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Lecture One: December 19, 2012

1 The Background

Let u(x, ) denote the velocity field of the underlying fluid, x € Q Cc R" (n > 2), and Q is
a domain representing the container of fluid. Consider the deformation

x = x(a, 1),

where x is the Eulerian coordinate and « is the Lagrangian coordinate. Then

d—); = u(x, 1),
x(a,0) = a.

Thus the time-dependent accelerations is given by

d* d Ou dx; G,
a=-5%= Eu(x(a,t),t):ut+a—;d—); :u,+ula—f:i =u, + (u-Vu.

From now on, we denote the material derivative as

Du

—=u,+ (u-Vu,

D =t @ V)
the second term is called convective acceleration term. Let p denote the density of fluid.
Then by the conservation law of mass, for any O C Q, the rate of change of mass of fluid

over O is equal to the mass flux over O, that is,

i o=,
— | pdx=- pu-vdo.
dt Jo 80

Using divergence theorem, we have

d
—fpdx:—fdiv(pu)dx.
dt Jo 0

Then by the arbitrary of O, we have

dp

-+ diviou) =0.

This is called the continuity equation.
By the conversation of linear momentum (Newton’s second law: F' = ma), the external

body force
Du
=pa= + - Vu)=p—.
f=pa=pu+@-Vu) P
There is a problem, as the fluid has friction property (resistance of flow of fluid). The
“thin” the fluid is, the less frictional it acts; the “thick’ the fluid is, the more frictional it
acts. So viscosity is a measurement of the frictional property of a given fluid. Newtonian

fluid is a simple fluid that only has viscous property, no other properties (e.g. elasticity).
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The Cauchy stress tensor can be described as follows. fﬁ o TijV jdo, where 7;; = 7j;1s a
tensor of order n. For a fluid in steady state, we have

ff+f7'vd0':0.
0 80

f+divr =0.

This implies that

There are two forms of 7, for an ideal fluid (inviscid):
T=-pl,

where p = p(p) is the pressure and I, is the identity n X n-matrix. For a viscous fluid,
where the viscous stress exists, we have

T=-pl, + 0,
where o = (o) is the viscous stress given by

Vu + (Vu)"

oij = E(ui,j +uj) = >

This symmetric part of velocity gradient also represents the deformation stretching, and
the antisymmetric part of velocity gradient

Vu — (Vu)!
2

E(ui,j —uj;) =

represents the rigid rotation. There is another characterization of a simple, Newtonian
fluid that the shear stress depends linearly on the rate of strain e;; = 1(u; ; + u;;). That is,

o = L(e),
where L is independent of x. Moreover, for any Q € S O(3), L satisfies the property:

L(QeQ") = QL(e)Q.
It follows that

Vu + (Vu)"

> + A(div u)l,,,

Oij = 2,ue,-j + /lé,'jekk = 2[1

where p is the shear viscosity, which is a measurement of the frictional property of fluid
or the thickness of the fluid.
So the equation of steady states is

f+div(=pL+p(Vu+ (V") + Adivul,) = 0.
While the dynamical equation is

pluy+u-Vu) = f+div(=pl, + u(Vu+ (V)" ) + Adiv)l,).



If the fluid is incompressible, then divergence of u is free and hence
pu,+u-Vu)=f—-Vp+ uAu.

Here is the reason why an incompressible fluid has its velocity field being divergence free.
Consider the transformation x = ¢'(a, 1),

¢I
{d— = u(@' (e 1))

o(a,0) =a e R,
which transforms any open set O to another open set O,. Then we have
vol(O;) = vol(0).
Since
vol(0,) = fo det(V¢')da

1s constant in ¢, we have

d d '
0= E tZOVOI(Ot) = E‘t:ofadet(v‘/’l)da = Ltr(v wyda = j;dlvuda/.

In fact, we have
6¢’

10604]

dit‘t det(Ve') = Z] ,th

where A;; is the co-factor of o0 1n the Jacobian matrix (V¢). Using the factor
k

0
S 4L < 6, det(Vo),
7 0 aj

we have

d
Yt

(9¢i

t08a/]
‘Z o d¢
”8@, dt i
—ZAI,-a (e 0)
ou' ékbk
=) Ajj——o
iZj ](9¢k(9(l’j

a i
- Z aTLstk(s" S det(Vg)
— (div u) det(Vep),

%L det(Ve') = Z

»,

Since O is arbitrary, we have
divu = 0.
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1.1 The incompressible Euler equation

When u = 0, the fluid is ideal or inviscid and we have the incompressible, Euler equation

u+u-Vu+Vp=f
V-u=0.

Observe that we have

i fdx = f (f; + div(fu))dx.
dt Ol Ol

Indeed,
iffm:fﬂmemmwwx
dt ot o
) f (fi + Vf - u)det(Ve')dx + f f(¢'(x, 1), 0)(div ) det(Vg')dx
0 o
= f (f; + div(fu)) det(Ve')dx
0
O

Next, we give some properties of divergence free vector fields, e.g. translation, rigid
rotation and stretching.

u(xo + h, to) = u(xo, 10) + V u(xo, 10)h + O(h*),

For | 1
E:EWu+NmH Q:EWu—Nwﬂ

if divu = 0, then trE = 0. Recalling

w=curlu = ) —uz,uy — u;,u; — )",
we have 1
Qh=—-wX h.
2
On the other hand,

1
u(x,t9) = u(xo, to) + E(xo, 1o)(x — xp) + i X (x = Xp).
Solving the equation
X(a, 1) = u(xo, t0); x(,0) = a,

we have
x(a, ) = a+ u(xy, tp)(t — tp).

This corresponds to the translational motion.



Example 1.1. If wg = 0 and E = (—ry, —r2, 11 + 1) for some ry,r, > 0, then

T
u(x,t) = (=rixy, —rxy, (r; + r2)x3)" .

—rit () 0
0 e 0 |«

0 0 e+t

So
e

x(a,t) =
(x% + x%)(a/, 1) = 6_2(”“2)’(0% + a/g) - 0.

Example 1.2. If wy = 0 and E = (—r,1,0) for some r > 0, then

u(x,t) = (—rxy, rx,, 0)°.
xi(a,t)] [e 0 |fa
x(a, 1) Lo e|lan)
x3(a, t) = 3.

Example 1.3. If E = 0 and wy = (0,0, wy)?, then

1 1
u(x, ) = (=5 @oxa, 5wox1, 0)".

xi(a,0)] [cos¢p —sing ‘ ay
x(a,f)) \sing cosg Jlo=twot|a,)’
x3(a,t) = as.

Vorticity stretching: For Euler equation

{ut+Vp+u'Vu:O,

V-u=0,

we have that
Dw __ —
{E—arVu, n=23,
Dw __ —
E—O, n=2.

Let x(a, t) express the smooth particle trajectory corresponding to a divergence free vector

field u. Then we have that
{w(x(a, 1), 1) = Vu(x(a, 1), Dwo(@),

Q)(X(Q’, t)’ t) = (,()()(a’),

n=3

1.2 Leray’s reformulation of the Navier-Stokes equation

By
% =-Vp+uAu,
V-u=0,
we have o
~Ap =tr(Vu)* = Z uy uy,

ij



so that the pressure p solves the Poisson equation:

p(x) = N N(x = y)ae(Vu)*(y, ) dy,

provided that Vp vanishes sufficiently fast as |x| — +co, where
1
— log |x|, n=2,
N =427
2 -nw,

is the Newtonian potential. It follows that

x>, n >3,

A=)
R X =yl
so that the material derivative of u is given by

D —
2 e f ) (Vu(y, ) dy + phu
Dt re X — "

Next, we will prove divu = 0. Taking divergence on both sides of the Euler equation, we
have

Vp(x, 1) = —c, tr(Vu)* (v, 1) dy,

V-ul—=0.
Multiplying div u and integrating by parts yields

D
f —divudivu = —u f |Vdiv ul*.
Rn Dt Rn

d 1 . (divu)*> d (1 , f (div u)?
LHS = — | —|divul -V =—|[= [ IdivuP|- | V- <0.
S dsznzl ok +fRn” 2 dt(Z | W”') AL I

This implies
d
—( f (divu)z)s c f (div u)’.
dt R)l Rn

By the Gronwall inequality, we have

{gdivu = uA(divu),

(divu)* (1) < e f (div u)*(0) = 0.
R}l Rﬂ
Therefore, we have
divu(t) = 0.
We have proved the following proposition

Proposition 1.1. The Navier-Stokes equation

Du __
o = —Vp+ pAu,
V-u=0,

ul_y = uo( divug =0),
is equivalent to

Du = —¢, [, 22 te(Vu)(y, 1) dy + pdu,

[x=yl"

u'l‘:O = Uy,

p is determined by — Ap = tr(Vu)?.



1.3 Vorticity formulation of Navier-Stokes equation in dimension two

From
divu =0, curlu =,

it follows that
u= VT‘/’ = (—’sz, ‘ﬁxl)

and
curlu = Wy, + ¥an) = AY = w.
So :
Y0 = — fR loglx = ylw(y, dy.
Recalling
Dw
= = pAw, W=, = wo
we have
u(x, 1) = fR i K> (x = y)w(y, t)dy,
where

1 v x\
KQ(X):—( 2 1).

2\ X |x?

This is Boit-Savart law. We can also recover the pressure function p through the Poisson

equation:
— = i
Ap = Z Uy Uy,
i.j



Lecture 2, December 20, 2012

2 Introduction (continued)

Recall that the Navier-Stokes equation is given by

{ut+u-Vu+Vp=vAu 2.1)

Vu = 0.
The fundamentally open question is

Given a smooth, compactly supported, divergence free vector field u((x)
in R3, are there smooth solutions of (2.1) with 1|, = v(?

2.1 Another word on NSE’s derivation

By the momentum balance law, we have

0
—fpudx:—f(pu)u-vdS+f T-vdS,
ot Jo 80 90

Vu + (Vu)T
5 .

where

T=-pl+o0=-pl+2u

It follows from divergence theorem that
d ) . M .
d—t(pu) + divipu @ u) = divt = -Vp + ZE(AM + Vdivu)

Combining with mass conservation law

dp

o+ divou) = 0,

we have

d
Z(ou) + divipu ® ) = dive = ~Vp + Zg(Au + Vdiva),

dp

o+ diviou) = 0.

2.2 Vorticity formulation in dimension 3

We first review the vorticity formulation in dimension 2

Dw

— = uAw,

pr H2¢

where w = curlu.
If u = 0, for Euler equation, then

Dw
—=0. 2.2
D (2.2)



That is,
CL)(X(CL’, t)) = LL)()(O[),

The vorticity, as a scalar function, is transported along the flow trajectory.
If u > 0, for the Navier-Stokes equation, then w solves the convective heat equation.
Here is a fact. In the smooth case, if w solves

Dw

= —uA

Di M AW,

W|=o = curl ug, (divuy = 0)
with

I/l(.x, t) = fz KZ(X - }’)w(y, t)dy

R

where

1 X2 X
K ==\l 77l
) 27r( xP |x|2)

then u solves (2.1), with
—Ap = tr(Vu).

2.3 Construction of steady solutions to the Euler equation in dimen-
sion 2

By (2.2), we have
w;,+u-Vw =0.

Let u = V. Then
w = curlu = Ay,

and

-V = Vi - VAY = det( A’f;l A‘/’; )

This means that

a),+det( N A ):o

Now we have the following Lemma

Lemma 2.1. A function  defines a steady solution to Euler equation in dimension 2 if
and only if Ay = F({) for some function F.

Proof. It follows from w, = 0 that

Vy o _
det( VAzp)_O'

So we have Vi || VAy. This means that ¢ and Ay has level curves. Therefore,

Ay =F@).
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Lemma 2.2. For a steady flow, ¥ is constant along the particle trajectories.

Proof. Recalling that

dx!
E = _leQ(x(a/a t))’
dx?
E = %1 (X(a’, t))a
we have
d dx! dx?
d_t"b(x(a’ ) = WXIE + szE =Yy, ¥y, = 0.
So ¢ = constant. O

Here we give two simple examples.

Example 2.1 (Steady eddies). If wq is radial, i.e. wy = wy(|x]), then it follows from
Ay = wy that Yy is also radial, that is Yy = Yo(|x]). By

det(Viyo, VAY) = 0,

wo produce a steady, radially symmetric solution to the Euler equation in dimension 2.
By
xp xp\"
r

() = V4 = (=22, 2) i,
and

1
Yo (r) + ;%(V) = wo(r),

T r
up(x) = (—x—i, x_;) f swo(s)ds.
I I 0

This means that the streamlines of the flow are circles. The fluid rotates depending on the
sign of wy.

we have

Example 2.2 (Time-dependent viscous eddies). Let wy = wo(r). If w(x,t) is radially
symmetric, then Y(x,t) is radially symmetric. So

det(Vtﬁo, VAW()) =0.

Since u-Vw = 0, we have

Solving the heat equation

we have

ey
w6 1) = —— f I
R

11



Proposition 2.3. Let wy(r) satisfies |wo| + [Vwo| < M, uy(r) is the invisicid radial eddies
solution. Then

lw(x, 1) = wo(r)l S Vut, lu(x, 1) = uo(r)l < |xI Vut.
lz

2
Proof. We fist recall that fRZ e‘T‘lzldz = 1. Let x —y = +/utz, then

22

1
lw(x, ) — wo(r)| < ‘4 f e (wolx + Vitz) — wolzl))dz
ﬂ'ﬂt R2

_k2
< IVl ‘Wllfze +|zldz
R
< Vut.
So

fr s(w(s,t) — wy)ds
0

1 s
s—fsx/,utds
rJo
< ryut.

1
juCx, 1) = uo(r)l < =

]
Now we return to 3D vorticity formulation of NSE. Consider
Cl‘,lrlu = w, 2.3)
divu = 0.

Lemma 2.4. Let w € L> N L¥(R?,R?), and w — 0 sufficiently fast as |x| — 0. Then

(i) (2.3) has a solution u vanishing at o if and only if divw = 0.

(i) Ifdivw = 0, then u = —curly, where ¢ : R? — R? solves the Poisson equation:

AY = w.
Proof. (i) Note that div curl f = 0, for all f € C*(R?,R?). So

. 0 0
divcurlf = g(curlf),- = g(e,-jkf;‘)i = Z Eijkf,-]; =0.

ik
It suffices to establish (ii). Let s solve Ay = w. Note
curlcurlyy = VX (Vxy) =V(V-y) -V - (V) = V(divy) — Ay.

Hence
—curlcurl ¥ + V(divy) = w.

12



Multiplying V(div ) on both sides of this equality, and integrating by parts, we have

RHS:wadin:—f Vodivy = 0.
R3 R3

So
LHS = f |Vdiv y]* = 0.
R3
Hence
Vdivy = 0.

This implies that
curl(—curly) = w.

Set u = —curly, then

1
u= —curlf —w(y)dy.
R 4mlx =yl

That is,
d = e f Wk (y) dy| = e, f (x —yYa(y) dy = f (x — y)a)k(y)dy i
P\Jesdale =317 ), e e —oF w o dnlx—)F )
Thus,
1 (x—y)h
u(x) = f K3(x = y)w(y)dy, where Ks(x—y)h= Ly :
R 4r |x - yP
The above is the Boit-Savarat law in dimension 3.
2.4 Vorticity equations
Apply 9, to the Navier-Stokes equation, we obtain
(ulj‘-), + uiuf + ululj‘.l = uA ulj‘
Then o' = ¢ jku]j‘. satisfies
(W), + u Vol + eijkui.uf = uA W'
For i = 1, it follows from div # = O that
Eljkl/tﬁlxtf = 61231/!121/![3 + 6132uéu12
e~ i
= Wy + u3us + W3 — usUT — Ul — UaU;

_ 1.3 1.3 1.2 2.1
= UyU] — UjUy — UsUY + UzU,

39y 1 135,01 2 1yl
= —(u; —uz)u; — (U — uyp)uy — Uy — uy)us

=—(w-Vu)'.

Hence
eijkui.uf =—-w-Vu'.

13



Therefore,

D
Fc::w-Vu+,qu. (2.4)
Denote 1
— T
Q= z(Vu—(vu) )
then |
Qh= wa h.

Indeed, fori =1,
Ly N 1 ST D 3v23
Qh) = E(uj—ul)h = E(uz—ul)h + E(u3—u1)h,

and
E(w x h)' = §(w2h3 —W’h’) = E(ué — )’ — E(u% — u)h*.

Fori =2 and i = 3, it is similar.
There is another way to derive (2.4). Denote

ou'
V=—1], d P=(p,,.).
Then DV
— +V2=—P+uAV.
Dt

Recalling V = D+ Q, V? = D? + Q% + DQ + QD, we have

D DQ
§+@2+92:—P+,mz), and E+Z)Q+QZ):;1AQ.

We claim that
QD + D),y = —(Aw)’.

Proof. Note that Q3; = —w?, Q) = &?, Q3 = —w', and Dy + Dy + D33 = r(Vu) =
divu =0, and

QD + DQ)y = D1 Q1 + Dy + D331 + Q01 D1y + Qoo Doy + 3D
= D031 + (D11 + D)1 + D313
= —ngwz - D33w3 - D31w1

= —(Dw)’.

So that D
W
— = Dw + uAw.
Di C @ THAY

14



Proposition 2.5. Let D(t) be 3 X 3, symmetric, traceless real matrix. Let w(t) solve

dw

— = D(w,
7 (Hw
wlIZO = ('UO’

1
thiwx h, heR3.

Define

1 1 dD
u:wa x+Dx, p:—E(E+D2+Qz)x-x.

Then v, p solves the Navier-Stokes equations in dimension 3.

Proof. If u = fw(1) X x+ D(1) x, then curl u = w(1), Aw = u - Vw = 0. Now the vorticity

equation reduces to

%:D(I)w, AD=v-VD =0.

So we have iD
— + D'+ Q% = —p(0).

This implies p() is a symmetric matrix. Hence

1
P(t) = VZ(Ep(t)x- X).

Definition 2.1. Forn = 2, 3,
p.v. f f(x)dx = lim f(x)dx,
R~ €0 |x|>€

provided that the limit exists.

Theorem 2.6 (3D vorticity-stream formulation of Navier-Stokes equation). For 3D smooth
flows that vanish sufficiently rapidly as |x| — oo, the Navier-Stokes equation is equivalent
to

Dt

D
d =w- -Vu+pAw, R3xR,,
(.L)ll:() =Wy = curl U

where u is given by the Biot-Savart Law:

1 h
u(x, 1) = f Ks(x -y, 0dy,  Kymh=-—"22 peR
R3 4r |x]?
and
h 3 — — 1
Vu(x)h = —p.v. f wQ) X + — (=Y X)) ® (x y)h dy + zw(x) X h.
r3 | 4nlx—yP  4rn lx —yP 3

15



Lemma 2.7. If

u(x, ) = f Ks(x - Yoy, 0dy,  Ks(h = — —xlxlf . heR,
R3
then
_ w)x h 3((x—y)><w(y))®(x—y) 1
YV u(x)h = —p.v. f [4ﬂ|x il o h\dy + zw(x) % h.

Proof. First we need to calculate the distributional derivative of K3. For ¢ € Cy’ (R,

<ax,-K3’ Q0>L2 = _< K, axi(p)Lz

= —lim K30..¢

e—0 Ixl>e

= —1lim —f axiK3QD+f K3g0—)
€0 |x|=€ |x|=€ |X|

= p.v. f 0, chp—hm Kg(y)(p(q,) Ly
= pl=1 1yl
= p.v. f a K%(P (P(O)C[, ci = f K3(y)yld0_
& lyl=1
Then
h 3
Vu(x)h = - p,v_f M 4+ = (x =) Xw®)®(x - y) il ay
w3 |47x =y 4nm X —yI°
1
~ i | Xy hdo, 2.5)
T Jpl=1
where

L [y X w(y)ly - hdo = ——a)(x) X h,

4 Jy=1
f Viy; T oi=]
bi=1 = 0, iij.

Proof. Formally, since u = —curly and Ay = w, we have divu = 0, we have divu = 0.
Rigorously, one need to use (2.5) to verify divu = 0, but we leave it to the reader.
First, we use div u = 0 to show that

we have used

D
Ht(div u) = uAdiv u.

a—“;+ufaw + W00 = WO () + WOl + pAW) = HAWY).

ot

odi
v +u-Vdivw = pAdiv w,
div w|;=¢g = divcurluy = 0,

16



we have
divw =0, forallz>0.

On the other hand, by

0
—(curlu) + u - Veurlu = curlu - Vu + uAcurlu,

ot
we have
curl (— - uA u) =0
So that Du
D pAu ==V p,

for some scalar function p.

Lemma 2.8. If K3 is a homogeneous of degree -2 function, then

f 0, Ksdo = 0.
[x|=1

1, r<A

" for some 0 < A < B. Then
0, r> B,

f o' (rydr =0, f @dr =c>0.
0 0 r

0= [ autpaprendx
R3

Proof. Letp € CY(R),p =0, p(r) = {

So

|x]
f p’(r)drf xiK(x)d0'+f @dr 0, K(x)do
0 =1

0 r Ix]=1
c f 0,.K(x)do.
Ixl=1

The proof is completed.

:fp’(r)ﬁK(x)dx+fp(l”)ax,-K(x)dx
R3 X R3
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Lecture 3, December 21, 2012

3 Basic properties of the Navier-Stokes equation

If u satisfies Navier-Stokes equation

u+u-Vu+Vp=puAu,
V-u=0,

ul—o = U,

then

e translation invariance: for any ¢ € R?,
u(x,t) = u(x — ct, 1) + ¢,
pe(x,1) = p(x = ¢t 1),
also solves (3.1).

e rotation invariance: for any Q € O(3),
ug(x, 1) = 0Tu(@x, 1),
pe(X, t) = p(g-x’ t),
is also a solution.

e scaling invariance: for any A4 > 0,

ur(x, 1) = Tu(A"x, 1720),
pa(x,1) = £ p(A7'x, 2771

is also a solution.

Dimension in Navier-Stokes equation:

18
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3.1 Helmholtz decomposition and Leray projection operator

Finite dimensional analog: Suppose X C R? is a plane, x is a particle in X. Then
F=F+F

where F* has no effect on the particle’s acceleration, while F!l cause the particle to accel-

erate. That is,

F'' = ma.

Infinite dimensional case: Consider the linearization of Navier-Stokes equation at u = 0,
p = po = constant. Applying infinitesimally small force f(x, ¢) to it, we have

po; +Vp=1f, 1nQ,
u-v=_0, on 0L,
divu =0,

where f can be decomposed into two special force: a gradient force, and a divergence
free force
g =pot;, g-v=0, ondQ.

Now we consider Helmholtz decomposition.

Define
X = {g:Q—>R3|g€C°",divg:0, g~v:00nc9Q},

and

Y ={Vg|p e Co@)],
then

X1Y7
that is,
(& Vo) = ngsa = fdiV(gsO) = f pg-v=0.

Q Q o)

Set

X = closure of X in L*(Q,R?), Y = closure of Y in L*>(Q, R?),
then o
X1Y.
Theorem 3.1. (Helmholtz decomposition) L*(Q,R*) = X @ Y.

Proof. For any f € L*(Q,R?), let

Ag=V- f, inQ, (3.2)
g—f:f-v, on 0Q), )
then
h=f-Vg
is divergence free and
h-v=f v—a—g—O
B oy
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So
f=(-Vg+Vg
is the desired decomposition, provided that (3.2) is solvable.
(3.2) can be solved by the following minimization process:

min f \Vu-— f- (3.3)
Q

ue H'(Q)

Suppose (3.3) is attained by a u, then for any v € H'(Q),

0:dit|t:OL|V(u+tv)—f|2:L(Vu—f,Vv).

Hence

{V-(Vu—f):o, inQ,

(Existence). Let {u;} ¢ H'(Q) be a minimizing sequence, that is,

fIVuk—f|2—> inffqu—f|2:c6[0,+00),
Q ueH' Jo

then
U — U o U + Up ) 1 ) 1 )
V(—)+fV(—)— :—fV— +—fV—.
fQ| e [19(25)-s0 =5 [ st g [ V-
RHS—>§+%:C, as k.1 — oo,
while

fIV(uk”l)—flzz ‘.
o 2

. U — Ui\
Jm | v (*5)F =0,

and hence {V u;} is a Cauchy sequence in L>(Q). Since we can replace u by ; = u;— JE) Uy,

we conclude that

we may assume that fQ ur = 0. By the Poincaré inequality, we have

f|uk—ul|2SfIV(uk—uz)lzﬁO, as k,l — oo.
Q Q

Hence we may assume that there exists a u € H'(Q) with fQ u = 0, so that u, — u
strongly in H'(Q, R?). It is easy to see that

fwu—ﬂz:limfmk—ﬂz:c,
Q k= Jo

that is, u achieves the infimum.
It turn out that the decomposition is unique. Suppose that there are f;, > € L*(Q,R?),
©1,¢2 € H'(Q) such that
div fl = div f2 = O,
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and
fi-v=f-v=0 onodQ,

f=hf+Veoi =+ Vg,

then
Si—fa=V(p2— 1)
and
1= 58 = V= 00 i e = = 05 = s =0
Q
This implies that f; = f,. Of course ¢y, ¢, are possibly different. O

Let P : L2(Q,R?) — X. Then P is called the Leray projection operator. It turns out
Proposition 3.2. P is a bounded operator from L*(Q,R?) to L*(Q, R?):

IPfllz2 < 1122 - (3.4)
Proof. 1) Since Pf = f — Vu, where u € H'(Q) achieves

fqu—f|2= inf va—stflfF,
e VEHI(Q) Q Q
f BIP < f 7P,
Q Q

so (3.4) holds with the coefficient 1.
i) If div(Vu - f) =0, ‘;—;‘ = f - v on 09}, then by elliptic estimate, we also have

we obtain

IV ull2) < N1f1l2@)-
So
IVu— fllrze < Il
but without optimal bound. O

Representation of Leray projection operator in the case Q = R": For f € L*(R",R"),
let u € H'(R") solve
Au=divf inR",
then
Pf=f-Vu
satisfies the condition that
div(lPf) =0 inR".

Recall that
u = (A™Hdiv f,
we have
Vu=V(AbHdiv f,
SO

®f) = f = VA = f1 = VA )ATVf = [T = RR; f,
where R; = V,-(A‘l)% denotes the it Riesz transform. Therefore
Pf) = f' = RR;f/,

is the Leray projection operator.
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3.2 The Steady Stokes equation

Now we consider the steady Stokes equation

—uAu+Vp=f 1nQ, u>0,
V-u=0, in Q, (3.5)
u=>0, on 0Q.

Basic function spaces: Let Q C R" be a Lipschitz domain: 0Q € C%!, that is, for any
y € 0Q, there exists r > 0 such that 9Q N B,(y) is the graph of a Lipschitz function. For
1 < p < 400, define

1/p
L/(Q) = {f Q- R\ ( f Ifl") = Ifllr < +oo}
Q

Recalling the Poincaré’s inequality: for any 1 < p < 400,

Il < CQ PV fllr, Y f € Wy"(Q).

Define
H={ue C(Q)|divu =0},
and
V={ue C(Q)|divu =0}, = Hy(Q) N {divu = 0}.
0
EQ) ={ue L*(Q)|divu € L*(Q)} > H\(Q),
with

{u, v = f uv + divudivy.
Q

Here is a fact: C;"’(ﬁ) is dense in E(Q), provided Q is Lipschitz.
By trace theorem, we know

yo: H(Q) — H2(0Q).
Now here is a question: Do we have
.0 E(Q) < H3(0Q)?

Indeed, 1
Keryy = Hy(Q), Imy, = H2(0Q)

and
H2(0Q) = (H2(0Q))".

For any u € Cf(ﬁ), define
VU= UV

Then Stokes’ formula holds in E(Q).
Proposition 3.3. Foru e E(Q), w € H'(Q),

Cu, Vw) + (divu, w) = (y,u, yow)
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Proof. Letp € H %(89) and let w € H'(Q) such that yow = ¢. For u € E(Q), define
Xu(g) = f[( u, Vwy + (divu, wy].
Q
Then X, (¢) is well defined. Let w € H'(Q) be such that y;w = ¢. Now need to show

f[(u,Vw) + {(divu, w)] = f[(u,VW} + (div u, w)].
Q Q
Since

Yow —w) =0,

it follows that there exists a sequence wy € Hé (Q) such that w — w = limy_,, wi. Then

f[( u, Vw—w)+{divu, w—w)] = lim f[( u, Vwi)+{divu, wy)] = lim f div{u, w;) = 0.
Q k—eo Jo k—oo Jo

O

Since
X @) < Ml lWllin ey < lellzoll@l, g o
it follows that

¢ — Xu()
is a linear continuous map. So there exists g = g(u) € H ‘%(69) such that
Xu((p) = <g, ¢>H% Hf% .
Hence
u— g(u) =yu
is linear, and
1803 ey < Il

By Stokes’ formula, we have
yvu=u-v, ifuc C‘f(ﬁ).
If AQ € C?, then the map
y, : E(Q) — H2(0Q)
1s onto.
Kery, = Eg(Q2) = C2(Q)gq)-

For any ¢ € H‘%(E)Q), let
(¢, 1)
0Q|

then (, 1) = 0. Recalling vy, is onto, it follows that there exists p € H'(Q) such that

v=9-

Ap=0, inQ,
0

—p:w, on Q2.
ov

23



Letu =V p,thenu € E(Q), y,u =4. Hence

3 (¢, 1)
¢ =yu+ 9%

there exists uy € H'(Q) such that y,u = 1.
Denote 9 (€2) as the space of distribution. Then for f € D'(Q), if f = V p for some
p € D'(Q) if and only if ( f,v) = 0 for any v € V, where

V={ve i@ |divw=0}.

Denote
H={ue [XQ)|divu=0, yu=0},

then the orthogonal component of H in L*(Q),
H* ={ue LQ) |u=Vp, pe H(Q)

Next, we consider the variational formulation of Stokes equation (3.5). Let f € L*(Q)
and p € L*(Q). Then for any v € V, we have

WVu, Vvy+(Vp,v)y={_fv).

Denote
((,v)) ={(Vu,Vvyp.

Then for u € V satisfies
u(w,v)) = (f,v), YveV.

Here is a fact: u € V solves (3.5) if and only if

u((u,v)) =(f,v), VYveV.

Theorem 3.4. Assume that Q C R" is bounded Lipschitz. Then for any f € H™'(Q), there
exists a unique solutionu € V = Hé N {divu = 0} of (3.5).

Proof. Method 1. (Lax-Milgram) Since ||u||y = ||V ul|;2, define
a(u,v) = u((u,v)), VYu,velv,
then a is a bounded bilinear form, and
a(u, u) = p((u, v)) = pllulf,

that is, a is coercive. Hence by Lax-Milgram theorem, for any f € L2, there exists a
unique u € V such that

a(u,v) = (f,v).
Method 2. (Garlekin’s method) Let {w,,} be an complete orthogonal base of V. Let

Vin = span{wy, -+ ,wy}, m2>1,
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and
m

U = Zé:,’nwl € Vm
i=1

solves
a(u,,v) =(f,v), VveV,.
Then .
Zf,ma(wi, Wj) =(/, Wj>
i=1
awi,wy) oo aWm, wi) (1 (fown)
alwi,wa) - a(Wy, wa) &y _ (fyw2)
awi, W) e a(Wi, W) gn; ( f,.wm>
So

(a(w;, Wj))lsi,jSm

is a nonsingular matrix. This implies that

has only trivial solution. Hence, by

a [i é:;nW,', (i f;nWi] = 0,
i=1 i=1
we have

(zm: f;"Wi =0,
i=1

¢, &m) = (0,---,0).

that is,

On the other hand, from
Cl(btm, um) = <f’ um>
it follows that |
lnlly S =112l s

u

that is, .
letmlly < =I1£1lz2-

u

So there exists u € V such that
Uy, — u 1nV.

Hence
a(u,v) =(f,v) VveV,.

Therefore,

a(u,v) = (f,v).
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Uniqueness: If there are two solutions u and i such that

#mw:mm

a(it,v) = (f,v),
then
a(u—u,v) =0.
Especially,
alu—i,u—1u)=0.
Sou = .

Minimization principle Let

E(u) = pllull® = 2(f, ).
Then

Theorem 3.5. u € V solves (3.5) if and only if
E(w) < E(n), VYiue V.

Proof. (<)Foranyve V,

d
| Ew+w) =
il (u+nr)=0,

then
2u(Vu,Vv) =2(f,v) =0.

(=) If
u(w,v)) = (f,v), YveV

then for v € V, letting v = u — v, we have

p((u,u = v)) = (f,u—v).

That is,
u((u, w)) — u((u,v)) = (f,u) = (f,v).
Then u u
ullull® < zllull2 + EIIVII2 +(f,uw) — (f5v),
that is,

%E(u) < %E(v).
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3.3 Nonhomogeneous Stokes problem

Theorem 3.6. Let Q C R" bounded, 0Q € C?. Let f € H'(Q), g€ L*(Q), ¢ € H2(6Q)
such that fQ g= fm ¢ - v. Then there exists a unique u € H'(Q), p € L*(Q) (unique up to
a constant) such that

—uAu+Vp=f inQ, u>0,

V-u=g, inQ, (3.6)

Yo = @, on 0QQ.

Proof. (Uniqueness) Suppose that there exist u;, u, € H'(Q), p1, p» € L*(Q) such that

—pAu;+Vp=f inQ, p>0,
V-u =g, in Q,
You; = @, ondQ, i=1,2.

Letw = u; —up, p = p1 = ps, then

—uAw+Vp=0, inQ, u>0,

V W= 0, in Qa
yow =0, on 0Q.
So that, by
u(Vw,Vw) =0,

we have w = constant. Further by yow = 0 on 0Q, we have w = 0in Q. By Vp = 0, we
obtain p; — p, = const..
(Existence). Let uy € H'(Q) such that youy = ¢, then

f(div uy—g) =0.
Q

Hence there exists u; € Hé () such that
divu; = —divuy + g.
Letv = u — uy — uy, then

AV +Vp=f—uAug+u) € H', inQ, u>0,

V V= 0, ln Q7
Yov =0, on 6Q
has a unique solution v and p. Hence the original problem is also solvable. |

Lemma 3.7. div : H)(Q) - L*(Q)/R ={ge L*(Q)| ng = 0} is an onto map.

Proof. V : L*(Q) N {ng = 0} - H'(Q) is isomorphism onto its range R(V). Hence
A* = —div € L(H!(Q), LX) is onto L(Q)/R. 0

For the regularity of the weak solutions, we have
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Theorem 3.8. Let Q C R" bounded, 0Q € C?, y = max{2,m + 2}, m > 0. Let u € W9,
1

pe W 1 <q< +co, solves (3.6). If f € W™, g € W™ ¢ € W™ a9(dQ), then

ue Wm2d pe Wi and

llyreng + Ipllwnsrags < Cqs Y, m, Q) (1 llwma + lglhwnors + 1Bl s, + cqllles)

{a q>2,
Cq:

where

1, 1<qg<2.

Theorem 3.9. (Existence) (n = 2,3) Under the same assumption on f,g,$ and fg g =

fm ¢-v. Then there exist unique u € W4, p € W4 solving the system and satisfying
the above estimates.

Proof. We will only present the proof for simply connected domain in R2. First we claim
that there exists v € W”*14(Q) such that

divv=g inQ
v=2¢ on 0Q.

To see it, let 6 € W”*34(Q) such that
AM=g inQ
B=¢-v ondQ.
Write v = V@ + w. Then w satisfies

divw =01in Q; w-v = 0 on 0Q2.

Hence we may write w = ([%'2, —g—;) for an unknown function o. The boundary condition

on w yields that o satisfies

oo oo

w-y= 0_x2v2_8_x1v1 = Vo = 0 on 0Q,
and 3 6
w-T = —0- = (V—VG)'T:¢'T—— S Wm+2_$’q(89).
av or

The existence of o is guaranteed by the following biharmonic equation: there exists o €
Wm+34(Q)) that solves

Ao =0 in Q
oc=0 in Q
0r = .7 — L e WETIHQ),

With the help of v, we can consider w = u — v. Then u solves the original equation if
and only if w solves

—uAw +Vp = f' = f+uAv e W™(Q) inQ
divw =0 in Q
w=0 on 0Q).
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The solvability of w can be done by solving another biharmonic equation as follows: since

we can write w = ( (%‘02, —:—fl) for some unknown function p in Q. w = 0 on 9Q yields that

p= % = 0 on 0Q. The equation of w yields an equation for p:

o, 4 py = f (3.7)
uhpy, +px, = [ (3.8)

Taking % of the first equation and a% of the second equation and then subtracting the
two resulting equations, we would obtain

b
—uAp = curl(f)in Q, p = a—'z = 0 0on HQ. (3.9)

Since curl(f") € W™ 14(Q), it follows from the linear theory that there exists p € W"+34(Q).
This implies the equation for w is solvable for w € W™*24(Q). The proof is now com-
plete. |
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Lecture 4, December 24, 2012

4 The Steady Navier-Stokes equation

4.1 Eigenvalues and eigenfunctions of the Stokes operator

Consider
—uAu+Vp=f inQ
V-u=90 in Q 4.1)
u=0 on 0Q

From Lecture 3, we know that for any f € L*(Q), there exists a unique u € V solving the
equation (4.1). Define

A(f) = iu : LH(Q,R") — Hy(Q,R") c L*(Q,R").

Then A : L*(Q,R") — L*(Q,R") is compact. A is also self-adjoint:
(Afrs e = (2, A1)z
Therefore there exist 0 < 4; < A, <---4; T +oo and 0 # w; € V such that
Aw; = A4w;, Yi> 1,

and
Wi, wj)2 = 0;j, (Wi, wj)y = A;0;.

There also exist p; € L*(Q) such that

—,UAWI' + Vp, =Aw;, 1InQ
V-w;=0 in Q 4.2)
w; =0 on 0Q2

By the regularity theory of Stokes’ equation from Lecture 3, we have

QeC"=w e H'(Q), p; € H"(Q),

and _ _
QeC”=w eC?Q), p e C*(Q).

4.2 Steady Navier-Stokes equation

For f € L*(Q,R"), a bounded Lipschitz domain Q c R",; seeku : Q - R", p: Q - R
such that
—uAu+u-Vu+Vp=f inQ

V-u=0 in Q 4.3)
u=0 on 0Q
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Weak formulation of (4.3): Find u € V such that

u(u,v)y + Blu,u,v] = (f,v)2, Yve vV, 4.4)

where B is the trilinear form defined by

Blu, v, w] :fu-Vv-w, u,veVvwey.
Q

Remark 4.1. Forn <4, B: VXV xV — Ris a well-defined trilinear form. For n > 5,
B:VxVx((VnL'(Q)) — Ris well-defined.

To see it, recall by the Sobolev embedding inequality we have

2n

L& (Q) n>3

H)(Q) c
LP(Q)Y p<+4+00 n=2.

By Holder’s inequality, we have
||u||L4(Q)||VV||L2(Q)||W||L4(Q) n<4
u-Vv-w| <
Q llell 22, (Q)”VV”U(Q)”W”L”(Q) nx>5

{C||u||H3<Q>||Vv||Lz<Q>||w||Hg,@ n<d4

||M||H(g(gz)||VV||L2(Q)||W||L”(Q) nx>>5
From this discussion, we have obtained
Lemmad4.1. B: VXV x (VN LY(Q)) — R is continuous.

Define V = closureofV in H, N L"(Q), with the norm

Ivily = ”V”Hé(Q) + [Vl
Then we have

Lemma 4.2. (i) Forn <4, B: VXV XV — R is a continuous, trilinear operator.
(ii) Forn > 5, B: VXV XV — R is a continuous, trilinear operator.

For the trilinear form B, we have

Lemma 4.3. Foru € V,v € \7 it holds Blu,v,v] = 0. In particular, for u € V,v,w € \7
Blu,v,w] = —B[u, w, v].

Proof. Assume u,v € Cy’(Q2) and divu = 0. Then

2 2
Lu-Vv-v:j;u-V(%):—fQ(V'u)%:0.

Now by the density argument, we see that Blu,v,v] =0 forallu € Vandv e V.
Since Blu,v + w,v + w] = 0, it follows that

Blu,v,v] + Blu,w,w] + Blu,v,w] + Blu,w,v] = 0.

Hence Blu,v,w] + Blu,w,v] = 0. O
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For u,v € W, we also define the bilinear form B[u, v] by
(Blu,v],w) = Blu,v,w], Yw € V.

Theorem 4.4. For any f € L*(Q)(orH™'(Q)), there exists at least one solution u € V and
p € L' (Q) of the steady Navier-Stokes equation (4.4).

loc

Proof. (Galerkin’s method): Let {w;}>, be a complete orthogonal base of V formed by
the eigenfunctions of the Stokes operator. Let V,, = span{wy,---,w,}, m > 1. Let
Up = 2m EMw;, EM € R, solve

U, Wiy + Bl , wil = (f,wi)pz, i=1,--+ ,m. 4.5)
In terms of (£7"), this becomes
§ HAREE =, k=1,---,m, (4.6)
where

Aijr = Blwi,wj, wil, cx = (f, wi)p2.

We will need to apply the fixed point lemma below to find a solution of (4.6). To do it, set
X =V, and define the inner product [u, v]x = (u, v)y and the induced norm |uly = V[u, u].
Define P : X — X by

[P(u),v]x = u(u,v)y + Blu,u,v] = (f,v), u,v € X.
Then we have

[PQu),ulx = p(u,u)y + Blu,u,u] - (f,u)
uCu, uw)y = (f, u)

plull = NNzl

lualx Celualx = 111122),

vV v

so that if we choose r > 0 such that ur — ||f||;2 > 0, then
[P(u),uly >0, Yu € X with |u|xy = r.

Hence by lemma 4.5, there exists u,, € X such that P(u,,) = 0. Furthermore, we have the
estimate

Mlmlx =11 fllz2 <0
or |
|l x < l—l||f||L2- “4.7)

We may assume that u,, — u weakly in V and u,, — u strongly in L*(€2). We need to
verify that u satisfies (4.4). It is easy to see that for any my > 1 fixed,

MU, V)y = pu(u, vy, Yv € V.
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ForveV,,,

B[Mm, U, V] = —B[I/tm, v, I/lm] = - f Uy - Vv Uy,
Q
- —fu -Vv-u=—-Blu,v,u] = Blu,u,Vv].
Q

Therefore we have
w(u, v)y + Blu,u, vl = (f,v), Yv € V.

Since U1 Vi, =V, (4.4) holds. O

Lemma 4.5. Let X be a finite dimensional Hilbert space with inner product [-, -] and norm
|-|. Let P : X — X be a continuous map and satisfy

[P(£), 1> 0, YI&l =k > 0.
Then there exists a ¢ € X, with €| < k, such that P(¢) = 0.

Proof. Suppose that the conclusion were false, Then P(¢) # O for any |£] < k. Define a
continuous map @ : B, — By by letting

P
(@) = k)

P&
Hence by the Browder fixed point theorem, there exists a & € By such that ®(&)) = &.

Howeyver,
P(&o) = _k[P(fo),fo]
|P(&o)l |P(&o)

This is impossible. The proof is complete. |

0 < Il = [€0, D(€0)] = [0, —k <0.

For the uniqueness of steady Navier-Stokes equations, we have the following
Theorem 4.6. Forn < 4, if u > 0 satisfies
© 2 clfllze,
then there exists a unique solution u of (4.4).

Proof. Assume that u; is the solution constructed by the above theorem so that it satisfies

1
llqlly < /:”f”LZ(Q)-

Let u, be an arbitrary solution of (4.4). Define w = u; — u,. Then, since n < 4, we have
uw,v)y + Bluy, uy, vl = Bluy, u,v] =0, Yv e V.

Notice that
Blui,uy,v] — Blua, uz, vl = Blua, w,v] + Blw, uy, v].

Hence by substituting v = w, we obtain

uw,w)y + Blupy, w,w] + Blw,u;,w] =0,
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which implies

ulwlly = =Blw, uy, w] < c)wllp|IVull2 < c(n) [wlf5.

I llr20)
u

Hence

2
lwlly, < 0.

( C(n)||f||L2(Q))

ll — —
u

Thus ||jw|ly = 0 and hence u; = u,. |

4.3 Regularity in dimensions n < 4

Theorem 4.7. For n = 2,3, any weak solution u € V of (4.3) is smooth in Q, provided
that f,0Q € C*.

Proof. i)n =2: u € Vimplies thatu € L9 for all ¢ < +oo. Hence u-Vu = V-(u®u) € W14,
Therefore, by the regularity of Stokes equations, we have that u € W4(Q) and p € L1(Q).
This in turn implies « - Vu € L7 and hence u € W>9(Q) and p € W(Q). Repeating this
argument eventually yields u, p € C *(Q).

ii)n =3 uelfsothatu-Vu = V-u®u) € WHQ). Thus u € W'3(Q). By
Sobolev’s embedding, this implies u € L7(Q)) for any ¢ < +oco. Now we can repeat the
same argument as in the case n = 2. O

Remark 4.2. For n = 4, the solution is still smooth. But the proof requires a different
argument. Since in this case u € L*(Q) and hence u - Vu = V- (u ® u) € W2(Q).
Hence the regularity theory of Stokes equation implies u € H'(Q) so that there is no
improvement. However, the size does get an improvement:

2 2
Vulliz e ® ullz) < Nl S V6l g,

It turns out that this observation, after suitable localization, can imply the regularity.

4.4 The time-dependent Navier-Stokes equation
For f € L*(Q x [0, T]) and uy € H, consider the Navier-Stokes equation:

u+u-Vu—uAu+Vp=f inQx(0,7)

V-u= in Q T

u=0 in Qx(0,7T) 4.8)
u=>0 on 90Q x (0,T)
l/t|t:() = Uy in Q.

For (4.8), we have the following existence theorem, due to E. Hopf and J. Leray. Denote
Qr = Q% [0, T]. Then we have

Theorem 4.8. For any T > 0, there exists at least one weak solution u € L¥L*(Qr) N
L*H'(Qr) of (4.8) that satisfies the energy inequality: for any 0 < t < T,

f WP + 24 f [ f Val? < f ol? + 2 f f (f. ). 4.9)
Q 0 Q Q 0 Q
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Proof. (Galerkin’s method): As in the steady case, let V,, = span{wy,---,wp}, where
{w;} 1s the family of eigenfunctions of the Stokes operator, which forms a complete base
of V. Look forv : [0, T] — V,, such that

f(utv +u-Vuv +uvVuVv — fv) =0, Vv e V,,Vt € (0, T).
Q

Write 1, (x,1) = " £"()wi(x). Then we have
i=1
&n = —ua; € + b E + ci, &'(0) = (uo, wi), (4.10)
where
aij = (VWi,VWj)LZ, bjki = Blwj,wi,wil, ¢;i = (fswi2.
Observe that .
aiinn; = (Vmiw), V(njw;)) = Z Am? = 4P,
i=1
so that (a;;) is a positive-definite matrix. Also notice that (bji;) is skew-symmetric in the
last two indices:
bji = =bjix.
Notice that (4.10) is locally uniquely solvable: there exists 7y > 0 and a unique solution
EM =, -, xm) 1[0, To] — R™ to the ODE (4.10).
Now we want to derive a priori energy estimate. Multiplying (4.10), by £ and sum-
ming over 1 < i < m, we obtain

d m m m 1
2O @) = 2] Y@y +e] ) @
i=1 i=1 i=1
Ny, JOP
swu;@ﬂ+zf.

Here
le@I = I f(Dll2) € L*([0, T]).

Therefore we obtain )
2,0 lc@)

d Aty em)2

— <
S () < e i
so that

t 2
E%WsW@ﬁij}mﬂﬂlw. @.11)
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0 1

It follows from the energy estimate (4.11) that the solution &” can be extended to [0, T].
Moreover, the estimate on &” translates into estimates of u,,:

d
_‘[vluml2 +2ﬂf |Vl’tm|2 = Z(f’ um)~ (412)
dt Q Q

By Holder’s inequality, this implies that

d C
-—fmw+uwaFs—fvﬁ @.13)
dt Jq Q M Ja
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After integrating over [0, T'], we have achieved

T
sup [ (DI0) + f f Vil < € (Ifllzon o) - (4.14)
0 Q

0<t<T

Goal: To show that, up to possible subsequences, u,, converges weakly to some function
u in suitable spaces, which solves the Navier-Stokes equation in the weak sense. O
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Lecture 5, December 25, 2012

5 The Galerkin method for the Navier-Stokes equation

From Lecture 4, we have that

W, 1) = ) EN (W)
i=1

solves
ou™ +u" - Vu" — uAu" + Vp" = "
V-u"=0
m|l _ om (5.1
u o= uj,
ul =0
a0
where

m m
"= Z(f, W)W, Uy = Z(”Oawi)LZWi-
i=1 i=1

Note that the equation (5.1) should be understood as the follows: for any € C*([0, T'])
and v(x) € V™, if we set V(x, 1) = v(x)n(?), then for any [#,#,] C [0, T] it holds

fumV
Q

The following energy bound also holds:

1=t

5]
+f f[—u’"V,—u’"@u’":VV+,uVu’”-VV—fV]dxdt:0. (5.2)
1 Q

=1

T
sup f|um|2 dx+,uf f|VMm|2 dxdt < C(”f”Lz(Qx[O,T])a ||M0||L2(Q))- (5.3)
Q 0o Jo

0<t<T

Hence {u"} c L*L*(Qr) N L?’H(Qr) is a bounded sequence. We may assume, after
passing to a subsequence, that

u" — u weak” in L;"’Li(QT); u™ — u weakly in L,zH;(QT)

for some u € L L*(Qr) N L?H(Qr).

Claim. u is a weak solution of the Navier-Stokes equation. This amounts to showing that
for any [t, %] C [0, T], it holds

qu
Q

for any V = v(x)n(t), with n € C*([0, T]) and v(x) € V™.
There are two main difficulties that we encounter when taking the limit process,
namely,

5] 15}
fumV—>qu, Vte[O,T];f fum®um:VV—>f fu@u:VV??
Q Q 4 Q t Q
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1=t

5]
+f f[—uV,—u@u:VV+,uVu-VV—fV]dxdt:0 (5.4)
131 Q

=1



A key step to overcome these difficulties is to show that, after taking possible subse-
quences,
u™ — u strongly in L*(Oy). (5.5

First we recall the Sobolev-interpolation inequality.

Lemma 5.1. For n > 3, assume that u € L°L2(Qr) N L?H!(Qr). Then, for any 2 < q <
2" = 2 and p > 2 satisfying

2. n_n
p g 2
we have u € LY LY(Qr). Moreover it holds
1=-2 2
letll 290,y < Cl|MIIL;’°I;§(QT)”””Z,ZH}(QT)' (5.6)

Proof. For 2 < g < 2%, by both the interpolation inequality and the Sobolev inequality we
have

1- 1-
el < Nl Ml 55, < Clll o el g,

+ L= Integrating over ¢ € [0, 7], we obtain

where 0 < a < 1 satisfies é = % >

T T
Il ScfmeinMm
0 0

LY@ HYQ)

IA

T
pa p(1-a)
u t
W, [

1=2
Set p(1 —a) =2. Then 1 —a = % anda =1 - %. Hence é ==+ % is equivalent to

% + g = 2. Itis clear that (5.6) follows directly from this inequality. O

Corollary 5.2. Forn =3, ifu € L°LX(Qr) N L2H\(Qy), then u € L% (Qr) and

2 3
< 5 5 . .
lell 0 ) = Clltll oo 10121, (5.7
Proof. Set p = g and n = 3 in the equality 7 + 2 = %, one has p = ¢ = . Hence the

conclusion follows directly from the lemma. O

Now we need to prove
Claim. For any V = v(x)n(t) with n € C*([0,T]) and v € V™, fQ u"(HVix,t)dx :
[0,T] — R is equicontinuous for all m > my.

In order to show this claim, for any 0 < #; < 1, < T let’s define

15}
Ij(t, ) = f f[—umV, —u"Qu" : VV + uVu" - VV — fV]dxdt.
151 Q

Observe that it follows from the equation (5.2) that for any m > my,
f u"vy - f u"v
Q 1= Q
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= —Iez(l‘l,lz). (58)
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Now we want to show that

sup [12(t1, )| < Clmo, Tlta — 11]7. (5.9)

m=mo

In fact,

15}
1 1
|f meVA S WVilleeonIQI2 16 = 6112 lu™ ] 1020,

5] Q

5]
m m . 2 ~
|f[; fgu Qu" : VV| S |IVV||oopllu ”Lj"’L%(QT)ltZ al,
5] I |
|f Lvu’” . VVl < ”VV”LOO(QT)lQliltZ — t1|§||vum||L2H1(QT),
n

5]
1
| f f FVI S IV llson |21 = 1.
1 Q

Putting these estimates together yield (5.9). Itis easy to see that (5.9) yields that fQ u™(x, 1)
V(x,t)dx : [0,T] — R is equip-continuous for m > my.
It is clear that for any V = n(f)v(x) € C*([0, T], V™) and [t, ;] C (0, T), we have

():fumV
Q

Since u™ — u weakly in L2(Q7) N L>H'(Qr), we have

1) 1 53 12
f -u"V, > f -uV,, f fVu’” -VV - f fVu -VV.
151 I3t 1] Q ] Q

For t € [0,T], set

1=t

1=

15}
+ f f[—umV, —u"Qu" : VV + uVu™ - VV — fV]dxdt.
131 Q

() = f u"(x, Hv(x) dx,
Q

and

h(t) = f u(x, Hyv(x) dx
Q

provided that it exists. By the weak convergence of u™ to u in L*(Qy), we have

T T
f h"(On(t) dt — f h(t)n(t) dt.
0 0

Since " € C([0, T]) is equi-continuous for m > my, by the Arzela-Ascoli theorem, /™ is
precompact in the topology of uniform convergence. Hence we may assume that

lA" — h”C([O,T]) — 0.

This implies that for any v € V"™,

f u" (x, H)v(x) dx — f u(x, Hyv(x) dx
Q

Q

uniformly in z € [0, T'].
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Since Uz, V™ = V, it is not hard to see that for any v € V,

f u" (x, H)v(x) dx — f u(x, Hyv(x) dx
Q Q

uniformly in r € [0, T'].
Denote
L5 @) = fa € @R : diva =0, y,a=00nd0}.

Claim. V is dense in L3, (Q) with respect to L*-norm.
Suppose that this were false. Then there exists 0 # a € LﬁiV(Q) such that

fa~v:0, Yv e V.
Q

This implies that a = V¢ for some ¢ € H'(Q). Since div(a) = 0 and vy,(a) = 0 on 6Q, we
have

A¢ = 0in Q; a—¢:Oon89.
ov

It is easy to see that ¢ is constant and hence a = V¢ = 0. This is impossible.
By the density and approximation, it follows that for any v € L3, (Q),

f u"(x, H)v(x) dx — f u(x, Hyv(x) dx
Q Q

uniformly in ¢ € [0, T]. On the other hand, by the Helmholtz decomposition we have that
any v € L2(Q,R") can be written as

V:V1+V¢1

for some v, € L2, (Q) and ¢ € H'(Q) so that

f u(x, Hv(x) = f u" (x, vy (x) + f u"(x, 1)V, = f u"(x, t)vi(x)
Q Q Q 0
—>Lu(x,t)vl(x)=fgu(x,t)(vl(x)+v¢1(x)),

as div(u™) = div(u) = 0 yields
f u" (6, )V (1) = f u(x, V1 (x) = 0.
Q Q

This implies that for any v € L*(Q,R"), fg u(x,Hv(x) : [0, T] — R is continuous. This is
equivalent to say that u(-, 1) : [0,T] — L*(Q,R") is continuous with respect to the weak
topology of L?(Q, R™).

Now we return to prove that

153 5]
f fum®um:VV—>f fu@u:VV.
151 Q 151 Q

This amounts to proving that ™ — u strongly in L>(Qr). We present three approaches
due to E. Hopf, J. Leray, and T. Aubin and J. Lions respectively.

40



Lemma 5.3. (E. Hopf, 1951). Let Q7 = Q %X [0,T]. Assume w" : Qr — R" is bounded in
LY L2(Qr) N L2HX(Qr) and converges weak™ in L LX(Qr) to a function w : Qr — R". In
addition, assume

w"(-, ) = w(-, 1) weakly in L*(Q)

forallt € [0,T). Then
w™ — w strongly in L*(Qr).

Proof. Recall the Friedrichs inequality: for any € > O there exist r € N and functions
€ C2(Q,R"), 1 <i<rsuchthatforanyze€ H'(Q,R") can be estimated by

.
f|z|2SZ|fa,-z|2+ef|Vzlz.
Q - Jo Q

Applying this inequality to z = w™ — w, we obtain

T T r v
f f W™ — w|? dxdt < f Z| f aw" —w)dr+ € f f VW™ — w)|* dxdt.
0 Ja 0 o Jea 0 Ja

Since w"(-, ) — w(-,t) weakly in L*>(Q) for all ¢ € [0, T, it follows that

T r
lim | f aw" —w)*dt =0
0 ; Q

m—o00

T
lim f f W™ — w|* dxdt < Ce.
m—oo 0 Q

Since € > 0 is arbitrary, it follows that w" — w strongly in L*(Qr). |

Hence we have

There is another approach by J. Leray (1934°s).

Lemma 5.4. u™ — u strongly in L*(Qr).

e"(f) = f " dx, e(f) = f lul* dx.
Q Q

By the energy inequality for ™ and the Poincaré inequality, we have

G0 = [t [ pors b [ f 7P,
—e(t)——uf|w|+ffu <u+1>f|w| f|f|

T
f f V" dxdt < C(1|fllzzop)» luolli2cey )
0 Q

it follows that fOT %em(t)H, dt is uniformly bounded. Hence ¢” € BV([0, T]) is a bounded
sequence. Since BV([0,T]) c L'([0, T]) is precompact, we may assume that there exists
e* € L'([0, T]) such that

Proof. Set

and

Since

em — " in L1([0, TY).
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It suffices to verify that e*(r) = e(r) for L' a.e. t € [0, T]. Define D"(f) = fQ [Vu™ (1)) dx
and

m—o00

D*(¢) = liminf f IVu"(1)|* dx = lim inf D™(¢).
Q m—-0oo

By the Fatou lemma, we have

T T
f D*(t)dt < liminf f f IVu"|?> dxdt < +oo.
0 m—=e - Jo Q

Hence for L' a.e. 1 € [0, T], D*(¢) < +o0, i.e.,

lim inf f IV (£)|* dx < +oo,
Q

which implies that u™(-, 7) is bounded in H}(Q). Thus u"(-,) — u(-,t) strongly in L*(Q)
by the Rellich compactness Theorem and the fact that u™(-, 1) — u(-,t) weakly in L*(Q).
Therefore we have for L' a.e. t € [0, T], e*(t) = e(t). As a consequence, we will have

T T
f f lu"* dxdt — f f lul* dxdt.
0 Q 0 Q
T
f f|um—u|2dxdt—>0
0 Q

asm — 00, O

This implies that

Putting these estimates together, we can conclude that for any v € C*(Qr), with
div(v) =0and v = 0on 9Q X [0, T], it holds that forany 0 < #; <1, < T,

Q

Definition 5.1. For an initial data uy € L*(Q,R") with div(uy) = 0, and f € L*(Qr), a
function u € LXL2(Qr) N L?H!(Qr) is called a Leray-Hopf tye of weak solution of the
Navier-Stokes equation, if

=n

5]
: +f [—u-vi—uQu:Vv+uVu-Vv— fvldxdt = 0. (5.10)
1

e y satisfies the equation in the sense of distribution, i.e., (5.10) holds.
o u(-,t) = upin L*(Q) ast | 0*.
e t — u(-, 1) is continuous from [0, T'] to (L?, weak — L?).

e it satisfies the weak version of the energy inequality:

t !
f lul*(t) dx + 2u f f \Vul* dxdt < f luo|* + 2 f f fu (5.11)
Q 0 Q Q 0 Q

forany0 <t <T.

Theorem 5.5. For any bounded domain Q C R" and 0 < T < oo, ug € L*(Q,R") with
div(up) = 0, and f € L*(Q x [0,T)), there exists at least one Leray-Hopf type of weak
solution to the initial-boundary value problem of the Navier-Stokes equation.
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Open problems.

e Whether the energy inequality (5.12) is an equality for any Leray-Hopf type of
weak solution?

o Whether the following stronger version of the energy inequality holds for a Leray-
Hopf weak solution:

15 5]
f lul*(12) dx + 2u f f \Vul? dxdt < f ul*(t) dx + 2 f f fu  (5.12)
Q n Q Q I3l Q

forany pairO<# <6, <T.
e Whether the uniqueness holds for the class of Leray-Hopf type of weak solutions.
e Whether the class of Leray-Hopf type of weak solution is smooth.
Now we outline the Aubin-Lions compactness.

Lemma 5.6. (Aubin-Lions). Let Xy, X, X; be three Banach spaces such that X, C X C X,
are continuous injections. Assume Xy, X, are self-reflective, and X, C X is compact. For
0<T < +o00, @y, a; € (1, +00), consider

Y =Y(0,T,ap, a1, X0, X1) :={f € L([0,T],X) : 0,f € L" ([0, T], X1)}

equipped with the norm

11 = 0l * 7

L70([0,T1:Xo0) LA(0.T1.X))

Then Y C L*([0,T], X) is compact.
Proof. First we claim that for any € > 0 there exists c(e) > 0 such that
lIxllx < €llxllx, + c(e)llxllx,, Yx € Xo. (5.13)
For, otherwise, there exist €y > 0 and x; € X, such that
Ixellx = €ollxellx, + Allxillx, -
Without loss of generality, we may assume that ||x;||x = 1, for all K > 1. Hence we have
llxellx, < €' lxdly, < &7

Since X, C X is compact, we may assume that x; — xin XN X,. This yields that ||x||x = 1.
On the other hand, ||x¢||x, — O implies that ||x|[x, = 0 and hence x = 0. We get the desired
contradiction.

Since 1 < ag, @) < +o0, X,y and X are self-reflective, we have that L*([0, T'], X;) and
L*'([0,T], X;) are self-reflective. Let {u™} C Y be a bounded sequence. Then we may
assume, after passing to subsequences,

u" — uweakly in L*([0, T1, Xo), 0™ — d,u weakly in L* ([0, T], X,).
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By considering v" = u™ — u, we may assume that u = 0. Applying (5.13) and integrating
over t € [0, T], we have

”um”L"O([O,T],X) < €||”m||L"O([O,T],X0) + C(e)”um”L‘YO([O,T],X])-

It suffices to show that [[u"||;e0(0,r1.x,) — 0. Since ¥ < C([0,T], X;) is continuous, it
suffices to show that #™(f) — 0 in X, for L!-a.e. t € [0, T] by the Lebesgue Dominated
Convergence Theorem.

Since

u"(0) = u"(1) - f ") () dx,
0

we have that forany 0 < s < T,

" (0) = é f W) di - % f ‘ f "y (t)drdt = a, + by,
0 0 0

For any s € (0, T) fixed, it is easy to see that
a, — 0 weakly in X,

and

1 A) S
1Dmllx, = 1= f (s ="y (n)dil < f @™y @llx, dt < -
S Jo 0 2

provided that s > 0 is chosen to be sufficiently small. Since X, C X; is compact, it follows
that
llamllx, — 0

Putting these two estimates together yields that |[u"(¢)||x, — O for a.e. t € [0, T]. O

Finally we indicate how to apply the Aubin-Lions lemma to show that ¥ — u in
L*(Qr) when n = 3.

Choose Xo = H'(Q), X = L*(Q), and X; = W23(Q) = (W*(Q)). It is clear that
Xy € X C X, are continuous injections, Xy C X is compact, and Xy, X; are self-reflective
Hilbert spaces.

Claim. {0,u,,} ¢ L*([0,T], X;) is bounded.

This claim is non-trivial, and we leave it for the readers to verify as a challenging
homework problem. Then we can apply Aubin-Lions’ lemma directly to conclude that
u,, — u strongly in L*(Qy). i
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Lecture 6, December 26, 2012

6 Uniqueness question on the Navier-Stokes equation

We begin with the uniqueness result on the Leray-Hopf weak solution in dimension two,
while the similar result in dimension three is completely open.

Theorem 6.1. For n = 2, the class of Leray-Hopf weak solutions with respect to the initial
boundary value problem enjoys the uniqueness property.

A key step to obtain this uniqueness is the Ladyzhenskaya inequality:

!

holds for any v € H}(Q), with Q c R? a bounded domain.

2

(6.1)

< ch H Y
[A(Q) L2(Q) L2(Q)

Lemma 6.2. For n =2 and a bounded domain Q c R?, we have
1 1 1 1
|Blut, v, wl| < Clll} g 171 g IV 11 g 991 (62)

holds for any u,v,w € Hj (€, R?).
Proof. Since
Blu,v,w] = Lu-Vv-w,
it follows from the Holder inequality that
|Blu,v,w]| < ||u”L4(Q)”VV||L2(Q)”W”L4(Q)-
Applying the inequality (6.1) to both # and w immediately yields (6.2). O

Proof of Theorem 6.1: Let u;,u, € LL*(Qr) N L?H'(Qr) be two Leray-Hopf type of
weak solutions. Set w = u; — u,. Then we have

w = 0on d,(Qr).
Since w satisfies
ow —uAw +uy - Vuy —upy - Vuy + Vp=0in Q x (0, T),

we can multiply the equation by w and integrate over € to get

2B[M2, U, W] - 2B[”] s U, W] = _ZB[W’ U, W]

WO, + 2V g

S AWllz@lIVW @l Vuall 2 @)
2 -1 2 2
S MHVW”LZ(Q) + C/.l ||W||L2(Q)||Vu2||L2(Q)'

This implies

d 2 -1 2 2
E.”W(I)HLZ(Q) S CIJ ”W”LZ(Q)”VMZHLZ(Q)'
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Hence we obtain J

—c Jo IVu(s)I2
(e b e S g ) < 0.

In particular, we have

¢ fy IVua(s)IP

w2 < e 2o ||W(0)||L2(Q) =0.

This completes the proof. O
Next we present Serrin’s weak-strong uniqueness in higher dimensions.
First we indicate that under higher integrability condition, Leray-Hopf’s weak solu-
tions do enjoy the energy equality property.

Lemma 6.3. Ifu € L°L*(Qr) N L*H'(Qr) N L*(Qr) is a Leray-Hopf weak solution, then
the energy inequality becomes an equality. In fact, one has that forany 0 < t; < t, < T,

it holds .
jﬁ@ﬁ+@f fWWmm:fmmﬁ (6.3)
Q t Q Q

Proof. One can view the Navier-Stokes equation as a perturbed Stokes equation:
—uAu+Vp=-V-(u®u).

Since u € L*(Qr), we see that u ® u € L*(Q7) and hence V - (u ® u) € L*([0, T]; H ' (Q)).
It follows that V- (u ® u) - u € L'(Qr) and

B[u,u,u]:fsz-(u@)u)'u:O
N Q

as V- u = 0. It is clear that this fact easily implies (6.3). |

In general, we will show that the class of Serrin’s weak solutions enjoy the above
energy equality property. First, we introduce Serrin’s weak solutions.

Lemma 6.4. A nonzero function f € L' LI(R" X R,) is scaling invariant, i.e.

||f/l||Lf'LZ(R"><R+) = ||f||L,”L§i(R"><R+), YA >0,
if
2
=+io (6.4)
P g
Here fi(x,t) = Af(Ax, A%1).

Proof. By direct calculations,we have

il s, =27+

LPLIR"XR,)

|7 (6.5)

LPL( (R"XR,)
It is readily seen that the conclusion follows from this identity. O

Lemma 6.5. Suppose that v,w € L°L*(Qr) N L?H\(Qr) and u € L' LY(Qr) for a pair of
exponents (p, q) satisfying (6.4). Then

f flv Vw - uldth<||VW||L2(QT)||VV”L2(Q)(f IIMIILq(Q)IIVIILz@)) : (6.6)
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Proof. By Holder’s inequality we have

T
f flv - Vw - uldxdt < lulloo) IVl @IVWlg), (6.7)
0 Ja
where r is given by
I 1 1
g r 2

Now by the Sobolev and the interpolation inequalities we have

Wl < IV VIS ) S IVl 1TV, -

where
1 6 1-6

+ .
r 2 2%

The conditions on (p, g, r, 6) imply
2
9==, 1-6=".
p q

Hence
Ml < 111 g 9911 g

Substituting this inequality into (6.7) and integrating the resulting inequality, we obtain

T
[ [wevw-uasar < f g 1 191 g 9

9wll2i0n IV, )( f ||u||Lq(Q)||v||L2(Q)) ,

where we have used the fact % + %1 + % = 1 in the last step. O

A

Theorem 6.6. Let u € L L2(Qr) N L2H)(Qr) be a weak solution of the initial value prob-
lem of the Navier-Stokes equation. If, in addition, u € LYLL(Qy) for a pair of exponents
(p, q) satisfying (6.4). Then for any 0 <t < T, it holds

!
||M(f)||iz(g) + lefo ||VM||iz(Q) = ||Mo||iz(9)- (6.8)
Proof. Let K € C2(R) be an even mollifier function. For i > 0 define K (1) = h™'K($).

Let {u*} V= {v € C*(Qr) : divwv =0, v=00n0Q x [0, T]} be a sequence of maps
approximating u. For 7 € (0, T'] fixed, let & € (0, 7) and define

uy(x,t) = f Kyt — O (x, ) dt', w(x,1) = f K(t — yu(x, 1) dt .
0 0
First testing the Navier-Stokes equation by ”Z and then sending k — oo yields
f {(u, Oyun) — p(Vu, Vup) + (u,u - Vuyp)y dt = (u, up)li=r — (o, uy(0)).
0
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Note that

f (u, Oup) = f ' f T(%Kh(t—t’)(u(t), u())dt' dt =0
fﬂ(Vu Vuh)—wf fqul

h
(t, up)li= = fo K(@O)(u(), u(t — ) dr — EIIM(T)IIiz(Q),

1 2
(I/l(), uh(O)) - Ellu()lle(Q)’

fT(M’M'VMh)ﬁfT(u,u-Vu):O
0 0

as h — 0, where we have used lemma 6.5 and divu = 0O in the last step. Putting these
together yields (6.8). O

and

Now we present the weak-strong uniqueness theorem, due to J. Serrin.

Theorem 6.7. Let u,v € L°L*(Qr) N L?HY(Qr) be two Leray-Hopf weak solutions of
the initial and boundary value problem of the Navier-Stokes equation. Suppose also that
u € LPLY(Qr) for a pair of exponents satisfying (6.4) and n < q < +o0. Then

llu(®) = vOll2@) < lluo = vollrz eXP(Cf lu(®)lI7y g dD)- (6.9)

In particular, if uy = vy, then u = v on Qr.

Proof. Let u;, and v, be defined as in the above lemma. Then we have

fo ) {(ut, Bvp) — (Ve Vvy) + (s - Vvp)} dt = (t, vi)li=r — (ttg, v1(0)), (6.10)
and
fo ' (v, Byup) — (Vv Vua) = (up, v - VV)} dt = (v, up)li=r — (v, un(0)). (6.11)
Observe that [(u,d;vs) = = ['(v,d,uy). Adding (6.10) and (6.11) yields
- fo ) (ul(Vi, Vvy) + (Vv Vi)l + (g v - V) = (i, 1 - Vvp))

= (u(), va(1)) + (v(7), un(7)) = (1o, vin(0)) = (vo, u(0)). (6.12)

It is easy to see that

(u(7), vi(7)) + V(1) u (7)) = (10, vi(0)) = (vo, u(0)) = (u(7), v(7)) = (1o, vo),

and

- fT {ul(Vu, Vv,) + (Vv, Vup)] + (up, v - Vv) = (u, u - Vvy)}
0
- — fT {2u(Vu, Vv) + (u, (v — u) - Vv)}
0
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as h — 0. Hence we have

- f {4u(Vu, Vv) + (u, (v —u) - Vv)} = 2(u(7), v(1)) = 2(uo, Vo). (6.13)
0

Since .
VDI ) + 20 f VY1 g dt < Vol (6.14)

0

and .
()| g + 200 f IVl g, dt = ol g, (6.15)

0

by adding (6.13), (6.14), and (6.15), we have

1 = V@I + 20 f f V(- v)P
0 Q

< lup — Volliz(g) +2 fT(u, u—-v)-Vo—-u)+ u,u—-v) - Vu)dt
0

= ||lug — volliz(g) +2 fT(u, (u—v)-V(v—u))drt (since (u,(u —v) - Vu) = 0)
0

1
< lluo = ol gy + CIV G = W)l,2 1 ( fo Nl gl = Vs, dt),,
< Nt = volPagy + KV = W, + C fo O gl = VIEs o .
Therefore we have
@t = V)P < llto = Vol + C fo O gl = Vs g .

This, with the help of Gronwall’s inequality, implies (6.9). O

Remark 6.1. For the end point case p = oo,q = n, the reader can check that the same
argument also works if we assume that [lul[=1(g;) is sufficiently small.

Now we want to discuss the existence of local and global strong solutions in low
dimensions.

Theorem 6.8. (Kiselev-Ladyzhenskaya). For n = 2 or 3 and f = 0. For any uy €
H*(Q) NV, there exists a weak solution u € LfoL)ZC(QT) N L?H;(QT) of the initial and
boundary value problem of the Navier-Stokes equation, and a T > 0 such that ||Vul|;2 (o)
and ||0,ull2) are uniformly bounded for 0 <t < T. Furthermore, T = +o0 ifn = 2 or
luoll 2 is sufficiently small when n = 3.

Proof. Here we sketch the argument for the solution u. Rigorously speaking, one needs
to first work with the Galerkin’s approximate solution #™ and then taking m — oo.
Taking 0, of the equation, we have

un - ﬂAu[ + (M * Vu)[ + th = 0.

Multiplying this equation by u, and integrating over 2, we obtain

=20l Vu s o — 2, u, - Vi),

2 —
E”utlllﬁ(g) - 12(Q)

49



where we have used
fVPz'Mt=—fPt'V'Mt=0,

Q Q
and
(s, u - Vuy) = Blu, ug, u,] = 0.

Observe that
2
|Gz, - Vi)l < IVl 2ol 2 -

By the Sobolev inequality, we then have

C||Mz||L2(Q)||VMt||L2(Q)||VM||L2(Q) n=2
|(uz, s - V)|

Cllulls o IVl Vill2y 1= 3

[
# Jo VP + Sl ) IVl n=2
2
1 Jo IVl + Sl g Vel 7= 3.

Therefore we have

d CII 112, 0, IV ull? n=2
—||ut||22(9)<{ el T (6.16)

[[Vul[* n=23.

3 ” t“Lz(Q) LZ(Q)

Now we proceed as follows.
(1) n = 2: By Gronwall’s inequality, we have

t
2
|2 ) < |l (O)l]z20) €xp (C f IVully2 g dt).
0

Since
u(0) = pAug — ug - Vug — Vp,

and V - 1,(0) = 0 and u,(0) = 0 on 0L, we have fg Vp - u,(0) = 0 and hence

2
||ut(0)||L2(Q) ||/1AMO —Up - VMOHLZ(Q) ~ ||u0||H2(Q)

Therefore we have
llllz2) < Clluollp2)) YO <t < T.

Since the energy inequality implies that

2,U||VM||L2(Q) ||M||Lz(g) 2ull2@lludlzz @) S lluoll2@lludl @)
is also uniformly bounded for all 0 < ¢ < T'. From this argument, one also sees that the
maximal time interval T is +oco.
(i1) n = 3: Since
2
UlIVulRs ) < lllz@lliullz .
we have

d C 2
E”WHU(Q) < IF||u||L2(Q)||Vu||L2(Q)||ut”L2(Q)-
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Thus we have
||Mz(0)||L2(Q)

|2te| 120y < (6.17)
T - Gl Ol @A)
where )
A = f Nl @IVl g dt = oIy, — 1O 0
0
Note that if 1 satisfies
4
ol OVl < 5. (6.18)
then
c 3
1- IF||M0||Lz(g)||Mz(0)||L2(Q) >0
so that [|u,(?)||2) 18 uniformly bounded for all 0 < < T = oo . Since ||Vu(t)||i2(g) <
()| 200l (D)ll 122y 1t follows that [[Vu(?)l]2(q) is also uniformly bounded for all 0 < <

T = oo.
If (6.18) doesn’t hold, then since

2 3
E”ut”Lz(Q) < E”u”LZ(Q)”u’“B(Q)’

we have )

2 ||, (O)|

|, < L . (6.19)

2@ = 1= CuHuolR g I O)ll 2t

Therefore if .
T< 2 £ 2
ClutolR g 14O g

then the estimates on [|u,]|;2) and [[Vu(?)||;2q) hold forall 0 <7 < T. |

It turns out that the above theorem also holds for small initial data in dimension n = 4.
Namely, we have

Theorem 6.9. For n = 4, and uy € HS(Q) with V - uy = 0 and ||uollp2q) sufficiently
small, then there is a solution which is strongly differentiable with respect to x and t, and
el L2(2)s I VU@l 122y i uniformly bounded for all 0 < t < +oo.

Proof. The idea is similar to the above Theorem, but the argument is different. As in the
above theorem, we first have

2 2 2
+ ullVirliz ) < ClIVullrallullzs g, < CliVullz) V|

d
d_t”M[” 2Q) 12(Q) L4(Q) L2(Qy

so that we have

d
T, + Ga = CUVull @)l g, < 0. (6.20)
Now we have
Claim. If u, satisfies
2
U
lletoll 2 (o)l (O)| 22y < a (6.21)

51



then for all 0 < ¢ < +o0 it holds that

VU200 < % VO <1< +oo, (6.22)

To see this, we first observe that the condition (6.21) and the energy equality of the
Navier-Stokes equation imply

2
u
IV uoll72 ) < il 201240l 20y < c
which clearly implies that there exists ¢ > 0 such that (6.22) holds for 0 < # < 6. Assume
Ty < T is the maximal time such that (6.22) holds. If Ty < +co, then we would have

H MU
IVu®ll2) < ok YO <t < To; [[Vu(To)llr2q) = fok (6.23)
Substituting (6.23) into the inequality (6.20), we would obtain
letellr2 @) < Nl (0|2 YO < £ < T
Att = T,, we would then have
© s
c = ||VM(T0)||iz(Q) < M (To)ll 2@l To)ll2) < (O 220 lluoll220) < -
This is impossible. Thus T = co. The proof is complete. i

6.1 The Ossen Kernel

The Ossen kernel plays very important roles in the study of mild solutions to the Navier-
Stokes equation in the entire R”. It is the fundamental solution of the time-dependent
linear Stokes system on R": For f € L*(R",R") and uy € L*(R",R") with V - uy = 0,
consider

ou—Au+Vp=f R"x(0,+00)

V-u=0 R" % (0, 00) (6.24)

I/tlt:() = U R".

It is not hard to see that by the superposition principle that u = u; + u,, where

(5, 1) = f T Cr = v, Duto(y) dy

is the solution to the heat equation with uy is the initial data, while

!
MZ(xa t) = f f F(x_yvt_ S)Pf(y’ S)dyds
0 Rﬂ
is the solution to the Stokes system with zero initial data. Here P : L2(R") — L(zﬁv(R”) is

the Leray projection operator, and

1 |x[*
T3, 1) = —— exp(—1 )
(5.0 = g exp(= )
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is the fundamental solution to the heat equation on R".
Recall from Lecture 2 that for 1 <i < n,

62
axiaxj

B = ()~ AV f) = Fi) + f Gx =W O dy,
i R2

where G is the fundamental solution of the Laplace equation in R”.
Define

O(x, 1) = f GOI'(x -y, 1) dy.
Then the Duhamel formula for the Stokes equation will be given by
!
ui(-x9 t) = f r(-x =) t)ué)()’) dy + f f kl/('x =Y r— S)fj(y, S) dde,
R 0 n

where X

Bxi(')xj

kij(x, 1) = (8,0 + Jo(x, 1)

is called the Ossen kernel.
For the Ossen kernel, we have the following property.

Lemma 6.10. Let k;; be the Ossen kernel defined by (6.26). Then it holds

, V(x, 1) € R" X (0, +00).

‘kij(xa f)‘ <

Ik
V. Vikii(x, f)| < k2l ?

(Ix]? + 1) (IxI> + )2

Proof. 1t is straightforward from the definition of ®.
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Lecture 7, December 27, 2012

7 Leray’s construction of local classical solutions and BKM
criterion

7.1 Holder estimates for the Stokes system

. Assume that f = div(F) for some F € L*(R" X (0, +c0), R”"). Assume uy € L*(R").
Then it is easy to see that u; = I'(¢) * u, the solution to the heat equation with u, as the
initial data, satisfies

I
7k

< —

VA (x, ) < o

. V(x,t) € R" X (0, +o0). (7.1)

Up

Since .
ué(x, t) = f f Kijl(x - 1 - S)F[j(y’ S) dde,
O n

where K;j; = %‘I’ is the partial derivative of the Ossen kernel k;;.

We want to estimate |uy(xy, 1) — ur(x2,1)| by estimating |up(xy, 1) — ux(xz, t1)| and
lur(x2, t1) — up(x2, )| separately. Since we are interested in the interior estimate, we may
assume #; ~ 4. By translation invariance, we can assume x; = 0 and x, = a@e for some

e € S"!. Observe that K;; enjoys the following homogeneity property:
Kij(Ax, 1) = 27" 'K(x, 1), ¥4 > 0.

Thus we have

IA

lun(x1, 11) — ua(x2, 11)

!
”F”L‘X’(R”x[o,tl])ff |K(=y, s) — K(ae -y, s)|dyds
0 Jr

IA

a||F ||~ f ’ f IK(-z,7) — K(e — 7, 7)| dzdt
0 Rn

IA

2k
alFl={ | + |7} | IK(-z7)—K(e-z.D)ldedr =1 +1L.
0 2 R

Here K = (K;j;) fort > 0 and K = 0 for ¢ < 0. Since
|K(-z,7) — K(e — 2, 7)| < |[K(=z,7)| + |K(e — z,7)|, 0 < 7 < 2,

and t
K(-2, 1)~ K(e =20 § ————=, 2<7< —,
(z> +7)7 @
we see that
lI| < Ca||F||i,
and
e dzdr
11 < aIIFllef f —
2 rr (|22 +7)2
:712 dr 1
< allFll- f I < alog(DlIFll-.
2 T o
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Therefore we have

)) Il (7.2)

o (X1, 11) — ua (2, 1) < X1 — X2 (1 + log(
lx1 — X2

To estimate |uy(x2, t;) — u(x2, )|, we assume x, = 0 and t, = t; — @”>. Then we have

lu2(0,11) — ux(0, 1, — )|

N

11
P [ [ Kym) - K - @) dyar
0 R”

%
QlF - f f IK(=y, ) = K(=y, — 1) dydr
0 R

2
Al { fo " f ' } fR K (.0 = K(=y,7 = Dl dyde

2
|
22

QF - {1 . f ’
2

3l

oz 1
Q|F |l {1 + f f — _dydr
> JJw (P +0)F

n

o 3
S allF| (1 + f T2 dT) S Flle Vit — 1ol
2

Combining these estimates on u; and u, together, we would obtain

A

7

A

} |K(_y?T)_K(_yaT_ 1)|dydT
R~

N

Theorem 7.1. Suppose that uy € L*(R") and F € L*(R" x [0, T]). Then for any 6 € (0, 1)
and R >0, 6 >0, u € C*Ipha(Bg X [0, T],R") and

||M||C0(BR><[5,T]) < C(R, 0, llugllze, [1Flz) - (7.3)

7.2 Mild Solutions to the Navier-Stokes equation

Consider the initial value problem for the Navier-Stokes equation in R":

u,—Au+u-Vu+Vp=0 inR"x(0,T)
V-u=0 inR" x (0,7T) (7.4)

ul—o = Uo in R”.

Definition 7.1. For uy € L*(R") and 0 < T < +oo, u : R" X [0,T] — R" is called a mild
solution of (7.4) if

u(t) =T@) *uy + f K(t—s)=(—u(s)®u(s))ds, 0<t<T, (7.5)
0
where K = (Vk;;). Definition
U@) = F(t) * ug, Blu,v] = f K(t— s) = (—u(s) @ v(s))ds.
0

Then (7.5) can be written as
u = U + Blu, u]. (7.6)
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Lemma 7.2. Let X be a Banach space and B : X X X — X be a continuous bilinear form
with
IBLx, Y1l < ylixllllyll, x,y € X.

For a € X, consider the equation
x =a+ B(x, x). (7.7)

Suppose 4ylla|| < 1. Then (7.7) has a unique solution

1+ +/1-4ylla
)‘ce{xeX:'llxll< il ”}.

2y

Moreover,

1 = V1 =4yl

X|| < .
[o4] 2y

Proof. Since 4v||a|| < 1, there are two real roots

1 £ +/1—=4ylall

2y

ry =

of ||a|| + yr* = r. First observe that there exists no solution of (7.7) in the annulus {x € X :
r— < ||x|| < r,}. For, otherwise, there exists x; in this annulus such that x; = a + B(xy, x1).
Hence we have ||x;|| = |la + B(x;, x)|| < llall + yllx;|[>. This is impossible, as for any
r € (r_1,r.), llal| + yr* < r. Therefore, it suffices to look for a fixed point of the map

Ox)=a+Bx,x):{xeX:|xl|<r.}-o>{xeX: |xl<r.}

In fact, since
2 2
1PN < llall + yllxll” < |lall + yrZ =1,

we see that the map is well-defined. Also, since
1D(x) — DI = y(llxl + IyIDIx — yll < 2yr-|lx — yll < llx — yll

for x, y in the ball. Hence @ is a contraction map. Thus there exists X, with ||X|| < y_, such
that X = a + B(X, X). This completes the proof. O

Now we apply this abstract lemma to obtain the short time smooth solution to the
Navier-Stokes equation as follows.

Theorem 7.3. (Leray) For any uy € L(R"), there exists a Ty > 0 depending on ||uo||L~
and a unique solution u € C*(R" x (0, To],R") N L*(R" X [0, Ty], R") to the initial value
problem of the Navier-Stokes equation.

Proof. ForT >0, set X = Xy = L(R" x [0, T],R"). Then we have

@) * uollx, < lletollzgr), (7.8)
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and

A

T
IBlu VI, < llullx, VI, f f IK (x, 1)] dxdr
0 R~

T
dxdt
Cllullx, |Ivllx, f f —
o Jre (xP+07

T
dt
Cllullx, Vllx, f — < Cllullx, IMlx, VT (7.9)
0o Vi

IA

IA

for any u,v € X7.
If 4C \Tyllullz~ < 1, then we can apply the abstract lemma to conclude that there
exists a unique u € Xy, that solves

u=1(0)*uy+ Blu, u],

which is equivalent to that u solves the initial value problem of the Navier-Stokes equa-
tion.

Remark 7.1. 1) In general, the solution u(¢) doesn’t converge to uy in L*(R"), since I'(¢) *
u - up in L=(R").

i1) If 7., > 0 is the maximal interval for the solution # and T, < +oo, then according to
Leray’s theorem it holds

€1

>— O0<t<T,, (7.10)

u(t 2
H @) Le(Rm) T. -t

for some ¢ > 0.

ii1) For any 0 < T < 400, the uniqueness holds for solutions to the Navier-Stokes equation
in X7. The proof is a slight extension of the above theorem: suppose that u;,u, € Xr
solve the Navier-Stokes equation with the same initial data uy, € L*(R"). Then the above
argument shows that there exists a sufficiently small 7y > 0O such that u; = u, in R" X
[0,Ty]. Then we can repeat the same argument to show that u; = u, in R" X [T, 27)].
After finite steps, it follows that u; = u, in R" X [0, T'].

7.3 Serrin’s blow-up criterion

Consider uy € L* N L?, and let 0 < T < +oo be the maximal interval of existence of mild
solutions or the Leray solution u. Then we have

[l @ny = +o0, ast T T.

Let1 << My < M, < -+ <— +oco and let t; € (0,7) be the first time such that ¢ —
(D]l ~rn) takes the value M;. Let x; € R" such that [u(x;, ;)| ® M;. Note that

lu(x, )l < M;, VxeR", 0<t<t;.

Define

1 t
vi(y,s) = ﬁu(xj + %,tj + E)’ yeR, _sz'tj <t< sz'(T —1)).

J J j
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By the scaling and translation invariance of the Navier-Stokes equation, we have that v;
is a solution of the Navier-Stokes equation in R” X [—sz.t s M?(T —t;)]. Moreover,

lv;(0,0)] = 1.

Hence by the Holder continuity, there exists p > 0 such that
1
[v;(x Dl 2 5, V(x,1) € B, X [—p%, 0].

This implies, after rescaling, that

Mj p2
|l/l(.x, t)| 2 75 (-x9 t) € BML/(XJ) X [tj - W’tj]

J

In other words, this indicates that [u(x, 1) reach a ”peak”™ at z; = (x;, t;), with hight M; and
2
width in x-direction £- and in #-direction %. This implies that if % + g = 1, then
J j

J

This shows that the L” L!-norm of u concentrates in infinitesimal region at time approaches
T, and thus we have

2,0 1-242
o zeprtiM T 2 ep,
L; LX(BML]_(X,')X[IJ'—M*%JJ']) J

Theorem 7.4. Assume that a mild solution u blows up at 0 < T < +oo. Let q > n and
p = 2 be such that % + 3 = 1. Then for any T > 0,

T ‘
f (f lu(x, 1) dx) dt = +oo. (7.11)
T-1 \JR"

Now we present Serrin’s interior regularity theorem.

Theorem 7.5. Let u € L™*(R)NL>*H'(R) be a weak solution of the Navier-Stokes equation.
Suppose, in addition, that u € LY L*(R) for a pair of exponents s and s satisfying

2 n
—+-<1,
s s

then u is C* in the space variable. If u is strongly differentiable with respect to t, then
u, Viu is absolutely continuous with respect to time t.

Proof. The argument is based on the vorticity equation: w = V X u satisfies
w; — Aw = div(wu — uw) in R (7.12)
Thus we can represent w by
w(x, 1) = ffk(x —-y,t—5)g(,s)dyds + B in R, (7.13)
where B solves the heat equation on R, k = VK and

o (@ntyexp(-E0), 1> 0
o, 1<0
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is the heat kernel, and g(y, s) = n*(wu — uw)(y, s) with 7 € C(R™") satisfying 0 <n < 1,
andn = 1inR.
Forp,p’ > 1,ifw € LP*(R), then, since u € L**(R), we have

g€ LTIR"™

with
1 1 1 1 1 1

’ ’ + PV
g s P q9 s p
Hence, by using the properties of the kernel k and the equation (7.13), we have

we L (R),
where
p o 1-1-3
=L r_ , k:#>0_
Tl ok T T 1k n+3

Note that r > p,r > p’, which shows that there is an improvement of the integrability
of w. Starting with (p,p") = (2, 2), after a finite number of steps, we would obtain that
w € L*(R). Once we have that the vorticity w is bounded, the higher order regularity
follows from the standard theory, we leave the details to the interested readers. O

Remark 7.2. M. Struwe has extended Serrin’s regularity theorem and showed that

i) if u € LP(Q7), with f—) +2 < 1landg>n,or

i) if u € L™"(Qr) satisfies that for some absolutely constant €, there exists a R > 0 such
that

f lu(x,)|"dx < e, Yt €[0,T],
Br(x)NQ

then u € L*(Qr).

7.4 Sketch of Struwe’s Proof

The idea is based on the Nash-Moser iterations method to the vorticity equation: For
¢ € C3(Qr) > 0and s > 1, multiplying (7.12) by w|w|**¢* and integrating over Qr, we
obtain

|w|25 2 . 1 .
f 3 28‘1’ ) + Vol w? 2¢2+§<s—1>|V|w|2|2|w|2 ¢

2s
= f |ws| 901 + Vil ? ¢V + (uw — wi)V (wlw ~*¢?).

This implies

sup f (lwl'9)* + f V(lwl*9)I?
0<t<T JQ Or

C@) | ol +Cf [ullwl** @IV + llul*|w|* ¢°]
Or Or

IA

IA

C@) | lw+C | ul(wl¢). (7.14)
Or Or
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The second term in the right hand side of the last inequality can be estimated by

lul*(Jwl*p)* < el racop I @l Lrea+(07)s (7.15)
Or
where
I 1 1 1 1
p 2 p g 2 q
Since 5 5
j+%:2+1—(—+ﬁ)22,
g 2 p q 2

it follows from the Sobolev-interpolation inequality that
2,012 2 2 2 012
Nl Bl Lr-a0p) < CONWII2 0,y + ClllLpasuppa 01 Bl Lrea ;- (7.16)
If ||u||i,,,,,(Supp s < € then we have

PR o) < CONIE g, - (7.17)

In particular, we obtain that for any 7, p satisfying

SIS

+ >n
Z 5

IS

then
@l rngy) < CONOI g, - (7.18)

Thus we have that for g = ”;;—2 > 1, it holds
wl’¢ € L¥(Qr).

Starting with s = 1, 51 = Bso = B, Ske1 = Bk, and Qo = Or, Ok+1 = {(x, 1) | P(x, 1) = 1}
for ¢ry1 € C;(Qr). Then we obtain that w € Ly (Or).

loc

7.5 Beale-Kato-Majda criterion on finite time singularity

For uy € H'(R") (s > n), thee exists Ty > 0 depending only on ||u||zs so that the initial
value problem of the Navier-Stokes equation has a unique solution u € C([0,T], H*) N
C'([0,T], H*™).

Theorem 7.6. (Beale-Kato-Majda) Let 0 < T, be the maximal time interval. If T, < +oo,
then

T*
f IV X u(O)|| oy dt = +o00. (7.19)
0
In particular,

lim sup ||V X u(t)|| o @ny = +00.
1T,
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Proof. First we observe that

T. < +oo iff lim sup |[u(?)l|gs(en = +0o.
nrT.

We want to prove that if
T*
f IV X u(@®)|| =@y dt < +o0, (7.20)
0

then

For simplicity, we present the argument for the Euler equation. In this case, the vorticity
equation is
w;+u-Vo=w-Vu.

Since V X u = w and divu = 0, we have
IVull;> < Cllwl|z2.

Hence we have

—IVoli7, + (w - Vi, )2

!

il

3
|

2
—IVwlly, + Cllwllzllwllz || Vull

2 2
—lIVollz, + Cllwllz=llwll7,-

IN A

By Gronwall’s inequality, we have

T,
[lw®ll2 < MollwO)||2 VO <Lt <T,, My= exp(cf lw ()|~ dt). (7.22)
0

For |a| < s, let v = V?u. Then we have
vi+u-Vv+Vg=F :=-V%u-Vu) —v-V(V).
By the Leibnitz rule and Sobolev’s inequality, we have
IV(fg) = FV8lle < CUIfNasligllis + IV fllzllgllgzs-)- (7.23)
Applying (7.23) to F, we obtain
IFllr2 < CliVullllullgs.

Thus we have 4
ztllu(t)ll?qs < ClIVu@|lg= ()l (7.24)

and )
)| zzs < |05 exp(c fo IVu(D)||z~ d7). (7.25)

Now we need the following key inequality:

IVu@®llz> < C (1 + (1 + In™ [lu@)llg)llw®llz= + lo®)lz2) - (7.26)

61



Here

N Ina ifa>1
InTa=
0 ifa<l.

Assume (7.26) for the moment, we proceed as follows.
IVu(@®ll> < C(1 + Ine + [lullg)llw(Dll).
Set y(t) = e + ||lu(?)||ys. Then we have
f
y(#) < y(0)exp (C f (I + llw@llz= Iny(7) d7).
0

Set z(t) = In y(¢). Then z satisfies
t
z(t) < z(0) + ¢ f (1 + llw(@llz= Iny(7) d7.
0

This implies that z(¢) is bounded by T., ||u||gs, and My = fOT* [lw(®)||r~ dt. Hence ||u(?)||gs
is uniformly bounded for 0 < 7 < T... Thus 7. is not the maximal time interval.
Now we return to the proof of (7.26). To do it, we first recall by the Biot-Savart law,

1 _
) = - f XY ot dy = fR K(x= ) dy.

g X =yP

1
ForO0 <p < 1,let§, € C3(R) > 0 such that §, = {

x| < p 2
,and [V&,| < 2. Then we
0 |x|>2p L

can write Vu(x) = Vu'(x) + Vu?(x), where
Va0 = [ €G- K= Vo) dy,

and

Vi) = [ VIKG= )1 - 6= )lwt)dy

We estimate Vu' and Vu? separately as follows. Since |K(x — y)| < |x — y|™? € LP(By,(x))
for any p < % we have

1 1
Vi (0 < |IK]| ¢ IVolliss,,my < Co* IVl < Cp*|lullps.

L3 (B2(x))

While we can split Vu? = Vi? + Vu*, where

Vi (x) = f . VIK(x = y)(1 = &(x = y)]w(y) dy,
P<[x=yl<

and

Vit (x) = f| | VIKG =31 ==l dy
x—y|=>

For Vu?, we have
1 20 1
Vil (%) < [ f r3rdr + f 2o ' drllwll= < C(1 + 1n ;)lla)lle.
P p
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Since VK € L*(R? \ B;(x), we have
Vi (x)] < Cllwllz.
Putting these estimates together yields
Vil < (P llullp + (1 = Inp)llallzs + lleoll2).

If we choose p by

) if flulls <1
loall 74 f [fall s > 1.

Then (7.26) follows. The proof is now complete.
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8 Caffarelli-Kohn-Nirenberg’s theorem on the incompress-
ible Navier-Stokes equation

We consider the Cauchy problem for the incompressible Navier-Stokes equation in R? x
(0, c0):

vi+v-Vv+Vp=Ay, inR>x(0,c),
divv =0, in R? x (0, 0), (8.1)
v(x, 0) = vo(x), in R%,

where v = v(x,1) € R? is the velocity field, p(x,?) is the scalar pressure function, and
vo(x), with div vy = 0, 1s the initial velocity field.

The study of the incompressible Navier-Stokes equation in three space dimension has
a long history. The existence of Leray-Hopf’s solutions has been established by J. Leray
in 1934 for Q = R", and by E. Hopf in 1940 for Q c R” being a bounded smooth domain.

e A typical property of Leray-Hopf’s solutions is the weak energy inequality:
!
V(. DI, + 2f Vv, $)II7 ds < lvoll7., ¢ >0. (8.2)
0

o ve L¥0,T; L*(R")NL*0,T; H'(R"), VT > 0.
e v is weakly continuous from [0, T) to L>(R?).

e v verifies (8.1) in the sense of distributions, i.e.,

T 8¢ T
f f (— +(v- V)(/))v dxdt + f vod(x,0)dx = f f Vv : V¢ dxdt.
0 R” 61‘ R? 0 R?

for all ¢ € C°(R" X [0, T')) with divgp = 0, and
T
f f v-Vodxdt =0.
0 Jre

o If vg € C*(R"), with div vy = 0, then there exist Ty = To(vp) > 0 and a unique
smooth solution v € C*(R" x [0, T], R") of (8.1).

forall ¢ € C3°(R" X [0, T)).

Suitable weak solutions and generalized energy inequalities
A weak solution (v, p) is called a suitable weak solution of (8.1) in Qr = QX [0,T] C
R3 X (0, 00), provided that the following properties hold:

o peL3(Qr)and L*LX(Qr) N L2HN(Qr).

e (v, p) satisfies (8.1) in the sense of distributions

ff Vo —pV -9+ Vv -Vo+v-Vovdxdt =0, VYe¢e C(Qr).
Or
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e (v, p) satisfies the generalized energy inequality:

T T T
2 f f IVv[*@ dxdt < f f VA (¢, + Ap) dxdt + f f (V> + 2p)v - Vo dxdt,
0 Q 0 Q 0 Q

(8.3)
holds for all ¢ € C°(Qr), ¢ > 0.

Lemma 8.1. If (v, p) is smooth solution of (8.1), then the generalized energy inequality
(8.3) must hold.

Proof. . Multiplying (8.1) by vy and integrating over Qr, we have

T T
f fv,(vgo) +v-Vv(vp) + Vp - (vp)dxdt = —f va - V(ve) dxdt.
0 Ja 0 Ja

T
RHS:—f va-V(vgo)dxdt
0 Jo
T T
:—f fwvlzsodxdt—f va-Vgovdxdl
0 Jo 0 Jo
T T 1
:—f fIVVlzgodxdt—f fch-V(—lvlz)dxdt
0 Jo 0 Jo 2
T T 1
=- f f IVv*p dxdt + f f Ap(= V) dxdt.
0 Jo 0 Jo 2

For the terms in the left side, we estimate them one by one as follows:

(LHS) _foﬁ(le )dxdt—follvlza dxdt
T
1
:—f f§|V|zat(’0dth
0 Q

By the divergence free condition of v, we can conclude that

T 1 T ri
(LHS), = f f v V(=v*@) dxdt — f f —v]*v - Vo dxdt
0 Q 2 0 92
T 1 T ri
=— f f div(v)(=v¢) dxdt — f f —|vP*v - Vo dxdt
0 Q 2 0 92
T ri
:—f f—|v|2v-Vgodxdt.
0 Ja2

Finally we turn to the last term. By the divergence free condition of v, we have

T
(LHS); :f pr(vgo)dxdt
0 Ja
T
=— f f pdiv(ve) dxdt
0 Ja
T
:—f fpv~V(,0dxdt.
0 Jo

Putting all these estimates together, we obtain the generalized energy inequality. O
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Remark 8.1. If ¢ € C7( x (0,1]), ¢ > 0, then the generalized energy inequality (8.3)
yields

73 ! t
f VP dx| +2 f f V¢ dxdt < f f VI (g; + Ag) dxdt+ f f (VP +2p)v - Ve dxdt.
Q 0 JQ 0 JQ 0 JQ

(8.4)
Proof. Forty > 0and 0 < € < 1o, let 5. € C7’(R) be a cut off function such that
1, 0<s<t)y—e,
ne(s) = { linear, otherwise, (8.5)

0, s 2> 1.

Then ¢(x, H)n.(1) € C;5(Q x (0, 7)) and the previous energy inequality yields

10 0}
2 f f IVvPene dxdt < f f Ivlz[(sot+Aso)ne+son;]dxdt
0 Q 0 Q

10
+ f f (V1> + 2p)v - (Ven,) dxdt.
0 Q
Taking € | 0, we have

10 1) 10
2 f f IVv? dxdr < f f vP[(e, + Ag)| dxdt + f f (VP + 2p)v - (Vo) dxdt
0 Q 0 Q
+11mf flvlzgonedxdt

Thanks to the definition of 7., it is easy to show that

]
lim f|v|2<p77; dxdt = —flvlzgo(x, to) dx.
0 Jo Q

€l0

Thus we can get

10
f|V|2(X,l0)90(X,fo)dx+2f fleIzgodxd f
Q 0 Jo 0
[

|v| (¢; + Ap) dxdt

+

hh

(v + 2p)v - Vo dxdt.

Remark 8.2. Now we make some comments:

e It is an open problem whether Leray-Hopf’s weak solutions (e.g., constructed by
Galerkin’s method) are suitable weak solutions.

e However, Caffarelli-Kohn-Nirenberg did obtain the existence of suitable weak so-
lutions by a different method.
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Scheffer’s partial regularity
(1) It is well-known that if (u, p) solves the Navier-Stokes equation, then so does (u,, p,)
for all A > 0 in R", where

u (x, 1) = Au(Ax, 1%t),
p/l(-xa t) = /lzp(/lxa /lzt)

) If v € L*IX(Qr) N L2H(Qr), then v € L% (Qr).

Proof. 1t is a direct consequence of interpolations. For the convenience, we present the
details. For 2 < p < 2*(= 6), one has

”V(t)”[y(]l@ < ||v(t)||L2(R3 ||V(t)||L2 (R"‘)’

where

1 6 1-6

Taking the L/—norm with respect to time variable, we have

f v, di)” <( f VLIS dr)
<Vl f Vo)l mdr)

Choose ¢ such that g(1 — 8) = 2. Together with (8.6), we can show that

1 2
+ — =

1 L,
qg 3¢ 2 3¢

1
p 2 3¢ 2

or equivalently,

3

—. 8.7
> (8.7)

Thus we have . )

v, Dllgir < VG DOl lIvCe, Dl o
Choose p =g = 13—0. The proof is complete. O

(3) Leray-Hopf solutions satisfy the following estimates:
* foT o, (% + |pl3) dxdt < oo,
. fonQ IVv[? dxdt < 0.

Theorem 8.2 (go-regularity). Let Q, = {(x,t)| |x| <r, —r? <t < 0}. There exists &y > 0
such that if (v, p) is a suitable weak solution of (8.1) in Q, and satisfies

(VP + |pl?) dxdt < &,
Or
then v € C*(Qz,R%) and |Vllcxg,) < Cl&o, k, 7).
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Lemma 8.3 (¢p—decay). There exist gy > 0 and 6, € (0, %) such that if (v, p) is a suitable
weak solution of (8.1) in Q, satisfying

3
2 (WP + Ipl?) dxdt < &,
Or

then |
@) | WP +Ipl)dxdt < =2 | (WP +1pl?) dxdt.
Ogyr 2’ 0o,
0
Proof. (By contradiction)
Firstly, by scalings, we may assume that r = 1. If the conclusion were false, then for any
6 € (0, %), there would exist a sequence of suitable weak solutions (v;, p;) of (1.1) that
satisfying

2
3

( |vl-|3dxdt)% +( [ Ipl dxdi)’ =& >0,

[0 0
but 1 :
(072 | Wi dxd) + (67 | |pil® dxdi)’ > se.
Qo Qo 2
Next we define the blow-up sequence
u = &’ Qi = &
& Ei

Then one has

2
. il dxdt)’ + ([, |pi? dxdr)’
ide i3dd3:(fQ1 i =1,
( Qllul xt) +( Q1|Q|2 Xt) g

W=

while

2

@ [ il dxdt)% +(07 | 104 dxdi)’ :l(@—2 |v,-|3dxdt)%

Qp Qy i Qy
2
+0? | Ipi dxdr)’
Qo
1
>—,
2

It is easy to show that (u;, Q;) satisfies the following blow-up equations

(9;1/!,‘ + &iu; - VM,' + VQ, = Au;, in R3 X (O, OO), (8 8)
div u; = 0, in R x (0, 00). '
We may assume that
u; — u weakly in L*(0y), Q; — Q weakly in L%(Ql).
Then we can show (u, Q) solves the linear Stokes equation
du + VO = Au, in R? x (0, 0), 8.9)
divu =0, in R3 x (0, o). '
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and by the lower semicontinuity,

( |u|3dxdt);+(f |Q|%dxdt)‘ <1,
0

01

By the regularity of the Stokes equation, we have (u, Q) € C“(Q%) and

2
3

dxdr)’ fdxd

( . |uf® dx t) ( QH|Q|2 X t)

<co|( f uf* dxdt)’ +( | 101 dxdt)’
9] O

<Co.

Now we want to show that

1 1 1
2 iI? dxdt)’ = _zf 3 dxdt)’ -
(9 Le |u;|” dx t) (9 . lu|” dx t) +0(l)

and

(67 |Q,| dxdt% (67 f 0|2 dxdt) +o(= )

Suppose that these were estabhshed. Then we reach the desired contradiction.
By the Aubin-Lions lemma, whose condition will be verified below, the generalized
energy inequality for (v;, p;): for V¥ — % <t<0and g € C7(B; x[-1,t]) with ¢ > 0,

i3
f vil® (x, D, 1) dox + 2 f f IVvil?(x, D(x, 1) dxdt
B 0 B

! !
< f f Wil (¢: + Ap) dxdt + f f (il? + 2pi)vi - Ve dxdt,
0 B| 0 BI

yields that (u;, Q;) satisfies

f ;| (x, De(x,t)dx + 2f f T ES De(x, t) dxdt

ff|u|(90t+Ag0)dxdt+ff(ellul +20)u; - Vo dxdt,

Therefore, we can deduce that

0
sup | *(x, ) dx + 2 f \Vu;|*(x, t) dxdt
1JUB

1 —
—KSISO B% I

(|Mi|2 + 8i|ui|3 +1Qillu;|) dxdt,
2 s 2 1
s( f |u,~|3dxdt3+8, f lu;|? dxdt + f IQilidxdt)‘( f |u,~|3dxdt)3
Py P P
<1

where we have used the Holder inequality.

D=
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Now we verify the condition of Aubin-Lions’ lemma.
ou; = —giu; - Vu; — VO, + A,
It is not hard to see that
Au;€ H'RY), VQi e (W) = whi,
and
git; - Vu; € L(R?),

because that u € L?(QT) and Vu € L*(Oy).

Therefore X

3 5.5 3.3
Ou; € PH' +L'LI + LXW, 2,

and
atul’

55 3 43
L/ZH;1+L14 L‘? +Lzz Wx 2 (Q%)

is bounded uniformly in i. By the Aubin-Lions Lemma, we conclude that {u;}>, C L*(P 1 )
is pre-compact. Thus, after taking a subsequence if necessary, we may assume that

u; — u strongly in L3(Q%)
which implies that

(49-2 f |ui|3dxdt)% :(49-2 f |u|3dxdt)é+o(%)

Py Py

1
<CO + o(-).
i
Since Q; satisfies the Poisson equation: for any ¢ € [—1, 0],
_AQi = 8idiV(Lti . VM,) = SidiV(diV(l/ll’ ® Ml)) in B] .

Let Q; : R? - R satisfy

Y 1 2 1 a

Oi(x,1) = —— | Dl (——=) : xu,()eu il (v, 1) dy.

4 Jrs lx =yl
Then _
—AQ; = gdiv(div(y; ® u;)) in B;.
Hence _
-AQi— Q) =0 inB,.

One thus deduces from the boundedness of Calderon-Zygmund operators, we have

— 3 3
NQill*,  <eillu; ®ull*,

L2 (R3) L2
3

L3R3)"

0 0
f f O} dxdt < & f f i dxdi < Cs,
-1 R3 -1 B]
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By the mean value property of harmonic functions, we have

10; - Qi dx<f 0 — Oif* dx.

By

Therefore
10; - O* dx < C6.

Py
Thus we have

2 0 — 2 2
Ca f|Q|zdx)‘ s(e—ZL fR3|Q,-|2dx)3+(9‘2j; 10i - Qil? dx)’

S_9
8
provided that i is chosen sufficiently large and 6 is chosen sufficiently small. This contra-
dicts the choices of (v;, p;). O

Lemma 8.4. There exist &g > 0 and ay € (0, %) such that if (v, p) is a suitable weak
solution of (8.1) in P, satisfying

2
3

1
(2 f v dxdr)” + (r7 f pI? dxdt) < &,
Py (x0,10) Py (x0,0)

then for any (x1,11) € Pr(xo,10) and 0 < 7 <3

2
5

1
(T_Zf v[? al)wlt)3 +(T_2f Ip|2 a’xdt) < C(gy)T™.
Pr(x1,t1) Pr(x1,t1)

Proof. For simplicity, we assume (xo, o) = (0,0) and (xy, #;) = (0, 0). Iterating the above
process k-times, we arrive at

() f v dxdt)% +(@n? f |p|3dxdz)%

Pﬁk r

2
=(3 )k fIVdedt ‘2f Ipl: dxdt ’

For 0 < 7 < Z, there exists k > 1 such that 6"'r < 7 < ¢r.

<3,
Hence In(%)
n —_
o ~ T =k~ —,
r Iné
Therefore
1 2
(v f vl® dxdt) +(z f Ipl* dxd)’
Pr(x1,t1) Pr(x1,t1)
1 @
<(3 ) m g
S(—) ’&p,
r
1
where o = 12 € (0, 1). o
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Riesz potential estimates between on Morrey spaces

e Morrey spaces: For1l < p <ocoand 0 < A <5, define

MPA R X R) = {f € L} (R X R)| | fllnceosry < o0},

loc

where

||f||1A’W(R3xR)E{ sup f f f17 dydt}.
Pr(ZO)

20€R3XR, 0<r<oco

e Letn € C7’(P.(0,0)) such that

. 1
0<n< L, ¢=1LinP0.0) IVnl+Ig+ [Vl < .

Define v by
Vi(x, 1) = — f VH(x —y,t - s)[772uiuj](y, s)dyds
R4
- [ vy = sy dyds,

R4

where
| SN
H(x,t) = ——e %
(4nt)2

is the heat kernel in R?. Note that

1
o((x, 1), (0,0

IVH(x, 1) <

where
5((x, 1), (0,0)) = max{lxl, Vi)

is the parabolic norm in the space R* = R? x R.
Define the parabolic Riesz potential of a-order:

_ IOy, o)l
lofx.0 = fR4 O(x —y,t— )5 dyds

for 0 < @ < 5. Therefore we have

VO, Dl < LGP (ul? + 1pD)(x, 1).

Note that
P (uf + pl) € M3 (R
and
an(lmz + Ipl)‘ istogs < CE0-
Lemma 8.5. For | < p < land 0 < A <5, I, : MPAR*) < MPAR?), where p = £,

Moreover
L N pragsy S N f 1 apags)-
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Proof. The proof can be founded in Huang-Wang’s paper. O

Now we continue the proof. By the lemma, we can obtain

B 201,12
lgra-sety < 7Y + 1D 3 s

where ; X

33-30)  13-30) 3(1-a) 1
3 = — = — o0 as al —.
5 =G -3a) 3a -3 2 -1 2

p=

Hence we have

Wlloe, < € {llullse, + 1Pl 3, )
Since
Ov—Av=—u-Vu+Vp) in P,
it follows
O(u-v)=0 in P;.
Thus

u—ve Loo(Pg).
Therefore we obtain that for any 1 < g < oo
ue Lq(Pi).

Since
—Ap = div(div(u ® u)) in By,

one also has that p € LI(P;) and
ﬂ
Iplf < (f IpI*)? + f Jul.
P P

J

Therefore we have that for any 1 < ¢ < oo, (u, p) € Li(P:) Hence v € C°°(P§,R3) and
||V||Ck(P§) < C(go, k, ).

r
8

Strong version of ¢)-regularity

Theorem 8.6. There exists gy > 0 if (v, p) is a suitable weak solution satisfying

Erolr—l f f |Vv|dxdt < e, (8.10)
r— P,

then 46, € (0,1) and ry € (0, 1) such that either

A2 (Gpr) + D*(6or) < %(Aiof) + D(r)), (8.11)
or
(A%(r) +D*(r)<e <1 where 0 < r < ry. (8.12)

Here

A(r) = sup r_lflvlz(x,t)dx, D(r)Er_szlplz(x,t)dxdt.
B,

-r2<t<0 P,
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Preparation of the proof.
I) Some interpolation inequalities: For B, C R? (the ball of radial r) and for every
2<g<6,anda=3(1 - %), we have

) %—a b a
fB , [vl?(x, 1) dx < ( j; W (x.0dx)" " ( f [vP(x, 1) dx)

B,
q
2

+r3<1—§>(f vP(x, 1) dx)". (8.13)
B,

Proof of inequality (8.13). First, we have

(fB |v|‘1dx)é s(fB Iv—vrlqu)é+r% I;rl L V| dx
([ P ([ v i [ P in

where 6 € (0, 1) satisfies

+ 1-6 (8.14)

NSNS

q

< j‘; 4 dx)g( L Vv dxﬁ +ri73( fB [v? dx)%.

Thus we can get the following inequality

2 f 2 5 3_sqf2
L'vlqus(f&lvl dx)” ( v dx) * + 7 W dx)”.

Now we set a = 79 and we have from (8.14) that 6 = (é - %) X3 = %1 -

%.Hence
q3 1 3 q 3
:————:—1__ —).

a=3C -3 =30-9e03)

IT) Next we define some quantities which are useful as follows

1
A(r) = sup P f VP(x, 1) dx,
B,

-r2<t<0

1
B(r) = — f \Vv[?(x, 1) dxdt,
r P,

1
C(r=— f VP (x, 1) dx,
rr Jp,

and
P, =B, x[-r,0],

Lemma 8.7. For any v € L™([-r%,0]; L*) N L*([—-r%,0]; H") it holds for any 0 < r < p

C(r) < (£)3A3<p) + (§)3A%<p>3%(p>. (8.15)
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Proof. With the help of (8.13), we obtain

f VP (x, ) dx < (f Vv (x, t)dx : f V[(x, 1) a’x : + r‘g(f v[(x, t)dx)% (8.16)
B, B, B,

Some computations show that
f [ dx

f v dx < f I = 1P,
<pf |v||Vv|dx+ flvl dx
1 3
< pi( f vl dx)* f Vv dx)* + ) f [ dx
B B,

0

l

S pIAT(p) fB VP dx) +(5) PA(p). (8.17)

Substituting the estimate (1.8) into the second term of the right hand side of (8.16), we
can conclude that

f vP(x, 1) dx < pi(p™ f IVvP(x, t)dx% f V2(x, t)dx +r 3(f V2(x, t)dx)%
B, B,
% % f IVv|*(x, 1) dx T 2 f V[ (x, 1) dx)z

(of +

Integrating the resulting inequality over [—7?, 0] together with Holder’s inequality yields

A

fIVvl (x.1)dx)’ A4(p)+( )Az(p)

N\w| Sy

1 3 3 3 3 %
—2f|v| (x,0)dx < A2(p)+{p4+—3f flel (x, t)dx) dtA7 (p)
I P, 2
9
<(2)' 4k + it + E At B!
r2

Alp) +{E)r + EylaiBi o)

’%

Ao+ Epaipsip)

\/\/UJ\_/\_/

J7AN J7AY
e N —

VINVDINDVDISNS DI~

Thus we get

C(r) < (p) Al +(£) "At(0)B (o).
This completes the proof. O

Lemma 8.8 (pressure estimate). Let (v, p) be a weak solution of (8.1) in Py. Then for any
O<r<landO<t<:’ 3 it holds

—f |p| (x, t)dxdt< f v —v,(OP(x, 1) dxdt + ——f |p| (x,t)dxdt. (8.18)
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Proof. Since all the quantities are scaling invariant , we only consider the case r = 1.
Taking use of the divergence-free condition of v, we deduce from (8.1) that

—Ap =div(v - Vv) = div(div(v ® v)) = div(div((v — v{) & (v — v1))).

Here v, is the average of v over P;. Letn € C7° (R?) be a cut off function of B 1 such that

1, in B%,
0, inR"\B, (8.19)
n<l1, |Vp<8.

n
n
0

IA

Now we define an axillary function

P == [ V69 PO 8 0= vy
R
By an easy calculation, we have that
—Ap = div(div(v —v)) ® (v —vy))) in B%,
-Alp-p)=0 in B;.

One thus deduces from the boundedness of Calderon-Zygmund operators shows that

3 2 23 3

Ipl?,  <lmv=v)ll?, < | v=-wldx
LI(RY) LI(RY) B,

Together with the change of variable, we have

3 3
stlipl?,  +1plZ, ).
L3(B) L3(B)

1

1 3 3
_2||p_ﬂ|23 STHP_EHZQ
T L2 ) L2

T (B

Integrating above inequality over [—r2, 0], we get

1 :
T—zf |p|2(x,t)dxdtST(f Iplg(x,t)dxdt+f |v—v1|3dxdt).
P Py Py
Thus 1 {
—2f |p|3(x,z)dxdrsrf |p|3(x,z)dxdr+—2f v — w1 dxdr.
™ Jp, Py ™ Jp

Together with the following interpolation inequality

1 3 3
— f v = vl dxdt s sup (p! f vP(x, 1) dx)* (p™ f Vvl (x, 1) dxdt)’,
P~ Jp, B,

—p2<1<0 P,

the following holds
r P2 3 3
D(r) < C{=D(p) + () A*(p)B* (p)}.
Je r
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Now we employ the local energy inequality as follows. Let ¢ € C;(P,) be a function
such that ¢ = 1 in P, and |V¢| < é, V2| + |¢ps| < pl—z.
Then we have that

sup r! f \Vv[(x, 1) dxdt + r~! f W(x, 1) dx
P, B,

—-r2<t<0

< f 2(64] + IAG]) dxdt + f (WP +2p)v - Vo dxds
P, P,

1
— f 2 dxdt + f (WP = Py - Vo dxdr + f 2pv - Vo dxdt
P~ Jp, P,

Py

1 1 1
S f V> dxdt + — f (VP = VDIV dxdt + — f pllv| dxdt.
p Pp p Pp p PP

Putting all these estimates together, we have
A+ B() < 2CHp) + 2at(0)BH0)CY o) + ECH D3 (o),
r r r

D) < “D) + (B) A¥ (o) B (o),
0 r
cn s (5) o +(2) Al
Therefore we can deduce that

A(Bor) + B(6or) < 65'{CF(r) + AX( B2 (p)C7 (p) + CF (p)D5 (r)],

D*(6or) < 63(DX(r) + 6,°A> (1) B> (1)),

C(6or) < A3 (r) + 653 AT(r)BE ().

AB2r) <65'C3(Bor) + 67" A2 (9r) B2 (8or)C (Bor) + 65 C3 (Bor) D3 (Byr)

NS

<0y (BAG) + 65242 (B2 (1) + 6, %{C%(r) + A(r)B*(p)C5(p) + C () D3 (1)}
x{6oA% (r) + 963A%(r)B%(r)}% + 6,1 A () + 063A%(r)B%(r)}%

x{63(D*(r) + 956A%(r)B%(r))}%.
Therefore we can deduce that

ABr) + DX(6or) < CO(A()? + DX(n) +

where
& = 6,V B(r).

If we choose ry sufficiently small, then we can guarantee that for 0 < r < r, there exists
€1 < 1 such that

3 . . . . .
If A(r)2 + D*(r) < 8¢, then the gy—regularity theorem implies (0, 0) is a smooth point.
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For otherwise, A(r)% + D?(r) > 8¢, for any for 0 < r < ry.

Hence,
2 N3 2 3 2 1 3 2
A(BFr)? + D*(8or) <CO(A(r)? + D*(r)) + g(A(r)z + D*(r))
1
<(C, + g)(A(r)% + D*(r)
1 3
sE(A(r)i + D(r)).
After iterating finitely many times, it reduce to the former case. O

Theorem 8.9 (Compactness of suitable weak solutions). Let (v,, p,) be a sequence of
suitable weak solution of (8.1) in P, such that

sup f vl (x, 1) dx < Cy,
B

-1<1<0

f Vv, |2(x, 1) dxdt < C,,
Py

f P2 (x, ) dxdt < C;.
Py

Suppose
v, — v weakly in L°L> N L2H!

pn — p weakly in L.
Then (v, p) is also a suitable weak solution of (8.1).

Proof. 1t is sufficient to show that v, — v strongly in L* for 1 < a < 1?0. Assume that this
is true for the moment. Then by the local energy inequality for (v,, p,), we have

2 f Vv, dxdt < f v, 2 + |AG]) dxdr + f (1va + 2p,)v, - Vb .
Py Py Py
Thus we take the limit,

2lim f Vv, dxdt < f V(g + 1Ag)) dxdt + f (V> + 2p)v - Vo dxdt.
noJp P P

1

By the lower semicontinity, we have

f |Vv|*¢ dxdt < lim f Vv, dxdt.
Py n Py

Let
Z=H7>(B)) = (Hy(B)))".

Since d,v, = —=(v, - Vv,, + VP, — Av,), we have

3
0vall® 5 < Co,
L2([-1,01:2)
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where Cj depends only on Cy, C,, Cs.
Thus
v, € C([-1,0]; Z), ¥n.

Applying the well-known Aubin-Lions Lemma, we have that v, — v strongly in L.

Therefore, by the interpolation inequalities, we also have that v, — v strongly in L* for

l<a< 1 O
= 3

Theorem 8.10. Let (v, p) be a suitable weak solution of (8.1), then P'(sing(v)) = 0,
where sing(v) denotes the discontinuous set of v. Here P! is the 1-dimensional Hausdorff
measure in R* with respect to the parabolic norm 6:

1 _ 1 1
P!(E) = limP(E).
and . .
P;(E) = inf{ Z i UP,I.(X,-, t)DE, r < 6}.
=1

i i=1

Proof.
(x,1) € sing(v) = E&r-l f Vv dxdt > €.
= P(x,0)

Let V be a neighborhood of sing (v) and 6 > 0 such that for all (x, ) € sing(v) and Vr < ¢
such that

P! f IVv? dxdt > ¢, P.(x,f)CV.
Pr(x0)
By Vitali’s five times covering Lemma, 3(x;,#;) € V, 0 < r; < ¢ such that {P,,(x;, #,)};2, are

mutually disjoint and U Ps,.(x;,t;) D sing(v). Therefore we can obtain

i=1
Zr,. séz f . Vv dxdt

1 1 Prl‘ )
1 2
<— |Vv|” dxdt
€1 JU; Py (xiti)
1
<— \VvI? dxdt
€1 JU; P, (xit)

1
<— | |Vv]*dxdt.
€1 Jv

Now we can get

5
Pis(si <> Sn<= Vv* dxdt :
55(smg(v))_Z s f j; IV dixdt < +o0

Therefore sing(v) has zero Lesbegue measure so that |V| can be arbitrarily small. By the
absolute continuity , we have

f IVv? dxdt — 0
\%4

as |V| — 0. Hence
lim PLs(sing(v)) = 0.

Thus P! (sing(v)) = 0. O
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