co, [lpoll 12, 7) exp{c(Eo)t},

V(z,t) € I x[0,T).

<

19|

=

<

<
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where we have used (3.7) in the last step. This clearly yields (3.8). The proof is

now complete. O

Lemma 3.5 There exists C = C(v, Eo, co, ||pol| g1, ||woll g1, |70l 2) > 0 such that
forany 0 <t<T,

t
/ui(t) +/ /(u? +u2,) < Cexp{Cexp(Ct)}. (3.13)
I o Jr
Proof. Tt follows from (1.1); and (1.1)2 that
pur + put, + 'ypv_lpm = Ugy — 2Ny * Mgy (3.14)

Multiplying (3.14) by wu¢, integrating the resulting equation over I and employing

integration by parts, we have
1d
2 2
puy + —— [ u
/I Elhodt J; "
= —/puumm —/’W‘lpzut —2/nx-nmm
I I I
= _2/nx * Nyt — /puuxut _’7/p7_1pxut
I I I
1 1 _
3 [t el [ SmaPind + [ gt [0
I P I I
1 2 1 212 242 -3 2
< 5 ot el lim ([ Il ol [ 2?1+ clol [ 0762
I P I I I

This, combined with Lemma 3.3 and 3.4, implies

IN

/puf + 4 /ui < Cexp(Ct) + Cexp(C’t)(/ u?)?
I dt J; I

for some C' = C(v, Eo, co, ||pol| g1, l|wol| g1, |70l 72) > 0. Thus, by Lemma 3.1 and

the Gronwall’s inequality, we have

¢
/ /pu?—i—/ug < Cexp{Cexp(Ct)}.
0 J1 I

Since p > , we have

1
Cexp(Cht)

/Iui(t) +/Ot/lu§ < Cexp{Cexp(Ct)}. (3.15)

By Lemma 3.3, 3.4, (3.14) and (3.15), we also have
¢
/ /uix < Cexp{Cexp(Ct)}.
0o JI

17



This completes the proof. O

In order to prove the existence of global classical solutions, we also need the

following estimate.

Lemma 3.6 There exists C = C(v,co, Fo, ||pollm1, [|woll g2, |70l g2) > 0 such that

forany 0 <t < T,
t
/(uf + uix)(t) —I—/ /uit < Cexp{Cexp|[Cexp(Ct)]}. (3.16)
I 0o JI

Proof. Differentiating (3.14) with respect to ¢, multiplying the resulting equation by

uy, integrating it over I, and using integration by parts, we have

th Put / Uzt
= /(|n:c| )tlUat — 5 /ptu? - /(Ptuua: + purug)ur — /puucctut + /(pw)tu:pt
I I I I I

= 2/n:c Mgt Ugt + /(pu)wuf + /(pu)xuuxut — /pufum —’y/p”l(pu)xuxt
I I I I I

= / (2ng - Nat — 2putty — puPuy — 7P ppu — VP U Ugt
I

/puutu2 /pu Ugprp Ut — /pu?ux

/ zt+c/ (Ina|? Inzt!2+p2u2ut2+p2u4u2)+072/(02” 2pu? + pPlul)
I

IN

—I—C/(pu uh + putu?,) + (1 + ||quLoo)/pu?

I
2 2
pu; + / Uzt
I I
2

Cllnall3 / Inael? + (1 + [luallz + oz llull3ee) / i

Thus we have

IN

+ cPlplT + lplgeellull e + IIPIILooHUIILooIuxIILoo)/Ité

1
+ clplomlulls [+ ol e [ 702
It follows from Lemma 3.3 and 3.5 that
max{ ||z Lo ([0,4,22(1)> |zl oo (0,0, 22(n) } < C exp{Cexp(Ct)}.

Thus we have

max{||ng||re, ||ul|re} < Cexp{Cexp(Ct)}.

18



Also observe that
sty < | Huel? + el

Therefore, by the Gronwall’s inequality, we have
2 ! 2
J oo+ [ [ < oo lmln, ol Inolle) exp{C explC exp(C).
0

Since p > , this together with (3.14) and Lemma 3.3-3.5 yields (3.16). The

cexp(Ct)
proof is complete. O

Lemma 3.7 ([19]) Suppose that

sup |u(z, t1) — u(x, ta2)| < pilty — to|®, Vti,t2 € [0,T),

zel
and
sup |ug(z1,t) — ug(2a,t)| < polzy — 29|, Vai, 29 € 1.
te[0,T)
Then

supI) g (@, 1) — ug(z, t2)| < plty — t2|®, Vi1, ta € [0,T),
e

where § = %, and p depends only on «, B, u1, fo.

Now we are ready to prove Theorem 1.1.
Proof of Theorem 1.1. Suppose it were false. Then there exists a maximal time
interval 0 < T, < 400 such that there exists a unique classical solution (p,u,n) :
I x[0,T,) — Ry x R x S? of (1.1)-(1.3), but at least one the following properties
fails:
(1) (pus pe) € C%%(Qr2),
(i) 0<ct<p<e<too, V(z,t) € Qr,,
(iii) (u,n) € C2F"2*(Qr,).
Notice that (3.8) of Lemma 3.4 implies (ii) holds. Hence either (i) or (iii) fails. On
the other hand, it follows from Lemma 3.3, Lemma 3.5, Lemma 3.6, and the Sobolev

embedding Theorem that

mas {10l 3 o, Tl g} < CCBosconllpnllms [uolle: [moll s, 72) < +oc.
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Hence Lemma 3.3 and (1.1)3 imply that n and n, is uniformly Hoélder continuous in
t and «x respectively with exponent % Lemma 3.7 then implies n, is also uniformly

Holder continuous in ¢ with exponent %. Thus

max{||ng| 11

bt iony el o3 b g, F S CFosco, ol ol s, o1z, ) < +oc.

It follows from (1.1)3 and the Schauder theory that ||n| < +o00 and

e bbip)

hence anHcl’%(Q ) < +o00. Hence, applying the Schauder theory to (1.1)3 again,
T*
we have HnHCQM,H%(QT*) < 400.
: _ 2
Write F(z,t) = —(|ng|*)s. Then HFHC“’%(QT*) < 4o00. In term of the La-

grangian coordinate, (1.1); and (1.1)3 become

pr + pPuy =0,
’ ! (3.17)

ur + (07)y = (puy)y + F,

Moreover, the estimates obtained by Lemma 3.4-3.6, in the Lagrangian coordinate,

become
0<c!'<p<e<too, (3.18)
/pz < ¢ < o0, (3.19)
I
/uz + uzy <c < 4oo. (3.20)
I

Combining (3.17); with (3.18)-(3.20), we conclude < 4o00. On the

1Pl c3.3 oy
other hand, we have

max { || F| b < +oo.

™8 (Qr+)’ ”“”c%’%(QT*)’ ”“y”clﬁ%@w)

Now we claim that

Il ) < +o0 (3.21)

In fact, (3.17); and (3.17)2 imply

(w+ (Inp),)r = F —yp"[u+ (Inp),] +707u.

Hence we have
wet (p)y = uo + (o) )e 7 4 [ (F 47wy 7 ds,
0
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This clearly implies (3.21). Thus, applying the Schauder theory to (3.17)2, we
conclude that

HUHC&*%’H%(QT*) < +o0.

In particular,

Ilu|l < +o0.

™% (Qr+) + HuyHCa’%(QT*)

Applying these estimates to (3.17)1, we obtain that H,o||ca,%( < 4o00. Repeating

Qr+)
the above argument once again, we see that

maX{HuHCH»a,%E(QT*)J prHCQJra,%ﬂ(QT*)’ ”p’r’02+a’%£(QT*)} < oo

This contradicts the choice of T*. Hence T* = co. The proof of Theorem 1.1 is now
complete. O

Now we recall the following well-known Lemma.

Lemma 3.8 [10]. Assume X C E C Y are Banach spaces and X —<— E. Then

the following embedding are compact:

(4) {wcheLq(O,T;X),%feLl(O,T;Y)} s L0, T, E), if 1<q<o0;
(17) {@:@GLOO(O,T;X),?;;EL’"(O,T;Y)}%%C([O,T];E), if 1<r<oo.

Proof of Theorem 1.2.

Part (i): First, by the standard mollification, we may assume that for any « € (0, 1),
there exist a sequence of initial data (p§, u§,n§) € CH(I) x C?%(I) x C?%(1, S?)
such that

(1) 0< eyt < p§<co<+ooonl,

(i)

tim [llph — pollarr + llup — wollz2 + |l — noll ] = 0.

_ Mex*no )

€| — €
(To assure |n§| = 1, we construct nf = Tenc]

Now let (p¢,u,n) be the unique global classical solution of (1.1) along with

the initial condition (p§,u§,n§) and the boundary condition (u€, %’f)b[ = (0,0)

for t > 0. It follows from Lemma 3.1, Lemma 3.2, and Lemma 3.4 that for any
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0 < T < +0o0, the following properties hold:

coxp(cT) < pf < cexp(cT), in I x[0,T],
oW Lo 0,10 (1) + 1P| L2 0,7522(1)) < C(T),
[l oo o,1;2(n)) + 1wl 20,1302 (1)) < C(T),
7| oo 0,050 (1)) + 10 220,03 m22()) + 10l 220,13 22(0)) < C(T).
After taking possible subsequences, we may assume that as € — 0,
(0, p%) = (ps p) weak™ L%(0,T; L*(I)),
ps — py weakly in L*(0,T; L*(I)),
p° — p strongly in C(Qr),
u® — u weak® L°°(0,T; L?(I)) and weakly in L?(0,T; H} (1)),
(n€,n,nS,) — (n, Mg, nge) weakly in L2(0,T; L*(I)),
(nf,nS) — (n,ng) weak* L>(0,T; L*(I)),
n§ — n; weakly in L%(0,T; L(I)),
n® — n strongly in C(Qr) N L(0,T;CY(I)),

where we have used Lemma 3.8.

It is easy to see that (3.24) and (3.25) imply

p§ + (peue)x — pt+ (pu)x in D/(QT)

so that p; + (pu), = 0.

Since
(Pu)e = ugy — (g *)e — (0°(u)?)z — ((0))e € L*(0,T; HH(I))
and p‘u¢ — pu weak® L>(0,T; L*(I)), we have from Lemma 3.8 that

p“u¢ — pu strongly in C(0,T; H(I)).

22
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This, combined with (3.25), implies that p¢(u¢)? — pu? in D'(Qr). Since
gy = (10511 = ((0))a = vz — (In2]*)z = (p7)2 in D'(Qr),

we see that
(pu)s + (puz)w +(p7)z = Uz — (|nw|2)w in DI(QT)~

Since

ung — ung, [ng|*n® — Ing|*n in D'(Qr),

we also have that

ng + ung = Npy + \nz\zn in D'(Qr).

This completes the proof of (i).

To prove part (ii). Observe that since ug € H} and ng € H?, we have

limll|ug — uoll g1y + lInG — nollw2(n)] = 0.

Thus, Lemma 3.3, and Lemma 3.5 imply

sup / (S 2 + g2 + na[?) + / (S 2+ s 2 + ISl + [10a?)
0<t<T JI Qr

< (7). (3.30)

It follows from (3.30) that u € L>(0,T; H(I)) N L*(0,T; H?), uy € L*(0,T; L*(1)),
n € L>®(0,T; H*(I)) N L?(0,T; H3(I)), and ny € L2(0,T; HY(I)) N L>=(0,T; L*(I)).
This proves the existence.

To prove the uniqueness, let (p;, u;, n;) be two solutions to (1.1)-(1.3) obtained
as above. Denote p = p1 — pa, U = u1 — u2,n = Ny — ng, Then

(

pt + (ﬁul)w + (PZﬂ)x =0,

P1Ut — Ugy = —PUgt — PUplog — P1UU2g — P1U1ls — (P] — P3)a (3:31)

—2n1g * Ny — 2Ny * Nogg,

ﬁt + Ulﬁx + ﬂnZ:p = ﬁ:m: + |n1x|2ﬁ + [ﬁx : (nlx + n2x)]n27

for (z,t) € (0,1) x (0,+00), with the initial and boundary condition:

(p, w, n)‘t:(]:()in [0,1], (w, ﬁx)‘alz() t>0.
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Multiplying (3.31); by p, integrating the resulting equation over I, and using the

integration by parts, we have

th/\P\Q = /5“1,52:—/(P2x17+ﬂ2%)ﬁ
= —/‘P’ ulm_/ ,023:U+P2Ux)

< 2\|U1x!L°°/I!5|2+\|77||L°°\|sz||L2H/7HL2+||P2||L°°Wx||L2||5HL2-
Since @(0,t) = 0, we have u(y,t) = [ @ (x,t)dz for (y,t) € Qr and hence
[ull e < [z, t € [0,T7]. (3.32)

It follows from (3.32), the regularities of (p;,u;), Holder inequality, and Sobolev

d [~
dt/,P’

inequality that

IN

cllua 2 /I P12+ el 21172

(il gz + 1) /I P2+ /1 2. (3.33)

IN

Multiplying (3.31)2 by u, integrating the resulting equation over I, and using the

integration by parts, we have

s [l [P

1 - — — — -
= /pulu! —/p1U1umu—/pUU2t—/puuzuzz —/mU\Quzx
2t I I I I

+ / (0] = pY)iis +2 / (1 - Tl + 2 / (Mo - Tia)ii — 2 / (i - n2s )i,
I I

I 1

Since p1r + (p1u1)e = 0, we have

1 - - 1 - 1 ~
_ /p1t|u’2 — /pluluxu = — /p1t|u]2 + - / \u|2(p1u1)x = 0
2Jr I 2Jr 2 )1

Therefore,

M/mru\ +/|uxr

< [ullzellpll 2 lluzel 2 + 1ol L2 0l oo ug | Lo [luze |l 2 + szHLoo/Imlﬁ!2

Mgz + N2z

NG

cllplllltellLe + l[aall L2 P2l 2101zl 2o + [1V/or@ll L2 P2l 2] [£o]-
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It follows from (3.32), Holder inequality, Sobolev’s inequality, and the regularities
of (Pia ’UJZ) that

35 [l [

< cllual 2 (1ol 2 lluatll 2 + [Pl 22 + (72l 22) + clluzll a2 /Im\ﬁl2
+elnallas + lnallws)llvpral g2 |7 2
<

1, _ -
Sl zz + elpla (1 + lluatllZ2) + elluallm + lInallzs + [In2ll7s) /Ipllttl2

el 2.
Thus we have
d . -
/ plaf? + / Wl < el + fuxZs) / P24 e / i
v ellualle + a2 + nzlZs) / pla?. (3:34)

Multiplying (3.31)3 by n, integrating the resulting equation over I, and using the

integration by parts, we have

2 2
5 [+ [
- —/ulﬁw-ﬁ—/angr-ﬁ+/ymz|2\m2+/[m-(nmngm)]m-ﬁ
I I I I

_1 " " "
|l zoo Pl z2l172ll 2 + lInzel| oo oy * oo l/Pral 2 7 22 + a7 /1 7

IN

Flln2l Lo In1e + noell Lo 7] 2|7 22

By Holder inequality and Sobolev’s inequality, we get

2 ~ 2
33 [P+ [ 1

< clfillelils + clvarlz e+ [ &P
1 ~ ~
< Sl + el + elly/ari
Hence
d ~ ~ ~ ~
G [+ [[Ful? < el +ell vl (3.35)

Adding together (3.33), (3.34), and (3.35), we obtain
d - - ~ ~ ~ ~
G 2+ il i) < Aw) [ (8 + mlal? i) (330
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where
Alt) =C[2+c+/l!ugtlz(t)JrHul(-,t)HHz+Huz(~,t)HH2+Hm(-,t)llég+Hn2(-,t)\|12q3]-

It follows from the regularities of u; and n; that fOT A(t)dt < +o0. (3.36) and the

Gronwall’s inequality imply
J 5+ fal? + fi?) o )
T
< [ + il + i) o, O)dwexpl [ A(s)ds} = .
I 0

Since p; > 0 and ¢ > 0, we have (p,u,n) = 0. This proves the uniqueness. Hence

the proof of Theorem 1.2 (ii) is complete. O

4 Global strong solutions for py > 0.

In this section, we establish the existence of global strong solutions for pg > 0. The
proof of Theorem 1.3 is based on several estimates of the approximate solutions

without the hypothesis that the initial density function has a positive lower bound.

For a small € > 0, let p§ = ne % po + €, u§ = Ne *xug, n§ = IZZIZEI Then p§ > € and

tiw [l — poll e + [uo = wollm + g = moll 2] = 0.

Let (p¢,uf,n¢) be the unique global classical solution of (1.1) along with the initial

condition (pfj, uf, n§) and the boundary condition (u¢, %f)b] = (0,0). Now we

outline several integral estimates for (p, u¢, n¢). For simplicity, we write (p,u,n) =
(p¢,uc,n®). The first Lemma follows from the global energy inequality, Nirenberg

inequality, and the second order estimate of (1.1)s.
Lemma 4.1 For any T > 0, it holds

T
sup /(pu2+p7+|nx|2+|nm|2)+/ /(u§+ynxt|2+|nmy2)SC(EO,T). (4.1)
0<t<T JI 0 I

Proof. 1t is exactly as same as that of Lemma 3.1, Lemma 3.2, and Lemma 3.3. O

The next Lemma is concerned with the upper bound estimate of p.
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Lemma 4.2 For any T > 0, there exists C' > 0 independent of € such that

1ol Lo (1% (0,7)) < C. (4.2)
Proof. Set
t x
wat) = [ (s = ol = pu? = )+ [ (o))

Then we have

Wy = Uy — ]nz\z —pu® =7, w, = pu.

It follows from Lemma 4.1 that

/<|w+rwz|> <c
I

and hence

lwllzoen < C /I (] + Jwa]) < C.

Since p > 0, it suffices to prove p(y,s) < C for any (y,s) € I x (0,T). Let z(y,t)

solve

dx(y,t)
dt

z(y,s) =y, 0<y<1.

=u(z(y,1),t), 0 <t <s;

Denote f = expw. Then we have

LoDl 0.0) = (ot peu)f +pf(w + )
= [pt+ pru+ pug — plng|? — pPu? — P71 + (pu)?)f

= (=pln.* =p*")f <0.
Thus
Py, 8)f(y,s) = p(x(y, s),5)f(x(y, s),5) < po(x(y,0))f(2(y,0),0) < C.
Therefore
p(y,s) < Cexp(—w(y,s)) < Cexp(||w| (rx(0.1)) < C-

The proof is completed. O

Next we want to estimate ||uz ||z (o,r;z2(1)) and ||pu%||L1(IX[07T]).
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Lemma 4.3 For any T > 0, there exists C' > 0 independent of € such that

T
sup /ug —|—/ /puf <C (4.3)
0<t<T JI 0 JI

Proof. 1t is similar to Lemma 3.5. Multiplying (3.14) by w, integrating the resulting

equation over I, and employing integration by parts, we have

1 d 2 2 vy
Put + 2dt J, uy = [N | “uge + p Uzt — [ puuzuy
I I
1
3 Putdx-%HPHLwHUHLm> U + |nx|uwt+‘ p Ugt-

Thus, using Lemma 4.2 and [|u||? < [} |us|?, we obtain

d
/pu?+ quC > 2[(/u%)z"i_/‘p’yumt_'—/‘nacpuxt]
I dt Jp I I I

= I+II+III (4.4)

IN

A

d

I = MJW%—AW”%%

d
= pluy + /(p”)xuux —l—’y/p'yui
dt J; I I

d
= ﬁ/p%+@D/M@/mwm
I I I
d
= g ) Pt =) /IPWZ@ - /IPVU(pUt + putiy + (p7)z + (|na]*)z)
d 1
< 7 u1+(’7—1)/pwui+4 pu?+C(1+/|Um|2)/“a2c
I I I I I
- /p”(p7)xu—2/p7unx Nay
I
d Pl
S Puz+C u + put Uy

-%C/2mﬁ+c/mm2
dt pux—kC / /u+ /put+0/|nx|2/u +/|nm|

d 1
G e (fwreg [t

IN

IN
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d

II] = dt/|nx|2ux2/nx Nty
< /rnm\ ux+||nx||m/u +/|n i
< /m\ ux+||nm|rp/ux+/|nm2

dt J; I I

d
< d/!na:\qu—i-/u;%—&—/\nsz-

tJr I I

Combining (4.4) with the estimates of II and I1I, we obtain

/ it g o
921, d d 2 2
< Cl+([w ) |+ — p Uz + — [ |ng|*uz + C [ |ngl®. (4.5)

Integrating (4.5) over [0,T] yields

T
/ /puf—k/ui
0 JI I

T
< / Wy + O(T + / ( / u2)?) + / (Pta — pYuc) + / (Inal?uz — Inos*uos)
0 I
< C(1+41T) +C/ / /u +/27+ /u§+0/\nz\4
I
<

C(1+T)+C/ (/ui)Q—i-/u§+0/|nx|2/]nm\2.
0o Jr 4 Jr I I

Thus we have
T T
/ /pu$+/u§<0(1+T)+c/ (/ug)2
0 I I 0 I

This, combined with the inequality fOT I I u? < C and the Gronwall inequality, im-
plies (4.3). This completes the proof. O

We also need to estimate ||p| o0, 7;r2(r)) as follows.

Lemma 4.4 For any T > 0, there exists C' > 0 independent of € such that

sup /px / uz]|3 e < C. (4.6)

0<t<T
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Proof. By (3.14), we have

luglZe < 2fn— 57— [mal?30 + 2007 + 0] 3
< C[Hux - /)AY - ’na:m&? + ||um - (P'y)x - (|nx’2)x”%2]
Ol B+ ( /I 0 ?)?]
< Ol el / o] + Cllpus + punte| 2
I
1
< Cl+t </ui>2 +/rna2/\nmm +c/ puid.
I I I 0

Thus we obtain
T
/0 a2 < C.

To estimate [ 7 p2, take the derivative of (1.1); with respect to =, multiply the
resulting equation by p,, and integrate it over I and employ integration by parts.

Then we have

d 1
at IP?: = Q/I(Pu)xpm - (Pu)wpr}o
1
= /(P:):upxx + puxpxx) - prux‘o
I
1 2 1 2 1
= _5 . Pz + pua:p:c‘o - . PplUz — | PPzUzz — PPzUz |
2 )|
= T35 | PrUz — [ PPzlUzz
2t I
< Cllucli= [ 7= [ poulous + pua + () + (nof?)cldo
I I
< OOt lusle=) [ A0 [ o+ ) +o( [ o
T I I T
< OO0+ urliw) [24C [ o
I I
(4.6) follows from the Gronwall inequality. The proof is now completed. O

Finally we need to estimate ||tz r2.

Lemma 4.5 For any T > 0, there exists C' > 0 independent of € such that

Proof. 1t follows from (3.14) that
Ugz = put + putiy + (p7)z + (|nx|2)x

30



Hence

T
[ o< cf pivc [ i [idic ] g
QT Qr 0 1 Qr
T 2 2
T q/uwum/mm
0 I
T T
< cu+/</ﬁb”y/</mmmﬂsc.
0 I 0 I

This completes the proof.

|

Proof of Theorem 1.3. It is similar to that of Theorem 1.2, we sketch it here. It

follows from Lemma 4.1-4.5 that

sup ([|p[|la + [lpgllz2 + lullay + 102 + lIngllz2)
0<t<T

T
+A<wwwé+mm@+wmﬁwww#wsa

After taking possible subsequences, we may assume

(0%, 052 05) = (ps P, pi) weak™ L (0,T; L*(I)),

(uf, ul) — (u, uy) weak* L™ (0,T; L*(I)),

»

uS, — Uy weakly in L2 (O,T; LQ(I)) )

(pu)y — v weakly in L? (0,T; L*(I)),

(nf,n&,nSy,n§) = (N, Mg, Mg, ny) Weak™ L™ (0,T; L*(1))

(n4, M 00) — (Naty M) weakly in L2 (0, T; L2(I)) .

xt)

Since p¢ is bounded in L (0, T; H'(I)), and p§ bounded in L> (0,T; L*(I)), Lemma

3.8 implies that as ¢ — 0
pS — p strongly in C(Qr).
Hence, as € — 0, we have
pfu¢ — pu weak* L>(0,T; L*(I)).
Thus v = (pu). In fact, Lemma 3.8 yields
pfu’ — pu strongly in C(Qr),
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as pu and (pu); are bounded in L>(0,T; H'(I)) and L?(0,T;L?(I)) respectively.

Combining these convergence together, we have
pf(u)? — pu?, weak* L>(0,T;L*(I)).
Since (p¢(u€)?), is bounded in L>(0,T; L?(I)), it follows
(p°(u)?)e = (pu®)z, weak®L>(0,T; L*(1)).
Lemma 3.8 also implies
(n), — ng strongly in C(Q7).
Since (|n&|?), is bounded in L>(0,T; L%(I)), we have
(In51%)e = (Inal?)e, weak™L>(0,T; L*(I)).
Similarly, we can get
(Pu)e = (pu)e, weak™ L(0,T; L*(I)),
P(p%)y = P(p)s, weak*L>(0,T; L*(I)),
n® — n strongly in C(Qr),
[ng|*n® — |ny|*n strongly in C(Qr),
ung — un, weak*L>®(0,T; L*(I)).

Based on these convergence, we can conclude that (p,u,n) is a strong solution of the
system (1.1) along with the initial and boundary conditions. The proof of Theorem
1.3 is completed. u
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