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Lecture One: December 19, 2012

1 The Background
Let u(x, t) denote the velocity field of the underlying fluid, x ∈ Ω ⊂ Rn (n ≥ 2), and Ω is
a domain representing the container of fluid. Consider the deformation

x = x(α, t),

where x is the Eulerian coordinate and α is the Lagrangian coordinate. Then
dx
dt

= u(x, t),

x(α, 0) = α.

Thus the time-dependent accelerations is given by

a =
d2

dx2 x =
d
dt

u(x(α, t), t) = ut +
∂u
∂xi

dxi

dt
= ut + ui ∂u

∂xi
= ut + (u · ∇)u.

From now on, we denote the material derivative as

Du
Dt

:= ut + (u · ∇)u,

the second term is called convective acceleration term. Let ρ denote the density of fluid.
Then by the conservation law of mass, for any O ⊂ Ω, the rate of change of mass of fluid
over O is equal to the mass flux over O, that is,

d
dt

∫
O
ρ dx = −

∫
∂O
ρ u · ν dσ.

Using divergence theorem, we have

d
dt

∫
O
ρ dx = −

∫
O

div(ρ u)dx.

Then by the arbitrary of O, we have

dρ
dt

+ div(ρ u) = 0.

This is called the continuity equation.
By the conversation of linear momentum (Newton’s second law: F = ma), the external

body force

f = ρ a = ρ(ut + (u · ∇)u) = ρ
Du
Dt
.

There is a problem, as the fluid has friction property (resistance of flow of fluid). The
“thin” the fluid is, the less frictional it acts; the “thick” the fluid is, the more frictional it
acts. So viscosity is a measurement of the frictional property of a given fluid. Newtonian
fluid is a simple fluid that only has viscous property, no other properties (e.g. elasticity).
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The Cauchy stress tensor can be described as follows.
∫
∂O
τi jν jdσ, where τi j = τ ji is a

tensor of order n. For a fluid in steady state, we have∫
O

f +

∫
∂O
τν dσ = 0.

This implies that
f + div τ = 0.

There are two forms of τ, for an ideal fluid (inviscid):

τ = −pIn,

where p = p(ρ) is the pressure and In is the identity n × n-matrix. For a viscous fluid,
where the viscous stress exists, we have

τ = −pIn + σ,

where σ = (σi j) is the viscous stress given by

σi j =
1
2

(ui, j + u j,i) =
∇u + (∇u)T

2
.

This symmetric part of velocity gradient also represents the deformation stretching, and
the antisymmetric part of velocity gradient

1
2

(ui, j − u j,i) =
∇u − (∇u)T

2

represents the rigid rotation. There is another characterization of a simple, Newtonian
fluid that the shear stress depends linearly on the rate of strain ei j = 1

2 (ui, j + u j,i). That is,

σ = L(e),

where L is independent of x. Moreover, for any Q ∈ S O(3), L satisfies the property:

L(QeQT ) = QL(e)Q.

It follows that

σi j = 2µ ei j + λδi jekk = 2µ
∇u + (∇u)T

2
+ λ(div u)In,

where µ is the shear viscosity, which is a measurement of the frictional property of fluid
or the thickness of the fluid.

So the equation of steady states is

f + div
(
−pIn + µ

(
∇ u + (∇ u)T

)
+ λ(div u)In

)
= 0.

While the dynamical equation is

ρ(ut + u · ∇u) = f + div
(
−pIn + µ

(
∇ u + (∇ u)T

)
+ λ(div u)In

)
.
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If the fluid is incompressible, then divergence of u is free and hence

ρ(ut + u · ∇u) = f − ∇p + µ∆ u.

Here is the reason why an incompressible fluid has its velocity field being divergence free.
Consider the transformation x = φt(α, t),

dφt

dt
= u(φt(α, t))

φ(α, 0) = α ∈ Rn,

which transforms any open set O to another open set Ot. Then we have

vol(Ot) = vol(O).

Since
vol(Ot) =

∫
O

det(∇φt)dα

is constant in t, we have

0 =
d
dt

∣∣∣∣
t=0

vol(Ot) =
d
dt

∣∣∣∣
t=0

∫
O

det(∇φt)dα =

∫
O

tr(∇ u)dα =

∫
O

div u dα.

In fact, we have
d
dt

∣∣∣∣
t=0

det(∇φt) =
∑

i, j

Ai j
d
dt

∣∣∣∣
t=0

∂φi

∂ α j
,

where Ai j is the co-factor of ∂φi

∂ α j
in the Jacobian matrix (∇φ). Using the factor

∑
j

Ai j
∂φk

∂ α j
= δik det(∇φ),

we have

d
dt

∣∣∣∣
t=0

det(∇φt) =
∑

i, j

Ai j
d
dt

∣∣∣∣
t=0

∂φi

∂ α j

=
∑

i, j

Ai j
∂

∂ α j
(
dφi

dt

∣∣∣∣
t=0

)

=
∑

i, j

Ai j
∂

∂ α j
ui(φ(α, t))

=
∑

i, j

Ai j
∂ ui

∂φk

∂φk

∂ α j

=
∑

i

∂ ui

∂φk δi j det(∇φ)

= (div u) det(∇φ),

Since O is arbitrary, we have
div u = 0.
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1.1 The incompressible Euler equation
When µ = 0, the fluid is ideal or inviscid and we have the incompressible, Euler equationut + u · ∇ u + ∇ p = f

∇ · u = 0.

Observe that we have
d
dt

∫
Ot

f dx =

∫
Ot

( ft + div( f u))dx.

Indeed,

d
dt

∫
Ot

f dx =

∫
O

f (φt(x, t), t) det(∇φt)dx

=

∫
O

( ft + ∇ f · u) det(∇φt)dx +

∫
O

f (φt(x, t), t)(div u) det(∇φt)dx

=

∫
O

( ft + div( f u)) det(∇φt)dx

=

∫
Ot

( ft + ∇ f · u)dx.

Next, we give some properties of divergence free vector fields, e.g. translation, rigid
rotation and stretching.

u(x0 + h, t0) = u(x0, t0) + ∇ u(x0, t0)h + O(h2),

For
E =

1
2

(∇ u + (∇ u)T ), Ω =
1
2

(∇ u − (∇ u)T ),

if div u = 0, then trE = 0. Recalling

ω = curl u = (u3
2 − u2

3, u
1
3 − u3

1, u
2
1 − u1

2)T ,

we have
Ω h =

1
2
ω × h.

On the other hand,

u(x, t0) � u(x0, t0) + E(x0, t0)(x − x0) +
1
2
ω × (x − x0).

Solving the equation
ẋ(α, t) = u(x0, t0); x(α, 0) = α,

we have
x(α, t) = α + u(x0, t0)(t − t0).

This corresponds to the translational motion.
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Example 1.1. If ω0 = 0 and E = (−r1,−r2, r1 + r2) for some r1, r2 > 0, then

u(x, t) = (−r1x1,−r2x2, (r1 + r2)x3)T .

So

x(α, t) =

e
−r1t 0 0
0 e−r2t 0
0 0 e(r1+r2)t

α
(x2

1 + x2
2)(α, t) = e−2(r1+r2)t(α2

1 + α2
2)→ 0.

Example 1.2. If ω0 = 0 and E = (−r, r, 0) for some r > 0, then

u(x, t) = (−rx1, rx2, 0)T .
x1(α, t)
x2(α, t)

 =

e−rt 0
0 ert

 α1

α2

 ,
x3(α, t) = α3.

Example 1.3. If E = 0 and ω0 = (0, 0, ω0)T , then

u(x, t) = (−
1
2
ω0x2,

1
2
ω0x1, 0)T .

x1(α, t)
x2(α, t)

 =

cos φ − sin φ
sin φ cos φ

 ∣∣∣∣
φ= 1

2ω0t

α1

α2

 ,
x3(α, t) = α3.

Vorticity stretching: For Euler equationut + ∇p + u · ∇ u = 0,
∇ · u = 0,

we have that Dω
Dt = ω · ∇u, n = 3,
Dω
Dt = 0, n = 2.

Let x(α, t) express the smooth particle trajectory corresponding to a divergence free vector
field u. Then we have thatω(x(α, t), t) = ∇xu(x(α, t), t)ω0(α), n = 3

ω(x(α, t), t) = ω0(α), n = 2.

1.2 Leray’s reformulation of the Navier-Stokes equation
By Du

Dt = −∇p + µ∆ u,
∇ · u = 0,

we have
−∆p = tr(∇ u)2 =

∑
i, j

ui
x j

u j
xi
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so that the pressure p solves the Poisson equation:

p(x) =

∫
Rn

N(x − y)tr(∇ u)2(y, t) dy,

provided that ∇p vanishes sufficiently fast as |x| → +∞, where

N(x) =


1

2π
log |x|, n = 2,
1

(2 − n)ωn
|x|2−n, n ≥ 3,

is the Newtonian potential. It follows that

∇p(x, t) = −cn

∫
Rn

x − y
|x − y|n

tr(∇u)2(y, t) dy,

so that the material derivative of u is given by

Du
Dt

= −cn

∫
Rn

x − y
|x − y|n

tr(∇u)2(y, t) dy + µ∆u.

Next, we will prove div u = 0. Taking divergence on both sides of the Euler equation, we
have  D

Dt divu = µ∆(divu),
∇ · u|t=0 = 0.

Multiplying div u and integrating by parts yields∫
Rn

D
Dt

div udiv u = −µ

∫
Rn
|∇div u|2.

LHS =
d
dt

∫
Rn

1
2
|div u|2 +

∫
Rn

u · ∇
(div u)2

2
=

d
dt

(
1
2

∫
Rn
|div u|2

)
−

∫
Rn
∇ · u

(div u)2

2
≤ 0.

This implies
d
dt

(∫
Rn

(div u)2
)
≤ c

∫
Rn

(div u)2.

By the Gronwall inequality, we have∫
Rn

(div u)2(t) ≤ ect
∫
Rn

(div u)2(0) = 0.

Therefore, we have
div u(t) = 0.

We have proved the following proposition

Proposition 1.1. The Navier-Stokes equation
Du
Dt = −∇p + µ∆u,
∇ · u = 0,
u
∣∣∣
t=0

= u0( div u0 = 0),

is equivalent to 
Du
Dt = −cn

∫
Rn

x−y
|x−y|n tr(∇u)2(y, t)) dy + µ∆u,

u|t=0 = u0,

p is determined by − ∆p = tr(∇u)2.
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1.3 Vorticity formulation of Navier-Stokes equation in dimension two
From

div u = 0, curl u = ω,

it follows that
u = ∇Tψ = (−ψx2 , ψx1)

and
curl u = (ψx2 x2 + ψx1 x1) = ∆ψ = ω.

So
ψ(x, t) =

1
2π

∫
R2

log |x − y|ω(y, t)dy.

Recalling
Dω
dt

= µ∆ω, ωt=t0 = ω0

we have
u(x, t) =

∫
R2

K2(x − y)ω(y, t)dy,

where

K2(x) =
1

2π

(
−

x2

|x|2
,

x1

|x|2

)T

.

This is Boit-Savart law. We can also recover the pressure function p through the Poisson
equation:

−∆ p =
∑

i, j

ui
x j

u j
xi
.
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Lecture 2, December 20, 2012

2 Introduction (continued)
Recall that the Navier-Stokes equation is given byut + u · ∇u + ∇p = ν∆u

∇u = 0.
(2.1)

The fundamentally open question is

Given a smooth, compactly supported, divergence free vector field u0(x)
in R3, are there smooth solutions of (2.1) with u|t=0 = v0?

2.1 Another word on NSE’s derivation
By the momentum balance law, we have

∂

∂t

∫
O
ρudx = −

∫
∂O

(ρu)u · ν dS +

∫
∂O
τ · ν dS ,

where

τ = −pI + σ = −pI + 2µ
∇u + (∇u)T

2
.

It follows from divergence theorem that

d
dt

(ρu) + div(ρu ⊗ u) = divτ = −∇p + 2
µ

2
(∆u + ∇divu)

Combining with mass conservation law

dρ
dt

+ div(ρu) = 0,

we have 
d
dt

(ρu) + div(ρu ⊗ u) = divτ = −∇p + 2
µ

2
(∆u + ∇divu),

dρ
dt

+ div(ρu) = 0.

2.2 Vorticity formulation in dimension 3
We first review the vorticity formulation in dimension 2

Dω
Dt

= µ∆ω,

where ω = curlu.
If µ = 0, for Euler equation, then

Dω
Dt

= 0. (2.2)
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That is,
ω(x(α, t)) = ω0(α),

The vorticity, as a scalar function, is transported along the flow trajectory.
If µ > 0, for the Navier-Stokes equation, then ω solves the convective heat equation.

Here is a fact. In the smooth case, if ω solves
Dω
Dt

= µ∆ω,

ω|t=0 = curl u0, (divu0 = 0)

with
u(x, t) =

∫
R2

K2(x − y)ω(y, t)dy

where

K2(x) =
1

2π

(
−

x2

|x|2
,

x1

|x|2

)
,

then u solves (2.1), with
−∆ p = tr(∇ u)2.

2.3 Construction of steady solutions to the Euler equation in dimen-
sion 2

By (2.2), we have
ωt + u · ∇ω = 0.

Let u = ∇⊥ψ. Then
ω = curlu = ∆ψ,

and

u · ∇ω = ∇⊥ψ · ∇∆ψ = det
(
ψx1 ψx2

∆ψx1 ∆ψx2

)
.

This means that

ωt + det
(
ψx1 ψx2

∆ψx1 ∆ψx2

)
= 0

Now we have the following Lemma

Lemma 2.1. A function ψ defines a steady solution to Euler equation in dimension 2 if
and only if ∆ψ = F(ψ) for some function F.

Proof. It follows from ωt = 0 that

det
(
∇ψ
∇∆ψ

)
= 0.

So we have ∇ψ ‖ ∇∆ψ. This means that ψ and ∆ψ has level curves. Therefore,

∆ψ = F(ψ).

�
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Lemma 2.2. For a steady flow, ψ is constant along the particle trajectories.

Proof. Recalling that 
dx1

dt
= −ψx2(x(α, t)),

dx2

dt
= ψx1(x(α, t)),

we have
d
dt
ψ(x(α, t)) = ψx1

dx1

dt
+ ψx2

dx2

dt
= −ψx1ψx2 + ψx1ψx2 = 0.

So ψ = constant. �

Here we give two simple examples.

Example 2.1 (Steady eddies). If ω0 is radial, i.e. ω0 = ω0(|x|), then it follows from
∆ψ0 = ω0 that ψ0 is also radial, that is ψ0 = ψ0(|x|). By

det(∇ψ0,∇∆ψ0) = 0,

ω0 produce a steady, radially symmetric solution to the Euler equation in dimension 2.
By

u0(x) = ∇⊥ψ0 =

(
−

x2

r
,

x1

r

)T
ψ′0(r),

and
ψ′′0 (r) +

1
r
ψ′0(r) = ω0(r),

we have

u0(x) =

(
−

x2

r2 ,
x1

r2

)T ∫ r

0
sω0(s)ds.

This means that the streamlines of the flow are circles. The fluid rotates depending on the
sign of ω0.

Example 2.2 (Time-dependent viscous eddies). Let ω0 = ω0(r). If ω(x, t) is radially
symmetric, then ψ(x, t) is radially symmetric. So

det(∇ψ0,∇∆ψ0) = 0.

Since u · ∇ω = 0, we have

u(x, t) =

(
−

x2

r2 ,
x1

r2

)T ∫ r

0
sω(s, t)ds.

Solving the heat equation ωt = µ∆ω,

ω|t=0 = ω0,

we have
ω(x, t) =

1
4πµ t

∫
R2

e−
|x−y |2

4µ t ω0(|y|)dy.
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Proposition 2.3. Let ω0(r) satisfies |ω0| + |∇ω0| ≤ M, u0(r) is the invisicid radial eddies
solution. Then

|ω(x, t) − ω0(r)| .
√
µ t, |u(x, t) − u0(r)| . |x|

√
µ t.

Proof. We fist recall that
∫
R2 e−

|z |2
4 |z|dz = 1. Let x − y =

√
µ tz, then

|ω(x, t) − ω0(r)| ≤
∣∣∣∣∣ 1
4πµ t

∫
R2

e−
|z |2

4 (ω0(x +
√
µ tz) − ω0(|z|))dz

∣∣∣∣∣
. ‖∇ω0‖L∞

√
µ t

∫
R2

e−
|z |2

4 |z|dz

.
√
µ t.

So

|u(x, t) − u0(r)| ≤
1
r

∣∣∣∣∣∫ r

0
s(ω(s, t) − ω0)ds

∣∣∣∣∣
.

1
r

∫ r

0
s
√
µ tds

. r
√
µ t.

�

Now we return to 3D vorticity formulation of NSE. Considercurlu = ω,

divu = 0.
(2.3)

Lemma 2.4. Let ω ∈ L2 ∩ L∞(R3,R3), and ω→ 0 sufficiently fast as |x| → 0. Then

(i) (2.3) has a solution u vanishing at∞ if and only if divω = 0.

(ii) If divω = 0, then u = −curlψ, where ψ : R3 → R3 solves the Poisson equation:

∆ψ = ω.

Proof. (i) Note that div curl f = 0, for all f ∈ C∞(R3,R3). So

div curl f =
∂

∂xi
(curl f )i =

∂

∂xi
(εi jk f k

j )i =
∑
i, j,k

εi jk f k
i j = 0.

It suffices to establish (ii). Let ψ solve ∆ψ = ω. Note

curl curlψ = ∇ × (∇ × ψ) = ∇(∇ · ψ) − ∇ · (∇ψ) = ∇(divψ) − ∆ψ.

Hence
−curl curlψ + ∇(divψ) = ω.
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Multiplying ∇(divψ) on both sides of this equality, and integrating by parts, we have

RHS =

∫
R3
ω∇divψ = −

∫
R3
∇ω divψ = 0.

So
LHS =

∫
R3
|∇divψ|2 = 0.

Hence
∇divψ = 0.

This implies that
curl(−curlψ) = ω.

Set u = −curlψ, then

u = −curl
∫
R3

1
4π|x − y|

ω(y)dy.

That is,

ui = εi jk

(∫
R3

ωk(y)
4π|x − y|

dy
)

j
= εi jk

∫
R3

(x − y) jωk(y)
4π|x − y|3

dy =

(∫
R3

(x − y)ωk(y)
4π|x − y|3

dy
)i

.

Thus,

u(x) =

∫
R3

K3(x − y)ω(y)dy, where K3(x − y)h =
1

4π
(x − y)h
|x − y|3

.

The above is the Boit-Savarat law in dimension 3. �

2.4 Vorticity equations
Apply ∂ j to the Navier-Stokes equation, we obtain

(uk
j)t + ul

ju
k
l + uluk

jl = µ∆ uk
j.

Then ωi = εi jkuk
j satisfies

(ωi)t + ul · ∇ωi + εi jkul
ju

k
l = µ∆ωi.

For i = 1, it follows from div u = 0 that

ε1 jkul
ju

k
l = ε123ul

2u3
l + ε132ul

3u2
l

= ul
2u3

l − ul
3u2

l

= u1
2u3

1 + u2
2u3

2 + u3
2u3

3 − u1
3u2

1 − u2
3u2

2 − u3
3u2

3

= u1
2u3

1 − u1
1u3

2 − u1
3u2

1 + u2
3u1

1

= −(u3
2 − u2

3)u1
1 − (u1

3 − u3
1)u1

2 − (u2
1 − u1

2)u1
3

= −(ω · ∇ u)1.

Hence
εi jkul

ju
k
l = −ω · ∇ ui.
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Therefore,
Dω
Dt

= ω · ∇ u + µ∆ω. (2.4)

Denote
Ω =

1
2

(
∇u − (∇ u)T

)
,

then
Ω h =

1
2
ω × h.

Indeed, for i = 1,

(Ω h)1 =
1
2

(u1
j − u j

1)h j =
1
2

(u1
2 − u2

1)h2 +
1
2

(u1
3 − u3

1)h3,

and
1
2

(ω × h)1 =
1
2

(ω2h3 − ω3h2) =
1
2

(u1
3 − u3

1)h3 −
1
2

(u2
1 − u1

2)h2.

For i = 2 and i = 3, it is similar.
There is another way to derive (2.4). Denote

V =

(
∂ ui

∂ xk

)
, and P = (pxi xk).

Then
DV
Dt

+ V2 = −P + µ∆ V.

Recalling V = D + Ω, V2 = D2 + Ω2 +DΩ + ΩD, we have

DD
Dt

+D2 + Ω2 = −P + µ∆D, and
DΩ

Dt
+DΩ + ΩD = µ∆Ω.

We claim that
(ΩD +DΩ)21 = −(Λω)3.

Proof. Note that Ω31 = −ω2, Ω21 = ω3, Ω23 = −ω1, and D11 + D22 + D33 = tr(∇ u) =

div u = 0, and

(ΩD +DΩ)21 = D21Ω11 +D22Ω21 +D23Ω31 + Ω21D11 + Ω22D21 + Ω23D31

= D23Ω31 + (D11 +D22)Ω21 +D31Ω23

= −D23ω
2 −D33ω

3 −D31ω
1

= −(Dω)3.

�

So that
Dω
Dt

= Dω + µ∆ω.
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Proposition 2.5. LetD(t) be 3 × 3, symmetric, traceless real matrix. Let ω(t) solve
dω
dt

= D(t)ω,

ω|t=0 = ω0,

Ω h =
1
2
ω × h, h ∈ R3.

Define

u =
1
2
ω × x +D x, p = −

1
2

(
dD
dt

+D2 + Ω2)x · x.

Then v, p solves the Navier-Stokes equations in dimension 3.

Proof. If u = 1
2ω(t) × x +D(t) x, then curl u = ω(t), ∆ω = u · ∇ω = 0. Now the vorticity

equation reduces to
∂ω

∂ t
= D(t)ω, ∆D = v · ∇D = 0.

So we have
dD
dt

+D2 + Ω2 = −p(t).

This implies p(t) is a symmetric matrix. Hence

P(t) = ∇2(1
2

p(t)x · x
)
.

�

Definition 2.1. For n = 2, 3,

p.v.
∫
Rn

f (x)dx = lim
ε→0

∫
|x|≥ε

f (x)dx,

provided that the limit exists.

Theorem 2.6 (3D vorticity-stream formulation of Navier-Stokes equation). For 3D smooth
flows that vanish sufficiently rapidly as |x| → ∞, the Navier-Stokes equation is equivalent
to 

Dω
Dt

= ω · ∇ u + µ∆ω, R3 × R+,

ω|t=0 = ω0 = curl u0

where u is given by the Biot-Savart Law:

u(x, t) =

∫
R3

K3(x − y)ω(y, t)dy, K3(x)h =
1

4π
x × h
|x|3

, h ∈ R3,

and

∇ u(x)h = −p.v.
∫
R3

[
ω(y) × h
4π|x − y|3

+
3

4π
((x − y) × ω(y)) ⊗ (x − y)

|x − y|5
h
]

dy +
1
3
ω(x) × h.
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Lemma 2.7. If

u(x, t) =

∫
R3

K3(x − y)ω(y, t)dy, K3(x)h =
1

4π
x × h
|x|3

, h ∈ R3,

then

∇ u(x)h = −p.v.
∫
R3

[
ω(y) × h
4π|x − y|3

+
3

4π
((x − y) × ω(y)) ⊗ (x − y)

|x − y|5
h
]

dy +
1
3
ω(x) × h.

Proof. First we need to calculate the distributional derivative of K3. For ϕ ∈ C∞0 (R3),

〈 ∂xi K3, ϕ〉L2 = −〈K3, ∂xiϕ〉L2

= − lim
ε→0

∫
|x|≥ε

K3∂xiϕ

= − lim
ε→0

(
−

∫
|x|≥ε

∂xi K3ϕ +

∫
|x|=ε

K3ϕ
xi

|x|

)
= p.v.

∫
R3
∂xi K3ϕ − lim

ε→0

∫
|y|=1

K3(y)ϕ(ε y)
yi

|y|
dy

= p.v.
∫
R3
∂xi K3ϕ − ϕ(0)ci, ci =

∫
|y|=1

K3(y)yidσ.

Then

∇ u(x)h = − p.v.
∫
R3

[
ω(y) × h
4π|x − y|3

+
3

4π
((x − y) × ω(y)) ⊗ (x − y)

|x − y|5
h
]

dy

−
1

4π

∫
|y|=1

[y × ω(y)]y · hdσ, (2.5)

where
1

4π

∫
|y|=1

[y × ω(y)]y · hdσ = −
1
3
ω(x) × h,

we have used ∫
|y|=1

yiy j =

 4π
3 , i = j,

0, i , j.

�

Proof. Formally, since u = −curlψ and ∆ψ = ω, we have div u = 0, we have div u = 0.
Rigorously, one need to use (2.5) to verify div u = 0, but we leave it to the reader.
First, we use div u = 0 to show that

D
Dt

(div u) = µ∆ div u.

∂ωi
i

∂ t
+ u j∂ jω

i
i + u j

i∂ jω
i = ω j∂ j(ui

i) + ω
j
i∂ jui + µ∆(ωi

i) = µ∆(ωi
i).

By 
∂ divω
∂ t

+ u · ∇ divω = µ∆ divω,

divω|t=0 = div curl u0 = 0,

16



we have
divω = 0, for all t ≥ 0.

On the other hand, by

∂

∂ t
(curl u) + u · ∇ curl u = curl u · ∇ u + µ∆ curl u,

we have
curl

(Du
Dt
− µ∆ u

)
= 0.

So that
Du
Dt
− µ∆ u = −∇ p,

for some scalar function p. �

Lemma 2.8. If K3 is a homogeneous of degree -2 function, then∫
|x|=1

∂xi K3dσ = 0.

Proof. Let ρ ∈ C∞0 (R), ρ ≥ 0, ρ(r) =

1, r ≤ A,
0, r ≥ B,

for some 0 < A < B. Then

∫ ∞

0
ρ′(r)dr = 0,

∫ ∞

0

ρ(r)
r

dr = c > 0.

So

0 =

∫
R3
∂xi(ρ(|x|)K(x))dx

=

∫
R3
ρ′(r)

xi

|x|
K(x)dx +

∫
R3
ρ(r)∂xi K(x)dx

=

∫ ∞

0
ρ′(r)dr

∫
|x|=1

xiK(x)dσ +

∫ ∞

0

ρ(r)
r

dr
∫
|x|=1

∂xi K(x)dσ

= c
∫
|x|=1

∂xi K(x)dσ.

The proof is completed. �
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Lecture 3, December 21, 2012

3 Basic properties of the Navier-Stokes equation
If u satisfies Navier-Stokes equation

ut + u · ∇ u + ∇ p = µ∆ u,
∇ · u = 0,
u|t=0 = u0,

(3.1)

then

• translation invariance: for any c ∈ R3,uc(x, t) = u(x − ~ct, t) + ~c,
pc(x, t) = p(x − ~ct, t),

also solves (3.1).

• rotation invariance: for any Q ∈ O(3),uθ(x, t) = θT u(θ x, t),
pθ(x, t) = p(θ x, t),

is also a solution.

• scaling invariance: for any λ > 0,uλ(x, t) = 1
λ
u(λ−1x, λ−2t),

pλ(x, t) = 1
λ2 p(λ−1x, λ−2t)

is also a solution.

Dimension in Navier-Stokes equation:

x→ 1, t → 2;
∂

∂x
→ −1

∂

∂t
→ −2;

u→ −1, p→ −2;

∆x → −2.

18



3.1 Helmholtz decomposition and Leray projection operator
Finite dimensional analog: Suppose Σ ⊂ R3 is a plane, x is a particle in Σ. Then

F = F⊥ + F‖,

where F⊥ has no effect on the particle’s acceleration, while F‖ cause the particle to accel-
erate. That is,

F‖ = ma‖.

Infinite dimensional case: Consider the linearization of Navier-Stokes equation at u = 0,
ρ = ρ0 = constant. Applying infinitesimally small force f (x, t) to it, we have

ρ0ut + ∇ p = f , in Ω,

u · ν = 0, on ∂Ω,

div u = 0,

where f can be decomposed into two special force: a gradient force, and a divergence
free force

g = ρ0ut, g · ν = 0, on ∂Ω.

Now we consider Helmholtz decomposition.
Define

X =
{
g : Ω→ R3

∣∣∣ g ∈ C∞, div g = 0, g · ν = 0 on ∂Ω
}
,

and
Y =

{
∇ϕ

∣∣∣ ϕ ∈ C∞(R3)
}
,

then
X ⊥ Y,

that is,

〈 g,∇ϕ〉L2 =

∫
Ω

g∇ϕ =

∫
Ω

div(gϕ) =

∫
∂Ω

ϕ g · ν = 0.

Set
X = closure of X in L2(Ω,R3), Y = closure of Y in L2(Ω,R3),

then
X ⊥ Y .

Theorem 3.1. (Helmholtz decomposition) L2(Ω,R3) = X ⊕ Y .

Proof. For any f ∈ L2(Ω,R3), let∆ g = ∇ · f , in Ω,
∂ g
∂ν

= f · ν, on ∂Ω,
(3.2)

then
h = f − ∇ g

is divergence free and

h · ν = f · ν −
∂ g
∂ν

= 0.
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So
f = ( f − ∇ g) + ∇ g

is the desired decomposition, provided that (3.2) is solvable.
(3.2) can be solved by the following minimization process:

min
u∈H1(Ω)

∫
Ω

|∇ u − f |2. (3.3)

Suppose (3.3) is attained by a u, then for any v ∈ H1(Ω),

0 =
d
dt

∣∣∣
t=0

∫
Ω

|∇(u + tv) − f |2 =

∫
Ω

(∇ u − f ,∇ v).

Hence ∇ · (∇ u − f ) = 0, in Ω,
∂ u
∂ν

= f · ν.

(Existence). Let {uk} ⊂ H1(Ω) be a minimizing sequence, that is,∫
Ω

|∇ uk − f |2 → inf
u∈H1

∫
Ω

|∇ u − f |2 = c ∈ [0,+∞),

then ∫
Ω

|∇

(uk − ul

2

)
|2 +

∫
Ω

|∇

(uk + ul

2

)
− f |2 =

1
2

∫
Ω

|∇ uk − f |2 +
1
2

∫
Ω

|∇ ul − f |2.

RHS →
c
2

+
c
2

= c, as k, l→ ∞,

while ∫
Ω

|∇

(uk + ul

2

)
− f |2 ≥ c,

we conclude that
lim

k,l→∞

∫
Ω

|∇

(uk − ul

2

)
|2 = 0,

and hence {∇ uk} is a Cauchy sequence in L2(Ω). Since we can replace uk by ũk = uk−
>

Ω
uk,

we may assume that
∫

Ω
uk = 0. By the Poincaré inequality, we have∫

Ω

|uk − ul|
2 .

∫
Ω

|∇ (uk − ul) |2 → 0, as k, l→ ∞.

Hence we may assume that there exists a u ∈ H1(Ω) with
∫

Ω
u = 0, so that uk → u

strongly in H1(Ω,R3). It is easy to see that∫
Ω

|∇ u − f |2 = lim
k→∞

∫
Ω

|∇ uk − f |2 = c,

that is, u achieves the infimum.
It turn out that the decomposition is unique. Suppose that there are f1, f2 ∈ L2(Ω,R3),

ϕ1, ϕ2 ∈ H1(Ω) such that
div f1 = div f2 = 0,

20



and
f1 · ν = f2 · ν = 0 on ∂Ω,

f = f1 + ∇ϕ1 = f2 + ∇ϕ2,

then
f1 − f2 = ∇(ϕ2 − ϕ1)

and ∫
Ω

| f1 − f2|
2 = 〈 ∇(ϕ2 − ϕ1), f1 − f2〉L2 = 〈ϕ2 − ϕ1,∇( f1 − f2)〉L2 = 0.

This implies that f1 = f2. Of course ϕ1, ϕ2 are possibly different. �

Let P : L2(Ω,R3)→ X. Then P is called the Leray projection operator. It turns out

Proposition 3.2. P is a bounded operator from L2(Ω,R3) to L2(Ω,R3):

‖P f ‖L2 . ‖ f ‖L2(Ω). (3.4)

Proof. i) Since P f = f − ∇ u, where u ∈ H1(Ω) achieves∫
Ω

|∇ u − f |2 = inf
v∈H1(Ω)

∫
Ω

|∇ v − f |2 ≤
∫

Ω

| f |2,

we obtain ∫
Ω

|P f |2 .
∫

Ω

| f |2,

so (3.4) holds with the coefficient 1.
ii) If div(∇ u − f ) = 0, ∂ u

∂ν
= f · ν on ∂Ω, then by elliptic estimate, we also have

‖∇ u‖L2(Ω) . ‖ f ‖L2(Ω).

So
‖∇ u − f ‖L2(Ω) . ‖ f ‖L2(Ω),

but without optimal bound. �

Representation of Leray projection operator in the case Ω = Rn: For f ∈ L2(Rn,Rn),
let u ∈ H1(Rn) solve

∆ u = div f in Rn,

then
P f = f − ∇ u

satisfies the condition that
div(P f ) = 0 in Rn.

Recall that
u = (∆−1)div f ,

we have
∇ u = ∇(∆−1)div f ,

so
(P f )i = f i − ∇i(∆−1)( f j

j ) = f i − ∇i(∆−1)
1
2 (∆−1)

1
2∇ j f j = f i − RiR j f j,

where Ri = ∇i(∆−1)
1
2 denotes the ith Riesz transform. Therefore

(P f )i = f i − RiR j f j,

is the Leray projection operator.
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3.2 The Steady Stokes equation
Now we consider the steady Stokes equation

−µ∆ u + ∇ p = f , in Ω, µ > 0,
∇ · u = 0, in Ω,

u = 0, on ∂Ω.

(3.5)

Basic function spaces: Let Ω ⊂ Rn be a Lipschitz domain: ∂Ω ∈ C0,1, that is, for any
y ∈ ∂Ω, there exists r > 0 such that ∂Ω ∩ Br(y) is the graph of a Lipschitz function. For
1 ≤ p ≤ +∞, define

Lp(Ω) =

 f : Ω→ R

∣∣∣∣∣ (∫
Ω

| f |p
)1/p

= ‖ f ‖Lp < +∞


Recalling the Poincaré’s inequality: for any 1 ≤ p ≤ +∞,

‖ f ‖Lp ≤ C(Ω, p)‖∇ f ‖Lp , ∀ f ∈ W1,p
0 (Ω).

Define
H = {u ∈ C∞c (Ω)

∣∣∣ div u = 0}
L2 ,

and
V = {u ∈ C∞c (Ω)

∣∣∣ div u = 0}
H1

0
= H1

0(Ω) ∩ {div u = 0}.

E(Ω) = {u ∈ L2(Ω) | div u ∈ L2(Ω)} ⊃ H1(Ω),

with
〈 u, v〉E =

∫
Ω

uv + divudivv.

Here is a fact: C∞c (Ω) is dense in E(Ω), provided Ω is Lipschitz.
By trace theorem, we know

γ0 : H1(Ω) ↪→ H
1
2 (∂Ω).

Now here is a question: Do we have

γµ : E(Ω) ↪→ H−
1
2 (∂Ω)?

Indeed,
Kerγ0 = H1

0(Ω), Imγ0 = H
1
2 (∂Ω)

and
H−

1
2 (∂Ω) = (H

1
2 (∂Ω))∗.

For any u ∈ C∞c (Ω), define
γνu = u · ν.

Then Stokes’ formula holds in E(Ω).

Proposition 3.3. For u ∈ E(Ω), w ∈ H1(Ω),

〈 u,∇w〉 + 〈 div u,w〉 = 〈 γνu, γ0w〉
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Proof. Let φ ∈ H
1
2 (∂Ω) and let w ∈ H1(Ω) such that γ0w = φ. For u ∈ E(Ω), define

Xu(φ) =

∫
Ω

[〈 u,∇w〉 + 〈 div u,w〉].

Then Xu(φ) is well defined. Let w̃ ∈ H1(Ω) be such that γ0w̃ = φ. Now need to show∫
Ω

[〈 u,∇w〉 + 〈 div u,w〉] =

∫
Ω

[〈 u,∇ w̃〉 + 〈 div u, w̃〉].

Since
γ0(w − w̃) = 0,

it follows that there exists a sequence wk ∈ H1
0(Ω) such that w − w̃ = limk→∞ wk. Then∫

Ω

[〈 u,∇w−w̃〉+〈 div u,w−w̃〉] = lim
k→∞

∫
Ω

[〈 u,∇wk〉+〈 div u,wk〉] = lim
k→∞

∫
Ω

div〈 u,wk〉 = 0.

�

Since
|Xu(φ)| ≤ ‖u‖E(Ω)‖w‖H1(Ω) . ‖u‖E(Ω)‖φ‖H

1
2 (∂Ω)

,

it follows that
φ→ Xu(φ)

is a linear continuous map. So there exists g = g(u) ∈ H−
1
2 (∂Ω) such that

Xu(φ) = 〈 g, φ〉
H

1
2 ,H−

1
2
.

Hence
u→ g(u) = γνu

is linear, and
‖g(u)‖

H−
1
2 (∂Ω)
. ‖u‖E(Ω).

By Stokes’ formula, we have

γνu = u · ν, if u ∈ C∞c (Ω).

If ∂Ω ∈ C2, then the map
γν : E(Ω)→ H−

1
2 (∂Ω)

is onto.
Kerγν = E0(Ω) = C∞c (Ω)E(Ω).

For any φ ∈ H−
1
2 (∂Ω), let

ψ = φ −
〈 φ, 1〉
|∂Ω|

,

then 〈ψ, 1〉 = 0. Recalling γ0 is onto, it follows that there exists p ∈ H1(Ω) such that∆ p = 0, in Ω,
∂ p
∂ν

= ψ, on ∂Ω.
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Let u = ∇ p, then u ∈ E(Ω), γνu = ψ. Hence

φ = γνu +
〈 φ, 1〉
|∂Ω|

there exists u0 ∈ H1(Ω) such that γνu0 = 1.
Denote D′(Ω) as the space of distribution. Then for f ∈ D′(Ω), if f = ∇ p for some

p ∈ D′(Ω) if and only if 〈 f , v〉 = 0 for any v ∈ V, where

V =
{
v ∈ C∞c (Ω)

∣∣∣ divv = 0
}
.

Denote
H =

{
u ∈ L2(Ω)

∣∣∣ div u = 0, γνu = 0
}
,

then the orthogonal component of H in L2(Ω),

H⊥ =
{
u ∈ L2(Ω)

∣∣∣ u = ∇ p, p ∈ H1(Ω)
}

Next, we consider the variational formulation of Stokes equation (3.5). Let f ∈ L2(Ω)
and p ∈ L2(Ω). Then for any v ∈ V, we have

µ〈 ∇ u,∇ v〉 + 〈 ∇ p, v〉 = 〈 f , v〉.

Denote
((u, v)) = 〈 ∇ u,∇ v〉L2 .

Then for u ∈ V satisfies
µ((u, v)) = ( f , v), ∀ v ∈ V.

Here is a fact: u ∈ V solves (3.5) if and only if

µ((u, v)) = ( f , v), ∀ v ∈ V.

Theorem 3.4. Assume that Ω ⊂ Rn is bounded Lipschitz. Then for any f ∈ H−1(Ω), there
exists a unique solution u ∈ V = H1

0 ∩ {div u = 0} of (3.5).

Proof. Method 1. (Lax-Milgram) Since ‖u‖V = ‖∇ u‖L2 , define

a(u, v) = µ((u, v)), ∀ u, v ∈ V,

then a is a bounded bilinear form, and

a(u, u) = µ((u, v)) ≥ µ‖u‖2V ,

that is, a is coercive. Hence by Lax-Milgram theorem, for any f ∈ L2, there exists a
unique u ∈ V such that

a(u, v) = ( f , v).

Method 2. (Garlekin’s method) Let {wm} be an complete orthogonal base of V . Let

Vm = span{w1, · · · ,wm}, m ≥ 1,
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and

um =

m∑
i=1

ξm
i wi ∈ Vm

solves
a(um, v) = ( f , v), ∀ v ∈ Vm.

Then
m∑

i=1

ξm
i a(wi,w j) = 〈 f ,w j〉


a(w1,w1) · · · a(wm,w1)
a(w1,w2) · · · a(wm,w2)
· · · · · · · · ·

a(w1,wm) · · · a(wm,wm)



ξm

1
ξm

2
...
ξm

m

 =


〈 f ,w1〉

〈 f ,w2〉
...

〈 f ,wm〉


So

(a(wi,w j))1≤ i, j≤m

is a nonsingular matrix. This implies that

m∑
i=1

ξm
i a(wi,w j) = 0, 1 ≤ j ≤ m

has only trivial solution. Hence, by

a

 m∑
i=1

ξm
i wi, (

m∑
i=1

ξm
i wi

 = 0,

we have

(
m∑

i=1

ξm
i wi = 0,

that is,
(ξ1, · · · , ξm) = (0, · · · , 0).

On the other hand, from
a(um, um) = 〈 f , um〉

it follows that
‖um‖

2
V .

1
µ
‖ f ‖L2‖um‖V ,

that is,

‖um‖V .
1
µ
‖ f ‖L2 .

So there exists u ∈ V such that
um ⇀ u in V.

Hence
a(u, v) = ( f , v) ∀ v ∈ Vm.

Therefore,
a(u, v) = ( f , v).
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Uniqueness: If there are two solutions u and ū such thata(u, v) = ( f , v),
a(ū, v) = ( f , v),

then
a(u − ū, v) = 0.

Especially,
a(u − ū, u − ū) = 0.

So u = ū. �

Minimization principle Let

E(u) = µ‖u‖2 − 2( f , u).

Then

Theorem 3.5. u ∈ V solves (3.5) if and only if

E(u) ≤ E(ũ), ∀ ũ ∈ V.

Proof. (⇐) For any v ∈ V ,
d
dt

∣∣∣∣∣
t=0

E(u + tv) = 0,

then
2µ(∇ u,∇ v) − 2( f , v) = 0.

(⇒) If
µ((u, ṽ)) = ( f , ṽ), ∀̃v ∈ V.

then for v ∈ V , letting ṽ = u − v, we have

µ((u, u − v)) = ( f , u − v).

That is,
µ((u, u)) − µ((u, v)) = ( f , u) − ( f , v).

Then
µ‖u‖2 ≤

µ

2
‖u‖2 +

µ

2
‖v‖2 + ( f , u) − ( f , v),

that is,
1
2

E(u) ≤
1
2

E(v).

�
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3.3 Nonhomogeneous Stokes problem
Theorem 3.6. Let Ω ⊂ Rn bounded, ∂Ω ∈ C2. Let f ∈ H−1(Ω), g ∈ L2(Ω), φ ∈ H

1
2 (∂Ω)

such that
∫

Ω
g =

∫
∂Ω
φ · ν. Then there exists a unique u ∈ H1(Ω), p ∈ L2(Ω) (unique up to

a constant) such that 
−µ∆ u + ∇ p = f , in Ω, µ > 0,
∇ · u = g, in Ω,

γ0u = φ, on ∂Ω.

(3.6)

Proof. (Uniqueness) Suppose that there exist u1, u2 ∈ H1(Ω), p1, p2 ∈ L2(Ω) such that
−µ∆ ui + ∇ pi = f , in Ω, µ > 0,
∇ · ui = g, in Ω,

γ0ui = φ, on ∂Ω, i = 1, 2.

Let w = u1 − u2, p = p1 = p2, then
−µ∆ w + ∇ p = 0, in Ω, µ > 0,
∇ · w = 0, in Ω,

γ0w = 0, on ∂Ω.

So that, by
µ(∇w,∇w) = 0,

we have w = constant. Further by γ0w = 0 on ∂Ω, we have w = 0 in Ω. By ∇ p = 0, we
obtain p1 − p2 = const..
(Existence). Let u0 ∈ H1(Ω) such that γ0u0 = φ, then∫

Ω

(div u0 − g) = 0.

Hence there exists u1 ∈ H1
0(Ω) such that

div u1 = −div u0 + g.

Let v = u − u0 − u1, then
−µ∆ v + ∇ p = f − µ∆(u0 + u1) ∈ H−1, in Ω, µ > 0,
∇ · v = 0, in Ω,

γ0v = 0, on ∂Ω

has a unique solution v and p. Hence the original problem is also solvable. �

Lemma 3.7. div : H1
0(Ω)→ L2(Ω)/R = {g ∈ L2(Ω) |

∫
Ω

g = 0} is an onto map.

Proof. ∇ : L2(Ω) ∩ {
∫

Ω
g = 0} → H−1(Ω) is isomorphism onto its range R(∇). Hence

A∗ = −div ∈ L(H1
0(Ω), L2(Ω)) is onto L2(Ω)/R. �

For the regularity of the weak solutions, we have
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Theorem 3.8. Let Ω ⊂ Rn bounded, ∂Ω ∈ Cγ, γ = max{2,m + 2}, m ≥ 0. Let u ∈ W2,q,
p ∈ W1,q, 1 < q < +∞, solves (3.6). If f ∈ Wm,q, g ∈ Wm+1,q, φ ∈ Wm+2− 1

q ,q(∂Ω), then
u ∈ Wm+2,q, p ∈ Wm+1,q and

‖u‖Wm+2,q + ‖p‖Wm+1,q/R ≤ C(q, γ,m,Ω)
(
‖ f ‖Wm,q + ‖g‖Wm+1,q + ‖φ‖

Wm+2− 1
q ,q

+ cq‖u‖Lq

)
,

where

cq =

0, q ≥ 2,
1, 1 < q < 2.

Theorem 3.9. (Existence) (n = 2, 3) Under the same assumption on f , g, φ and
∫

Ω
g =∫

∂Ω
φ ·ν. Then there exist unique u ∈ Wm+2,q, p ∈ Wm+1,q solving the system and satisfying

the above estimates.

Proof. We will only present the proof for simply connected domain in R2. First we claim
that there exists v ∈ Wm+1,q(Ω) such thatdivv = g in Ω

v = φ on ∂Ω.

To see it, let θ ∈ Wm+3,q(Ω) such that∆θ = g in Ω
∂θ
∂ν

= φ · ν on ∂Ω.

Write v = ∇θ + w. Then w satisfies

divw = 0 in Ω; w · ν = 0 on ∂Ω.

Hence we may write w = ( ∂σ
∂x2
,− ∂σ

∂x1
) for an unknown function σ. The boundary condition

on w yields that σ satisfies

w · ν =
∂σ

∂x2
ν2 −

∂σ

∂x1
ν1 = ∇tanσ = 0 on ∂Ω,

and
w · τ =

∂σ

∂ν
= (v − ∇θ) · τ = φ · τ −

∂θ

∂τ
∈ Wm+2− 1

q ,q(∂Ω).

The existence of σ is guaranteed by the following biharmonic equation: there exists σ ∈
Wm+3,q(Ω) that solves 

∆2σ = 0 in Ω

σ = 0 in Ω
∂σ
∂ν

= φ · τ − ∂θ
∂τ
∈ Wm+2− 1

q ,q(∂Ω).

With the help of v, we can consider w = u − v. Then u solves the original equation if
and only if w solves

−µ∆w + ∇p = f ′ ≡ f + µ∆v ∈ Wm,q(Ω) in Ω

divw = 0 in Ω

w = 0 on ∂Ω.
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The solvability of w can be done by solving another biharmonic equation as follows: since
we can write w = ( ∂ρ

∂x2
,− ∂ρ

∂x1
) for some unknown function ρ in Ω. w = 0 on ∂Ω yields that

ρ =
∂ρ

∂ν
= 0 on ∂Ω. The equation of w yields an equation for ρ:

−µ∆ρx2 + px1 = f
′,1 (3.7)

µ∆ρx1 + px2 = f
′,2. (3.8)

Taking ∂
∂x2

of the first equation and ∂
∂x1

of the second equation and then subtracting the
two resulting equations, we would obtain

−µ∆2ρ = curl(f′) in Ω, ρ =
∂ρ

∂ν
= 0 on ∂Ω. (3.9)

Since curl( f ′) ∈ Wm−1,q(Ω), it follows from the linear theory that there exists ρ ∈ Wm+3,q(Ω).
This implies the equation for w is solvable for w ∈ Wm+2,q(Ω). The proof is now com-
plete. �
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Lecture 4, December 24, 2012

4 The Steady Navier-Stokes equation

4.1 Eigenvalues and eigenfunctions of the Stokes operator
.

Consider 
−µ∆u + ∇p = f in Ω

∇ · u = 0 in Ω

u = 0 on ∂Ω

(4.1)

From Lecture 3, we know that for any f ∈ L2(Ω), there exists a unique u ∈ V solving the
equation (4.1). Define

Λ( f ) =
1
µ

u : L2(Ω,Rn)→ H1
0(Ω,Rn) ⊂ L2(Ω,Rn).

Then Λ : L2(Ω,Rn)→ L2(Ω,Rn) is compact. Λ is also self-adjoint:

(Λ f1, f2)L2 = ( f2,Λ f1)L2 .

Therefore there exist 0 < λ1 < λ2 ≤ · · · λ j ↑ +∞ and 0 , wi ∈ V such that

Λwi = λiwi, ∀i ≥ 1,

and
(wi,w j)L2 = δi j, (wi,w j)V = λiδi j.

There also exist pi ∈ L2(Ω) such that
−µ∆wi + ∇pi = λiwi in Ω

∇ · wi = 0 in Ω

wi = 0 on ∂Ω

(4.2)

By the regularity theory of Stokes’ equation from Lecture 3, we have

Ω ∈ Cm ⇒ wi ∈ Hm(Ω), pi ∈ Hm−1(Ω),

and
Ω ∈ C∞ ⇒ wi ∈ C∞(Ω), pi ∈ C∞(Ω).

4.2 Steady Navier-Stokes equation

For f ∈ L2(Ω,Rn), a bounded Lipschitz domain Ω ⊂ Rn, seek u : Ω → Rn, p : Ω → R
such that 

−µ∆u + u · ∇u + ∇p = f in Ω

∇ · u = 0 in Ω

u = 0 on ∂Ω

(4.3)
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Weak formulation of (4.3): Find u ∈ V such that

µ(u, v)V + B[u, u, v] = ( f , v)L2 , ∀v ∈ V, (4.4)

where B is the trilinear form defined by

B[u, v,w] =

∫
Ω

u · ∇v · w, u, v ∈ V,w ∈ V.

Remark 4.1. For n ≤ 4, B : V × V × V → R is a well-defined trilinear form. For n ≥ 5,
B : V × V × (V ∩ Ln(Ω))→ R is well-defined.

To see it, recall by the Sobolev embedding inequality we have

H1
0(Ω) ⊂

L
2n

n−2 (Ω) n ≥ 3
Lp(Ω) ∀ p < +∞ n = 2.

By Hölder’s inequality, we have∣∣∣∣ ∫
Ω

u · ∇v · w
∣∣∣∣ ≤ ‖u‖L4(Ω)‖∇v‖L2(Ω)‖w‖L4(Ω) n ≤ 4

‖u‖
L

2n
n−2 (Ω)

‖∇v‖L2(Ω)‖w‖Ln(Ω) n ≥ 5

≤

C‖u‖H1
0 (Ω)‖∇v‖L2(Ω)‖w‖H1

0 (Ω) n ≤ 4
‖u‖H1

0 (Ω)‖∇v‖L2(Ω)‖w‖Ln(Ω) n ≥ 5

From this discussion, we have obtained

Lemma 4.1. B : V × V × (V ∩ Ln(Ω))→ R is continuous.

Define Ṽ = closureofV in H1
0 ∩ Ln(Ω), with the norm

‖v‖Ṽ = ‖v‖H1
0 (Ω) + ‖v‖Ln(Ω).

Then we have

Lemma 4.2. (i) For n ≤ 4, B : V × V × V → R is a continuous, trilinear operator.
(ii) For n ≥ 5, B : V × V × Ṽ → R is a continuous, trilinear operator.

For the trilinear form B, we have

Lemma 4.3. For u ∈ V, v ∈ Ṽ, it holds B[u, v, v] = 0. In particular, for u ∈ V, v,w ∈ Ṽ,
B[u, v,w] = −B[u,w, v].

Proof. Assume u, v ∈ C∞0 (Ω) and divu = 0. Then∫
Ω

u · ∇v · v =

∫
Ω

u · ∇(
|v|2

2
) = −

∫
Ω

(∇ · u)
|v|2

2
= 0.

Now by the density argument, we see that B[u, v, v] = 0 for all u ∈ V and v ∈ Ṽ .
Since B[u, v + w, v + w] = 0, it follows that

B[u, v, v] + B[u,w,w] + B[u, v,w] + B[u,w, v] = 0.

Hence B[u, v,w] + B[u,w, v] = 0. �
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For u, v ∈ W, we also define the bilinear form B[u, v] by

〈B[u, v],w〉 = B[u, v,w], ∀w ∈ Ṽ .

Theorem 4.4. For any f ∈ L2(Ω)(orH−1(Ω)), there exists at least one solution u ∈ V and
p ∈ L1

loc(Ω) of the steady Navier-Stokes equation (4.4).

Proof. (Galerkin’s method): Let {wi}
∞
i=1 be a complete orthogonal base of V formed by

the eigenfunctions of the Stokes operator. Let Vm = span{w1, · · · ,wm}, m ≥ 1. Let
um =

∑m
i=1 ξ

m
i wi, ξ

m
i ∈ R, solve

µ(um,wi)V + B[um, um,wi] = ( f ,wi)L2 , i = 1, · · · ,m. (4.5)

In terms of (ξm
i ), this becomes

ξm
k + Ai jkξ

m
i ξ

m
j = ck, k = 1, · · · ,m, (4.6)

where
Ai jk = B[wi,w j,wk], ck = ( f ,wk)L2 .

We will need to apply the fixed point lemma below to find a solution of (4.6). To do it, set
X = Vm and define the inner product [u, v]X = (u, v)V and the induced norm |u|X =

√
[u, u].

Define P : X → X by

[P(u), v]X = µ(u, v)V + B[u, u, v] − ( f , v), u, v ∈ X.

Then we have

[P(u), u]X = µ(u, u)V + B[u, u, u] − ( f , u)
= µ(u, u)V − ( f , u)
≥ µ|u|2X − ‖ f ‖L2 |u|X
≥ |u|X(µ|u|X − ‖ f ‖L2),

so that if we choose r > 0 such that µr − ‖ f ‖L2 > 0, then

[P(u), u]X > 0, ∀u ∈ X with |u|X = r.

Hence by lemma 4.5, there exists um ∈ X such that P(um) = 0. Furthermore, we have the
estimate

µ|um|X − ‖ f ‖L2 ≤ 0

or
|um|X ≤

1
µ
‖ f ‖L2 . (4.7)

We may assume that um → u weakly in V and um → u strongly in L2(Ω). We need to
verify that u satisfies (4.4). It is easy to see that for any m0 ≥ 1 fixed,

µ(um, v)V → µ(u, v)V , ∀v ∈ Vm0 .
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For v ∈ Vm0 ,

B[um, um, v] = −B[um, v, um] = −

∫
Ω

um · ∇v · um

→ −

∫
Ω

u · ∇v · u = −B[u, v, u] = B[u, u, v].

Therefore we have
µ(u, v)V + B[u, u, v] = ( f , v), ∀v ∈ Vm0 .

Since ∪m0≥1Vm0 = V, (4.4) holds. �

Lemma 4.5. Let X be a finite dimensional Hilbert space with inner product [·, ·] and norm
| · |. Let P : X → X be a continuous map and satisfy

[P(ξ), ξ] > 0, ∀|ξ| = k > 0.

Then there exists a ξ ∈ X, with |ξ| ≤ k, such that P(ξ) = 0.

Proof. Suppose that the conclusion were false, Then P(ξ) , 0 for any |ξ| ≤ k. Define a
continuous map Φ : Bk → Bk by letting

Φ(ξ) = −k
P(ξ)
|P(ξ)|

.

Hence by the Browder fixed point theorem, there exists a ξ0 ∈ Bk such that Φ(ξ0) = ξ0.
However,

0 ≤ |ξ0|
2 = [ξ0,Φ(ξ0)] = [ξ0,−k

P(ξ0)
|P(ξ0)|

] = −k
[P(ξ0), ξ0]
|P(ξ0)|

< 0.

This is impossible. The proof is complete. �

For the uniqueness of steady Navier-Stokes equations, we have the following

Theorem 4.6. For n ≤ 4, if µ > 0 satisfies

µ2 ≥ c(n)‖ f ‖L2(Ω),

then there exists a unique solution u of (4.4).

Proof. Assume that u1 is the solution constructed by the above theorem so that it satisfies

‖u1‖V ≤
1
µ
‖ f ‖L2(Ω).

Let u2 be an arbitrary solution of (4.4). Define w = u1 − u2. Then, since n ≤ 4, we have

µ(w, v)V + B[u1, u1, v] − B[u2, u2, v] = 0, ∀v ∈ V.

Notice that
B[u1, u1, v] − B[u2, u2, v] = B[u2,w, v] + B[w, u1, v].

Hence by substituting v = w, we obtain

µ(w,w)V + B[u2,w,w] + B[w, u1,w] = 0,
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which implies

µ‖w‖2V = −B[w, u1,w] ≤ c(n)‖w‖2V‖∇u1‖L2 ≤ c(n)
‖ f ‖L2(Ω)

µ
‖w‖2V .

Hence (
µ −

c(n)‖ f ‖L2(Ω)

µ

)
‖w‖2V ≤ 0.

Thus ‖w‖V = 0 and hence u1 ≡ u2. �

4.3 Regularity in dimensions n ≤ 4

.

Theorem 4.7. For n = 2, 3, any weak solution u ∈ V of (4.3) is smooth in Ω, provided
that f , ∂Ω ∈ C∞.

Proof. i) n = 2: u ∈ V implies that u ∈ Lq for all q < +∞. Hence u·∇u = ∇·(u⊗u) ∈ W−1,q.
Therefore, by the regularity of Stokes equations, we have that u ∈ W1,q(Ω) and p ∈ Lq(Ω).
This in turn implies u · ∇u ∈ Lq and hence u ∈ W2,q(Ω) and p ∈ W1,q(Ω). Repeating this
argument eventually yields u, p ∈ C∞(Ω).
ii) n = 3: u ∈ L6 so that u · ∇u = ∇ · (u ⊗ u) ∈ W−1,3(Ω). Thus u ∈ W1,3(Ω). By
Sobolev’s embedding, this implies u ∈ Lq(Ω) for any q < +∞. Now we can repeat the
same argument as in the case n = 2. �

Remark 4.2. For n = 4, the solution is still smooth. But the proof requires a different
argument. Since in this case u ∈ L4(Ω) and hence u · ∇u = ∇ · (u ⊗ u) ∈ W−1,2(Ω).
Hence the regularity theory of Stokes equation implies u ∈ H1(Ω) so that there is no
improvement. However, the size does get an improvement:

‖∇u‖L2(Ω) . ‖u ⊗ u‖L2(Ω) . ‖u‖2L4(Ω) . ‖∇u‖2L2(Ω).

It turns out that this observation, after suitable localization, can imply the regularity.

4.4 The time-dependent Navier-Stokes equation

For f ∈ L2(Ω × [0,T ]) and u0 ∈ H, consider the Navier-Stokes equation:
ut + u · ∇u − µ∆u + ∇p = f in Ω × (0,T )
∇ · u = 0 in Ω × (0,T )
u = 0 on ∂Ω × (0,T )
u|t=0 = u0 in Ω.

(4.8)

For (4.8), we have the following existence theorem, due to E. Hopf and J. Leray. Denote
QT = Ω × [0,T ]. Then we have

Theorem 4.8. For any T > 0, there exists at least one weak solution u ∈ L∞t L2
x(QT ) ∩

L2H1(QT ) of (4.8) that satisfies the energy inequality: for any 0 < t ≤ T,∫
Ω

|u(t)|2 + 2µ
∫ t

0

∫
Ω

|∇u|2 ≤
∫

Ω

|u0|
2 + 2

∫ t

0

∫
Ω

( f , u). (4.9)
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Proof. (Galerkin’s method): As in the steady case, let Vm = span{w1, · · · ,wm}, where
{wi} is the family of eigenfunctions of the Stokes operator, which forms a complete base
of V . Look for v : [0,T ]→ Vm such that∫

Ω

(utv + u · ∇uv + µ∇u∇v − f v) = 0, ∀v ∈ Vm,∀t ∈ (0,T ).

Write um(x, t) =

m∑
i=1

ξm
i (t)wi(x). Then we have

ξ̇m
i = −µai jξ

m
j + b jkiξ

m
j ξ

m
k + ci, ξ

m
i (0) = 〈u0,wi〉, (4.10)

where
ai j = (∇wi,∇w j)L2 , b jki = B[w j,wk,wi], ci = ( f ,wi)L2 .

Observe that

ai jηiη j = (∇(ηiwi),∇(η jw j))L2 =

m∑
i=1

λiη
2
i ≥ λ1|η|

2,

so that (ai j) is a positive-definite matrix. Also notice that (b jki) is skew-symmetric in the
last two indices:

b jki = −b jik.

Notice that (4.10) is locally uniquely solvable: there exists T0 > 0 and a unique solution
ξm = (xm

1 , · · · , x
m
m)t : [0,T0]→ Rm to the ODE (4.10).

Now we want to derive a priori energy estimate. Multiplying (4.10)1 by ξm
i and sum-

ming over 1 ≤ i ≤ m, we obtain

d
dt

( m∑
i=1

(ξm
i )2) ≤ −2λ1

[ m∑
i=1

(ξm
i )2] + c(t)

∣∣∣ m∑
i=1

(ξm
i )2

∣∣∣ 1
2

≤ −λ1
[ m∑

i=1

(ξm
i )2] +

|c(t)|2

4λ1
.

Here
|c(t)| = ‖ f (t)‖L2(Ω) ∈ L2([0,T ]).

Therefore we obtain
d
dt

(
eλ1t|ξm|2

)
≤ eλ1t |c(t)|2

4λ1

so that

|ξm(t)|2 ≤ |ξm(0)|2e−λ1t +

∫ t

0
eλ1(s−t) |c(s)|2

4λ1
ds. (4.11)

It follows from the energy estimate (4.11) that the solution ξm can be extended to [0,T ].
Moreover, the estimate on ξm translates into estimates of um:

d
dt

∫
Ω

|um|
2 + 2µ

∫
Ω

|∇um|
2 = 2( f , um). (4.12)

By Hölder’s inequality, this implies that

d
dt

∫
Ω

|um|
2 + µ

∫
Ω

|∇um|
2 ≤

C
µ

∫
Ω

| f |2. (4.13)
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After integrating over [0,T ], we have achieved

sup
0≤t≤T

‖um(t)‖2L2(Ω) +

∫ T

0

∫
Ω

|∇um|
2 ≤ C

(
‖ f ‖L2(QT ), ‖u0‖L2(Ω)

)
. (4.14)

Goal: To show that, up to possible subsequences, um converges weakly to some function
u in suitable spaces, which solves the Navier-Stokes equation in the weak sense. �
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Lecture 5, December 25, 2012

5 The Galerkin method for the Navier-Stokes equation
From Lecture 4, we have that

um(x, t) =

m∑
i=1

ξm
i (t)wi(x)

solves 
∂tum + um · ∇um − µ∆um + ∇pm = f m

∇ · um = 0

um
∣∣∣∣
t=0

= um
0

um
∣∣∣∣
∂Ω

= 0

(5.1)

where

f m =

m∑
i=1

( f ,wi)L2wi, um
0 =

m∑
i=1

(u0,wi)L2wi.

Note that the equation (5.1) should be understood as the follows: for any η ∈ C∞([0,T ])
and v(x) ∈ Vm, if we set V(x, t) = v(x)η(t), then for any [t1, t2] ⊂ [0,T ] it holds∫

Ω

umV
∣∣∣∣t=t2

t=t1
+

∫ t2

t1

∫
Ω

[
− umVt − um ⊗ um : ∇V + µ∇um · ∇V − f V

]
dxdt = 0. (5.2)

The following energy bound also holds:

sup
0≤t≤T

∫
Ω

|um|2 dx + µ

∫ T

0

∫
Ω

|∇um|2 dxdt ≤ C
(
‖ f ‖L2(Ω×[0,T ]), ‖u0‖L2(Ω)

)
. (5.3)

Hence {um} ⊂ L∞t L2
x(QT ) ∩ L2

t H1
x(QT ) is a bounded sequence. We may assume, after

passing to a subsequence, that

um → u weak∗ in L∞t L2
x(QT ); um → u weakly in L2

t H1
x(QT )

for some u ∈ L∞t L2
x(QT ) ∩ L2

t H1
x(QT ).

Claim. u is a weak solution of the Navier-Stokes equation. This amounts to showing that
for any [t1, t2] ⊂ [0,T ], it holds∫

Ω

uV
∣∣∣∣t=t2

t=t1
+

∫ t2

t1

∫
Ω

[
− uVt − u ⊗ u : ∇V + µ∇u · ∇V − f V

]
dxdt = 0 (5.4)

for any V = v(x)η(t), with η ∈ C∞([0,T ]) and v(x) ∈ Vm.
There are two main difficulties that we encounter when taking the limit process,

namely,∫
Ω

umV →
∫

Ω

uV, ∀t ∈ [0,T ];
∫ t2

t1

∫
Ω

um ⊗ um : ∇V →
∫ t2

t1

∫
Ω

u ⊗ u : ∇V ??
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A key step to overcome these difficulties is to show that, after taking possible subse-
quences,

um → u strongly in L2(QT ). (5.5)

First we recall the Sobolev-interpolation inequality.

Lemma 5.1. For n ≥ 3, assume that u ∈ L∞t L2
x(QT ) ∩ L2

t H1
x(QT ). Then, for any 2 ≤ q ≤

2∗ ≡ 2n
n−2 and p ≥ 2 satisfying

2
p

+
n
q

=
n
2
,

we have u ∈ Lp
t Lq

x(QT ). Moreover, it holds

‖u‖Lp
t Lq

x(QT ) ≤ C‖u‖
1− 2

p

L∞t L2
x(QT )
‖u‖

2
p

L2
t H1

x (QT )
. (5.6)

Proof. For 2 ≤ q ≤ 2∗, by both the interpolation inequality and the Sobolev inequality we
have

‖u‖Lq
x(Ω) ≤ ‖u‖

α
L2

x(Ω)‖u‖
1−α
L2∗

x (Ω)
≤ C‖u‖αL2

x(Ω)‖u‖
1−α
H1

x (Ω),

where 0 ≤ α ≤ 1 satisfies 1
q = α

2 + 1−α
2∗ . Integrating over t ∈ [0,T ], we obtain∫ T

0
‖u‖p

Lq
x
dt ≤ C

∫ T

0
‖u‖pα

L2
x(Ω)
‖u‖p(1−α)

H1
x (Ω)

dt

≤ C‖u‖pα
L∞t L2

x(QT )

∫ T

0
‖u‖p(1−α)

H1
x (Ω)

dt

Set p(1 − α) = 2. Then 1 − α = 2
p and α = 1 − 2

p . Hence 1
q =

1− 2
p

2 + 2
2∗p is equivalent to

2
p + n

q = n
2 . It is clear that (5.6) follows directly from this inequality. �

Corollary 5.2. For n = 3, if u ∈ L∞t L2
x(QT ) ∩ L2

t H1
x(QT ), then u ∈ L

10
3 (QT ) and

‖u‖
L

10
3 (QT )

≤ C‖u‖
2
5

L∞t L2
x(QT )
‖u‖

3
5

L2
t H1

x (QT )
. (5.7)

Proof. Set p = q and n = 3 in the equality 2
p + n

q = n
2 , one has p = q = 10

3 . Hence the
conclusion follows directly from the lemma. �

Now we need to prove
Claim. For any V = v(x)η(t) with η ∈ C∞([0,T ]) and v ∈ Vm0 ,

∫
Ω

um(t)V(x, t) dx :
[0,T ]→ R is equicontinuous for all m ≥ m0.

In order to show this claim, for any 0 ≤ t1 < t2 ≤ T let’s define

Im
V (t1, t2) :=

∫ t2

t1

∫
Ω

[−umVt − um ⊗ um : ∇V + µ∇um · ∇V − f V] dxdt.

Observe that it follows from the equation (5.2) that for any m ≥ m0,∫
Ω

umV
∣∣∣∣
t=t2
−

∫
Ω

umV
∣∣∣∣
t=t1

= −Im
V (t1, t2). (5.8)
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Now we want to show that

sup
m≥m0

|Im
V (t1, t2)| ≤ C(m0,T )|t2 − t1|

1
4 . (5.9)

In fact,

|

∫ t2

t1

∫
Ω

umVt| . ‖Vt‖L∞(QT )|Ω|
1
2 |t2 − t1|

1
2 ‖um‖L∞t L2

x(QT ),

|

∫ t2

t1

∫
Ω

um ⊗ um : ∇V | . ‖∇V‖L∞(QT )‖um‖2L∞t L2
x(QT )|t2 − t1|,

|

∫ t2

t1

∫
Ω

∇um · ∇V | . ‖∇V‖L∞(QT )|Ω|
1
2 |t2 − t1|

1
2 ‖∇um‖L2H1(QT ),

|

∫ t2

t1

∫
Ω

f V | . ‖V‖L∞(QT )|Ω|
1
2 |t2 − t1|.

Putting these estimates together yield (5.9). It is easy to see that (5.9) yields that
∫

Ω
um(x, t)·

V(x, t) dx : [0,T ]→ R is equip-continuous for m ≥ m0.
It is clear that for any V = η(t)v(x) ∈ C∞([0,T ],Vm0) and [t1, t2] ⊂ (0,T ), we have

0 =

∫
Ω

umV
∣∣∣∣t=t2

t=t1
+

∫ t2

t1

∫
Ω

[−umVt − um ⊗ um : ∇V + µ∇um · ∇V − f V] dxdt.

Since um → u weakly in L2(QT ) ∩ L2H1(QT ), we have∫ t2

t1
−umVt →

∫ t2

t1
−uVt,

∫ t2

t1

∫
Ω

∇um · ∇V →
∫ t2

t1

∫
Ω

∇u · ∇V.

For t ∈ [0,T ], set

hm(t) =

∫
Ω

um(x, t)v(x) dx,

and
h(t) =

∫
Ω

u(x, t)v(x) dx

provided that it exists. By the weak convergence of um to u in L2(QT ), we have∫ T

0
hm(t)η(t) dt →

∫ T

0
h(t)η(t) dt.

Since hm ∈ C([0,T ]) is equi-continuous for m ≥ m0, by the Arzela-Ascoli theorem, hm is
precompact in the topology of uniform convergence. Hence we may assume that

‖hm − h‖C([0,T ]) → 0.

This implies that for any v ∈ Vm0 ,∫
Ω

um(x, t)v(x) dx→
∫

Ω

u(x, t)v(x) dx

uniformly in t ∈ [0,T ].
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Since ∪m≥m0V
m0 = V , it is not hard to see that for any v ∈ V ,∫

Ω

um(x, t)v(x) dx→
∫

Ω

u(x, t)v(x) dx

uniformly in t ∈ [0,T ].
Denote

L2
div(Ω) =

{
a ∈ L2(Ω,Rn) : diva = 0, γνa = 0 on ∂Ω

}
.

Claim. V is dense in L2
div(Ω) with respect to L2-norm.

Suppose that this were false. Then there exists 0 , a ∈ L2
div(Ω) such that∫

Ω

a · v = 0, ∀v ∈ V.

This implies that a = ∇φ for some φ ∈ H1(Ω). Since div(a) = 0 and γν(a) = 0 on ∂Ω, we
have

∆φ = 0 in Ω;
∂φ

∂ν
= 0 on ∂Ω.

It is easy to see that φ is constant and hence a = ∇φ ≡ 0. This is impossible.
By the density and approximation, it follows that for any v ∈ L2

div(Ω),∫
Ω

um(x, t)v(x) dx→
∫

Ω

u(x, t)v(x) dx

uniformly in t ∈ [0,T ]. On the other hand, by the Helmholtz decomposition we have that
any v ∈ L2(Ω,Rn) can be written as

v = v1 + ∇φ1

for some v1 ∈ L2
div(Ω) and φ ∈ H1(Ω) so that∫

Ω

um(x, t)v(x) =

∫
Ω

um(x, t)v1(x) +

∫
Ω

um(x, t)∇φ1 =

∫
Ω

um(x, t)v1(x)

→

∫
Ω

u(x, t)v1(x) =

∫
Ω

u(x, t)(v1(x) + ∇φ1(x)),

as div(um) = div(u) = 0 yields∫
Ω

um(x, t)∇φ1(x) =

∫
Ω

u(x, t)∇φ1(x) = 0.

This implies that for any v ∈ L2(Ω,Rn),
∫

Ω
u(x, t)v(x) : [0,T ] → R is continuous. This is

equivalent to say that u(·, t) : [0,T ] → L2(Ω,Rn) is continuous with respect to the weak
topology of L2(Ω,Rn).

Now we return to prove that∫ t2

t1

∫
Ω

um ⊗ um : ∇V →
∫ t2

t1

∫
Ω

u ⊗ u : ∇V.

This amounts to proving that um → u strongly in L2(QT ). We present three approaches
due to E. Hopf, J. Leray, and T. Aubin and J. Lions respectively.
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Lemma 5.3. (E. Hopf, 1951). Let QT = Ω × [0,T ]. Assume wm : QT → R
n is bounded in

L∞t L2
x(QT ) ∩ L2

t H1
x(QT ) and converges weak∗ in L∞t L2

x(QT ) to a function w : QT → R
n. In

addition, assume
wm(·, t)→ w(·, t) weakly in L2(Ω)

for all t ∈ [0,T ]. Then
wm → w strongly in L2(QT ).

Proof. Recall the Friedrichs inequality: for any ε > 0 there exist r ∈ N and functions
ai ∈ C∞c (Ω,Rn), 1 ≤ i ≤ r such that for any z ∈ H1(Ω,Rn) can be estimated by∫

Ω

|z|2 ≤
r∑

i=1

|

∫
Ω

aiz|2 + ε

∫
Ω

|∇z|2.

Applying this inequality to z = wm − w, we obtain∫ T

0

∫
Ω

|wm − w|2 dxdt ≤
∫ T

0

r∑
i=1

|

∫
Ω

ai(wm − w)|2 dt + ε

∫ T

0

∫
Ω

|∇(wm − w)|2 dxdt.

Since wm(·, t)→ w(·, t) weakly in L2(Ω) for all t ∈ [0,T ], it follows that

lim
m→∞

∫ T

0

r∑
i=1

|

∫
Ω

ai(wm − w)|2 dt = 0.

Hence we have

lim
m→∞

∫ T

0

∫
Ω

|wm − w|2 dxdt ≤ Cε.

Since ε > 0 is arbitrary, it follows that wm → w strongly in L2(QT ). �

There is another approach by J. Leray (1934’s).

Lemma 5.4. um → u strongly in L2(QT ).

Proof. Set

em(t) =

∫
Ω

|um|2 dx, e(t) =

∫
Ω

|u|2 dx.

By the energy inequality for um and the Poincaré inequality, we have

d
dt

em(t) = −µ

∫
Ω

|∇um|2 +

∫
Ω

f · um ≤ −
µ

2

∫
Ω

|∇um|2 +
C
µ

∫
Ω

| f |2,

and
d
dt

em(t) = −µ

∫
Ω

|∇um|2 +

∫
Ω

f · um ≥ −(µ + 1)
∫

Ω

|∇um|2 −

∫
Ω

| f |2.

Since ∫ T

0

∫
Ω

|∇um|2 dxdt ≤ C
(
‖ f ‖L2(QT ), ‖u0‖L2(Ω)

)
,

it follows that
∫ T

0
| ddt e

m(t)||, dt is uniformly bounded. Hence em ∈ BV([0,T ]) is a bounded
sequence. Since BV([0,T ]) ⊂ L1([0,T ]) is precompact, we may assume that there exists
e∗ ∈ L1([0,T ]) such that

em → e∗ in L1([0,T ]).
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It suffices to verify that e∗(t) = e(t) for L1 a.e. t ∈ [0,T ]. Define Dm(t) =
∫

Ω
|∇um(t)|2 dx

and
D∗(t) = lim inf

m→∞

∫
Ω

|∇um(t)|2 dx = lim inf
m→∞

Dm(t).

By the Fatou lemma, we have∫ T

0
D∗(t) dt ≤ lim inf

m→∞

∫ T

0

∫
Ω

|∇um|2 dxdt < +∞.

Hence for L1 a.e. t ∈ [0,T ], D∗(t) < +∞, i.e.,

lim inf
m→∞

∫
Ω

|∇um(t)|2 dx < +∞,

which implies that um(·, t) is bounded in H1
0(Ω). Thus um(·, t) → u(·, t) strongly in L2(Ω)

by the Rellich compactness Theorem and the fact that um(·, t) → u(·, t) weakly in L2(Ω).
Therefore we have for L1 a.e. t ∈ [0,T ], e∗(t) = e(t). As a consequence, we will have∫ T

0

∫
Ω

|um|2 dxdt →
∫ T

0

∫
Ω

|u|2 dxdt.

This implies that ∫ T

0

∫
Ω

|um − u|2 dxdt → 0

as m→ ∞. �

Putting these estimates together, we can conclude that for any v ∈ C∞(QT ), with
div(v) = 0 and v = 0 on ∂Ω × [0,T ], it holds that for any 0 ≤ t1 ≤ t2 ≤ T ,∫

Ω

u · v
∣∣∣∣t2
t=t1

+

∫ t2

t1
[−u · vt − u ⊗ u : ∇v + µ∇u · ∇v − f v] dxdt = 0. (5.10)

Definition 5.1. For an initial data u0 ∈ L2(Ω,Rn) with div(u0) = 0, and f ∈ L2(QT ), a
function u ∈ L∞t L2

x(QT ) ∩ L2
t H1

x(QT ) is called a Leray-Hopf tye of weak solution of the
Navier-Stokes equation, if

• u satisfies the equation in the sense of distribution, i.e., (5.10) holds.

• u(·, t)→ u0 in L2(Ω) as t ↓ 0+.

• t → u(·, t) is continuous from [0,T ] to (L2,weak − L2).

• it satisfies the weak version of the energy inequality:∫
Ω

|u|2(t) dx + 2µ
∫ t

0

∫
Ω

|∇u|2 dxdt ≤
∫

Ω

|u0|
2 + 2

∫ t

0

∫
Ω

f u (5.11)

for any 0 < t ≤ T .

Theorem 5.5. For any bounded domain Ω ⊂ Rn and 0 < T ≤ ∞, u0 ∈ L2(Ω,Rn) with
div(u0) = 0, and f ∈ L2(Ω × [0,T ]), there exists at least one Leray-Hopf type of weak
solution to the initial-boundary value problem of the Navier-Stokes equation.
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Open problems.

• Whether the energy inequality (5.12) is an equality for any Leray-Hopf type of
weak solution?

• Whether the following stronger version of the energy inequality holds for a Leray-
Hopf weak solution:∫

Ω

|u|2(t2) dx + 2µ
∫ t2

t1

∫
Ω

|∇u|2 dxdt ≤
∫

Ω

|u|2(t1) dx + 2
∫ t2

t1

∫
Ω

f u (5.12)

for any pair 0 ≤ t1 < t2 ≤ T .

• Whether the uniqueness holds for the class of Leray-Hopf type of weak solutions.

• Whether the class of Leray-Hopf type of weak solution is smooth.

Now we outline the Aubin-Lions compactness.

Lemma 5.6. (Aubin-Lions). Let X0, X, X1 be three Banach spaces such that X0 ⊂ X ⊂ X1

are continuous injections. Assume X0, X1 are self-reflective, and X0 ⊂ X is compact. For
0 < T < +∞, α0, α1 ∈ (1,+∞), consider

Y = Y(0,T, α0, α1, X0, X1) := { f ∈ Lα0([0,T ], X) : ∂t f ∈ Lα1([0,T ], X1)}

equipped with the norm ∥∥∥∥ f
∥∥∥∥

Y
=

∥∥∥∥ f
∥∥∥∥

Lα0 ([0,T ];X0)
+

∥∥∥∥∂t f
∥∥∥∥

Lα1 ([0,T ],X1)
.

Then Y ⊂ Lα0([0,T ], X) is compact.

Proof. First we claim that for any ε > 0 there exists c(ε) > 0 such that

‖x‖X ≤ ε‖x‖X0 + c(ε)‖x‖X1 , ∀x ∈ X0. (5.13)

For, otherwise, there exist ε0 > 0 and xk ∈ X0 such that

‖xk‖X ≥ ε0‖xk‖X0 + k‖xk‖X1 .

Without loss of generality, we may assume that ‖xk‖X = 1, for all k ≥ 1. Hence we have

‖xk‖X0 ≤ ε0
−1, ‖xk‖X1 ≤ k−1.

Since X0 ⊂ X is compact, we may assume that xk → x in X∩X1. This yields that ‖x‖X = 1.
On the other hand, ‖xk‖X1 → 0 implies that ‖x‖X1 = 0 and hence x = 0. We get the desired
contradiction.

Since 1 < α0, α1 < +∞, X0 and X1 are self-reflective, we have that Lα0([0,T ], X0) and
Lα1([0,T ], X1) are self-reflective. Let {um} ⊂ Y be a bounded sequence. Then we may
assume, after passing to subsequences,

um → u weakly in Lα0([0,T ], X0), ∂tum → ∂tu weakly in Lα1([0,T ], X1).
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By considering vm = um − u, we may assume that u ≡ 0. Applying (5.13) and integrating
over t ∈ [0,T ], we have

‖um‖Lα0 ([0,T ],X) ≤ ε‖um‖Lα0 ([0,T ],X0) + c(ε)‖um‖Lα0 ([0,T ],X1).

It suffices to show that ‖um‖Lα0 ([0,T ],X1) → 0. Since Y ⊂ C([0,T ], X1) is continuous, it
suffices to show that um(t) → 0 in X1 for L1-a.e. t ∈ [0,T ] by the Lebesgue Dominated
Convergence Theorem.

Since

um(0) = um(t) −
∫ t

0
(um)′(τ) dτ,

we have that for any 0 < s < T ,

um(0) =
1
s

∫ s

0
um(t) dt −

1
s

∫ s

0

∫ t

0
(um)′(τ) dτ dt = am + bm.

For any s ∈ (0,T ) fixed, it is easy to see that

am → 0 weakly in X0,

and
‖bm‖X1 = |

1
s

∫ s

0
(s − t)(um)′(t) dt| ≤

∫ s

0
‖(um)′(t)‖X1 dt ≤

ε

2

provided that s > 0 is chosen to be sufficiently small. Since X0 ⊂ X1 is compact, it follows
that

‖am‖X1 → 0

Putting these two estimates together yields that ‖um(t)‖X1 → 0 for a.e. t ∈ [0,T ]. �

Finally we indicate how to apply the Aubin-Lions lemma to show that um → u in
L2(QT ) when n = 3.

Choose X0 = H1(Ω), X = L2(Ω), and X1 = W−2,2(Ω) = (W2,2
0 (Ω))′. It is clear that

X0 ⊂ X ⊂ X1 are continuous injections, X0 ⊂ X is compact, and X0, X1 are self-reflective
Hilbert spaces.
Claim. {∂tum} ⊂ L2([0,T ], X1) is bounded.

This claim is non-trivial, and we leave it for the readers to verify as a challenging
homework problem. Then we can apply Aubin-Lions’ lemma directly to conclude that
um → u strongly in L2(QT ). �
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Lecture 6, December 26, 2012

6 Uniqueness question on the Navier-Stokes equation
We begin with the uniqueness result on the Leray-Hopf weak solution in dimension two,
while the similar result in dimension three is completely open.

Theorem 6.1. For n = 2, the class of Leray-Hopf weak solutions with respect to the initial
boundary value problem enjoys the uniqueness property.

A key step to obtain this uniqueness is the Ladyzhenskaya inequality:∥∥∥∥v
∥∥∥∥

L4(Ω)
≤ c

∥∥∥∥v
∥∥∥∥ 1

2

L2(Ω)

∥∥∥∥∇v
∥∥∥∥ 1

2

L2(Ω)
(6.1)

holds for any v ∈ H1
0(Ω), with Ω ⊂ R2 a bounded domain.

Lemma 6.2. For n = 2 and a bounded domain Ω ⊂ R2, we have∣∣∣∣B[u, v,w]
∣∣∣∣ ≤ C‖u‖

1
2
L2(Ω)‖∇u‖

1
2
L2(Ω)‖∇v‖L2(Ω)‖w‖

1
2
L2(Ω)‖∇w‖

1
2
L2(Ω) (6.2)

holds for any u, v,w ∈ H1
0(Ω,R2).

Proof. Since

B[u, v,w] =

∫
Ω

u · ∇v · w,

it follows from the Hölder inequality that

|B[u, v,w]| ≤ ‖u‖L4(Ω)‖∇v‖L2(Ω)‖w‖L4(Ω).

Applying the inequality (6.1) to both u and w immediately yields (6.2). �

Proof of Theorem 6.1: Let u1, u2 ∈ L∞t L2
x(QT ) ∩ L2

t H1
x(QT ) be two Leray-Hopf type of

weak solutions. Set w = u1 − u2. Then we have

w = 0 on ∂p(QT ).

Since w satisfies

∂tw − µ∆w + u1 · ∇u1 − u2 · ∇u2 + ∇p = 0 in Ω × (0,T ),

we can multiply the equation by w and integrate over Ω to get

d
dt
‖w(t)‖2L2(Ω) + 2µ‖∇w‖2L2(Ω) = 2B[u2, u2,w] − 2B[u1, u1,w] = −2B[w, u2,w]

. ‖w‖L2(Ω)‖∇w‖L2(Ω)‖∇u2‖L2(Ω)

≤ µ‖∇w‖2L2(Ω) + cµ−1‖w‖2L2(Ω)‖∇u2‖
2
L2(Ω).

This implies
d
dt
‖w(t)‖2L2(Ω) ≤ cµ−1‖w‖2L2(Ω)‖∇u2‖

2
L2(Ω).
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Hence we obtain
d
dt

(
e−c

∫ t
0 ‖∇u2(s)‖2

L2(Ω)
ds
‖w(t)‖2L2(Ω)

)
≤ 0.

In particular, we have

‖w(t)‖L2(Ω) ≤ ec
∫ t

0 ‖∇u2(s)‖2
L2(Ω)

ds
‖w(0)‖L2(Ω) = 0.

This completes the proof. �
Next we present Serrin’s weak-strong uniqueness in higher dimensions.
First we indicate that under higher integrability condition, Leray-Hopf’s weak solu-

tions do enjoy the energy equality property.

Lemma 6.3. If u ∈ L∞t L2
x(QT ) ∩ L2

t H1
x(QT ) ∩ L4(QT ) is a Leray-Hopf weak solution, then

the energy inequality becomes an equality. In fact, one has that for any 0 ≤ t1 < t2 ≤ T,
it holds ∫

Ω

|u(t2)|2 + 2µ
∫ t2

t1

∫
Ω

|∇u|2 dxdt =

∫
Ω

|u(t1)|2. (6.3)

Proof. One can view the Navier-Stokes equation as a perturbed Stokes equation:

ut − µ∆u + ∇p = −∇ · (u ⊗ u).

Since u ∈ L4(QT ), we see that u ⊗ u ∈ L2(QT ) and hence ∇ · (u ⊗ u) ∈ L2([0,T ]; H−1(Ω)).
It follows that ∇ · (u ⊗ u) · u ∈ L1(QT ) and

B[u, u, u] =

∫ t2

t1

∫
Ω

∇ · (u ⊗ u) · u = 0,

as ∇ · u = 0. It is clear that this fact easily implies (6.3). �

In general, we will show that the class of Serrin’s weak solutions enjoy the above
energy equality property. First, we introduce Serrin’s weak solutions.

Lemma 6.4. A nonzero function f ∈ Lp
t Lq

x(Rn × R+) is scaling invariant, i.e.

‖ fλ‖Lp
t Lq

x(Rn×R+) = ‖ f ‖Lp
t Lq

x(Rn×R+), ∀λ > 0,

iff
2
p

+
n
q

= 1. (6.4)

Here fλ(x, t) = λ f (λx, λ2t).

Proof. By direct calculations,we have∥∥∥∥ fλ
∥∥∥∥

Lp
t Lq

x(Rn×R+)
= λ1− 2

p−
n
q

∥∥∥∥ f
∥∥∥∥

Lp
t Lq

x(Rn×R+)
. (6.5)

It is readily seen that the conclusion follows from this identity. �

Lemma 6.5. Suppose that v,w ∈ L∞t L2
x(QT ) ∩ L2

t H1
x(QT ) and u ∈ Lp

t Lq
x(QT ) for a pair of

exponents (p, q) satisfying (6.4). Then∫ T

0

∫
Ω

|v · ∇w · u| dxdt . ‖∇w‖L2(QT )‖∇v‖
n
q

L2(QT )

(∫ T

0
‖u‖p

Lq
x(Ω)
‖v‖2L2(Ω)

) 1
p

. (6.6)

46



Proof. By Hölder’s inequality we have∫ T

0

∫
Ω

|v · ∇w · u| dxdt ≤ ‖u‖Lq(Ω)‖v‖Lr(Ω)‖∇w‖L2(Ω), (6.7)

where r is given by
1
q

+
1
r

=
1
2
.

Now by the Sobolev and the interpolation inequalities we have

‖v‖Lr(Ω) ≤ ‖v‖θL2(Ω)‖v‖
1−θ
L2∗ (Ω) . ‖v‖

θ
L2(Ω)‖∇v‖1−θL2(Ω),

where
1
r

=
θ

2
+

1 − θ
2∗

.

The conditions on (p, q, r, θ) imply

θ =
2
p
, 1 − θ =

n
q
.

Hence
‖v‖Lr(Ω) . ‖v‖

2
p

L2(Ω)‖∇v‖
n
q

L2(Ω).

Substituting this inequality into (6.7) and integrating the resulting inequality, we obtain∫ T

0

∫
Ω

|v · ∇w · u| dxdt .
∫ T

0
‖u‖Lq

x(Ω)‖v‖
2
p

L2(Ω)‖∇v‖
n
q

L2(Ω)‖∇w‖L2(Ω)

. ‖∇w‖L2(QT )‖∇v‖
n
q

L2(QT )

(∫ T

0
‖u‖p

Lq(Ω)‖v‖
2
L2(Ω)

) 1
p

,

where we have used the fact 1
2 + n

2q + 1
p = 1 in the last step. �

Theorem 6.6. Let u ∈ L∞t L2
x(QT )∩L2

t H1
x(QT ) be a weak solution of the initial value prob-

lem of the Navier-Stokes equation. If, in addition, u ∈ Lp
t Lq

x(QT ) for a pair of exponents
(p, q) satisfying (6.4). Then for any 0 ≤ t ≤ T, it holds

‖u(t)‖2L2(Ω) + 2µ
∫ t

0
‖∇u‖2L2(Ω) = ‖u0‖

2
L2(Ω). (6.8)

Proof. Let K ∈ C∞c (R) be an even mollifier function. For h > 0 define Kh(t) = h−1K( t
h ).

Let {uk} ⊂ Ṽ ≡
{
v ∈ C∞(QT ) : divv = 0, v = 0 on ∂Ω × [0,T ]

}
be a sequence of maps

approximating u. For τ ∈ (0,T ] fixed, let h ∈ (0, τ) and define

uk
h(x, t) =

∫ τ

0
Kh(t − t′)uk(x, t′) dt′, uh(x, t) =

∫ τ

0
Kh(t − t′)u(x, t′) dt′.

First testing the Navier-Stokes equation by uk
h and then sending k → ∞ yields∫ τ

0
{(u, ∂tuh) − µ(∇u,∇uh) + (u, u · ∇uh)} dt = (u, uh)|t=τ − (u0, uh(0)).
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Note that ∫ τ

0
(u, ∂tuh) =

∫ τ

0

∫ τ

0
∂tKh(t − t′)(u(t), u(t′)) dt′ dt = 0,∫ τ

0
µ(∇u,∇uh)→ µ

∫ τ

0

∫
Ω

|∇u|2,

(u, uh)|t=τ =

∫ h

0
K(t)(u(τ), u(τ − t)) dt →

1
2
‖u(τ)‖2L2(Ω),

(u0, uh(0))→
1
2
‖u0‖

2
L2(Ω),

and ∫ τ

0
(u, u · ∇uh)→

∫ τ

0
(u, u · ∇u) = 0,

as h → 0, where we have used lemma 6.5 and divu = 0 in the last step. Putting these
together yields (6.8). �

Now we present the weak-strong uniqueness theorem, due to J. Serrin.

Theorem 6.7. Let u, v ∈ L∞t L2
x(QT ) ∩ L2

t H1
x(QT ) be two Leray-Hopf weak solutions of

the initial and boundary value problem of the Navier-Stokes equation. Suppose also that
u ∈ Lp

t Lq
x(QT ) for a pair of exponents satisfying (6.4) and n ≤ q < +∞. Then

‖u(t) − v(t)‖L2(Ω) ≤ ‖u0 − v0‖L2(Ω) exp(c
∫ t

0
‖u(t)‖p

Lq(Ω) dt). (6.9)

In particular, if u0 = v0, then u ≡ v on QT .

Proof. Let uh and vh be defined as in the above lemma. Then we have∫ τ

0
{(u, ∂tvh) − µ(∇u,∇vh) + (u, u · ∇vh)} dt = (u, vh)|t=τ − (u0, vh(0)), (6.10)

and ∫ τ

0
{(v, ∂tuh) − µ(∇v,∇uh) − (uh, v · ∇v)} dt = (v, uh)|t=τ − (v0, uh(0)). (6.11)

Observe that
∫ τ

0
(u, ∂tvh) = −

∫ τ

0
(v, ∂tuh). Adding (6.10) and (6.11) yields

−

∫ τ

0
{µ[(∇u,∇vh) + (∇v,∇uh)] + (uh, v · ∇v) − (u, u · ∇vh)}

= (u(τ), vh(τ)) + (v(τ), uh(τ)) − (u0, vh(0)) − (v0, uh(0)). (6.12)

It is easy to see that

(u(τ), vh(τ)) + (v(τ), uh(τ)) − (u0, vh(0)) − (v0, uh(0))→ (u(τ), v(τ)) − (u0, v0),

and

−

∫ τ

0
{µ[(∇u,∇vh) + (∇v,∇uh)] + (uh, v · ∇v) − (u, u · ∇vh)}

→ −

∫ τ

0
{2µ(∇u,∇v) + (u, (v − u) · ∇v)}
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as h→ 0. Hence we have

−

∫ τ

0
{4µ(∇u,∇v) + (u, (v − u) · ∇v)} = 2(u(τ), v(τ)) − 2(u0, v0). (6.13)

Since
‖v(τ)‖2L2(Ω) + 2µ

∫ τ

0
‖∇v‖2L2(Ω) dt ≤ ‖v0‖

2
L2(Ω), (6.14)

and
‖u(τ)‖2L2(Ω) + 2µ

∫ τ

0
‖∇u‖2L2(Ω) dt = ‖u0‖

2
L2(Ω), (6.15)

by adding (6.13), (6.14), and (6.15), we have

‖(u − v)(τ)‖2L2(Ω) + 2µ
∫ τ

0

∫
Ω

|∇(u − v)|2

≤ ‖u0 − v0‖
2
L2(Ω) + 2

∫ τ

0
(u, (u − v) · ∇(v − u)) + (u, (u − v) · ∇u) dt

= ‖u0 − v0‖
2
L2(Ω) + 2

∫ τ

0
(u, (u − v) · ∇(v − u)) dt (since (u, (u − v) · ∇u) = 0)

≤ ‖u0 − v0‖
2
L2(Ω) + C‖∇(u − v)‖

1+ n
q

L2(Qτ)

(∫ τ

0
‖u‖p

Lq(Ω)‖u − v‖2L2(Ω) dt
) 1

p

≤ ‖u0 − v0‖
2
L2(Ω) + µ‖∇(u − v)‖2L2(Qτ)

+ C
∫ τ

0
‖u(t)‖p

Lq(Ω)‖u − v‖2L2(Ω) dt.

Therefore we have

‖(u − v)(τ)‖2L2(Ω) ≤ ‖u0 − v0‖
2
L2(Ω) + C

∫ τ

0
‖u(t)‖p

Lq(Ω)‖u − v‖2L2(Ω) dt.

This, with the help of Gronwall’s inequality, implies (6.9). �

Remark 6.1. For the end point case p = ∞, q = n, the reader can check that the same
argument also works if we assume that ‖u‖L∞t Ln

x(QT ) is sufficiently small.

Now we want to discuss the existence of local and global strong solutions in low
dimensions.

Theorem 6.8. (Kiselev-Ladyzhenskaya). For n = 2 or 3 and f = 0. For any u0 ∈

H2(Ω) ∩ V, there exists a weak solution u ∈ L∞t L2
x(QT ) ∩ L2

t H1
x(QT ) of the initial and

boundary value problem of the Navier-Stokes equation, and a T > 0 such that ‖∇u‖L2(Ω)

and ‖∂tu‖L2(Ω) are uniformly bounded for 0 ≤ t < T. Furthermore, T = +∞ if n = 2 or
‖u0‖H2(Ω) is sufficiently small when n = 3.

Proof. Here we sketch the argument for the solution u. Rigorously speaking, one needs
to first work with the Galerkin’s approximate solution um and then taking m→ ∞.

Taking ∂t of the equation, we have

utt − µ∆ut + (u · ∇u)t + ∇pt = 0.

Multiplying this equation by ut and integrating over Ω, we obtain

d
dt
‖ut‖

2
L2(Ω) = −2µ‖∇ut‖

2
L2(Ω) − 2(ut, ut · ∇u),
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where we have used ∫
Ω

∇pt · ut = −

∫
Ω

pt · ∇ · ut = 0,

and
(ut, u · ∇ut) = B[u, ut, ut] = 0.

Observe that
|(ut, ut · ∇u)| ≤ ‖∇u‖L2(Ω)‖ut

2
L4(Ω).

By the Sobolev inequality, we then have

|(ut, ut · ∇u)| ≤

C‖ut‖L2(Ω)‖∇ut‖L2(Ω)‖∇u‖L2(Ω) n = 2

C‖ut‖
1
2
L2(Ω)‖∇ut‖

3
2
L2(Ω)‖∇u‖L2(Ω) n = 3

≤

µ
∫

Ω
|∇ut|

2 + C
µ
‖ut‖

2
L2(Ω)‖∇u‖2L2(Ω) n = 2

µ
∫

Ω
|∇ut|

2 + C
µ3 ‖ut‖

2
L2(Ω)‖∇u‖4L2(Ω) n = 3.

Therefore we have

d
dt
‖ut‖

2
L2(Ω) ≤

C
µ
‖ut‖

2
L2(Ω)‖∇u‖2L2(Ω) n = 2

C
µ3 ‖ut‖

2
L2(Ω)‖∇u‖4L2(Ω) n = 3.

(6.16)

Now we proceed as follows.
(i) n = 2: By Gronwall’s inequality, we have

‖ut‖L2(Ω) ≤ ‖ut(0)‖L2(Ω) exp
(
c
∫ t

0
‖∇u‖2L2(Ω) dt

)
.

Since
ut(0) = µ∆u0 − u0 · ∇u0 − ∇p,

and ∇ · ut(0) = 0 and ut(0) = 0 on ∂Ω, we have
∫

Ω
∇p · ut(0) = 0 and hence

‖ut(0)‖2L2(Ω) = ‖µ∆u0 − u0 · ∇u0‖
2
L2(Ω) . ‖u0‖

2
H2(Ω).

Therefore we have
‖ut‖L2(Ω) ≤ C(‖u0‖H2(Ω)) ∀0 ≤ t ≤ T.

Since the energy inequality implies that

2µ‖∇u‖2L2(Ω) = −
d
dt
‖u‖2L2(Ω) ≤ 2‖u‖L2(Ω)‖ut‖L2(Ω) . ‖u0‖L2(Ω)‖ut‖L2(Ω)

is also uniformly bounded for all 0 ≤ t ≤ T . From this argument, one also sees that the
maximal time interval T is +∞.
(ii) n = 3: Since

µ‖∇u‖2L2(Ω) ≤ ‖u‖L2(Ω)‖ut‖L2(Ω),

we have
d
dt
‖ut‖L2(Ω) ≤

C
µ4 ‖u‖L2(Ω)‖∇u‖L2(Ω)‖ut‖

2
L2(Ω).
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Thus we have

‖ut‖L2(Ω) ≤
‖ut(0)‖L2(Ω)

1 −Cµ−4‖ut(0)‖L2(Ω)A(t)
(6.17)

where

A(t) =

∫ t

0
‖u‖L2(Ω)‖∇u‖2L2(Ω) dt = ‖u0‖

3
L2(Ω) − ‖u(t)‖3L2(Ω).

Note that if u0 satisfies

‖u0‖
3
L2(Ω)‖ut(0)‖L2(Ω) <

µ4

C
, (6.18)

then
1 −

C
µ4 ‖u0‖

3
L2(Ω)‖ut(0)‖L2(Ω) > 0

so that ‖ut(t)‖L2(Ω) is uniformly bounded for all 0 ≤ t < T = ∞ . Since ‖∇u(t)‖2L2(Ω) ≤

‖u(t)‖L2(Ω)‖ut(t)‖L2(Ω), it follows that ‖∇u(t)‖L2(Ω) is also uniformly bounded for all 0 ≤ t <
T = ∞.

If (6.18) doesn’t hold, then since

d
dt
‖ut‖L2(Ω) ≤

C
µ4 ‖u‖

2
L2(Ω)‖ut‖

3
L2(Ω),

we have ∥∥∥∥ut

∥∥∥∥2

L2(Ω)
≤

‖ut(0)‖2L2(Ω)

1 −Cµ−4‖u0‖
2
L2(Ω)‖ut(0)‖L2(Ω)t

. (6.19)

Therefore if

T <
µ4

C‖u0‖
2
L2(Ω)‖ut(0)‖2

L2(Ω)

,

then the estimates on ‖ut‖L2(Ω) and ‖∇u(t)‖L2(Ω) hold for all 0 ≤ t < T . �

It turns out that the above theorem also holds for small initial data in dimension n = 4.
Namely, we have

Theorem 6.9. For n = 4, and u0 ∈ H2
0(Ω) with ∇ · u0 = 0 and ‖u0‖H2(Ω) sufficiently

small, then there is a solution which is strongly differentiable with respect to x and t, and
‖ut‖L2(Ω), ‖∇u(t)‖L2(Ω) is uniformly bounded for all 0 ≤ t < +∞.

Proof. The idea is similar to the above Theorem, but the argument is different. As in the
above theorem, we first have

d
dt
‖ut‖

2
L2(Ω) + µ‖∇ut‖

2
L2(Ω) ≤ C‖∇u‖L2(Ω)‖ut‖

2
L4(Ω) ≤ C‖∇u‖L2(Ω)‖∇ut‖

2
L2(Ω),

so that we have
d
dt
‖ut‖

2
L2(Ω) + (µ −C‖∇u‖L2(Ω))‖ut‖

2
L2(Ω) ≤ 0. (6.20)

Now we have
Claim. If u0 satisfies

‖u0‖L2(Ω)‖ut(0)‖L2(Ω) <
µ2

C2 (6.21)
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then for all 0 ≤ t < +∞ it holds that

‖∇u(t)‖L2(Ω) <
µ

C
, ∀ 0 ≤ t < +∞. (6.22)

To see this, we first observe that the condition (6.21) and the energy equality of the
Navier-Stokes equation imply

‖∇u0‖
2
L2(Ω) ≤ ‖u0‖L2(Ω)‖ut(0)‖L2(Ω) <

µ2

C2 ,

which clearly implies that there exists δ > 0 such that (6.22) holds for 0 ≤ t ≤ δ. Assume
T0 ≤ T is the maximal time such that (6.22) holds. If T0 < +∞, then we would have

‖∇u(t)‖L2(Ω) <
µ

C
, ∀0 ≤ t < T0; ‖∇u(T0)‖L2(Ω) =

µ

C
. (6.23)

Substituting (6.23) into the inequality (6.20), we would obtain

‖ut‖L2(Ω) ≤ ‖ut(0)‖L2(Ω) ∀0 ≤ t ≤ T0.

At t = T0, we would then have

µ2

C2 = ‖∇u(T0)‖2L2(Ω) ≤ ‖ut(T0)‖L2(Ω)‖u(T0)‖L2(Ω) ≤ ‖ut(0)‖L2(Ω)‖u0‖L2(Ω) <
µ2

C2 .

This is impossible. Thus T0 = ∞. The proof is complete. �

6.1 The Ossen Kernel
The Ossen kernel plays very important roles in the study of mild solutions to the Navier-
Stokes equation in the entire Rn. It is the fundamental solution of the time-dependent
linear Stokes system on Rn: For f ∈ L2(Rn,Rn) and u0 ∈ L2(Rn,Rn) with ∇ · u0 = 0,
consider 

∂tu − ∆u + ∇p = f Rn × (0,+∞)
∇ · u = 0 Rn × (0,∞)
u|t=0 = u0 Rn.

(6.24)

It is not hard to see that by the superposition principle that u = u1 + u2, where

u1(x, t) =

∫
Rn

Γ(x − y, t)u0(y) dy

is the solution to the heat equation with u0 is the initial data, while

u2(x, t) =

∫ t

0

∫
Rn

Γ(x − y, t − s)P f (y, s) dyds

is the solution to the Stokes system with zero initial data. Here P : L2(Rn) → L2
div(Rn) is

the Leray projection operator, and

Γ(x, t) =
1

(4πt)
n
2

exp(−
|x|2

4t
),
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is the fundamental solution to the heat equation on Rn.
Recall from Lecture 2 that for 1 ≤ i ≤ n,

(P f )i(x) = f i(x) −
∂

∂xi
(∆−1∇ · f ) = f i(x) +

∫
Rn

∂2

∂xi∂x j
G(x − y) f j(y) dy,

where G is the fundamental solution of the Laplace equation in Rn.
Define

Φ(x, t) =

∫
Rn

G(y)Γ(x − y, t) dy.

Then the Duhamel formula for the Stokes equation will be given by

ui(x, t) =

∫
Rn

Γ(x − y, t)ui
0(y) dy +

∫ t

0

∫
Rn

ki j(x − y, t − s) f j(y, s) dyds, (6.25)

where

ki j(x, t) =
(
δi j∆ +

∂2

∂xi∂x j

)
Φ(x, t) (6.26)

is called the Ossen kernel.
For the Ossen kernel, we have the following property.

Lemma 6.10. Let ki j be the Ossen kernel defined by (6.26). Then it holds∣∣∣∣ki j(x, t)
∣∣∣∣ . 1

(|x|2 + t)
n
2
,
∣∣∣∣∇l

t∇
k
xki j(x, t)

∣∣∣∣ . 1

(|x|2 + t)
n+k+2l

2

, ∀(x, t) ∈ Rn × (0,+∞). (6.27)

Proof. It is straightforward from the definition of Φ. �

53



Lecture 7, December 27, 2012

7 Leray’s construction of local classical solutions and BKM
criterion

7.1 Hölder estimates for the Stokes system
. Assume that f = div(F) for some F ∈ L∞(Rn × (0,+∞),Rn×n). Assume u0 ∈ L∞(Rn).
Then it is easy to see that u1 = Γ(t) ∗ u, the solution to the heat equation with u0 as the
initial data, satisfies∥∥∥∥∂l

t∇
k
xu1(x, t)

∣∣∣∣ . 1

t
k
2 +l

∥∥∥∥u0

∥∥∥∥
L∞(Rn)

, ∀(x, t) ∈ Rn × (0,+∞). (7.1)

Since

ui
2(x, t) =

∫ t

0

∫
Rn

Ki jl(x − y, t − s)F l j(y, s) dyds,

where Ki jl =
∂ki j

∂xl
is the partial derivative of the Ossen kernel ki j.

We want to estimate |u2(x1, t1) − u2(x2, t2)| by estimating |u2(x1, t1) − u2(x2, t1)| and
|u2(x2, t1) − u2(x2, t2)| separately. Since we are interested in the interior estimate, we may
assume t1 ≈ 4. By translation invariance, we can assume x1 = 0 and x2 = αe for some
e ∈ Sn−1. Observe that Ki jl enjoys the following homogeneity property:

Ki jl(λx, λ2t) = λ−n−1K(x, t), ∀λ > 0.

Thus we have

|u2(x1, t1) − u2(x2, t1) ≤ ‖F‖L∞(Rn×[0,t1])

∫ t

0

∫
Rn
|K(−y, s) − K(αe − y, s)| dyds

≤ α‖F‖L∞
∫ t1

α2

0

∫
Rn
|K(−z, τ) − K(e − z, τ)| dzdτ

≤ α‖F‖L∞
{ ∫ 2

0
+

∫ t1
α2

2

} ∫
Rn
|K(−z, τ) − K(e − z, τ)| dzdτ = I + II.

Here K = (Ki jl) for t ≥ 0 and K = 0 for t < 0. Since

|K(−z, τ) − K(e − z, τ)| ≤ |K(−z, τ)| + |K(e − z, τ)|, 0 ≤ τ ≤ 2,

and
|K(−z, τ) − K(e − z, τ)| .

1

(|z|2 + τ)
n+2

2

, 2 ≤ τ ≤
t1

α2 ,

we see that
|I| ≤ Cα‖F‖L∞ ,

and

|II| . α‖F‖L∞
∫ t1

α2

2

∫
Rn

dzdτ

(|z|2 + τ)
n+2

2

. α‖F‖L∞
∫ t1

α2

2

dτ
τ
. α log(

1
α

)‖F‖L∞ .
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Therefore we have

|u2(x1, t1) − u2(x2, t1)| . |x1 − x2|

(
1 + log(

1
|x1 − x2|

)
)
‖F‖L∞ . (7.2)

To estimate |u2(x2, t1) − u(x2, t2)|, we assume x2 = 0 and t2 = t1 − α
2. Then we have

|u2(0, t1) − u2(0, t1 − α)| . ‖F‖L∞
∫ t1

0

∫
Rn
|K(−y, τ) − K(−y, τ − α2) dydτ

. α‖F‖L∞
∫ t1

α2

0

∫
Rn
|K(−y, τ) − K(−y, τ − 1) dydτ

. α‖F‖L∞


∫ 2

0
+

∫ t1
α2

2


∫
Rn
|K(−y, τ) − K(−y, τ − 1)| dydτ

. α‖F‖L∞

1 +

∫ t1
α2

2


∫
Rn
|K(−y, τ) − K(−y, τ − 1)| dydτ

. α‖F‖L∞

1 +

∫ t1
α2

2


∫
Rn

1

(|z|2 + τ)
n+3

2

dydτ

. α‖F‖L∞

1 +

∫ t1
α2

2
τ−

3
2 dτ

 . ‖F‖L∞ √
|t1 − t2|.

Combining these estimates on u1 and u2 together, we would obtain

Theorem 7.1. Suppose that u0 ∈ L∞(Rn) and F ∈ L∞(Rn × [0,T ]). Then for any θ ∈ (0, 1)
and R > 0, δ > 0, u ∈ Calpha(BR × [δ,T ],Rn) and

‖u‖Cθ(BR×[δ,T ]) ≤ C (R, δ, ‖u0‖L∞ , ‖F‖L∞) . (7.3)

7.2 Mild Solutions to the Navier-Stokes equation
Consider the initial value problem for the Navier-Stokes equation in Rn:

ut − ∆u + u · ∇u + ∇p = 0 in Rn × (0,T )
∇ · u = 0 in Rn × (0,T )
u|t=0 = u0 in Rn.

(7.4)

Definition 7.1. For u0 ∈ L∞(Rn) and 0 < T ≤ +∞, u : Rn × [0,T ] → Rn is called a mild
solution of (7.4) if

u(t) = Γ(t) ∗ u0 +

∫ t

0
K(t − s) ∗ (−u(s) ⊗ u(s)) ds, 0 < t ≤ T, (7.5)

where K = (∇ki j). Definition

U(t) = F(t) ∗ u0, B[u, v] =

∫ t

0
K(t − s) ∗ (−u(s) ⊗ v(s)) ds.

Then (7.5) can be written as
u = U + B[u, u]. (7.6)
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Lemma 7.2. Let X be a Banach space and B : X × X → X be a continuous bilinear form
with

‖B[x, y]‖ ≤ γ‖x‖‖y‖, x, y ∈ X.

For a ∈ X, consider the equation

x = a + B(x, x). (7.7)

Suppose 4γ‖a‖ < 1. Then (7.7) has a unique solution

x̄ ∈

x ∈ X :
∣∣∣∣ ||x|| < 1 +

√
1 − 4γ‖a‖
2γ

 .
Moreover,

‖x̄‖ <
1 −

√
1 − 4γ‖a‖
2γ

.

Proof. Since 4γ‖a‖ < 1, there are two real roots

r± =
1 ±

√
1 − 4γ‖a‖
2γ

of ‖a‖+ γr2 = r. First observe that there exists no solution of (7.7) in the annulus {x ∈ X :
r− < ‖x‖ < r+}. For, otherwise, there exists x1 in this annulus such that x1 = a + B(x1, x1).
Hence we have ‖x1‖ = ‖a + B(x1, x1)‖ ≤ ‖a‖ + γ‖x1‖

2. This is impossible, as for any
r ∈ (r−1, r+), ‖a‖ + γr2 < r. Therefore, it suffices to look for a fixed point of the map

Φ(x) = a + B(x, x) : {x ∈ X : ‖x‖ ≤ r−} → {x ∈ X : ‖x‖ ≤ r−}.

In fact, since
‖Φ(x)‖ ≤ ‖a‖ + γ‖x‖2 ≤ ‖a‖ + γr2

− = r−,

we see that the map is well-defined. Also, since

‖Φ(x) − Φ(y)‖ ≥ γ(‖x‖ + ‖y‖)‖x − y‖ ≤ 2γr−‖x − y‖ < ‖x − y‖

for x, y in the ball. Hence Φ is a contraction map. Thus there exists x̄, with ‖x̄‖ ≤ γ−, such
that x̄ = a + B(x̄, x̄). This completes the proof. �

Now we apply this abstract lemma to obtain the short time smooth solution to the
Navier-Stokes equation as follows.

Theorem 7.3. (Leray) For any u0 ∈ L∞(Rn), there exists a T0 > 0 depending on ‖u0‖L∞

and a unique solution u ∈ C∞(Rn × (0,T0],Rn) ∩ L∞(Rn × [0,T0],Rn) to the initial value
problem of the Navier-Stokes equation.

Proof. For T > 0, set X = XT = L∞(Rn × [0,T ],Rn). Then we have

‖Γ(t) ∗ u0‖XT ≤ ‖u0‖L∞(Rn), (7.8)
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and

‖B[u, v]‖XT ≤ ‖u‖XT ‖v‖XT

∫ T

0

∫
Rn
|K(x, t)| dxdt

≤ C‖u‖XT ‖v‖XT

∫ T

0

∫
Rn

dxdt

(|x|2 + t)
n+1

2

≤ C‖u‖XT ‖v‖XT

∫ T

0

dt
√

t
≤ C‖u‖XT ‖v‖XT

√
T (7.9)

for any u, v ∈ XT .
If 4C

√
T0‖u0‖L∞ < 1, then we can apply the abstract lemma to conclude that there

exists a unique u ∈ XT0 that solves

u = Γ(t) ∗ u0 + B[u, u],

which is equivalent to that u solves the initial value problem of the Navier-Stokes equa-
tion.
Remark 7.1. i) In general, the solution u(t) doesn’t converge to u0 in L∞(Rn), since Γ(t) ∗
u9 u0 in L∞(Rn).
ii) If T∗ > 0 is the maximal interval for the solution u and T∗ < +∞, then according to
Leray’s theorem it holds ∥∥∥∥u(t)

∥∥∥∥
L∞(Rn)

≥
ε1

√
T∗ − t

, 0 < t < T∗, (7.10)

for some ε1 > 0.
iii) For any 0 < T ≤ +∞, the uniqueness holds for solutions to the Navier-Stokes equation
in XT . The proof is a slight extension of the above theorem: suppose that u1, u2 ∈ XT

solve the Navier-Stokes equation with the same initial data u0 ∈ L∞(Rn). Then the above
argument shows that there exists a sufficiently small T0 > 0 such that u1 ≡ u2 in Rn ×

[0,T0]. Then we can repeat the same argument to show that u1 ≡ u2 in Rn × [T0, 2T0].
After finite steps, it follows that u1 ≡ u2 in Rn × [0,T ].

7.3 Serrin’s blow-up criterion
Consider u0 ∈ L∞ ∩ L2, and let 0 < T < +∞ be the maximal interval of existence of mild
solutions or the Leray solution u. Then we have

‖u(t)‖L∞(Rn) → +∞, as t ↑ T.

Let 1 << M1 < M2 < · · · <→ +∞ and let t j ∈ (0,T ) be the first time such that t →
‖u(t)‖L∞(Rn) takes the value M j. Let x j ∈ R

n such that |u(x j, t j)| ≈ M j. Note that

|u(x, t)| ≤ M j, ∀x ∈ Rn, 0 ≤ t ≤ t j.

Define

v j(y, s) =
1

M j
u

x j +
y
y j
, t j +

t
M2

j

 , y ∈ Rn, −M2
j t j ≤ t ≤ M2

j (T − t j).
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By the scaling and translation invariance of the Navier-Stokes equation, we have that v j

is a solution of the Navier-Stokes equation in Rn × [−M2
j t j,M2

j (T − t j)]. Moreover,

|v j(0, 0)| = 1.

Hence by the Hölder continuity, there exists ρ > 0 such that

|v j(x, t)| ≥
1
2
, ∀(x, t) ∈ Bρ × [−ρ2, 0].

This implies, after rescaling, that

|u(x, t)| ≥
M j

2
, (x, t) ∈ B ρ

M j
(x j) × [t j −

ρ2

M2
j

, t j].

In other words, this indicates that |u(x, t)| reach a ”peak” at z j = (x j, t j), with hight M j and
width in x-direction ρ

M j
and in t-direction ρ2

M2
j
. This implies that if 2

p + n
q = 1, then∥∥∥∥u

∥∥∥∥
Lp

t Lq
x(B ρ

M j
(x j)×[t j−

ρ2

M2
j
,t j])
≥ cρ

2
p + n

q M
1− 2

p + n
q

j ≥ cρ.

This shows that the Lp
t Lq

x-norm of u concentrates in infinitesimal region at time approaches
T , and thus we have

Theorem 7.4. Assume that a mild solution u blows up at 0 < T < +∞. Let q > n and
p ≥ 2 be such that 2

p + n
q = 1. Then for any τ > 0,∫ T

T−τ

(∫
Rn
|u(x, t)|q dx

) p
q

dt = +∞. (7.11)

Now we present Serrin’s interior regularity theorem.

Theorem 7.5. Let u ∈ L∞,2(R)∩L2H1(R) be a weak solution of the Navier-Stokes equation.
Suppose, in addition, that u ∈ Ls′

t Ls
x(R) for a pair of exponents s and s′ satisfying

2
s′

+
n
s
< 1,

then u is C∞ in the space variable. If u is strongly differentiable with respect to t, then
u,∇k

xu is absolutely continuous with respect to time t.

Proof. The argument is based on the vorticity equation: ω = ∇ × u satisfies

ωt − ∆ω = div(ωu − uω) in R (7.12)

Thus we can represent ω by

ω(x, t) =

∫ ∫
k(x − y, t − s)g(y, s) dyds + B in R, (7.13)

where B solves the heat equation on R, k = ∇K and

K =

(4πt)−
n
2 exp(− |x|

2

4t ), t > 0
0, t ≤ 0
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is the heat kernel, and g(y, s) = η2(ωu− uω)(y, s) with η ∈ C∞0 (Rn+1) satisfying 0 ≤ η ≤ 1,
and η ≡ 1 in R.

For ρ, ρ′ ≥ 1, if ω ∈ Lρ
′,ρ(R), then, since u ∈ Ls′,s(R), we have

g ∈ Lq′,q(Rn+1)

with
1
q′

=
1
s′

+
1
ρ′
,

1
q

=
1
s

+
1
ρ
.

Hence, by using the properties of the kernel k and the equation (7.13), we have

ω ∈ Lr′,r(R),

where

r =
ρ

1 − kρ
, r′ =

ρ′

1 − kρ′
, k =

1 − n
s −

2
s′

n + 3
> 0.

Note that r > ρ, r′ > ρ′, which shows that there is an improvement of the integrability
of ω. Starting with (ρ, ρ′) = (2, 2), after a finite number of steps, we would obtain that
ω ∈ L∞(R). Once we have that the vorticity ω is bounded, the higher order regularity
follows from the standard theory, we leave the details to the interested readers. �

Remark 7.2. M. Struwe has extended Serrin’s regularity theorem and showed that
i) if u ∈ Lp,q(QT ), with 2

p + n
q ≤ 1 and q > n, or

ii) if u ∈ L∞,n(QT ) satisfies that for some absolutely constant ε, there exists a R > 0 such
that ∫

BR(x)∩Ω

|u(x, t)|n dx ≤ ε, ∀t ∈ [0,T ],

then u ∈ L∞(QT ).

7.4 Sketch of Struwe’s Proof
The idea is based on the Nash-Moser iterations method to the vorticity equation: For
φ ∈ C∞0 (QT ) ≥ 0 and s ≥ 1, multiplying (7.12) by ω|ω|2s−2φ2 and integrating over QT , we
obtain ∫

∂t(
|ω|2sφ2

2s
) + |∇ω|2ω2s−2φ2 +

1
2

(s − 1)|∇|ω|2|2|ω|2s−4φ2

=

∫
|ω|2s

s
φ∂tφ + ∇|ω|2|ω|2s−2φ∇φ + (uω − ωu)∇(ω|ω|2s−2φ2).

This implies

sup
0≤t≤T

∫
Ω

(|ω|sφ)2 +

∫
QT

|∇(|ω|sφ)|2

≤ C(φ)
∫

QT

|ω|2s + C
∫

QT

[|u||ω|2sφ|∇φ| + ||u|2|ω|2sφ2]

≤ C(φ)
∫

QT

|ω|2s + C
∫

QT

|u|2(|ω|sφ)2. (7.14)
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The second term in the right hand side of the last inequality can be estimated by∫
QT

|u|2(|ω|sφ)2 ≤ ‖u‖Lp,q(QT )‖ω|
sφ‖Lp∗,q∗(QT ), (7.15)

where
1
p∗

=
1
2
−

1
p
,

1
q∗

=
1
2
−

1
q
.

Since
2
p∗

+
n
q∗

=
n
2

+ 1 − (
2
p

+
n
q

) ≥
n
2
,

it follows from the Sobolev-interpolation inequality that

‖|ω|2φ‖2Lp∗,q∗(QT ) ≤ C(φ)‖ω‖2s
L2s(QT ) + C‖u‖2Lp,q(suppφ)‖|ω|

2φ‖2Lp∗,q∗(QT ). (7.16)

If ‖u‖2Lp,q(suppφ) ≤ ε, then we have

‖|ω|2φ‖2Lp∗,q∗(QT ) ≤ C(φ)‖ω‖2s
L2s(QT ). (7.17)

In particular, we obtain that for any π, ρ satisfying

2
π

+
n
ρ
≥

n
2
,

then
‖|ω|2φ‖2Lπ,ρ(QT ) ≤ C(φ)‖ω‖2s

L2s(QT ). (7.18)

Thus we have that for β = n+2
n > 1, it holds

|ω|sφ ∈ L2β(QT ).

Starting with s0 = 1, s1 = βs0 = β, sk+1 = βsk, and Q0 = QT , Qk+1 = {(x, t) | φk(x, t) ≥ 1}
for φk+1 ∈ C∞0 (Qk). Then we obtain that ω ∈ L∞loc(QT ).

7.5 Beale-Kato-Majda criterion on finite time singularity
For u0 ∈ H1(Rn) (s ≥ n), thee exists T0 > 0 depending only on ‖u0‖Hs so that the initial
value problem of the Navier-Stokes equation has a unique solution u ∈ C([0,T ],H s) ∩
C1([0,T ],H s−1).

Theorem 7.6. (Beale-Kato-Majda) Let 0 < T∗ be the maximal time interval. If T∗ < +∞,
then ∫ T∗

0
‖∇ × u(t)‖L∞(Rn) dt = +∞. (7.19)

In particular,
lim sup

t↑T∗
‖∇ × u(t)‖L∞(Rn) = +∞.
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Proof. First we observe that

T∗ < +∞ iff lim sup
t↑T∗

‖u(t)‖Hs(Rn) = +∞.

We want to prove that if ∫ T∗

0
‖∇ × u(t)‖L∞(Rn) dt < +∞, (7.20)

then
‖u(t)‖Hs(Rn) ≤ C0, ∀ 0 < t < T∗. (7.21)

For simplicity, we present the argument for the Euler equation. In this case, the vorticity
equation is

ωt + u · ∇ω = ω · ∇u.

Since ∇ × u = ω and divu = 0, we have

‖∇u‖L2 ≤ C‖ω‖L2 .

Hence we have

1
2

d
dt
‖ω‖2L2 = −‖∇ω‖2L2 + (ω · ∇u, ω)L2

≤ −‖∇ω‖2L2 + C‖ω‖L∞‖ω‖L2‖∇u‖L2

≤ −‖∇ω‖2L2 + C‖ω‖L∞‖ω‖2L2 .

By Gronwall’s inequality, we have

‖ω(t)‖L2 ≤ M0‖ω(0)‖L2 ∀ 0 ≤ t < T∗, M0 = exp(c
∫ T∗

0
|ω(t)|L∞ dt). (7.22)

For |α| ≤ s, let v = ∇αu. Then we have

vt + u · ∇v + ∇q = F := −∇α(u · ∇u) − v · ∇(∇αu).

By the Leibnitz rule and Sobolev’s inequality, we have

‖∇α( f g) − f∇αg‖L2 ≤ C(‖ f ‖Hs‖g‖L∞ + ‖∇ f ‖L∞‖g‖Hs−1). (7.23)

Applying (7.23) to F, we obtain

‖F‖L2 ≤ C‖∇u‖L∞‖u‖Hs .

Thus we have
d
dt
‖u(t)‖2Hs ≤ C‖∇u(t)‖L∞‖u(t)‖2Hs , (7.24)

and

‖u(t)‖Hs ≤ ‖u(0)‖Hs exp(c
∫ t

0
‖∇u(τ)‖L∞ dτ). (7.25)

Now we need the following key inequality:

‖∇u(t)‖L∞ ≤ C
(
1 + (1 + ln+

‖u(t)‖H3)‖ω(t)‖L∞ + ‖ω(t)‖L2
)
. (7.26)
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Here

ln+ a =

ln a if a ≥ 1
0 if a < 1.

Assume (7.26) for the moment, we proceed as follows.

‖∇u(t)‖L∞ ≤ C(1 + ln(e + ‖u‖H3)‖ω(t)‖L∞).

Set y(t) = e + ‖u(t)‖Hs . Then we have

y(t) ≤ y(0) exp
(
c
∫ t

0
(1 + ‖ω(τ)‖L∞ ln y(τ) dτ

)
.

Set z(t) = ln y(t). Then z satisfies

z(t) ≤ z(0) + c
∫ t

0
(1 + ‖ω(τ)‖L∞ ln y(τ) dτ.

This implies that z(t) is bounded by T∗, ‖u0‖Hs , and M1 =
∫ T∗

0
‖ω(t)‖L∞ dt. Hence ‖u(t)‖Hs

is uniformly bounded for 0 ≤ t < T∗. Thus T∗ is not the maximal time interval.
Now we return to the proof of (7.26). To do it, we first recall by the Biot-Savart law,

u(x) = −
1

4π

∫
R3

x − y
|x − y|3

× ω(y) dy =

∫
R3

K(x − y)ω(y) dy.

For 0 < ρ ≤ 1, let ξρ ∈ C∞0 (R) ≥ 0 such that ξρ =

1 |x| < ρ
0 |x| ≥ 2ρ

, and |∇ξρ| ≤ 2
ρ
. Then we

can write ∇u(x) = ∇u1(x) + ∇u2(x), where

∇u1(x) =

∫
ξρ(x − y)K(x − y)∇ω(y) dy,

and
∇u2(x) =

∫
∇[K(x − y)(1 − ξρ(x − y))]ω(y) dy.

We estimate ∇u1 and ∇u2 separately as follows. Since |K(x − y)| . |x − y|−2 ∈ Lp(B2ρ(x))
for any p < 3

2 , we have

|∇u1(x)| ≤ ‖K‖
L

4
3 (B2ρ(x))

‖∇ω‖L4(B2ρ(x)) ≤ Cρ
1
4 ‖∇ω‖H1 ≤ Cρ

1
4 ‖u‖H3 .

While we can split ∇u2 = ∇u3 + ∇u4, where

∇u3(x) =

∫
ρ≤|x−y|≤1

∇[K(x − y)(1 − ξρ(x − y))]ω(y) dy,

and
∇u4(x) =

∫
|x−y|≥1

∇[K(x − y)(1 − ξρ(x − y))]ω(y) dy.

For ∇u3, we have

|∇u3(x)| . [
∫ 1

ρ

r−3r2 dr +

∫ 2ρ

ρ

r−2ρ−1r2 dr]‖ω‖L∞ ≤ C(1 + ln
1
ρ

)‖ω‖L∞ .
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Since ∇K ∈ L2(R3 \ B1(x), we have

|∇u4(x)| ≤ C‖ω‖L∞ .

Putting these estimates together yields

|∇u‖L∞ . (ρ
1
4 ‖u‖H3 + (1 − ln ρ)‖ω‖L∞ + ‖ω‖L2).

If we choose ρ by

ρ =

1 if ‖u‖H3 ≤ 1
‖u‖−4

H3 if ‖u‖H3 ≥ 1.

Then (7.26) follows. The proof is now complete. �
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8 Caffarelli-Kohn-Nirenberg’s theorem on the incompress-
ible Navier-Stokes equation

We consider the Cauchy problem for the incompressible Navier-Stokes equation in R3 ×

(0,∞): 
vt + v · ∇v + ∇p = ∆v, in R3 × (0,∞),

div v = 0, in R3 × (0,∞),

v(x, 0) = v0(x), in R3,

(8.1)

where v = v(x, t) ∈ R3 is the velocity field, p(x, t) is the scalar pressure function, and
v0(x), with div v0 = 0, is the initial velocity field.

The study of the incompressible Navier-Stokes equation in three space dimension has
a long history. The existence of Leray-Hopf’s solutions has been established by J. Leray
in 1934 for Ω = Rn, and by E. Hopf in 1940 for Ω ⊂ Rn being a bounded smooth domain.

• A typical property of Leray-Hopf’s solutions is the weak energy inequality:

‖v(., t)‖2L2 + 2
∫ t

0
‖∇v(., s)‖2L2 ds ≤ ‖v0‖

2
L2 , t ≥ 0. (8.2)

• v ∈ L∞(0,T ; L2(Rn)) ∩ L2(0,T ; H1(Rn)), ∀T > 0.

• v is weakly continuous from [0,T ) to L2(R3).

• v verifies (8.1) in the sense of distributions, i.e.,∫ T

0

∫
Rn

(∂φ
∂t

+ (v · ∇)φ
)
v dxdt +

∫
Rn

v0φ(x, 0) dx =

∫ T

0

∫
Rn
∇v : ∇φ dxdt.

for all φ ∈ C∞0 (Rn × [0,T )) with divφ = 0, and∫ T

0

∫
Rn

v · ∇φ dxdt = 0.

for all φ ∈ C∞0 (Rn × [0,T )).

• If v0 ∈ C∞(Rn), with div v0 = 0, then there exist T0 = T0(v0) > 0 and a unique
smooth solution v ∈ C∞(Rn × [0,T0],Rn) of (8.1).

Suitable weak solutions and generalized energy inequalities
A weak solution (v, p) is called a suitable weak solution of (8.1) in QT ≡ Ω× [0,T ] ⊂

R3 × (0,∞), provided that the following properties hold:

• p ∈ L
3
2 (QT ) and L∞t L2

x(QT ) ∩ L2
t H1

x(QT ).

• (v, p) satisfies (8.1) in the sense of distributions∫ ∫
QT

v∂tϕ − p∇ · ϕ + ∇v · ∇ϕ + v · ∇ϕv dxdt = 0, ∀ϕ ∈ C∞c (QT ).
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• (v, p) satisfies the generalized energy inequality:

2
∫ T

0

∫
Ω

|∇v|2ϕ dxdt ≤
∫ T

0

∫
Ω

|v|2(ϕt + ∆ϕ) dxdt +

∫ T

0

∫
Ω

(|v|2 + 2p)v · ∇ϕ dxdt,

(8.3)
holds for all ϕ ∈ C∞c (QT ), ϕ ≥ 0.

Lemma 8.1. If (v, p) is smooth solution of (8.1), then the generalized energy inequality
(8.3) must hold.

Proof. . Multiplying (8.1) by vϕ and integrating over QT , we have∫ T

0

∫
Ω

vt(vϕ) + v · ∇v(vϕ) + ∇p · (vϕ) dxdt = −

∫ T

0

∫
Ω

∇v · ∇(vϕ) dxdt.

RHS = −

∫ T

0

∫
Ω

∇v · ∇(vϕ) dxdt

= −

∫ T

0

∫
Ω

|∇v|2ϕ dxdt −
∫ T

0

∫
Ω

∇v · ∇ϕv dxdt

= −

∫ T

0

∫
Ω

|∇v|2ϕ dxdt −
∫ T

0

∫
Ω

∇ϕ · ∇(
1
2
|v|2) dxdt

= −

∫ T

0

∫
Ω

|∇v|2ϕ dxdt +

∫ T

0

∫
Ω

∆ϕ(
1
2
|v|2) dxdt.

For the terms in the left side, we estimate them one by one as follows:

(LHS)1 =

∫ T

0

∫
Ω

∂

∂t
(
1
2
|v|2ϕ) dxdt −

∫ T

0

∫
Ω

1
2
|v|2∂tϕ dxdt

= −

∫ T

0

∫
Ω

1
2
|v|2∂tϕ dxdt.

By the divergence free condition of v, we can conclude that

(LHS)2 =

∫ T

0

∫
Ω

v · ∇(
1
2
|v|2ϕ) dxdt −

∫ T

0

∫
Ω

1
2
|v|2v · ∇ϕ dxdt

= −

∫ T

0

∫
Ω

div(v)(
1
2

v2ϕ) dxdt −
∫ T

0

∫
Ω

1
2
|v|2v · ∇ϕ dxdt

= −

∫ T

0

∫
Ω

1
2
|v|2v · ∇ϕ dxdt.

Finally we turn to the last term. By the divergence free condition of v, we have

(LHS)3 =

∫ T

0

∫
Ω

∇p(vϕ) dxdt

= −

∫ T

0

∫
Ω

pdiv(vϕ) dxdt

= −

∫ T

0

∫
Ω

pv · ∇ϕ dxdt.

Putting all these estimates together, we obtain the generalized energy inequality. �
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Remark 8.1. If ϕ ∈ C∞0 (Ω × (0, t]), ϕ ≥ 0, then the generalized energy inequality (8.3)
yields∫

Ω

|v|2ϕ dx
∣∣∣
t
+2

∫ t

0

∫
Ω

|∇v|2ϕ dxdt ≤
∫ t

0

∫
Ω

|v|2(ϕt + ∆ϕ) dxdt+
∫ t

0

∫
Ω

(|v|2 + 2p)v · ∇ϕ dxdt.

(8.4)

Proof. For t0 > 0 and 0 < ε < t0, let ηε ∈ C∞0 (R) be a cut off function such that

ηε(s) =


1, 0 ≤ s ≤ t0 − ε,

linear, otherwise,
0, s ≥ t0.

(8.5)

Then ϕ(x, t)ηε(t) ∈ C∞0 (Ω × (0, t0)) and the previous energy inequality yields

2
∫ t0

0

∫
Ω

|∇v|2ϕηε dxdt ≤
∫ t0

0

∫
Ω

|v|2
[
(ϕt + ∆ϕ)ηε + ϕη′ε

]
dxdt

+

∫ t0

0

∫
Ω

(|v|2 + 2p)v · (∇ϕηε) dxdt.

Taking ε ↓ 0, we have

2
∫ t0

0

∫
Ω

|∇v|2 dxdt ≤
∫ t0

0

∫
Ω

|v|2
[
(ϕt + ∆ϕ)

]
dxdt +

∫ t0

0

∫
Ω

(|v|2 + 2p)v · (∇ϕ) dxdt

+ lim
ε↓0

∫ t0

0

∫
Ω

|v|2ϕη′ε dxdt.

Thanks to the definition of ηε , it is easy to show that

lim
ε↓0

∫ t0

0

∫
Ω

|v|2ϕη′ε dxdt = −

∫
Ω

|v|2ϕ(x, t0) dx.

Thus we can get∫
Ω

|v|2(x, t0)ϕ(x, t0) dx + 2
∫ t0

0

∫
Ω

|∇v|2ϕ dxdt ≤
∫ t0

0

∫
Ω

|v|2(ϕt + ∆ϕ) dxdt

+

∫ t0

0

∫
Ω

(|v|2 + 2p)v · ∇ϕ dxdt.

�

Remark 8.2. Now we make some comments:

• It is an open problem whether Leray-Hopf’s weak solutions (e.g., constructed by
Galerkin’s method) are suitable weak solutions.

• However, Caffarelli-Kohn-Nirenberg did obtain the existence of suitable weak so-
lutions by a different method.
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Scheffer’s partial regularity
(1) It is well-known that if (u, p) solves the Navier-Stokes equation, then so does (uλ, pλ)
for all λ > 0 in Rn, where uλ(x, t) = λu(λx, λ2t),

pλ(x, t) = λ2 p(λx, λ2t).

(2) If v ∈ L∞t L2
x(QT ) ∩ L2

t H1
x(QT ), then v ∈ L

10
3 (QT ).

Proof. It is a direct consequence of interpolations. For the convenience, we present the
details. For 2 ≤ p ≤ 2∗(= 6), one has

‖v(t)‖Lp(R3) ≤ ‖v(t)‖θL2(R3)‖v(t)‖1−θL2∗ (R3),

where

1
p

=
θ

2
+

1 − θ
2∗

. (8.6)

Taking the Lq−norm with respect to time variable, we have( ∫ T

0
‖v(t)‖qLp dt

) 1
q
≤
( ∫ T

0
‖v(t)‖qθ

L2‖v(t)‖q(1−θ)
L2∗ dt

) 1
q

≤‖v‖θL∞t L2
x

( ∫ T

0
‖∇v(t)‖q(1−θ)

L2 dt
) 1

q
.

Choose q such that q(1 − θ) = 2. Together with (8.6), we can show that

1
p

=
1 − 2

q

2
+

1
3q

=
1
2
−

1
q

+
1
3q

=
1
2

+
2

3q
,

or equivalently,

3
p

+
2
q

=
3
2
. (8.7)

Thus we have
‖v(x, t)‖Lq

t Lp
x
. ‖v(x, t)‖

1− 2
q

L∞t L2
x
‖v(x, t)‖

2
q

L2
t L2

x
.

Choose p = q = 10
3 . The proof is complete. �

(3) Leray-Hopf solutions satisfy the following estimates:

•
∫ T

0

∫
Ω

(|v|
10
3 + |p|

5
3 ) dxdt < ∞,

•
∫ T

0

∫
Ω
|∇v|2 dxdt < ∞.

Theorem 8.2 (ε0-regularity). Let Qr , {(x, t)| |x| ≤ r, −r2 ≤ t ≤ 0}. There exists ε0 > 0
such that if (v, p) is a suitable weak solution of (8.1) in Qr and satisfies

r−2
∫

Qr

(|v|3 + |p|
3
2 ) dxdt ≤ ε0,

then v ∈ C∞(Q r
2
,R3) and ‖v‖Ck(Q r

2
) ≤ C(ε0, k, r).
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Lemma 8.3 (ε0−decay). There exist ε0 > 0 and θ0 ∈ (0, 1
2 ) such that if (v, p) is a suitable

weak solution of (8.1) in Qr satisfying

r−2
∫

Qr

(|v|3 + |p|
3
2 ) dxdt ≤ ε0,

then
(θ0r)−2

∫
Qθ0r

(|v|3 + |p|
3
2 ) dxdt ≤

1
2

r−2
∫

Qr

(|v|3 + |p|
3
2 ) dxdt.

Proof. (By contradiction)
Firstly, by scalings, we may assume that r = 1. If the conclusion were false, then for any
θ ∈ (0, 1

2 ), there would exist a sequence of suitable weak solutions (vi, pi) of (1.1) that
satisfying ( ∫

Q1

|vi|
3 dxdt

) 1
3

+
( ∫

Q1

|pi|
3
2 dxdt

) 2
3

= εi → 0,

but (
θ−2

∫
Qθ

|vi|
3 dxdt

) 1
3

+
(
θ−2

∫
Qθ

|pi|
3
2 dxdt

) 2
3
>

1
2
εi.

Next we define the blow-up sequence

ui =
vi

εi
, Qi =

pi

εi
.

Then one has

( ∫
Q1

|ui|
3 dxdt

) 1
3

+
( ∫

Q1

|Qi|
3
2 dxdt

) 2
3

=

( ∫
Q1
|vi|

3 dxdt
) 1

3
+

( ∫
Q1
|pi|

3
2 dxdt

) 2
3

εi
= 1,

while (
θ−2

∫
Qθ

|ui|
3 dxdt

) 1
3

+
(
θ−2

∫
Qθ

|Qi|
3
2 dxdt

) 2
3

=
1
εi

(
θ−2

∫
Qθ

|vi|
3 dxdt

) 1
3

+
(
θ−2

∫
Qθ

|pi|
3
2 dxdt

) 2
3

>
1
2
.

It is easy to show that (ui,Qi) satisfies the following blow-up equations ∂tui + εiui · ∇ui + ∇Qi = ∆ui, in R3 × (0,∞),

div ui = 0, in R3 × (0,∞).
(8.8)

We may assume that

ui ⇀ u weakly in L3(Q1), Qi ⇀ Q weakly in L
3
2 (Q1).

Then we can show (u,Q) solves the linear Stokes equation ∂tu + ∇Q = ∆u, in R3 × (0,∞),

div u = 0, in R3 × (0,∞).
(8.9)
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and by the lower semicontinuity,( ∫
Q1

|u|3 dxdt
) 1

3
+

( ∫
Q1

|Q|
3
2 dxdt

) 2
3
≤ 1,

By the regularity of the Stokes equation, we have (u,Q) ∈ C∞(Q 1
2
) and

(
θ−2

∫
Qθ

|u|3 dxdt
) 1

3
+

(
θ−2

∫
Qθ

|Q|
3
2 dxdt

) 2
3

≤Cθ
{( ∫

Q1

|u|3 dxdt
) 1

3
+

( ∫
Q1

|Q|
3
2 dxdt

) 2
3
}

≤Cθ.

Now we want to show that(
θ−2

∫
Qθ

|ui|
3 dxdt

) 1
3
≈

(
θ−2

∫
Qθ

|u|3 dxdt
) 1

3
+ o(

1
i
)

and (
θ−2

∫
Qθ

|Qi|
3
2 dxdt

) 2
3
≈

(
θ−2

∫
Qθ

|Q|
3
2 dxdt

) 2
3

+ o(
1
i
).

Suppose that these were established. Then we reach the desired contradiction.
By the Aubin-Lions lemma, whose condition will be verified below, the generalized

energy inequality for (vi, pi): for ∀ − 1
4 ≤ t ≤ 0 and ϕ ∈ C∞c (B1 × [−1, t]) with φ ≥ 0,∫

B1

|vi|
2(x, t)ϕ(x, t) dx + 2

∫ t

0

∫
B1

|∇vi|
2(x, t)ϕ(x, t) dxdt

≤

∫ t

0

∫
B1

|vi|
2(ϕt + ∆ϕ) dxdt +

∫ t

0

∫
B1

(|vi|
2 + 2pi)vi · ∇ϕ dxdt,

yields that (ui,Qi) satisfies∫
B1

|ui|
2(x, t)ϕ(x, t) dx + 2

∫ t

0

∫
B1

|∇ui|
2(x, t)ϕ(x, t) dxdt

≤

∫ t

0

∫
B1

|ui|
2(ϕt + ∆ϕ) dxdt +

∫ t

0

∫
B1

(εi|ui|
2 + 2Qi)ui · ∇ϕ dxdt,

Therefore, we can deduce that

sup
− 1

4≤t≤0

∫
B 1

2

|ui|
2(x, t) dx + 2

∫ 0

− 1
4

∫
B 1

2

|∇ui|
2(x, t) dxdt

.

∫
P1

(|ui|
2 + εi|ui|

3 + |Qi||ui|) dxdt,

.
( ∫

P1

|ui|
3 dxdt

) 2
3

+ εi

∫
P1

|ui|
3 dxdt +

( ∫
P1

|Qi|
3
2 dxdt

) 2
3
( ∫

P1

|ui|
3 dxdt

) 1
3

.1,

where we have used the Hölder inequality.
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Now we verify the condition of Aubin-Lions’ lemma.

∂tui = −εiui · ∇ui − ∇Qi + ∆ui,

It is not hard to see that

∆ui ∈ H−1(R3), ∇Qi ∈ (W1,3
0 )∗ = W−1, 3

2 .

and
εiui · ∇ui ∈ L

5
4 (R3),

because that u ∈ L
10
3 (QT ) and ∇u ∈ L2(QT ).

Therefore
∂tui ∈ L2

t H−1
x + L

5
4
t L

5
4
x + L

3
2
t W−1, 3

2
x ,

and ∥∥∥∥∂tui

∥∥∥∥
L2

t H−1
x +L

5
4
t L

5
4
x +L

3
2
t W

−1, 32
x (Q 1

2
)

is bounded uniformly in i. By the Aubin-Lions Lemma, we conclude that {ui}
∞
i=1 ⊂ L2(P 1

2
)

is pre-compact. Thus, after taking a subsequence if necessary, we may assume that

ui → u strongly in L3(Q 1
2
)

which implies that (
θ−2

∫
Pθ
|ui|

3 dxdt
) 1

3
=
(
θ−2

∫
Pθ
|u|3 dxdt

) 1
3

+ o(
1
i
)

.Cθ + o(
1
i
).

Since Qi satisfies the Poisson equation: for any t ∈ [−1, 0],

−∆Qi = εidiv(ui · ∇ui) = εidiv(div(ui ⊗ ui)) in B1.

Let Q̃i : R3 → R satisfy

Q̃i(x, t) = −
1

4π

∫
R3

D2
α,β(

1
|x − y|3

) : χB1(y)εiuαi uβi (y, t) dy.

Then
−∆Q̃i = εidiv(div(ui ⊗ ui)) in B1.

Hence
−∆(Qi − Q̃i) = 0 in B1.

One thus deduces from the boundedness of Calderon-Zygmund operators, we have

‖Q̃i‖
3
2

L
3
2 (R3)
.εi‖ui ⊗ ui‖

3
2

L
3
2 (R3)

.εi‖ui‖
3
L3(R3).

Thus we obtain ∫ 0

−1

∫
R3
|Q̃i|

3
2 dxdt . εi

∫ 0

−1

∫
B1

|ui|
3 dxdt ≤ Cεi.
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By the mean value property of harmonic functions, we have

θ−3
∫

Bθ
|Qi − Q̃i|

3
2 dx ≤

∫
B1

|Qi − Q̃i|
3
2 dx.

Therefore
θ−2

∫
Pθ
|Qi − Q̃i|

3
2 dx ≤ Cθ.

Thus we have(
θ−2

∫
Pθ
|Qi|

3
2 dx

) 2
3
.
(
θ−2

∫ 0

−1

∫
R3
|Q̃i|

3
2 dx

) 2
3

+
(
θ−2

∫
Pθ
|Qi − Q̃i|

3
2 dx

) 2
3

≤Cθ
2
3 + (εiθ

2)
2
3

≤
1
8
,

provided that i is chosen sufficiently large and θ is chosen sufficiently small. This contra-
dicts the choices of (vi, pi). �

Lemma 8.4. There exist ε0 > 0 and α0 ∈ (0, 1
2 ) such that if (v, p) is a suitable weak

solution of (8.1) in Pr satisfying(
r−2

∫
Pr(x0,t0)

|v|3 dxdt
) 1

3
+

(
r−2

∫
Pr(x0,t0)

|p|
3
2 dxdt

) 2
3
≤ ε0,

then for any (x1, t1) ∈ P r
2
(x0, t0) and 0 < τ ≤ r

2(
τ−2

∫
Pτ(x1,t1)

|v|3 dxdt
) 1

3
+

(
τ−2

∫
Pτ(x1,t1)

|p|
3
2 dxdt

) 2
3
≤ C(ε0)τα0 .

Proof. For simplicity, we assume (x0, t0) = (0, 0) and (x1, t1) = (0, 0). Iterating the above
process k-times, we arrive at(

(θkr)−2
∫

P
θkr

|v|3 dxdt
) 1

3
+

(
(θkr)−2

∫
P
θkr

|p|
3
2 dxdt

) 2
3

≤(
1
2

)k
{(

r−2
∫

Pr

|v|3 dxdt
) 1

3
+

(
r−2

∫
Pr

|p|
3
2 dxdt

) 2
3
}
.

For 0 < τ ≤ r
2 , there exists k ≥ 1 such that θk+1r ≤ τ ≤ θkr.

Hence

θk ≈
τ

r
⇒ k ≈

ln( τr )
ln θ

.

Therefore (
τ−2

∫
Pτ(x1,t1)

|v|3 dxdt
) 1

3
+
(
τ−2

∫
Pτ(x1,t1)

|p|
3
2 dxdt

) 2
3

≤(
1
2

)
ln( τr )
ln θ ε0

≤(
τ

r
)α0ε0,

where α0 =
ln 1

2
ln θ ∈ (0, 1). �
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Riesz potential estimates between on Morrey spaces

• Morrey spaces: For 1 ≤ p ≤ ∞ and 0 ≤ λ ≤ 5, define

Mp,λ(R3 × R) ≡
{
f ∈ Lp

loc(R
3 × R)| ‖ f ‖Mp,λ(R3×R) < ∞

}
,

where
‖ f ‖p

Mp,λ(R3×R) ≡
{

sup
z0∈R3×R, 0<r<∞

rλ−5
∫ ∫

Pr(z0)
| f |p dydt

}
.

• Let η ∈ C∞0 (Pr(0, 0)) such that

0 ≤ η ≤ 1, φ ≡ 1 in P r
2
(0, 0), |∇2η| + |φt| + |∇η|

2 .
1
r2 .

Define v by

vi(x, t) = −

∫
R4
∇ jH(x − y, t − s)[η2uiu j](y, s) dyds

−

∫
R4
∇iH(x − y, t − s)η2 p(y, s) dyds,

where
H(x, t) =

1

(4πt)
3
2

e−( |x|
2

4t )

is the heat kernel in R3. Note that

|∇H(x, t)| .
1

δ((x, t), (0, 0))5−1 ,

where
δ((x, t), (0, 0)) , max{|x|,

√
|t|}

is the parabolic norm in the space R4 = R3 × R.
Define the parabolic Riesz potential of α-order:

Iα f (x, t) ≡
∫
R4

| f (y, s)|
δ(x − y, t − s)5−α dyds

for 0 ≤ α ≤ 5. Therefore we have

|v(x, t)| . I1(η2(|u|2 + |p|))(x, t).

Note that
η2(|u|2 + |p|) ∈ M

3
2 ,3(1−α)(R4)

and ∥∥∥∥η2(|u|2 + |p|)
∥∥∥∥

M
3
2 ,3(1−α)(R4)

≤ Cε0.

Lemma 8.5. For 1 < p < λ and 0 < λ < 5, I1 : Mp,λ(R4) ↪→ M p̃,λ(R4), where p̃ =
λp
λ−p .

Moreover
‖I1( f )‖M p̃,λ(R4) . ‖ f ‖Mp,λ(R4).
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Proof. The proof can be founded in Huang-Wang’s paper. �

Now we continue the proof. By the lemma, we can obtain

‖v‖M p̃,3−3α(R4) . ‖η
2(|u|2) + |p|)‖

M
3
2 ,3−3α(R4)

,

where

p̃ =

3
2 (3 − 3α)

3
2 − (3 − 3α)

=

3
2 (3 − 3α)

3α − 3
2

=
3(1 − α)
2α − 1

→ ∞ as α ↓
1
2
.

Hence we have
‖v‖Lq(Pr) ≤ C(q, r)

{
‖u‖L3(Pr) + ‖p‖

L
3
2 (Pr)

}
Since

∂tv − ∆v = −(u · ∇u + ∇p) in P r
2
,

it follows
∂t(u − v) = 0 in P r

2
.

Thus
u − v ∈ L∞(P r

4
).

Therefore we obtain that for any 1 < q < ∞

u ∈ Lq(P r
4
).

Since
−∆p = div(div(u ⊗ u)) in B1,

one also has that p ∈ Lq(P r
8
) and∫

P r
8

|p|q .
( ∫

P1

|p|2
) q

2 +

∫
P1

|u|2q.

Therefore we have that for any 1 < q < ∞, (u, p) ∈ Lq(P r
8
) Hence v ∈ C∞(P r

8
,R3) and

‖v‖Ck(P r
8

) ≤ C(ε0, k, r).

Strong version of ε0-regularity

Theorem 8.6. There exists ε0 > 0 if (v, p) is a suitable weak solution satisfying

lim
r→0

r−1
∫ ∫

Pr

|∇v| dxdt ≤ ε0, (8.10)

then ∃ θ0 ∈ (0, 1) and r0 ∈ (0, 1) such that either

A
3
2 (θ0r) + D2(θ0r) ≤

1
2

(A
3
2 (r) + D2(r)), (8.11)

or

(A
3
2 (r) + D2(r)) ≤ ε1 � 1 where 0 < r < r0. (8.12)

Here

A(r) ≡ sup
−r2≤t≤0

r−1
∫

Br

|v|2(x, t) dx, D(r) ≡ r−2
∫ ∫

Pr

|p|
3
2 (x, t) dxdt.
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Preparation of the proof.
I) Some interpolation inequalities: For Br ⊂ R

3 (the ball of radial r) and for every
2 ≤ q ≤ 6, and a = 3

2 (1 − q
6 ), we have∫

Br

|v|q(x, t) dx .
( ∫

Br

|∇v|2(x, t) dx
) q

2−a( ∫
Br

|v|2(x, t) dx
)a

+ r3(1− q
2 )
( ∫

Br

|v|2(x, t) dx
) q

2
. (8.13)

Proof of inequality (8.13). First, we have( ∫
Br

|v|q dx
) 1

q
.
( ∫

Br

|v − vr|
q dx

) 1
q

+ r
3
q

1
|Br|

∫
Br

|v| dx

.
( ∫

Br

|v − vr|
2 dx

) θ
2
( ∫

Br

|v − vr|
6 dx

) 1−θ
6

+ r
3
q

1
|Br|

( ∫
Br

|v|2 dx
) 1

2
|Br|

1
2

where θ ∈ (0, 1) satisfies

1
q

=
θ

2
+

1 − θ
6

(8.14)

.
( ∫

Br

|v|2 dx
) θ

2
( ∫

Br

|∇v|2 dx
) 1−θ

2
+ r

3
q−

3
2
( ∫

Br

|v|2 dx
) 1

2
.

Thus we can get the following inequality∫
Br

|v|q dx .
( ∫

Br

|v|2 dx
) qθ

2
( ∫

Br

|∇v|2 dx
) q(1−θ)

2
+ r3− 3q

2
( ∫

Br

|v|2 dx
) q

2
.

Now we set a =
qθ
2 and we have from (8.14) that θ = ( 1

q −
1
6 ) × 3 = 3

q −
1
2 . Hence

a =
q
2

(
3
q
−

1
2

) =
3
2

(1 −
q
6

) ∈ (0,
3
2

).

II) Next we define some quantities which are useful as follows

A(r) ≡ sup
−r2≤t≤0

1
r

∫
Br

|v|2(x, t) dx,

B(r) ≡
1
r

∫
Pr

|∇v|2(x, t) dxdt,

C(r) ≡
1
r2

∫
Pr

|v|3(x, t) dx,

and
Pr ≡ Br × [−r2, 0],

Lemma 8.7. For any v ∈ L∞([−r2, 0]; L2) ∩ L2([−r2, 0]; H1) it holds for any 0 < r ≤ ρ

C(r) .
( r
ρ

)3
A

3
2 (ρ) +

(ρ
r

)3
A

3
4 (ρ)B

3
4 (ρ). (8.15)
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Proof. With the help of (8.13), we obtain∫
Br

|v|3(x, t) dx .
( ∫

Br

|∇v|2(x, t) dx
) 3

4
( ∫

Br

|v|2(x, t) dx
) 3

4
+ r−

3
2
( ∫

Br

|v|2(x, t) dx
) 3

2
. (8.16)

Some computations show that∫
Br

|v|2 dx .
∫

Br

∣∣∣∣|v|2 − (|v|2)Bρ

∣∣∣∣ dx +
( r
ρ

)3
∫

Bρ
|v|2 dx

. ρ

∫
Bρ
|v||∇v| dx +

( r
ρ

)3
∫

Bρ
|v|2 dx

. ρ
3
2
(
ρ−1

∫
Bρ
|v|2 dx

) 1
2
( ∫

Bρ
|∇v|2 dx

) 1
2

+
( r
ρ

)3
∫

Bρ
|v|2 dx

. ρ
3
2 A

1
2 (ρ)

( ∫
Bρ
|∇v|2 dx

) 1
2

+
( r
ρ

)3
ρA(ρ). (8.17)

Substituting the estimate (1.8) into the second term of the right hand side of (8.16), we
can conclude that∫

Br

|v|3(x, t) dx . ρ
3
4
(
ρ−1

∫
Br

|∇v|2(x, t) dx
) 3

4
( ∫

Br

|v|2(x, t) dx
) 3

4
+ r−

3
2
( ∫

Br

|v|2(x, t) dx
) 3

2

. ρ
3
4 A

3
4 (ρ)

( ∫
Br

|∇v|2(x, t) dx
) 3

4
+ r−

3
2
( ∫

Br

|v|2(x, t) dx
) 3

2

.
{
ρ

3
4 +

ρ
9
4

r
3
2

}( ∫
Br

|∇v|2(x, t) dx
) 3

4 A
3
4 (ρ) +

( r
ρ

)3
A

3
2 (ρ).

Integrating the resulting inequality over [−r2, 0] together with Hölder’s inequality yields

1
r2

∫
Pr

|v|3(x, t) dx .
( r
ρ

)3
A

3
2 (ρ) +

{
ρ

3
4 +

ρ
9
4

r
3
2

} ∫ 0

−r2

( ∫
Br

|∇v|2(x, t) dx
) 3

4 dtA
3
4 (ρ)

.
( r
ρ

)3
A

3
2 (ρ) + r−

3
2
{
ρ

3
4 +

ρ
9
4

r
3
2

}
A

3
4 (ρ)B

3
4 (ρ)ρ

3
4

.
( r
ρ

)3
A

3
2 (ρ) +

{
(
ρ

r
)

3
2 + (

ρ

r
)3
}
A

3
4 (ρ)B

3
4 (ρ)

.
( r
ρ

)3
A

3
2 (ρ) + (

ρ

r
)3A

3
4 (ρ)B

3
4 (ρ).

Thus we get

C(r) .
( r
ρ

)3
A

3
2 (ρ) +

(ρ
r

)3
A

3
4 (ρ)B

3
4 (ρ).

This completes the proof. �

Lemma 8.8 (pressure estimate). Let (v, p) be a weak solution of (8.1) in P1. Then for any
0 < r ≤ 1 and 0 < τ ≤ r

2 , it holds

1
τ2

∫
Pτ
|p|

3
2 (x, t) dxdt .

( r
τ

)2 1
r2

∫
Pr

|v − vr(t)|3(x, t) dxdt +
τ

r
1
r2

∫
Pr

|p|
3
2 (x, t) dxdt. (8.18)
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Proof. Since all the quantities are scaling invariant , we only consider the case r = 1.
Taking use of the divergence-free condition of v, we deduce from (8.1) that

−∆p = div(v · ∇v) = div(div(v ⊗ v)) = div(div((v − v1) ⊗ (v − v1))).

Here v1 is the average of v over P1. Let η ∈ C∞0 (R3) be a cut off function of B 1
2

such that
η ≡ 1, in B 1

2
,

η ≡ 0, in Rn \ B1,

0 ≤ η ≤ 1, |∇η| ≤ 8.

(8.19)

Now we define an axillary function

p̃(x, t) = −

∫
R3
∇2

yG(x − y) : η2(y)(v − v1) ⊗ (v − v1)(y, t) dy.

By an easy calculation, we have that

−∆ p̃ = div(div((v − v1) ⊗ (v − v1))) in B 1
2
,

−∆(p − p̃) = 0 in B 1
2
.

One thus deduces from the boundedness of Calderon-Zygmund operators shows that

‖ p̃‖
3
2

L
3
2 (R3)
. ‖η2(v − v1)2‖

3
2

L
3
2 (R3)
.

∫
B1

|v − v1|
3 dx.

Together with the change of variable, we have

1
τ2 ‖p − p̃‖

3
2

L
3
2 (Bτ)
. τ‖p − p̃‖

3
2

L
3
2 (B1)
. τ(‖p‖

3
2

L
3
2 (B1)

+ ‖ p̃‖
3
2

L
3
2 (B1)

).

Integrating above inequality over [−r2, 0], we get

1
τ2

∫
Pτ
|p|

3
2 (x, t) dxdt . τ

( ∫
P1

|p|
3
2 (x, t) dxdt +

∫
P1

|v − v1|
3 dxdt

)
.

Thus
1
τ2

∫
Pτ
|p|

3
2 (x, t) dxdt . τ

∫
P1

|p|
3
2 (x, t) dxdt +

1
τ2

∫
P1

|v − v1|
3 dxdt.

Together with the following interpolation inequality

1
ρ2

∫
Pρ
|v − vρ|3 dxdt . sup

−ρ2≤t≤0

(
ρ−1

∫
Bρ
|v|2(x, t) dx

) 3
4
(
ρ−1

∫
Pρ
|∇v|2(x, t) dxdt

) 3
4
,

the following holds

D(r) ≤ C
{ r
ρ

D(ρ) +
(ρ

r

)2
A

3
4 (ρ)B

3
4 (ρ)

}
.
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Now we employ the local energy inequality as follows. Let φ ∈ C∞0 (Pρ) be a function
such that φ ≡ 1 in Pr and |∇φ| . 1

ρ
, |∇2φ| + |φt| .

1
ρ2 .

Then we have that

sup
−r2≤t≤0

r−1
∫

Pr

|∇v|2(x, t) dxdt + r−1
∫

Br

|v|2(x, t) dx

.

∫
Pρ
|v|2(|φt| + |∆φ|) dxdt +

∫
Pρ

(|v|2 + 2p)v · ∇φ dxdt

.
1
ρ2

∫
Pρ
|v|2 dxdt +

∫
Pρ

(|v|2 − |v|2ρ)v · ∇φ dxdt +

∫
Pρ

2pv · ∇φ dxdt

.
1
ρ2

∫
Pρ
|v|2 dxdt +

1
ρ

∫
Pρ

(||v|2 − |v|2ρ|)|v| dxdt +
1
ρ

∫
Pρ
|p||v| dxdt.

Putting all these estimates together, we have

A(r) + B(r) .
ρ

r
C

2
3 (ρ) +

ρ

r
A

1
2 (ρ)B

1
2 (ρ)C

1
3 (ρ) +

ρ

r
C

1
3 (ρ)D

2
3 (ρ),

D(r) .
r
ρ

D(ρ) +
(ρ

r

)2
A

3
4 (ρ)B

3
4 (ρ),

C(r) .
( r
ρ

)3
A

3
2 (ρ) +

(ρ
r

)3
A

3
4 (ρ)B

3
4 (ρ).

Therefore we can deduce that

A(θ0r) + B(θ0r) . θ−1
0

{
C

2
3 (r) + A

1
2 (r)B

1
2 (ρ)C

1
3 (ρ) + C

1
3 (ρ)D

2
3 (r)

}
,

D2(θ0r) . θ2
0

(
D2(r) + θ−6

0 A
3
2 (r)B

3
2 (r)

)
,

C(θ0r) . θ3
0A

3
2 (r) + θ−3

0 A
3
4 (r)B

3
4 (r).

A(θ2
0r) .θ−1

0 C
2
3 (θ0r) + θ−1

0 A
1
2 (θ0r)B

1
2 (θ0r)C

1
3 (θ0r) + θ−1

0 C
1
3 (θ0r)D

2
3 (θ0r)

.θ−1
0

(
θ2

0A(r) + θ−2
0 A

1
2 (r)B

1
2 (r)

)
+ θ

− 11
6

0

{
C

2
3 (r) + A

1
2 (r)B

1
2 (ρ)C

1
3 (ρ) + C

1
3 (ρ)D

2
3 (r)

} 5
6

×
{
θ3

0A
3
2 (r) + θ−3

0 A
3
4 (r)B

3
4 (r)

} 1
3

+ θ−1
0

{
θ3

0A
3
2 (r) + θ−3

0 A
3
4 (r)B

3
4 (r)

} 1
3

×
{
θ2

0

(
D2(r) + θ−6

0 A
3
2 (r)B

3
2 (r)

)} 2
3
.

Therefore we can deduce that

A(θ2
0r)

3
2 + D2(θ0r) . Cθ0

(
A(r)

3
2 + D2(r)

)
+ ε1

where
ε1 ≈ θ

−N
0 B(r).

If we choose r0 sufficiently small, then we can guarantee that for 0 < r ≤ r0 there exists
ε1 � 1 such that
If A(r)

3
2 + D2(r) ≤ 8ε1, then the ε0−regularity theorem implies (0, 0) is a smooth point.
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For otherwise, A(r)
3
2 + D2(r) > 8ε1, for any for 0 < r ≤ r0.

Hence,

A(θ2
0r)

3
2 + D2(θ0r) .Cθ0

(
A(r)

3
2 + D2(r)

)
+

1
8

(
A(r)

3
2 + D2(r)

)
≤(Cθ0 +

1
8

)
(
A(r)

3
2 + D2(r)

)
≤

1
2

(
A(r)

3
2 + D2(r)

)
.

After iterating finitely many times, it reduce to the former case. �

Theorem 8.9 (Compactness of suitable weak solutions). Let (vn, pn) be a sequence of
suitable weak solution of (8.1) in P1 such that

sup
−1≤t≤0

∫
B1

|vn|
2(x, t) dx ≤ C1,

∫
P1

|∇vn|
2(x, t) dxdt ≤ C2,∫

P1

|p|
3
2 (x, t) dxdt ≤ C3.

Suppose
vn ⇀ v weakly in L∞t L2

x ∩ L2
t H1

x

pn ⇀ p weakly in L3
x.

Then (v, p) is also a suitable weak solution of (8.1).

Proof. It is sufficient to show that vn ⇀ v strongly in La for 1 ≤ a < 10
3 . Assume that this

is true for the moment. Then by the local energy inequality for (vn, pn), we have

2
∫

P1

|∇vn|
2φ dxdt .

∫
P1

|vn|
2(|φt| + |∆φ|) dxdt +

∫
P1

(|vn|
2 + 2pn)vn · ∇φ dxdt.

Thus we take the limit,

2 lim
n

∫
P1

|∇vn|
2φ dxdt ≤

∫
P1

|v|2(|φt| + |∆φ|) dxdt +

∫
P1

(|v|2 + 2p)v · ∇φ dxdt.

By the lower semicontinity, we have∫
P1

|∇v|2φ dxdt ≤ lim
n

∫
P1

|∇vn|
2φ dxdt.

Let
Z = H−2(B1) = (H2

0(B1))∗.

Since ∂tvn = −(vn · ∇vn + ∇Pn − ∆vn), we have

‖∂tvn‖
3
2

L
3
2 ([−1,0];Z)

≤ C0,
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where C0 depends only on C1,C2,C3.
Thus

vn ∈ C([−1, 0]; Z), ∀n.

Applying the well-known Aubin-Lions Lemma, we have that vn ⇀ v strongly in L2.
Therefore, by the interpolation inequalities, we also have that vn ⇀ v strongly in La for
1 ≤ a < 10

3 . �

Theorem 8.10. Let (v, p) be a suitable weak solution of (8.1), then P1(sing(v)) = 0,
where sing(v) denotes the discontinuous set of v. Here P1 is the 1-dimensional Hausdorff
measure in R4 with respect to the parabolic norm δ:

P1(E) ≡ lim
δ↓0
P1
δ(E),

and

P1
δ(E) ≡ inf

{ ∞∑
i=1

ri :
∞⋃

i=1

Pri(xi, ti) ⊃ E, ri ≤ δ
}
.

Proof.

(x, t) ∈ sing(v)⇐⇒ lim
r→0

r−1
∫

Pr(x,t)
|∇v|2 dxdt ≥ ε1.

Let V be a neighborhood of sing (v) and δ > 0 such that for all (x, t) ∈ sing(v) and ∀r < δ
such that

r−1
∫

Pr(x,t)
|∇v|2 dxdt ≥ ε1, Pr(x, t) ⊂ V.

By Vitali’s five times covering Lemma, ∃(xi, ti) ∈ V, 0 < ri < δ such that {Pri(xi, ti)}∞i=1 are

mutually disjoint and
∞⋃

i=1

P5ri(xi, ti) ⊃ sing(v). Therefore we can obtain

∑
i

ri ≤
1
ε1

∑
i

∫
Pri (xi,ti)

|∇v|2 dxdt

≤
1
ε1

∫
⋃

i Pri (xi,ti)
|∇v|2 dxdt

≤
1
ε1

∫
⋃

i Pri (xi,ti)
|∇v|2 dxdt

≤
1
ε1

∫
V
|∇v|2 dxdt.

Now we can get

P1
5δ(sing(v)) ≤

∑
i

5ri ≤
5
ε1

∫ ∫
V
|∇v|2 dxdt < +∞.

Therefore sing(v) has zero Lesbegue measure so that |V | can be arbitrarily small. By the
absolute continuity , we have ∫

V
|∇v|2 dxdt → 0

as |V | → 0. Hence
lim
δ→0
P1

5δ(sing(v)) = 0.

Thus P1(sing(v)) = 0. �
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