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Abstract. In this paper, we first establish the regularity theorem for suitable weak solutions to the Ericksen-

Leslie system in R2. Building on such a regularity, we then establish the existence of a global weak solution
to the Ericksen-Leslie system in R2 for any initial data in the energy space, under the physical constraint

conditions on the Leslie coefficients ensuring the dissipation of energy of the system, which is smooth away

from at most finitely many times. This extends earlier works by Lin-Lin-Wang [23] on a simplified nematic
liquid crystal flow to the general Ericksen-Leslie system.

1. Introduction

The hydrodynamic theory of nematic liquid crystals was developed by Ericksen and Leslie during the
period of 1958 through 1968 [5, 6, 8, 17]. It is referred as the Ericksen-Leslie system in the literature. It
reduces to the Ossen-Frank theory in the static case, which has been successfully studied (see, e.g., Hardt-
Lin-Kinderlehrer [9]).

In R3, let u = (u1, u2, u3)T : R3 → R3 denote the fluid vector field of the underlying incompressible fluid,
and d = (d1, d2, d3)T : R3 → S2 denote the orientation order parameter representing the macroscopic average
of nematic liquid crystal molecular directors. Assume that the fluid is homogeneous (e.g., the fluid density
ρ ≡ 1) and the inertial constant is zero (i.e., ρ1 = 0), the general Ericksen-Leslie system in R3 consists of
the following equations (cf. [7, 17, 18, 22]):

∂tu+ u · ∇u = ∇ · σ̂,
∇ · u = 0,

d×
(
g +∇ · ( ∂W

∂(∇d) )− ∂W
∂d

)
= 0,

(1.1)

where σ̂ = (σ̂ij) is the total stress given by

σ̂ij = −Pδij −
∂W

∂dk,i
dk,j + σLij , (1.2)

with P a scalar function representing the pressure, W being the Ossen-Frank energy density function given
by

W := W (d,∇d) ≡ 1

2

(
k1(∇ · d)2 + k2|d× (∇× d)|2 + k3|d · (∇× d)|2 + (k2 + k4)[tr(∇d)2 − (∇ · d)2]

)
(1.3)

for some elasticity constants k1, k2, k3, k4, and σL = σL(u, d) = (σLij(u, d)) representing the Leslie stress
tensor given by

σLij(u, d) = µ1

∑
k,p

dkdpAkpdidj + µ2Nidj + µ3diNj + µ4Aij + µ5

∑
k

Aikdkdj + µ6

∑
k

Ajkdkdi, (1.4)

for six viscous coefficients µ1, · · · , µ6, called Leslie’s coefficients, and

gi = λ1Ni + λ2

∑
j

djAji = λ1

(
Ni +

λ2

λ1

∑
j

djAji
)
. (1.5)

Throughout this paper, we use

Aij =
1

2

(
∂uj
∂xi

+
∂ui
∂xj

)
, Ωij =

1

2

(
∂uj
∂xi
− ∂ui
∂xj

)
,
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ωi = ḋi = ∂tdi + (u · ∇)di, Ni = ωi −
∑
j

Ωijdj ,

denote the rate of strain tensor, the skew-symmetric part of the strain rate, the material derivative of d and
the rigid rotation part of the director changing rate by fluid vorticity, respectively.

Due to the temperature dependence of the Leslie coefficients, various coefficients have different behavior:
µ4 does not involve the alignment properties and hence is a smooth function of temperature, while all the
other µ′is describe couplings between molecule orientation and the flow, and might be affected by the change
of the nematic order parameter d. In this paper, we only consider the isothermal case in which all µ′is are
assumed to be constants. The Leslie coefficients µi’s and λ1, λ2 satisfy the following relations:

λ1 = µ2 − µ3, λ2 = µ5 − µ6, (1.6)

µ2 + µ3 = µ6 − µ5. (1.7)

The relation (1.6) is a necessary condition in order to satisfy the equation of motion identically, while (1.7) is
called Parodi’s relation. Under the assumption of Parodi’s relation, the hydrodynamics of an incompressible
nematic liquid crystal flow involves five independent Leslie’s coefficients. To avoid the complexity arising
from the general Ossen-Frank energy functional, we consider the elastically isotropic case k1 = k2 = k3 = 1

and k4 = 0 so that the Ossen-Frank energy reduces to the Dirichlet energy: W (d,∇d) =
1

2
|∇d|2. In this

case, we have

∂W

∂dk,i
dk,j =

〈
∂d

∂xi
,
∂d

∂xj

〉
= (∇d�∇d)ij , ∇ ·

(
∂W

∂(∇d)

)
= ∆d,

∂W

∂d
= 0.

As a consequence, the Ericksen-Leslie system (1.1) can be written as
∂tu+ u · ∇u+∇P = −∇ · (∇d�∇d) +∇ · (σL(u, d)),

∇ · u = 0,

∂td+ u · ∇d− Ωd+ λ2

λ1
Ad = 1

|λ1|
(
∆d+ |∇d|2d

)
+ λ2

λ1

(
dTAd

)
d.

(1.8)

Since the general Ericksen-Leslie system is very complicated, earlier attempts of rigorous mathematical
analysis of (1.8) were made for a simplified system that preserve the crucial energy dissipation feature as in

(1.8), pioneered by Lin [19] and Lin-Liu [20, 21]. More precisely, by adding the penalty term
1

4ε2
(1− |d|2)2

(ε > 0) in the energy functional W to remove the nonlinearities resulting from the nonlinear constraints
|d| = 1, Lin and Liu have studied in [20, 21] the following Ginzburg-Landau approximate system:

∂tu+ u · ∇u+∇P = µ∆u−∇ · (∇d�∇d),

∇ · u = 0,

∂td+ u · ∇d = ∆d+ 1
ε2

(
1− |d|2

)
d.

(1.9)

They have established in [20] the existence of global weak solutions in dimensions 2 and 3, and global strong
solutions of (1.9) in dimension 2, the local existence of strong solutions in dimension 3, and the existence
of global strong solutions for large viscosity µ > 0 in dimension 3. A partial regularity for suitable weak
solutions of (1.9) in dimension 3, analogous to Caffarelli-Kohn-Nirenberg [2] on the Naiver-Stokes equation,
has been proved in [21]. As already pointed out by [20], it is still a challenging open problem as ε tends to
zero, whether solutions (uε, dε) of (1.9) converge to that of the following simplified Ericksen-Leslie system:

∂tu+ u · ∇u+∇P = µ∆u−∇ · (∇d�∇d),

∇ · u = 0,

∂td+ u · ∇d = ∆d+ |∇d|2d.
(1.10)

Very recently, there have been some important advances on (1.10). For dimension 2, Lin-Lin-Wang [23]
and Lin-Wang [24] have established the existence of a global unique weak solution of (1.10) in any smooth
bounded domain, under the initial and boundary conditions, which is smooth away from possibly finitely
many times (see also Hong [10], Xu-Zhang [35], Hong-Xin [11], and Lei-Li-Zhang[26] for related results in
R2). It is an open problem whether there exists a global weak solution of (1.10) in dimension 3. There have
been some partial results towards this problem. For example, the local existence and uniqueness of strong
solutions of (1.10) has been proved by Ding-Wen [4], the blow-up criterion of local strong solutions of (1.10),
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similar to Beale-Kato-Majda [1] for Naiver-Stokes equations, has been established by Huang-Wang [12], the
global well-posedness of (1.10) for rough initial data (u0, d0) with small BMO×BMO−1-norm has been shown
by Wang [32], and the local well-posedness of (1.10) for initial data (u0, d0) with small L3

uloc(R3)-norm of
(u0,∇d0) has been proved by Hineman-Wang [14] (here L3

uloc(R3) denotes the locally uniform L3-space on
R3).

For the general Ericksen-Leslie system (1.8) in R3, there have also been some recent works. For example,
Lin-Liu [22] and Wu-Xu-Liu [34] have considered its Ginzburg-Landau approximation:

∂tu+ u · ∇u+∇P = −∇ · (∇d�∇d) +∇ · (σL(u, d)),

∇ · u = 0,

∂td+ u · ∇d− Ωd+ λ2

λ1
Ad = 1

|λ1|
(
∆d+ 1

ε2 (1− |d|2)d
)
,

(1.11)

and have established the existence of global weak solutions, and the local existence and uniqueness of strong
solutions of (1.11) under certain conditions on the Leslie coefficients µi’s. In particular, there have been
results developed by [34] concerning the role of Parodi’s condition (1.7) in the well-posedness and stability
of (1.11). Most recently, Wang-Zhang-Zhang [33] have studied the general Ericksen-Leslie system (1.8) and
established the local well-posedness, and the global well-posedness for small initial data under a seemingly
optimal condition on the Leslie coefficients µi’s.

In this paper, we are mainly interested in both the regularity and existence of global weak solutions of
the initial value problem of the general Ericksen-Leslie system (1.8) in R2.

In R2, however, we need to modify several terms inside the system (1.8) in order to make it into a closed
system. Since u is a planar vector field in R2, both Ω and A are horizontal 2 × 2-matrices, henceforth we
assume that

Ωd := (Ωd̂, 0)T , Ad := (Ad̂, 0)T , N := (∂td+ u · ∇d)
T −

(
Ωd̂, 0

)T
, (1.12)

as vectors in R3, while N̂ := (∂td̂+ u · ∇d̂− Ωd̂)T is a vector in R2. Here

d̂ = (d1, d2, 0)T for d = (d1, d2, d3)T ∈ R3,

and σL(u, d) is a 2× 2-matrix valued function given by

σLij(u, d) := µ1

2∑
k,p=1

dkdpAkpdidj + µ2Nidj + µ3Njdi + µ4Aij + µ5

2∑
k=1

Aikdkdj + µ6

2∑
k=1

Ajkdkdi (1.13)

for 1 ≤ i, j ≤ 2, and

dTAd := d̂TAd̂ ≡
2∑

i,j=1

Aijdidj .

We will consider the initial value problem of (1.8) in R2, i.e.,

(u, d)
∣∣∣
t=0

= (u0, d0) in R2 (1.14)

for any given u0 ∈ H, and d0 ∈ H1
e0(R2,S2). Here we denote the relevant function spaces

H = the closure of C∞0 (R2,R2) ∩ {v | ∇ · v = 0} in L2(R2,R2),

Hk
e0(R2,S2) =

{
d : R2 → S2 | d− e0 ∈ Hk(R2,R3)

}
(k ∈ N+)

for some constant vector e0 ∈ S2, and

J = the closure of C∞0 (R2,R2) ∩ {v | ∇ · v = 0} in H1(R2,R2).

Definition 1.1. For 0 < T ≤ ∞, u ∈ L2([0, T ],H) and d ∈ L2
(
[0, T ], H1

e0(R2,S2)
)

is called a weak solution

of the Ericksen-Leslie system (1.8) together with the initial condition (1.14) in R2, if

−
ˆ T

0

ˆ
R2

〈u, ψ′φ〉 −
ˆ T

0

ˆ
R2

u⊗ u : ψ∇φ+

ˆ T

0

ˆ
R2

σL(u, d) : ψ∇φ

= −ψ(0)

ˆ
R2

〈u0, φ〉+

ˆ T

0

ˆ
R2

〈∇d�∇d, ψ∇φ〉,
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and

−
ˆ T

0

ˆ
R2

〈d, ψ′φ̃〉+

ˆ T

0

ˆ
R2

〈
u · ∇d− Ωd+

λ2

λ1
Ad, ψφ̃

〉
= −ψ(0)

ˆ
R2

〈d0, φ̃〉+

ˆ T

0

ˆ
R2

[
− 1

|λ1|
〈∇d, ψ∇φ̃〉+

1

|λ1|
|∇d|2〈d, ψφ̃〉+

λ2

λ1
(dTAd)〈d, ψφ̃〉

]
.

for any ψ ∈ C∞([0, T ]) with ψ(T ) = 0, φ ∈ J, and φ̃ ∈ H1(R2,R3).1

In this paper, we will establish the regularity of suitable weak solutions of (1.8), and the existence and
uniqueness of global weak solutions to (1.8) and (1.14) in R2. As consequences, these extend the previous
works by Lin-Lin-Wang [23] to the general case.

For x0 ∈ R2, t0 ∈ (0,+∞), z0 = (x0, t0) and 0 < r ≤
√
t0, denote

Br(x0) = {x ∈ R2 | |x− x0| ≤ r}, Pr(z0) = Br(x0)× [t0 − r2, t0].

When x0 = (0, 0) and t0 = 0, we simply denote Br = Br(0), Pr = Pr(0).
Now we introduce the notion of suitable weak solutions of (1.8).

Definition 1.2. For 0 < T < +∞ and a domain O ⊂ R2, a weak solution u ∈ L2(O × [0, T ],R2), with
∇ · u = 0, and d ∈ L2

tH
1
x(O × [0, T ],S2) of (1.8) is called a suitable weak solution of (1.8) if, in addition,

u ∈
(
L∞t L

2
x ∩ L2

tH
1
x

)
(O × [0, T ],R2), d ∈

(
L∞t H

1
x ∩ L2

tH
2
x

)
(O × [0, T ],S2), and P ∈ L2(O × [0, T ]).

Theorem 1.3. For 0 < T < +∞ and a domain O ⊂ R2, assume that u ∈
(
L∞t L

2
x ∩ L2

tH
1
x

)
(O × [0, T ],R2),

d ∈ L∞([0, T ], H1(O,S2))∩L2([0, T ], H2(O,S2)), and P ∈ L2(O× [0, T ]) is a suitable weak solution of (1.8).
Assume both (1.6) and (1.7) hold. If, in additions, the Leslie coefficients µi’s satisfy

λ1 < 0, µ1 −
λ2

2

λ1
≥ 0, µ4 > 0, µ5 + µ6 ≥ −

λ2
2

λ1
, (1.15)

then (u, d) ∈ C∞(O × (0, T ],R2 × S2).

Employing the priori estimate given by the proof of Theorem 1.3, we will prove the existence of global
weak solutions of (1.8) and (1.14) that enjoy partial smoothness properties.

Theorem 1.4. For any u0 ∈ H and d0 ∈ H1
e0(R2,S2), assume the conditions (1.6), (1.7), and (1.15) hold.

Then there is a global weak solution u ∈ L∞([0,+∞),H)∩L2([0,+∞),J) and d ∈ L∞([0,+∞), H1
e0(R2,S2))

of the general Ericksen-Leslie system (1.8) and (1.14) such that the following properties hold:
(i) There exist a nonnegative integer L, depending only on (u0, d0), and 0 < T1 < · · · < TL < +∞ such that

(u, d) ∈ C∞
(
R2 × ((0,+∞) \ {Ti}Li=1),R2 × S2

)
.

(ii) Each singular time Ti, 1 ≤ i ≤ L, can be characterized by

lim inf
t↑Ti

max
x∈R2

ˆ
Br(x)

(|u|2 + |∇d|2)(y, t) ≥ 8π, ∀r > 0. (1.16)

Moreover, there exist xim → xi0 ∈ R2, tim ↑ Ti, rim ↓ 0 and a non-trivial smooth harmonic map ωi : R2 → S2

with finite energy such that as m→∞,

(uim, d
i
m)→ (0, ωi) in C2

loc(R2 × [−∞, 0]),

where

uim(x, t) = rimu(xim + rimx, t
i
m + (rim)2t), dim(x, t) = d(xim + rimx, t

i
m + (rim)2t).

(iii) Set T0 = 0. Then

(dt,∇2d) ∈
L−1⋂
j=0

⋂
ε>0

L2(R2 × [Tj , Tj+1 − ε])
⋂( ⋂

TL<T<+∞
L2(R2 × [TL, T ])

)
.

1By using (1.8)3, we see that N ∈ L2
tH
−1
x +L1

tL
1
x. Hence σL(u, d) ∈ L1

t (H
−1
x ·H1

x)+L1
t (L

1
x ·L∞x ) and

ˆ T
0

ˆ
R2
σL(u, d) : ψ∇φ

is well defined. Similarly,
´ T
0

´
R2 〈−Ωd+ λ2

λ1
Ad, ψφ̃〉 and

´ T
0

´
R2 (dTAd)〈d, ψφ̃〉 are also defined as pairs between H−1 and H1

0 .
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(iv) There exist tk ↑ +∞ and a smooth harmonic map d∞ ∈ C∞(R2,S2) with finite energy such that
u(·, tk)→ 0 in H1(R2) and d(·, tk) ⇀ d∞ in H1(R2), and there exist a nonnegative integer l, {xi}li=1 ⊂ R2,
and nonnegative integers {mi}li=1 such that

|∇d(·, tk)|2 dx ⇀ |∇d∞|2 dx+ 8π

l∑
i=1

miδxi . (1.17)

(v) If either the third component of d0, (d0)3, is nonnegative 2 , orˆ
R2

(|u0|2 + |∇d0|2) ≤ 8π,

then (u, d) ∈ C∞
(
R2 × (0,+∞),R2 × S2

)
. Moreover, there exist tk ↑ +∞ and a smooth harmonic map

d∞ ∈ C∞(R2,S2) with finite energy such that

(u(·, tk), d(·, tk))→ (0, d∞) in C2
loc(R2).

An important first step to prove Theorem 1.3 is to establish the decay lemma 3.1 under the small energy
condition, which is proved by a blow-up argument. Here the local energy inequality (2.14) for suitable weak
solutions to (1.8) plays a very important role, which depends on the conditions (1.6), (1.7), and (1.15) heavily.
In contrast with earlier arguments developed by [23] on the simplified nematic liquid crystal equation (1.10),
where the limiting equation resulting from the blow up process is the linear Stokes equation and the linear
heat equation, the new linear system (3.9) arising from the blow-up process of the general Ericksen-Leslie
system (1.8) is a coupling system. It is an interesting question to establish its smoothness. The proof of
regularity of (3.9) is based on higher order local energy inequalities. The cancelation properties among the
coupling terms play critical roles in the argument of various local or global energy inequalities for both the
linear system (3.9) and the nonlinear system (1.8). The second step is to establish a higher integrability
estimate of suitable weak solutions to (1.8) under the small energy condition, which is done by employing
the techniques of Riesz potential estimates between parabolic Morrey spaces developed by [12] and [14]. The
third step is to establish an arbitrary higher order energy estimate of (1.8) under the small energy condition.
With the regularity theorem 1.3, we show the existence theorem 1.4 by adapting the scheme developed by
[23].

Motivated by the uniqueness theorem proved by [23] and [35] on (1.10), we believe that the weak solution
obtained in Theorem 1.4 is also unique in its own class and plan to address it in a forthcoming article.

The paper is organized as follows. In section two, we derive both local and global energy inequality for
suitable weak solutions of (1.8). In section three, we prove an ε-regularity theorem for (1.8) first and then
prove Theorem 1.3. In section four, we prove the existence theorem 1.4.

2. Global and local energy inequalities of Ericksen-Leslie’ system in R2

In this section, we will establish both global and local energy inequality for suitable weak solutions of
(1.8) in R2 under the conditions (1.6), (1.7), and (1.15). We begin with the global energy inequality.

Lemma 2.1. For 0 < T ≤ +∞, assume the conditions (1.6), (1.7), and (1.15) hold. If u ∈ L∞t L
2
x ∩

L2
tH

1
x(R2 × [0, T ],R2), d ∈ L∞([0, T ], H1

e0(R2,S2)) ∩ L2([0, T ], H2
e0(R2,S2)), and P ∈ L2(R2 × [0, T ]) is a

suitable weak solution of the Ericksen-Leslie system (1.8). Then for any 0 ≤ t1 < t2 ≤ T , it holdsˆ
R2

(|u|2 + |∇d|2)(t2) +

ˆ t2

t1

ˆ
R2

[
µ4|∇u|2 +

2

|λ1|
|∆d+ |∇d|2d|2

]
≤
ˆ
R2

(|u|2 + |∇d|2)(t1). (2.1)

Proof. Since |d| = 1, we have |∇d|2 + 〈d,∆d〉 = 0. This, combined with the fact d ∈ L2([0, T ], H2
e0(R2,S2)),

implies that ∇d ∈ L4(R2× [0, T ]). Since u ∈ L∞t L2
x ∩L2

tH
1
x(R2× [0, T ],R2), it follows from Ladyzhenskaya’s

inequality that u ∈ L4(R2 × [0, T ]).
For η ∈ C∞0 (R2) or η ≡ 1 in R2, multiplying (1.8)1 by uη2, integrating the resulting equation over R2,

and using ∇ · u = 0, we obtain

d

dt

ˆ
R2

|u|2η2 = 2

ˆ
R2

η2
[
∇d�∇d : ∇u− σL(u, d) : ∇u

]
2We remark that this condition was first brought out explicitly by Lei-Li-Zhang [26] for the simplified Ericksen-Leslie system

(1.10).
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+

ˆ
R2

[
(|u|2 + 2P )u · ∇(η2) + 2

(
∇d�∇d− σL(u, d)

)
: u⊗∇(η2)

]
. (2.2)

Using (1.6), (1.7), the symmetry of A, and the skew-symmetry of Ω, we findˆ
R2

η2σL(u, d) : ∇u

=

ˆ
R2

η2
[
µ1d̂kd̂pAkpd̂id̂j + µ2N̂id̂j + µ3N̂j d̂i + µ4Aij + µ5Aikd̂kd̂j + µ6Ajkd̂kd̂i

]
(Aij + Ωij)

=

ˆ
R2

η2
[
µ1|A : d̂⊗ d̂|2 + µ4|A|2 + (µ2 + µ3)d̂ · (A · N̂) + (µ2 − µ3)d̂ · (Ω · N̂)

+(µ5 + µ6)|A · d̂|2 + (µ5 − µ6)(A · d̂)(Ω · d̂)
]

=

ˆ
R2

η2
[
µ1|A : d̂⊗ d̂|2 + µ4|A|2 + (µ5 + µ6)|A · d̂|2

+λ1N̂ · (Ω · d̂)− λ2N̂ · (A · d̂) + λ2(A · d̂)(Ω · d̂)
]
. (2.3)

Putting (2.3) into (2.2), we have

d

dt

ˆ
R2

|u|2η2 = 2

ˆ
R2

η2
[
∇d�∇d : ∇u− µ1|A : d̂⊗ d̂|2 − µ4|A|2 − (µ5 + µ6)|A · d̂|2

−λ1N̂ · (Ω · d̂) + λ2N̂ · (A · d̂)− λ2(A · d̂)(Ω · d̂)
]

+

ˆ
R2

[
(|u|2 + 2P )u · ∇(η2) + 2

(
∇d�∇d− σL(u, d)

)
: u⊗∇(η2)

]
. (2.4)

Since (∆d+ |∇d|2d) ∈ L2(R2× [0, T ]), it follows from the equation (1.8)3 that (∂td+u ·∇d) ∈ L2(R2× [0, T ]).
Multiplying (1.8)3 by η2∆d and integrating the resulting equation over R2 yields that

d

dt

ˆ
B1

1

2
|∇d|2η2 +

ˆ
B1

1

|λ1|
|∆d+ |∇d|2d|2η2

= −
ˆ
R2

〈∂td,∇d〉 · ∇(η2) +

ˆ
R2

η2

[
〈u · ∇d,∆d〉+ 〈λ2

λ1
Ad̂− Ωd̂,∆d̂〉+

λ2

λ1
(d̂TAd̂)|∇d|2

]
. (2.5)

Using integration by parts and ∇ · u = 0, we seeˆ
R2

η2〈u · ∇d,∆d〉 = −
ˆ
R2

η2∇d�∇d : ∇u+

ˆ
R2

[
1

2
|∇d|2u · ∇(η2)−∇d�∇d : u⊗∇(η2)

]
.

Substituting this into (2.5), we obtain

d

dt

ˆ
B1

1

2
|∇d|2η2 +

ˆ
B1

1

|λ1|
|∆d+ |∇d|2d|2η2

=

ˆ
R2

η2

[
〈λ2

λ1
Ad̂− Ωd̂,∆d̂〉+

λ2

λ1
(d̂TAd̂)|∇d|2 − η2∇d�∇d : ∇u

]
+

ˆ
R2

[
1

2
|∇d|2u · ∇(η2)−∇d�∇d : u⊗∇(η2)− 〈∂td,∇d〉 · ∇(η2)

]
. (2.6)

Adding (2.4) together with (2.6), we obtain

d

dt

ˆ
R2

(|u|2 + |∇d|2)η2 + 2

ˆ
R2

[
µ4|A|2 +

1

|λ1|
|∆d+ |∇d|2d|2

]
η2

= −2

ˆ
R2

η2
[
µ1|A : d̂⊗ d̂|2 + (µ5 + µ6)|A · d̂|2 + λ1N̂ · (Ω · d̂)− λ2N̂ · (A · d̂)

+λ2(A · d̂)(Ω · d̂)− 〈λ2

λ1
Ad̂− Ωd̂,∆d̂〉 − λ2

λ1
(d̂TAd̂)|∇d|2

]
+

ˆ
R2

[
(|u|2 + 2P )u · ∇(η2) + 2

(
∇d�∇d− σL(u, d)

)
: u⊗∇(η2)

]
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+

ˆ
R2

[
|∇d|2u · ∇(η2)− 2∇d�∇d : u⊗∇(η2)− 2〈∂td,∇d〉 · ∇(η2)

]
. (2.7)

Denote the first term in the right hand side of (2.7) as I. In order to estimate I, we need to use (1.8)3 to
make crucial cancelations among terms of I as follows.

λ1N̂ · (Ω · d̂) = λ1N̂iΩij d̂j

=
[
−λ2Aikd̂k −∆d̂i + λ2(d̂TAd̂)d̂i)

]
Ωij d̂j

=
[
−λ2Aikd̂k −∆d̂i

]
Ωij d̂j = −λ2(A · d̂)(Ω · d̂)− 〈Ωd̂,∆d̂〉, (2.8)

while

−λ2N̂ · (A · d̂) = −λ2N̂iAij d̂j

= −λ2

[
−λ2

λ1
Aij d̂j −

1

λ1
(∆d̂i + |∇d|2d̂i) +

λ2

λ1
(d̂TAd̂)d̂i

]
Aij d̂j

=
λ2

2

λ1
|A · d̂|2 − λ2

2

λ1
|d̂TAd|2 +

λ2

λ1
〈Ad̂,∆d̂〉+

λ2

λ1
(d̂TAd̂)|∇d|2. (2.9)

Since A : d̂⊗ d̂ = d̂TAd̂, we have, by substituting (2.8) and (2.9) into I, that

I = −2

ˆ
R2

[(
µ1 −

λ2
2

λ1

)
|A : d̂⊗ d̂|2 +

(
µ5 + µ6 +

λ2
2

λ1

)
|A · d̂|2

]
. (2.10)

Substituting (2.10) into (2.7), we finally obtain

d

dt

ˆ
R2

(|u|2 + |∇d|2)η2 +

ˆ
R2

[
µ4|∇u|2 +

2

|λ1|
|∆d+ |∇d|2d|2

]
η2

= −2

ˆ
R2

η2
[(

µ1 −
λ2

2

λ1

)
|A : d̂⊗ d̂|2 +

(
µ5 + µ6 +

λ2
2

λ1

)
|A · d̂|2

]
+

ˆ
R2

[
(|u|2 + 2P )u · ∇(η2) + 2

(
∇d�∇d− σL(u, d)

)
: u⊗∇(η2)

]
+

ˆ
R2

[
|∇d|2u · ∇(η2)− 2∇d�∇d : u⊗∇(η2)− 2〈∂td,∇d〉 · ∇(η2) + µ4〈u · ∇u,∇(η2)〉

]
. (2.11)

Here we have used the fact ∇ · u = 0 and the following identity:ˆ
R2

|A|2η2 =
1

2

ˆ
R2

|∇u|2η2 − 1

2

ˆ
R2

〈(u · ∇)u,∇(η2)〉. (2.12)

If η ≡ 1, then (2.11) and the condition (1.15) imply

d

dt

ˆ
R2

(|u|2 + |∇d|2) +

ˆ
R2

[
µ4|∇u|2 +

2

|λ1|
|∆d+ |∇d|2d|2

]
= −2

ˆ
R2

[(
µ1 −

λ2
2

λ1

)
|A : d̂⊗ d̂|2 +

(
µ5 + µ6 +

λ2
2

λ1

)
|A · d̂|2

]
≤ 0. (2.13)

Integrating (2.13) over 0 ≤ t1 ≤ t2 ≤ T yields (2.1). This completes the proof of lemma 2.1. �

We also need the following local energy inequality in the proofs of our main theorems.

Lemma 2.2. For 0 < T ≤ +∞, assume the conditions (1.6), (1.7), and (1.15) hold. If u ∈ L∞t L
2
x ∩

L2
tH

1
x(R2 × [0, T ],R2), d ∈ L∞([0, T ], H1

e0(R2,S2)) ∩ L2([0, T ], H2
e0(R2,S2)), and P ∈ L2(R2 × [0, T ]) is a

suitable weak solution of the Ericksen-Leslie system (1.8). Then for any 0 ≤ t1 < t2 ≤ T and η ∈ C∞0 (R2),
it holds ˆ

R2

η2(|u|2 + |∇d|2)(t2) +

ˆ t2

t1

ˆ
R2

η2
[
µ4|∇u|2 +

2

|λ1|
|∆d+ |∇d|2d|2

]
≤
ˆ
R2

η2(|u|2 + |∇d|2)(t1) + C

ˆ t2

t1

ˆ
R2

[
(|u|2 + |∇u|+ |u||∇d|+ |∇d|2 + |∇2d|+ |P |)|u||∇(η2)|

+(|∇u|+ |u||∇d|+ |∇d|2 + |∇2d|)|∇d||∇(η2)|
]
. (2.14)
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Proof. It suffices to estimate the last two terms in the right hand of (2.11). Denote these two terms by II
and III. To do so, first observe that by (1.8)3 it holds that

|∂td| ≤ C(|u||∇d|+ |∇u|+ |∇2d|+ |∇d|2),

and hence

|σL(u, d)| ≤ C(|A|+ |N |) ≤ C(|∇u|+ |∂td|+ |u||∇d|) ≤ C(|∇u|+ |u||∇d|+ |∇2d|+ |∇d|2).

With these estimates, we can show that

|II| ≤ C

ˆ
R2

(|u|2 + |P |+ |∇d|2 + |σL(u, d)|)|u||∇(η2)|

≤ C

ˆ
R2

(|u|2 + |P |+ |∇d|2 + |u||∇d|+ |∇u|+ |∇2d|)|u||∇(η2)|,

and

|III| ≤ C

ˆ
R2

(|∇d|2|u|+ |∂td||∇d|+ |u||∇u|)|∇(η2)|

≤ C

ˆ
R2

(
|∇d|2|u|+ |u||∇u|+ (|∇u|+ |u||∇d|+ |∇d|2 + |∇2d|)|∇d|

)
|∇(η2)|.

Putting these estimates of II and III into (2.11) yields (2.14). This completes the proof. �

3. ε-regularity of the Ericksen-Leslie system (1.8) in R2

In this section, we will establish the regularity of suitable weak solutions of the Ericksen-Leslie system
(1.8) in R2, under a smallness condition. The crucial step is the following decay lemma under the smallness
condition.

Lemma 3.1. Assume that the conditions (1.6), (1.7), and (1.15) hold. There exist ε0 > 0 and θ0 ∈
(0, 1

2 ) such that for 0 < T < +∞ and a bounded domain O ⊂ R2, if u ∈ L∞t L
2
x ∩ L2

tH
1
x(O × [0, T ],R2),

d ∈ L∞([0, T ], H1(O,S2)) ∩ L2([0, T ], H2(O,S2)), and P ∈ L2(O × [0, T ]) is a suitable weak solution of
the Ericksen-Leslie system (1.8) in O × [0, T ], which satisfies, for some z0 = (x0, t0) ∈ O × (0, T ] and
0 < r0 ≤ min{d(x0, ∂O),

√
t0},

Φ(u, d, P, z0, r) ≤ ε0,

then

Φ(u, d, P, z0, θ0r) ≤
1

2
Φ(u, d, P, z0, r). (3.1)

Here we denote

Φ(u, d, P, z0, r)

:=

(ˆ
Pr(z0)

|u|4
) 1

4

+

(ˆ
Pr(z0)

|∇u|2
) 1

2

+

(ˆ
Pr(z0)

|∇d|4
) 1

4

+

(ˆ
Pr(z0)

|∆d|2
) 1

2

+

(ˆ
Pr(z0)

|P |2
) 1

2

.

Proof. First observe that since (1.8) is invariant under translations and dilations, we have that

ur(x, t) = ru(x0 + rx, t0 + r2t), dr(x, t) = d(x0 + rx, t0 + r2t), Pr(x, t) = r2P (x0 + rx, t0 + r2t),

is a suitable weak solution of (1.8) in P1(0). Thus it suffices to prove the lemma for z0 = (0, 0) and r = 1.
We argue it by contradiction. Suppose that the lemma were false. Then there would exist εi ↓ 0 and a

sequence of suitable weak solutions (ui, di, Pi) ∈ (L∞t L
2
x∩L2

tH
1
x)(P1,R2)× (L∞t H

1
x ∩L2

tH
2
x)(P1,S2)×L2(P1)

of (1.8) such that

Φ (ui, di, Pi, (0, 0), 1) = εi ↓ 0, (3.2)

but, for any θ ∈ (0, 1
2 ), it holds

Φ (ui, di, Pi, (0, 0), θ) >
1

2
εi. (3.3)
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Now we define a blow-up sequence:

ũi =
ui
εi
, d̃i =

di − (di)1

εi
, P̃i =

Pi
εi
, (3.4)

where (di)1 =
1

|P1|

ˆ
P1

di is the average of di over P1.

It is easy to see that (ũi, d̃i, P̃i) satisfies
∂tũi + εiũi · ∇ũi +∇P̃i = −εi∇ · (∇d̃i �∇d̃i) + ε−1

i ∇ · (σL(ui, di)),

∇ · ũi = 0,

∂td̃i + εiũi · ∇d̃i − ε−1
i Ωid̂i + λ2

λ1
ε−1
i Aid̂i = 1

|λ1|

(
∆d̃i + εi|∇d̃i|2di

)
+ λ2

λ1
ε−1
i (d̂Ti A

id̂i)di.

(3.5)

Moreover, we have Φ
(
ũi, d̃i, P̃i, (0, 0), 1

)
= 1,

Φ
(
ũi, d̃i, P̃i, (0, 0), θ

)
> 1

2 .
(3.6)

It follows from the equation (3.5)3 that∥∥∥∂td̃i∥∥∥
L2(P 3

4
)
≤ C

(
‖ũi · ∇d̃i‖L2(P1) + ‖∇ũi‖L2(P1) + ‖∇d̃i‖2L4(P1)

)
≤ C. (3.7)

After taking possible subsequences, we may assume that there exists

(ũ, d̃, P̃ ) ∈
(
L∞t L

2
x ∩ L2

tH
1
x(P1,R2)

)
×
(
L∞t H

1
x ∩ L2

tH
2
x(P1,R3)

)
× L2(P1)

and a point d0 ∈ S2 such that 

ũi ⇀ ũ in L4
tL

4
x(P1) ∩ L2

tH
1
x(P1),

P̃i ⇀ P̃ in L2
tL

2
x(P1),

d̃i ⇀ d̃ in L4
tW

1,4
x (P1) ∩ L2

tH
2
x(P1),

d̃i ⇀ d̃ in H1(P 3
4
),

di → d0 a.e. P 3
4
.

It is easy to check that

ε−1
i Ωi =

1

2

(
∇ũi − (∇ũi)T

)
⇀ Ω̃ :=

1

2

(
∇ũ− (∇ũ)T

)
in L2(P 3

4
),

ε−1
i Ai =

1

2

(
∇ũi + (∇ũi)T

)
⇀ Ã :=

1

2

(
∇ũ+ (∇ũ)T

)
in L2(P 3

4
),

ε−1
i (d̂Ti A

id̂i) ⇀ d̂0
T
Ãd̂0, ε−1

i Aid̂i ⇀ Ãd̂0 in L2(P 3
4
),

ε−1
i N i = ε−1

i

(
∂tdi + ui · ∇di − Ωid̂i

)
⇀ Ñ := ∂td̃− Ω̃d̂0 in L2(P 3

4
),

while

ε−1
i σL(ui, di) := µ1(d̂i ⊗ d̂i : (ε−1

i Ai))d̂i ⊗ d̂i + µ2(ε−1
i N i)⊗ d̂i + µ3d̂i ⊗ (ε−1

i N i) + µ4(ε−1
i Ai)

+µ5((ε−1
i Ai) · d̂i)⊗ d̂i + µ6d̂i ⊗ ((ε−1

i Ai) · d̂i)
⇀ σ̃L(ũ, d0) := µ1(d̂0 ⊗ d̂0 : Ã)d̂0 ⊗ d̂0 + µ2Ñ⊗ d̂0 + µ3d̂0 ⊗ Ñ + µ4Ã

+µ5(Ã · d̂0)⊗ d̂0 + µ6d̂0 ⊗ (Ã · d̂0) in L2(P 3
4
).

Since |di| = 1, an elementary argument from the differential geometry implies that

d̃(x, t) ∈ Td0S2 a.e. (x, t) ∈ P 3
4
. (3.8)
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Therefore (ũ, d̃, P̃ ) satisfies (3.8) and the following linear system in P 3
4
:

∂tũ+∇P̃ = ∇ ·
(
σ̃L(ũ, d0)

)
,

∇ · ũ = 0,

∂td̃− Ω̃d̂0 + λ2

λ1
Ãd̂0 = 1

|λ1|∆d̃+ λ2

λ1

(
d̂0
T
Ãd̂0

)
d0.

(3.9)

By the lower semicontinuity, we have

Φ
(
ũ, d̃, P̃ , (0, 0), 1

)
≤ 1. (3.10)

By the regularity lemma 3.2 below, we know that (ũ, d̃, P̃ ) is smooth in P 1
2

and there exists 0 < θ0 <
1
2

such that

Φ
(
ũ, d̃, P̃ , (0, 0), θ0

)
≤ Cθ0 <

1

4
. (3.11)

In order to reach the desired contradiction, we need to apply the local energy inequality (2.14) for (ũi, d̃i, P̃i).
First, observe that the equation (3.5)1 can be written as

∂tũi +∇P̃i −
µ4

2
∆ũi = gi :=

[
− εi∇ ·

(
ũi ⊗ ũi +∇d̃i �∇d̃i

)
+ ε−1

i ∇ ·
(
σL(ui, di)− µ4A

i
) ]
. (3.12)

It follows from (3.6) that gi ∈ L2([−1, 0], H−1(B1)) and∥∥∥gi∥∥∥
L2([−1,0],H−1(B1))

.
[
‖ũi‖2L4(P1) + ‖∇d̃i‖2L4(P1) + ‖∇ũi‖L2(P1) + ‖∇2d̃i‖L2(P1)

]
. Φ

(
ũi, d̃i, P̃i, (0, 0), 1

)
≤ C.

Hence by the standard estimate on Stokes’ system (cf. [31]) we have that ∂tũi ∈ L2([−(
3

4
)2, 0], H−1(B 3

4
))

and ∥∥∥∂tũi∥∥∥
L2

(
[−( 3

4 )2,0],H−1(B 3
4

)

) . [Φ(ũi, d̃i, P̃i, (0, 0), 1
)

+
∥∥∥gi∥∥∥

L2([−1,0],H−1(B1))

]
≤ C. (3.13)

It follows from (3.6), (3.7), and (3.13) that we can apply the Aubin-Lions compactness lemma (cf. [31]) to
conclude that, after taking possible subsequences,

ũi → ũ, ∇d̃i → ∇d̃ in L2(P 3
4
). (3.14)

By Fubini’s theorem, for any θ ∈ (0, 1
2 ) there exists τ0 ∈ (θ2, 4θ2) such thatˆ

B2θ

(
|ũi − ũ|2 + |∇d̃i −∇d̃|2

)
(x,−τ0) dx ≤ Cθ−2

ˆ
P2θ

(
|ũi − ũ|2 + |∇d̃i −∇d̃|2

)
≤ Cθ−2o(1).

Here o(1) denotes the constant such that lim
i→+∞

o(1) = 0. Since

ˆ
B2θ

(
|ũ|2 + |∇d̃|2

)
(x,−τ0) dx ≤ Cθ2,

we have ˆ
B2θ

(
|ũi|2 + |∇d̃i|2

)
(x,−τ0) dx ≤ C

[
θ2 + θ−2o(1)

]
. (3.15)

Since (ui, di, Pi) satisfies the local energy inequality (2.14), we see that by rescalings (ũi, d̃i, P̃i) satisfies the
following local energy inequality: for any −τ0 ≤ t ≤ 0 and any η ∈ C∞0 (B1),ˆ

R2

η2(|ũi|2 + |∇d̃i|2)(t) +

ˆ t

−τ0

ˆ
R2

η2
[
µ4|∇ũi|2 +

2

|λ1|
|∆d̃i + εi|∇d̃|2di|2

]
≤
ˆ
R2

η2(|ũi|2 + |∇d̃i|2)(−τ0)

+C

ˆ t

−τ0

ˆ
R2

[
(εi|ũi|2 + |∇ũi|+ εi|ũi||∇d̃i|+ εi|∇d̃i|2 + |∇2d̃i|+ |P̃i|)|ũi||∇(η2)|
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+(|∇ũi|+ εi|ũi||∇d̃i|+ εi|∇d̃i|2 + |∇2d̃i|)|∇d̃i||∇(η2)|
]
. (3.16)

By the weak and strong convergence properties for (ũi, d̃i, P̃i) listed as above, we have that, as i→ +∞,

Ei :=

ˆ t

−τ0

ˆ
R2

[
(εi|ũi|2 + |∇ũi|+ εi|ũi||∇d̃i|+ εi|∇d̃i|2 + |∇2d̃i|+ |P̃i|)|ũi||∇(η2)|

+(|∇ũi|+ εi|ũi||∇d̃i|+ εi|∇d̃i|2 + |∇2d̃i|)|∇d̃i||∇(η2)|
]

→ E :=

ˆ t

−τ0

ˆ
R2

[
(|∇ũ|+ |∇2d̃|+ |P̃ |)|ũ||∇(η2)|+ (|∇ũ|+ |∇2d̃|)|∇d̃||∇(η2)|

]
. (3.17)

Now we choose η ∈ C∞0 (B1) such that

0 ≤ η ≤ 1, η ≡ 1 in B√τ0 , η ≡ 0 outside B2
√
τ0 , and |∇η| ≤ Cτ−

1
2

0 ≤ Cθ−1.

Then we have that for θ ∈ (0, 1
4 ),

|E| . θ−1

ˆ
P2θ

[
(|∇ũ|+ |∇2d̃|+ |P̃ |)|ũ|+ (|∇ũ|+ |∇2d̃|)|∇d̃|

]
.

[ (
‖∇2d̃‖L2(P2θ) + ‖∇ũ‖L2(P2θ) + ‖P̃‖L2(P2θ)

)(
‖∇d̃‖L4(P2θ) + ‖ũ‖L4(P2θ)

) ]
.

[
Φ
(
ũ, d̃, P̃ , (0, 0), 2θ

)]2
≤ Cθ2

so that

|Ei| ≤ C(θ2 + o(1)). (3.18)

Substituting (3.15) and (3.18) into (3.16) yields

sup
−θ2≤t≤0

ˆ
Bθ

(|ũi|2 + |∇d̃i|2)(t) +

ˆ
Pθ

[
µ4|∇ũi|2 +

2

|λ1|
|∆d̃i + εi|∇d̃|2di|2

]
≤ C

(
θ2 + θ−2o(1)

)
. (3.19)

Since ˆ
Pθ

|∆d̃i|2 ≤
ˆ
Pθ

|∆d̃i + εi|∇d̃|2di|2 + ε2i

ˆ
Pθ

|∇d̃i|4 ≤
ˆ
Pθ

|∆d̃i + εi|∇d̃|2di|2 + Cε2i ,

and by the H2-estimateˆ
P θ

2

|∇2d̃i|2 .
ˆ
Pθ

|∆d̃i|2 + θ−2

ˆ
Pθ

|∇d̃i|2 .
ˆ
Pθ

|∆d̃i|2 + θ2 + θ−2o(1),

we obtain

sup
− 1

4 θ
2≤t≤0

ˆ
B θ

2

(|ũi|2 + |∇d̃i|2)(t) +

ˆ
P θ

2

(
|∇ũi|2 + |∇2d̃i|2

)
≤ C

(
θ2 + ε2i + θ−2o(1)

)
. (3.20)

Recall Ladyzhenskaya’s inequality in R2 (cf. [15]):ˆ
Br

|f |4 .
ˆ
B2r

|f |2
ˆ
B2r

(
r−2|f |2 + |∇f |2

)
, ∀f ∈ H1(B2r). (3.21)

Applying (3.21) to ũi and ∇d̃i and integrating over t-variable and using (3.20), we obtain

ˆ
P θ

4

(
|ũi|4 + |∇d̃i|4

)
.

 sup
t∈[− 1

4 θ
2,0]

ˆ
B θ

2

|ũi|2 + |∇d̃i|2
 ˆ

P θ
2

[
θ−2(|ũi|2 + |∇d̃i|2) + |∇ũi|2 + |∇2d̃i|2

]
≤ C

(
θ4 + ε4i + θ−4o(1)

)
. (3.22)

To estimate P̃i, let’s take divergence of the equation (3.5)1 to get

∆P̃i = −εi(∇·)2
(
ũi ⊗ ũi +∇d̃i �∇d̃i

)
+ ε−1

i (∇·)2
(
σL(ui, di)

)
in Bθ. (3.23)

Let φ ∈ C∞0 (R2) such that

0 ≤ φ ≤ 1, φ ≡ 1 in B θ
8
, φ ≡ 0 outside B θ

4
, and |∇φ| . θ−1.
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Define Q̃i by

Q̃i(x, t) = −
ˆ
R2

∇2
yG(x− y) : φ2(y)

[
εi(ũi ⊗ ũi +∇d̃i �∇d̃i)− ε−1

i σL(ui, di)
]

(y, t) dy,

where G is the fundamental solution of the Laplace equation on R2. Then we have

∆Q̃i = −(∇·)2
[
φ2
(
εi(ũi ⊗ ũi +∇d̃i �∇d̃i)− ε−1

i σL(ui, di)
) ]

in R2.

By Calderon-Zygmund’s L2-theory we have

‖Q̃i‖2L2(R2) .
[
εi(‖ũi‖4L4(B θ

4
) + ‖∇d̃i‖4L4(B θ

4
)) + ‖ε−1

i σL(ui, di)‖2L2(B θ
4

)

]
.

[
εi(‖ũi‖4L4(B θ

4
) + ‖∇d̃i‖4L4(B θ

4
)) + ‖∇ũi‖2L2(B θ

4
) + ‖ε−1

i N i‖2L2(B θ
4

)

]
.

[
‖ũi‖4L4(B θ

4
) + ‖∇d̃i‖4L4(B θ

4
) + ‖∇ũi‖2L2(B θ

4
) + ‖∇2d̃i‖2L2(B θ

4
)

]
. (3.24)

Integrating (3.24) over t ∈ [−θ2, 0], and using (3.20) and (3.22), we obtain
ˆ 0

−θ2

ˆ
R2

|Q̃i|2 .
ˆ
P θ

4

(
|ũi|4 + |∇d̃i|4 + |∇ũi|2 + |∇2d̃i|2

)
≤ C

(
θ4 + ε4i + θ−4o(1)

)
. (3.25)

Set R̃i = P̃i − Q̃i in Pθ. Then we have

∆R̃i(t) = 0 in B θ
4
, ∀t ∈ [−θ2, 0],

so that by the standard estimate of harmonic functions and (3.25) we haveˆ
Pθ2

|R̃i|2 . θ2

ˆ
P θ

4

|R̃i|2 ≤ Cθ2

ˆ
P θ

4

(|P̃i|2 + |Q̃i|2) ≤ C
[
θ2 +

(
θ4 + ε4i + θ−4o(1)

) ]
. (3.26)

Putting (3.25) together with (3.26) yieldsˆ
Pθ2

|P̃i|2 ≤ C
[
θ2 +

(
θ4 + ε4i + θ−4o(1)

) ]
. (3.27)

Combining all these estimates (3.20), (3.22), and (3.27), we obtain

Φ
(
ũi, d̃i, P̃i, (0, 0), θ2

)
≤ C

[
θ + εi + θ−1o(1)

]
≤ 1

4
, (3.28)

provided that we first choose sufficiently small θ and then choose sufficiently large i. This gives the desired
contradiction. The proof is complete. �

The following lemma plays an important role in the blow-up process, which may have its own interest.

Lemma 3.2. Assume (1.6), (1.7), and (1.15) hold. For any point d0 ∈ S2, if ũ ∈
(
L∞t L

2
x ∩ L2

tH
1
x

)
(P 3

4
,R2),

d̃ ∈
(
L∞t H

1
x ∩ L2

tH
2
x

)
(P 3

4
, Td0S2), and P̃ ∈ L2(P 3

4
) solves the linear system (3.9) and satisfies the condition

(3.10), then (ũ, d̃, P̃ ) ∈ C∞(P 1
2
) and satisfies the following estimate:

Φ
(
ũ, d̃, P̃ , (0, 0), θ

)
≤ Cθ, ∀ θ ∈ (0,

1

2
). (3.29)

Proof. To simplify the notations, we write (u, d, P ) for (ũ, d̃, P̃ ) in the proof below. The argument is based
on the higher order local energy inequality argument.

Taking ∂
∂xi

of the linear system (3.9) yields
∂tuxi +∇Pxi = ∇ · (σ̃L(u, d0))xi ,

∇ · uxi = 0,

∂tdxi − Ωxi d̂0 + λ2

λ1
Axi d̂0 = 1

|λ1|∆dxi + λ2

λ1

(
d̂T0 Axi d̂0

)
d0.

(3.30)
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For any η ∈ C∞0 (B1), multiplying the equation (3.30)1 by uxiη
2 and the equation (3.30)3 by ∆dxiη

2 and
integrating the resulting equations over B1, we obtain3

d

dt

ˆ
B1

|∇u|2η2 = (3.31)

−2
[ ˆ

B1

P
[
∆u · ∇(η2) +∇u : ∇2(η2)

]
+

ˆ
B1

(
σ̃L(u, d0)

)
xi

: uxi ⊗∇(η2) +

ˆ
B1

η2
(
σ̃L(u, d0)

)
xi

: ∇uxi
]
,

d

dt

ˆ
B1

|∇2d|2η2 +
2

|λ1|

ˆ
B1

|∆∇d|2η2

= −2

ˆ
B1

∂tdxi · ∇dxi · ∇(η2)− 2

ˆ
B1

(
〈Ωxi d̂0 −

λ2

λ1
Axi d̂0,∆d̂xi〉+ 〈λ2

λ1
(d̂T0 Axi d̂0)d0,∆dxi〉

)
η2.

= −2

ˆ
B1

∂tdxi · ∇dxi · ∇(η2)− 2

ˆ
B1

(
〈Ωxi d̂0 −

λ2

λ1
Axi d̂0,∆d̂xi〉

)
η2, (3.32)

where we have used in the last step the fact d ∈ Td0S2 in order to deduce that 〈d0,∆dxi〉 = 0 a.e. in B1.
Similar to the calculations in the proof of lemma 2.1, we haveˆ

B1

η2
(
σ̃L(u, d0)

)
xi

: ∇uxi

=

ˆ
B1

η2
[
µ1(d̂0 ⊗ d̂0 : Axi)d̂0 ⊗ d̂0 + µ2Ñxi ⊗ d̂0 + µ3d̂0 ⊗ Ñxi + µ4Axi

+µ5(Axi · d̂0)⊗ d̂0 + µ6d̂0 ⊗ (Axi · d̂0)
]

: (Axi + Ωxi)

=

ˆ
B1

η2
[
µ1(d̂T0 Axi d̂0)2 + µ4|Axi |2 − λ2Ñxi · (Axi · d̂0) + λ1Ñxi · (Ωxi · d̂0)

+(µ5 + µ6)|Axi · d̂0|2 + λ2(Axi · d̂0)(Ωxi · d̂0)
]
. (3.33)

By the equation (3.30)3, we have

λ1Ñxi · (Ωxi · d̂0) = −λ2(Axi · d̂0)(Ωxi · d̂0)− 〈Ωxi d̂0,∆d̂xi〉,
and

−λ2Ñxi · (Axi · d̂0) =
λ2

2

λ1
|Axi · d̂0|2 −

λ2
2

λ1
(d̂T0 Axi d̂0)2 +

λ2

λ1
〈Axi d̂0,∆d̂xi〉.

Substituting these identities into (3.33), we obtainˆ
B1

η2
(
σ̃L(u, d0)

)
xi

: ∇uxi

=

ˆ
B1

η2
[
(µ1 −

λ2
2

λ1
)(d̂T0 Axi d̂0)2 + µ4|Axi |2 + 〈λ2

λ1
Axi d̂0 − Ωxi d̂0,∆d̂xi〉

+(µ5 + µ6 +
λ2

2

λ1
)|Axi · d̂0|2

]
. (3.34)

Putting (3.34) into (3.31) and adding the resulting (3.31) with (3.32), we have, by (1.15),

d

dt

ˆ
B1

(
|∇u|2 + |∇2d|2

)
η2 +

ˆ
B1

(
µ4|∇2u|2 +

2

|λ1|
|∇3d|2

)
η2

= −2

ˆ
B1

η2
[
(µ1 −

λ2
2

λ1
)(d̂T0 Axi d̂0)2 + (µ5 + µ6 +

λ2
2

λ1
)|Axi · d̂0|2

]
−2

ˆ
B1

P
[
∆u · ∇(η2) +∇u : ∇2(η2)

]
− 2

ˆ
B1

(
σ̃L(u, d0)

)
xi

: uxi ⊗∇(η2)

3Strictly speaking, we first need to take finite quotient Dih of the system (3.9) and then multiply the first equation and the

third equation of the resulting equations by Dihu(x, t)η2 =
u(x+hei,t)−u(x,t)

h
andDih(∆d)η2 respectively for h > 0 and i = 1, 2,

with e1 = (1, 0) and e2 = (0, 1). Then the desired estimate follows from the estimates on the finite quotients by sending h to

zero.
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+

ˆ
B1

(
µ4∇2u · ∇(η2) : ∇u− 2∂tdxi · ∇dxi · ∇(η2)− 2

|λ1|
∇(∇d)⊗∇(∇d) : ∇2(η2)

)
≤ −2

ˆ
B1

P
[
∆u · ∇(η2) +∇u : ∇2(η2)

]
− 2

ˆ
B1

(
σ̃L(u, d0)

)
xi

: uxi ⊗∇(η2) +

ˆ
B1

[
µ4∇2u · ∇(η2) : ∇u− 2∂tdxi · ∇dxi · ∇(η2) +

2

|λ1|
(∇3d · (∇d)xi + ∆∇d · (∇d)xi)(η

2)xi

]
:= R1 +R2 +R3. (3.35)

Now we estimate each term of the right hand side of (3.35) as follows.

|R1| .
ˆ
B1

|P |(|∇2u|2η|∇η|+ |∇u|(|∇2η|+ |∇η|2))

≤ µ4

6

ˆ
B1

|∇2u|2η2 + C

ˆ
B1

(|P |2 + |∇u|2)(|∇η|2 + |∇2η|),

|R2| .
ˆ
B1

(|∇2u|+ |∇3d|)|∇u|η|∇η|

≤ µ4

6

ˆ
B1

|∇2u|2η2 +
1

2|λ1|

ˆ
B1

|∇3d|2η2 + C

ˆ
B1

|∇u|2|∇η|2,

and

|R3| .
ˆ
B1

|∇2u||∇u|η|∇η|+ (|∇2u|+ |∇3d|)|∇2d|η|∇η|

≤ µ4

6

ˆ
B1

|∇2u|2η2 +
1

2|λ1|

ˆ
B1

|∇3d|2η2 + C

ˆ
B1

(|∇u|2 + |∇2d|2)|∇η|2.

Putting these estimates into (3.35), we obtain

d

dt

ˆ
B1

(
|∇u|2 + |∇2d|2

)
η2 +

ˆ
B1

(
µ4

2
|∇2u|2 +

1

|λ1|
|∇3d|2

)
η2

≤ C
ˆ
B1

[
(|P |2 + |∇u|2)(|∇η|2 + |∇2η|) + |∇2d|2|∇η|2

]
, (3.36)

By Fubini’s theorem, there exists t∗ ∈ [− 1
4 , 0] such thatˆ

B1

(
|∇u|2 + |∇2d|2

)
η2(t∗) ≤ 8

ˆ
P1

(
|∇u|2 + |∇2d|2

)
η2.

Integrating (3.36) over t ∈ [t∗, 0] yields that

sup
− 1

4≤t≤0

ˆ
B1

(
|∇u|2 + |∇2d|2

)
η2(t) +

ˆ 0

− 1
4

ˆ
B1

(
|∇2u|2 + |∇3d|2

)
η2

≤ C
ˆ
P1

[
(|P |2 + |∇u|2)(|∇η|2 + |∇2η|) + |∇2d|2|∇η|2

]
+ C

ˆ
P1

(
|∇u|2 + |∇2d|2

)
η2. (3.37)

For the pressure P , taking divergence of the equation (3.30)1 yields that for any −1 ≤ t ≤ 0,

∆Pxi = (∇·)2
(
σ̃L(u, d0)

)
xi

in B 3
4
. (3.38)

Similar to the pressure estimates obtained in the proof of lemma 3.1, we haveˆ
P 1

4

|∇P |2 .
ˆ
P 5

16

|σ̃L(u, d0)xi |2 + |P |2 .
ˆ
P 3

8

(
|∇2u|2 + |∇3d|2 + |P |2

)
. (3.39)

Let η ∈ C1
0 (B1) be a cut-off function of B 3

8
, i.e. η ≡ 1 in B 3

8
, η ≡ 0 outside B 3

4
, 0 ≤ η ≤ 1, and

|∇η|+ |∇2η| ≤ 16. Then, by combining (3.37) with (3.39), we obtain

sup
−( 1

4 )2≤t≤0

ˆ
B 1

4

(
|∇u|2 + |∇2d|2

)
(t) +

ˆ
P 1

4

(
|∇2u|2 + |∇3d|2 + |∇P |2

)
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≤ C
ˆ
P 3

4

[
|P |2 + |∇u|2 + |∇2d|2

]
. (3.40)

It turns out that the above energy method can be extended to any high order. Here we only give a sketch

of the proof. In fact, if we denote ∇α = ∂k

∂xα as the k-th order derivative for any multiple index α = (α1, α2)
(k = |α| = α1 + α2 ≥ 2), and take ∇α of the system (3.9), then we obtain

∂t(∇αu) +∇(∇αP ) = ∇ · (∇α(σ̃L(u, d0))),

∇ · (∇αu) = 0,

∂t(∇αd)− (∇αΩ)d̂0 + λ2

λ1
(∇αA)d̂0 = 1

|λ1|∆(∇αd) + λ2

λ1

(
d̂T0 (∇αA)d̂0

)
d0.

(3.41)

Multiplying (3.41)1 by (∇αu)η2 and (3.41)3 by ∆(∇αd)η2 and integrating the resulting equations over B1,
and repeating the above calculations and cancelations, we would obtain

d

dt

ˆ
B1

(
|∇ku|2 + |∇k+1d|2

)
η2 +

ˆ
B1

(
µ4

2
|∇k+1u|2 +

1

|λ1|
|∇k+2d|2

)
η2

≤ C
ˆ
B1

[
(|∇k−1P |2 + |∇ku|2)(|∇η|2 + |∇2η|) + |∇k+1d|2|∇η|2

]
. (3.42)

For P , since

∆(∇αP ) = (∇·)2
(
∇α(σ̃L(u, d0))

)
in B 3

4
, (3.43)

we have ˆ
P 1

4

|∇kP |2 .
ˆ
P 3

8

(
|∇k−1P |2 + |∇k+1u|2 + |∇k+2d|2

)
. (3.44)

Following the same lines of proof as above, we can choose suitable time slice t∗ ∈ (− 1
4 , 0) such thatˆ

B1

(
|∇ku|2 + |∇k+1d|2

)
η2(t∗) ≤ 8

ˆ
P1

(
|∇ku|2 + |∇k+1d|2

)
η2.

By choosing suitable test functions similar to the above ones, we can reach that for any k ≥ 2, it holds

sup
−( 1

4 )2≤t≤0

ˆ
B 1

4

(
|∇ku|2 + |∇k+1d|2

)
(t) +

ˆ
P 1

4

(
|∇k+1u|2 + |∇k+2d|2 + |∇kP |2

)
≤ C

ˆ
P 3

4

[
|∇k−1P |2 + |∇ku|2 + |∇k+1d|2

]
. (3.45)

It is clear that with suitable adjusting of the radius, we see that (3.45) and (3.40) implies that

sup
−( 1

4 )2≤t≤0

ˆ
B 1

4

(
|∇ku|2 + |∇k+1d|2

)
(t) +

ˆ
P 1

4

(
|∇k+1u|2 + |∇k+2d|2 + |∇kP |2

)
≤ C

ˆ
P 3

4

[
|P |2 + |∇u|2 + |∇2d|2

]
(3.46)

holds for all k ≥ 1.
Now we can apply the regularity theory for both the linear Stokes equations (c.f. [31]) and the linear

heat equation (cf. [15]) to conclude that (u, d) ∈ C∞(P 1
2
). Furthermore, apply the elliptic estimate for the

pressure equation (3.38), we see that P ∈ C∞(P 1
2
) (first we have ∇kP ∈ C0(P 1

2
), then note that ∂ltP also

satisfies a similar elliptic equation, so that ∇k∂ltP ∈ C0(P 1
2
)). Therefore (u, d, P ) ∈ C∞(P 1

2
) and the desired

estimate (3.29) holds. The proof of lemma 3.2 is complete. �

In order to show the smoothness of solutions to (1.8) under the condition (3.1), we need to iterate the
decay inequality (3.1) and establish higher integrability of (u,∇d) by applying the techniques of Morrey
space estimates for Riesz potentials, similar to that by Hineman-Wang [14].
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Lemma 3.3. Assume that the conditions (1.6), (1.7), and (1.15) hold. For any 0 < T ≤ +∞ and a
bounded domain O ⊂ R2, there exists ε0 > 0 such that (u, P, d) ∈ L∞t L2

x∩L2
tH

1
x(O× [0, T ])×L2(O× [0, T ])×

L2
tH

2
x(O × [0, T ],S2) is a suitable weak solution of (1.8), and satisfies, for z0 = (x0, t0) ∈ O × (0, T ) and

Pr0(z0) ⊂ O × (0, T ),

Φ (u, d, P, z0, r0) ≤ ε0, (3.47)

then (u,∇d) ∈ Lqloc(Pr0(z0)) for any 1 < q < +∞. Moreover, it holds

‖(u,∇d)‖Lq(P r0
4

(z0)) ≤ C(q, r0)ε0. (3.48)

Proof. Set r1 = r0
2 . Then it is easy to see that (3.47) also holds for (u, P, d) with z0, r0 replaced by z1, r1

for any z1 ∈ P r0
2

(z0). Applying lemma 3.1 for (u, P, d) on Pr1(z1), we conclude that there exists θ0 ∈ (0, 1
2 )

such that for any 0 < r ≤ r1, it holds that

Φ (u, d, P, z1, θ0r) ≤
1

2
Φ (u, d, P, z1, r)

Iterating this inequality k-times, k ≥ 1, yields

Φ
(
u, d, P, z1, θ

k
0r
)
≤ 2−kΦ (u, d, P, z1, r) .

It is well known that this implies that there exists α ∈ (0, 1) such that for any 0 < τ < r ≤ r1, it holds

Φ (u, d, P, z1, τ) ≤ (
τ

r
)αΦ (u, d, P, z1, r) (3.49)

holds for any z1 ∈ P r0
2

(z0) and 0 < r ≤ r0
2 .

Now we proceed with the Riesz potential estimates of (u,∇d) between Morrey spaces as follows. First,
let’s recall the notion of Morrey spaces on R2 × R, equipped with the parabolic metric δ:

δ
(

(x, t), (y, s)
)

= max
{
|x− y|,

√
|t− s|

}
, ∀ (x, t), (y, s) ∈ R2 × R.

For any open set U ⊂ R2+1, 1 ≤ p < +∞, and 0 ≤ λ ≤ 4, define the Morrey Space Mp,λ(U) by

Mp,λ(U) :=

{
v ∈ Lploc(U) : ‖v‖pMp,λ(U) ≡ sup

z∈U,r>0
rλ−4

ˆ
Pr(z)∩U

|v|p <∞

}
. (3.50)

It follows from (3.49) that for some α ∈ (0, 1),

u, ∇d ∈M4,4(1−α)
(
P r0

2
(z0)

)
, (∇u,∇2d, P ) ∈M2,4−2α

(
P z0

2
(z0)

)
. (3.51)

Write the equation (1.8)3 as

∂td−
1

|λ1|
∆d = f, with f :=

(
−u · ∇d+ Ωd̂− λ2

λ1
Ad̂+

1

|λ1|
|∇d|2d+

λ2

λ1
(d̂TAd̂)d

)
. (3.52)

By (3.51), we see that

f ∈M2,2(2−α)
(
P r0

2
(z0)

)
.

As in [24] and [13], let η ∈ C∞0 (R2+1) be a cut-off function of P r0
2

(z0): 0 ≤ η ≤ 1, η ≡ 1 in P r0
2

(z0), and

|∂tη|+ |∇2η| ≤ Cr−2
0 . Set w = η2d. Then we have

∂tw −
1

|λ1|
∆w = F, F := η2f + (∂tη

2 − 1

|λ1|
∆η2)(d− dz0, r02 )− 2

|λ1|
∇η2 · ∇d, (3.53)

where dz0, r02 is the average of d over P r0
2

(z0). It is easy to check that F ∈M2,2(2−α)(R2+1) and satisfies the

estimate ∥∥∥F∥∥∥
M2,2(2−α)(R2+1)

≤ C
[
Φ (u, d, P, z0, r0) + ‖f‖M2,2(2−α)(P r0

2
(z0))

]
≤ Cε0. (3.54)

Let Γ(x, t) denote the fundamental solution of the heat operator (∂t − 1
|λ1|∆) on R2. Then by the Duhamel

formula for (3.53) and the estimate (see also [13] lemma 3.1):

|∇Γ|(x, t) . 1

δ3((x, t), (0, 0))
, ∀(x, t) 6= (0, 0),
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we have

|∇w(x, t)| ≤
ˆ t

0

ˆ
R2

|∇Γ(x− y, t− s)||F (y, s)| ≤ C
ˆ
R3

|F (y, s)|
δ3((x, t), (y, s))

:= CI1(|F |)(x, t), (3.55)

where Iβ is the Riesz potential of order β on R3 (β ∈ [0, 4]), defined by

Iβ(g) =

ˆ
R3

|g(y, s)|
δ((x, t), (y, s))4−β , ∀ g ∈ L

p(R3). (3.56)

Applying the Riesz potential estimates (see [13] Theorem 3.1), we conclude that ∇w ∈ M
2(2−α)
1−α ,2(2−α)(R3)

and ∥∥∥∇w∥∥∥
M

2(2−α)
1−α ,2(2−α)

(R3)
.
∥∥∥F∥∥∥

M2,2(2−α)(R3)
≤ Cε0. (3.57)

Choosing α ↑ 1 and using limα↑1
2(2−α)

1−α = +∞, we can conclude that for any 1 < q <∞, ∇w ∈ Lq(Pr0(z0))
and ∥∥∥∇w∥∥∥

Lq(Pr0 (z0))
≤ C(q, r0)ε0. (3.58)

Since (d− w) solves

∂t(d− w)− 1

|λ1|
∆(d− w) = 0 in P r0

2
(z0),

it follows from the standard estimate on the heat equation that for any 1 < q < +∞, ∇d ∈ Lq(P r0
4

(z0)) and∥∥∥∇d∥∥∥
Lq(P r0

4
(z0))

≤ C(q, r0)ε0. (3.59)

Now we proceed with the estimation of u. Let v : R2 × [0,+∞)→ R2 solve the Stokes equation:
∂tv −

µ4

2
∆v +∇Q = −∇ · [η2(∇d�∇d+ u⊗ u)] +∇ · [η2(σL(u, d)− µ4A)] in R2 × (0,∞),

∇ · v = 0 in R2 × (0,∞),

v(·, 0) = 0 in R2.

(3.60)

By using the Oseen kernel (see Leray [16]), an estimate for v, similar to (3.55), can be given by

|v(x, t)| ≤ C
ˆ t

0

ˆ
R2

|X(y, s)|
δ((x, t), (y, s))3

≤ CI1(|X|)(x, t), (x, t) ∈ R2 × (0,+∞), (3.61)

where X = −η2(∇d�∇d + u⊗ u) + η2(σL(u, d)− µ4A). As above, we can check that X ∈ M2,2(2−α)(R3)
and ∥∥∥X∥∥∥

M2,2(2−α)(R3)
≤ C

[
‖|u|+ |∇d|‖2M4,4−α(P r0

2
(z0)) +

∥∥|∇u|+ |∇2d|
∥∥
M2,4−2α(P r0

2
(z0))

]
≤ Cε0.

Hence, by [13] Theorem 3.1, we have that v ∈M
2(2−α)
1−α ,2(2−α)(R3), and∥∥∥v∥∥∥

M
2(2−α)
1−α ,2(2−α)

(R3)
≤ C

∥∥∥X∥∥∥
M2,2(2−α)(R3)

≤ Cε0. (3.62)

By sending α ↑ 1, (3.62) implies that for any 1 < q < +∞, v ∈ Lq (Pr0(z0)) and∥∥∥v∥∥∥
Lq(Pr0 (z0))

≤ C(q, r0)ε0. (3.63)

Since (u− v) satisfies the linear homogeneous Stokes equation in P r0
2

(z0):

∂t(u− v)− µ4

2
∆(u− v) +∇(P −Q) = 0, ∇ · (u− v) = 0 in P r0

2
(z0).

It is well-known that (u − v) ∈ L∞(P r0
4

(z0)). Therefore we conclude that for any 1 < q < +∞, u ∈
Lq(P r0

4
(z0)), and ∥∥∥u∥∥∥

Lq(P r0
4

(z0))
≤ C(q, r0)ε0. (3.64)

The estimate (3.48) follows from (3.59) and (3.64). This completes the proof. �
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Now we utilize the integrability estimate (3.48) of (u,∇d) to prove the smoothness of (u, d).4 The argument
is based on local inequalities of higher order energy of (u,∇d).

Lemma 3.4. Assume that the conditions (1.6), (1.7), and (1.15) hold. For any 0 < T ≤ +∞ and a bounded
domain O ⊂ R2, there exists ε0 > 0 such that (u, P, d) ∈ L∞t L2

x∩L2
tH

1
x(O× [0, T ])×L2(O× [0, T ])×(L∞t H

1
x∩

L2
tH

2(O × [0, T ],S2) is a suitable weak solution of (1.8) , and satisfies, for z0 = (x0, t0) ∈ O × (0, T ) and
Pr0(z0) ⊂ O × (0, T ),

Φ (u, d, P, z0, r0) ≤ ε0, (3.65)

then (∇lu,∇l+1d) ∈
(
L∞t L

2
x ∩ L2

tH
1
x

)(
P 1+2−(l+1)

2 r0
(z0)

)
for any l ≥ 0, and the following estimate holds

sup

t0− ((1+2−(l+1))r0)2

4 ≤t≤t0

ˆ
B

1+2−(l+1)

2
r0

(x0)

(
|∇lu|2 + |∇l+1d|2

)
+

ˆ
P

1+2−(l+1)

2
r0

(z0)

(
|∇l+1u|2 + |∇l+2d|2 + |∇lP |2

)
≤ C(l)ε0. (3.66)

Proof. For simplicity, assume z0 = (0, 0) and r0 = 2. We will prove (3.66) by an induction on l ≥ 0.
(i) l = 0: (3.66) follows from the local energy inequality (2.14), similar to that given by lemma 3.1.
(ii) l ≥ 1: Suppose that (3.66) holds for l ≤ k − 1. We want to show (3.66) also holds for l = k. From the
hypothesis of induction, we have that for all 0 ≤ l ≤ k − 1,

sup
−(1+2−(l+1))2≤t≤0

ˆ
B

1+2−(l+1)

(|∇lu|2 + |∇l+1d|2)

+

ˆ
P

1+2−(l+1)

(|∇l+1u|2 + |∇l+2d|2 + |∇lP |2) ≤ C(l)ε0. (3.67)

Hence by the Ladyzhenskaya inequality (3.21) we haveˆ
P

1+2−(l+1)

(
|∇lu|4 + |∇l+1d|4

)
≤ C(l)ε0, ∀0 ≤ l ≤ k − 1. (3.68)

By lemma 3.3, we also have

‖u‖Lq(P 3
2

) + ‖∇d‖Lq(P 3
2

) ≤ C(q)ε0, ∀1 < q < +∞. (3.69)

Take k-th order spatial derivative ∇k of the equation (1.8)1, we have5

∂t(∇ku) +∇k∇ · (u⊗ u) +∇k∇P = −∇k∇ · (∇d�∇d) +∇k∇ · (σL(u, d)). (3.70)

Let η ∈ C∞0 (B2) such that

0 ≤ η ≤ 1, η ≡ 1 in B1+2−(k+1) , η = 0 outside B1+2−k , |∇η|+ |∇2η| ≤ 2k+4.

Multiplying (3.70) by ∇kuη2 and integrating over B2, we obtain6

d

dt

ˆ
B2

1

2
|∇ku|2η2 =

ˆ
B2

∇k(u⊗ u) : ∇(∇kuη2) +

ˆ
B2

∇kP · ∇ku · ∇(η2)

+

ˆ
B2

∇k(∇d�∇d) : ∇(∇kuη2)−
ˆ
B2

∇k(σL(u, d)) : ∇(∇kuη2)

:= I1 + I2 + I3 + I4. (3.71)

We estimate I1, I2, I3 as follows. Applying Hölder’s inequality and the following interpolation inequality:ˆ
B2

|f |4η4 . (

ˆ
B2

|f |2η2)

(ˆ
B2

|∇f |2η2 +

ˆ
B2

|f |2|∇η|2
)
, ∀ f ∈ H1(R2), (3.72)

4In fact, we only need to use (u,∇d) ∈ L8 in the proof for the cases k = 1, 2.
5Strictly speaking we need to take the finite quotient Dih∇

k−1 of (1.8)1 and then taking limit as h tends to zero.
6Strictly speaking, we need to multiply the equation by Dih∇

k−1uη2.
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we have

|I1| .
ˆ
B2

[|u||∇ku|+
k−1∑
j=1

|∇ju||∇k−ju|](|∇k+1u|η2 + |∇ku|η|∇η|)

≤
(
δ + C

ˆ
B2

|∇ku|2η2

)ˆ
B2

|∇k+1u|2η2 + C

k−1∑
j=0

ˆ
sptη

|∇ju|4

+C

(ˆ
sptη

|∇ku|2 +

ˆ
sptη

|∇ku|2
ˆ
B2

|∇ku|2η2

)
(3.73)

where δ > 0 is a small constant to be chosen later. For I2 and I3, we have

|I2| .
ˆ
B2

|∇k−1P |(|∇k+1u|η|∇η|+ |∇ku||∇2(η2)|)

≤ δ

ˆ
B2

|∇k+1u|2η2 + C

ˆ
sptη

(|∇k−1P |2 + |∇ku|2). (3.74)

|I3| .
ˆ
B2

(|∇d||∇k+1d|+
k−1∑
j=1

|∇j+1d||∇k+1−jd|)(|∇k+1u|η2 + |∇ku||∇(η2)|)

≤
(
δ + C

ˆ
B2

|∇k+1d|2η2

)ˆ
B2

(|∇k+1u|2 + |∇k+2d|2)η2 + C

ˆ
sptη

(|∇u|2 +

k∑
j=1

|∇jd|4)

+C

(ˆ
sptη

(|∇ku|2 + |∇k+1d|2) +

ˆ
sptη

|∇k+1d|2
ˆ
B2

|∇k+1d|2η2

)
. (3.75)

For I4, we need to proceed as follows. Set

σLk (u, d) = µ1(d̂⊗ d̂ : ∇kA)d̂⊗ d̂+ µ2∇kN̂ ⊗ d̂+ µ3d̂⊗∇kN̂ + µ4∇kA+ µ5(∇kA · d̂)⊗ d̂+ µ6d̂⊗ (∇kA · d̂),

and
ωLk (u, d) := ∇k(σL(u, d))− σLk (u, d).

Then we have

−
ˆ
B2

∇k(σL(u, d)) : ∇(∇kuη2) = −
ˆ
B2

σLk (u, d) : (∇k+1u)η2 −
ˆ
B2

σLk (u, d) : ∇ku⊗∇(η2)

−
ˆ
B2

ωLk (u, d) : (∇k+1uη2 +∇ku⊗∇(η2))

:= J1 + J2 + J3. (3.76)

To estimate J1, J2, J3, we take ∇k of the equation (1.8)3 to get7

∇kN +
λ2

λ1
∇k(Ad̂) =

1

|λ1|
(
∆∇kd+∇k(|∇d|2d)

)
+
λ2

λ1
∇k
(

(d̂TAd̂)d
)
. (3.77)

Since |d| = 1, we have that |∇d|2 = −〈∆d, d〉. Denote by # the multi-linear map with constant coefficients.
It is well known (see [1] ) that for any l ≥ 0,

‖∇l(d#d)‖L2 . ‖d‖L∞‖∇ld‖L2 . ‖∇ld‖L2 ,

and
‖∇l(d#d#d)‖L2 . ‖d‖L∞‖∇l(d#d)‖L2 + ‖d#d‖L∞‖∇ld‖L2 . ‖∇ld‖L2 .

Therefore by (3.67) and (3.68) we have that for any 0 ≤ l ≤ k − 1,

∇(d#d),∇(d#d#d) ∈
(
L∞t H

l
x ∩ L2

tH
l+1
x ∩ L4

)(
P1+2−(l+1)

)
.

and ∥∥∥|∇(d#d)|+ |∇(d#d#d)|
∥∥∥
L4∩L∞t Hlx∩L2

tH
l+1
x (P

1+2−(l+1) )
≤ C(l)ε0. (3.78)

7Strictly speaking, we need to take Dih∇
k−1 of the equation.
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The estimate (3.78) also holds for d#d#d#d. Applying the equation (3.77) we have

|J2| .
ˆ
B2

(|∇k+1u|+ |∇kN |)|∇ku|η|∇η|

.
ˆ
B2

[
|∇k+1u|+ |∇k+2d|+

k∑
j=1

|∇ju||∇k−j+1d|
]
|∇ku|η|∇η|

+
[ k−1∑
l=0

|∇l+2d||∇k−l(d#d)|
]
|∇ku|η|∇η|

+
[ k−1∑
l=0

|∇k−l(d#d#d)||∇l+1u|
]
|∇ku|η|∇η| := J21 + J22 + J23.

Direct calculations imply

J21 ≤
[
δ + C

ˆ
B2

(|∇ku|2 + |∇k+1d|2)η2

]ˆ
B2

(|∇k+1u|2 + |∇k+2d|2)η2

+ C

ˆ
sptη

(|∇ku|2 + |∇k+1d|2)

ˆ
B2

(|∇ku|2 + |∇k+1d|2)η2 + C

k∑
i=1

ˆ
sptη

(|∇id|4 + |∇iu|2),

J22 ≤
ˆ
B2

[
|∇kd||∇d|2 + |∇k+1d||∇d|+

k−2∑
l=0

|∇l+2d||∇k−l(d#d)|
]
|∇ku|η|∇η|

≤ C

ˆ
B2

|∇ku|2η2

ˆ
B2

|∇k+1u|2η2 + C

ˆ
sptη

|∇ku|2
ˆ
B2

|∇ku|2η2

+C

ˆ
sptη

[
|∇d|8 + |∇kd|2 + |∇k+1d|2 +

k∑
i=1

|∇id|4
]
,

and

J23 ≤
ˆ
B2

[
|∇ku||∇d|+

k−1∑
l=1

|∇k+1−l(d#d#d)||∇lu|
]
|∇ku|η|∇η|

. C

ˆ
B2

(|∇ku|2 + |∇k+1d|2)η2

ˆ
B2

(|∇k+1u|2 + |∇k+2d|2)η2

+ C

ˆ
sptη

(|∇d|8 + |∇ku|2 + |∇k+1d|2) + C

k−1∑
j=0

ˆ
sptη

(|∇ju|4 + |∇j+1d|4)

+ C

ˆ
sptη

(|∇ku|2 + |∇k+1d|2)

ˆ
B2

(|∇ku|2 + |∇k+1d|2)η2.

By the definition of ωLk (u, d) and the equation (1.8)3, we have

|ωLk (u, d)| .
k∑
l=1

|∇lu|(|∇k+1−l(d#d)|+ |∇k+1−l(d#d#d)|) +

k−1∑
l=0

|∇lN̂ ||∇k−ld|

.
k∑
l=1

|∇lu|(|∇k+1−l(d#d)|+ |∇k+1−l(d#d#d)|) + |∇d||∇k+1d|+
k∑
l=2

|∇ld|2

+

k−1∑
l=0

[
|∇l(Ad)|+ |∇l(∇2d#d#d)|+ |∇l(A#d#d#d)

]
|∇k−ld|

. (|∇ku|+ |∇k+1d|)(|∇d|+ |∇(d#d)|+ |∇(d#d#d)|)

+

k∑
l=1

(|∇l−1u|2 + |∇ld|2 + |∇l(d#d)|2 + |∇l(d#d#d)|2). (3.79)
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Hence we can estimate

|J3| .
ˆ
B2

|ωLk (u, d)|(|∇k+1u|η2 + |∇ku|η|∇η|)

≤
[
δ + C

ˆ
B2

(|∇ku|2 + |∇k+1d|2)η2

]ˆ
B2

(|∇k+1u|2 + |∇k+2d|2)η2 + C

ˆ
sptη

(|∇ku|2 + |∇k+1d|2)

+C

k∑
l=1

ˆ
sptη

(|∇l−1u|4 + |∇ld|4 + |∇l(d#d)|4 + |∇l(d#d#d)|4)

+C

ˆ
sptη

(|∇ku|2 + |∇k+1d|2)

ˆ
B2

(|∇ku|2 + |∇k+1d|2)η2. (3.80)

The most difficult term to handle is J1, since the integrands involve terms consisting of the highest order
factors ∇k+1u and ∇k+2d. Here we need to apply (1.8) to cancel some of those terms and employ the
condition (1.15) to argue that other terms are non-positive. For this, we proceed as follows (similar to
lemma 3.2).

J1 = −
ˆ
B2

[
µ1(d̂⊗ d̂ : ∇kA)d̂⊗ d̂+ µ2∇kN̂ ⊗ d̂+ µ3d̂⊗∇kN̂

+µ4∇kA+ µ5(∇kAd̂)⊗ d̂+ µ6d̂⊗ (∇kAd̂)
]

:
[
∇kAη2 +∇kΩη2

]
= −

ˆ
B2

µ1|d̂T∇kAd̂|2η2 + µ4|∇kA|2η2 + (µ5 + µ6)|∇kAd̂|2η2

+λ1∇kN̂ · (∇kΩd̂)η2 − λ2∇kN̂ · (∇kAd̂)η2 + λ2(∇kAd̂)(∇kΩd̂)η2. (3.81)

Applying the equation (3.77), we obtain

λ1∇kN̂ · (∇kΩd̂) + λ2(∇kAd̂)(∇kΩd̂) = −〈∇kΩd̂,∆∇kd̂〉 − 〈∇k(|∇d|2d̂),∇kΩd̂〉

+λ2

〈
∇k((d̂TAd̂)d̂),∇kΩd̂

〉
− λ2

〈
∇k(Ad̂)−∇kAd̂,∇kΩd̂

〉
, (3.82)

and

−λ2∇kN̂(∇kAd̂) =
λ2

λ1

〈
∆∇kd̂,∇kAd̂

〉
− λ2

2

λ1
|d̂T∇kAd|2 +

λ2
2

λ1
|∇kAd̂|2

+
λ2

2

λ1

〈
∇k(Ad̂)−∇kAd̂,∇kAd̂

〉
+
λ2

λ1

〈
∇k(|∇d|2d̂),∇kAd̂

〉
+
λ2

2

λ1

〈
(d̂T∇kA)̂d̂−∇k((d̂TAd̂)d̂),∇kAd̂

〉
. (3.83)

Putting (3.82) and (3.83) into (3.81) yields

J1

= −
ˆ
B2

[(µ1 −
λ2

2

λ1
)|d̂T∇kAd̂|2 + µ4|∇kA|2 + (µ5 + µ6 +

λ2
2

λ1
)|∇kAd̂|2 + 〈λ2

λ1
∇kAd̂−∇kΩd̂,∆∇kd̂〉]η2

−
ˆ
B2

[〈
λ2∇k((d̂TAd̂)d̂)−∇k(|∇d|2d̂)− λ2

(
∇k(Ad̂)−∇kAd̂

)
,∇kΩd̂

〉
+
λ2

λ1

〈
∇k(|∇d|2d̂),∇kAd̂

〉
+

λ2
2

λ1

〈
∇k(Ad̂)−∇kAd̂,∇kAd̂

〉
+
λ2

2

λ1

〈
(d̂T∇kAd̂)d̂−∇k((d̂TAd̂)d̂),∇kAd̂

〉]
η2. (3.84)

Multiplying the equation (3.77) by ∆∇kdη2 and integrating over B2, we have8

d

dt

ˆ
B2

1

2
|∇k+1d|2η2 +

1

|λ1|

ˆ
B2

|∆∇kd|2η2 =

ˆ
B2

〈λ2

λ1
∇kAd̂−∇kΩd̂,∆∇kd̂

〉
η2

+

ˆ
B2

〈
∇k(u · ∇d) + (∇kΩd̂−∇k(Ωd̂)) +

λ2

λ1
(∇k(Ad̂)−∇kAd̂) +

1

λ1
∇k(|∇d|2d),∆∇kd

〉
η2

8Strictly speaking, we need to multiply the equation by ∆Dih∇
k−1dη2.



22 J. HUANG, F. LIN, AND C. WANG

−
ˆ
B2

∂t∇kd · ∇∇kd · ∇η2 − λ2

λ1

ˆ
B2

〈
∇k((d̂TAd̂)d),∆∇kd

〉
η2. (3.85)

Adding (3.71) and (3.85), using (1.15), we obtain

d

dt

ˆ
B2

(|∇ku|2 + |∇k+1d|2)η2 +

ˆ
B2

(
2µ4|∇kA|2 +

2

|λ1|
|∇k+2d|2

)
η2 ≤ I1 + I2 + I3 + J2 + J3

+

ˆ
B2

〈
∇k(u · ∇d) + (∇kΩd̂−∇k(Ωd̂)) +

λ2

λ1
(∇k(Ad̂)−∇kAd̂),∆∇kd

〉
η2

−
ˆ
B2

∂t∇kd · ∇∇kd · ∇η2 +

ˆ
B2

〈 1

λ1
∇k(|∇d|2d)− λ2

λ1
∇k((d̂TAd̂)d),∆∇kd

〉
η2

−
ˆ
B2

[〈
λ2∇k((d̂TAd̂)d̂)−∇k(|∇d|2d̂)− λ2

(
∇k(Ad̂)−∇kAd̂

)
,∇kΩd̂

〉
+
λ2

λ1

〈
∇k(|∇d|2d̂),∇kAd̂

〉
+
λ2

2

λ1

〈
∇kAd̂−∇k(Ad̂),∇kAd̂

〉
− λ2

2

λ1

〈
∇k((d̂TAd̂)d̂)− (d̂T∇kAd̂)d̂,∇kAd̂

〉]
η2

:= I1 + I2 + I3 + J2 + J3 +K1 +K2 +K3 +K4. (3.86)

The terms K1,K2,K3,K4 can be estimated as follows.

|K1| .
ˆ
B2

[
|∇d||∇ku|+ |u||∇k+1d|+

k−1∑
l=1

(|∇lu|2 + |∇l+1d|2)
]
|∇k+2d|η2

≤
[
δ + C

ˆ
B2

(|∇ku|2 + |∇k+1d|2)η2
]ˆ

B2

(|∇k+1u|2 + |∇k+2d|2)η2 + C

k−1∑
l=0

ˆ
sptη

(|∇lu|2 + |∇l+1d|2)

+C

ˆ
sptη

(|∇ku|2 + |∇k+1d|2)

ˆ
B2

(|∇ku|2 + |∇k+1d|2)η2, (3.87)

For K2, by the equation (3.77) and the fact |∇d|2 = −〈d,∆d〉 we have

|∂t∇kd| . |∇k(u · ∇d) + |∇k(Ωd̂)|+ |∇k(Ad̂)|+ |∇k+2d|+ |∇k((d̂TAd̂)d)|+ |∇k(〈d,∆d〉d)|,
so that

|K2| .
ˆ
B2

[
|∇k+2d|+ |∇k+1u|+ |∇k+1d|(|u|+ |∇d|) + |∇ku|(|∇d|+ |∇(d#d#d)|)

+

k∑
l=2

(|∇l−1u|2 + |∇ld|2 + |∇l(d#d)|2 + |∇l(d#d#d)|2)
]
|∇k+1d|η|∇η|

≤
[
δ + C

ˆ
B2

(|∇ku|2 + |∇k+1d|2)η2
] ˆ

B2

(|∇k+1u|2 + |∇k+2d|2)η2

+

k∑
l=1

ˆ
sptη

(|∇l−1u|4 + |∇ld|4 + |∇l(d#d)|4 + |∇l(d#d#d)|4) (3.88)

+ C

ˆ
sptη

(|∇ku|2 + |∇k+1d|2) + C

ˆ
sptη

(|∇ku|2 + |∇k+1d|2)

ˆ
B2

(|∇ku|2 + |∇k+1d|2)η2.

For K4, we first estimate the terms inside the integrand. Since

〈∇k(d̂TAd̂)d̂,∇kΩd̂〉 = 0,

it follows

|〈∇k((d̂TAd̂)d̂),∇kΩd̂〉| = |〈∇k((d̂TAd̂)d̂)−∇k(d̂TAd̂)d̂,∇kΩd̂〉|

.
(
|∇ku||∇d|+

k−2∑
l=0

|∇l+1u||∇k−l(d#d#d)|
)
|∇k+1u|

.
[
|∇ku||∇d|+

k−1∑
l=1

(|∇lu|2 + |∇l+1(d#d#d)|2)
]
|∇k+1u|.



THE ERICKSEN-LESLIE SYSTEM IN R2 23

We also have

|〈∇k(|∇d|2d),∇Ωd̂〉| = |〈∇k(|∇d|2d)−∇k(|∇d|2)d̂,∇kΩd̂〉|

. [|∇kd||∇d|2 +

k−2∑
l=0

∇l(|∇d|2)|∇k−ld|]|∇k+1u|

.
[
|∇kd||∇d|2 +

k∑
l=2

(|∇ld|2 + |∇l(d#d)|2
]
|∇k+1u|,

|〈∇k(Ad̂)−∇kAd̂,∇kΩd̂〉| .
[
|∇ku||∇d|+

k−1∑
l=1

(|∇lu|2 + |∇l+1d|2)
]
|∇k+1u|,

|〈∇k(|∇d|2d),∇kAd̂〉| .
[
|∇k+1d||∇d|+ |∇kd||∇d|2 +

k∑
l=2

(|∇ld|2 + |∇l(d#d)|2)
]
|∇k+1u|,

and

|
〈
∇kAd̂−∇k(Ad̂),∇kAd̂

〉
| .

[
|∇ku||∇d|+

k−1∑
l=1

(|∇lu|2 + |∇l+1d|2)
]
|∇k+1u|,

|
〈
∇k((d̂TAd̂)d̂)− (d̂T∇kAd̂)d̂,∇kAd̂

〉
|

.
[
|∇ku||∇(d#d#d)|+

k−1∑
l=1

(|∇lu|2 + |∇l+1(d#d#d)|2)
]
|∇k+1u|.

Putting all these estimates together, we would have

|K4| .
ˆ
B2

[
(|∇ku|+ |∇k+1d|)|∇d|+ |∇kd||∇d|2 + |∇ku||∇(d#d#d)|

]
|∇k+1u|η2

+

ˆ
B2

[ k−1∑
l=1

(|∇lu|2 + |∇l+1d|2 + |∇l+1(d#d)|2 + |∇l+1(d#d#d)|2)
]
|∇k+1u|η2

≤
[
δ + C

ˆ
B2

(|∇ku|2 + |∇k+1d|2)η2
]ˆ

B2

(|∇k+1u|2 + |∇k+2d|2)η2

+C

k−1∑
l=0

ˆ
sptη

(|∇lu|4 + |∇l+1d|4 + |∇l+1(d#d)|4 + |∇l+1(d#d#d)|4)

+C

ˆ
sptη

(|∇ku|2 + |∇k+1d|2)

ˆ
B2

(|∇ku|2 + |∇k+1d|2)η2 + C

ˆ
sptη

|∇d|8. (3.89)

To estimate K3, we first estimate both terms inside the integrand.

|
〈
∇k(|∇d|2d),∆∇kd

〉
| .

[
|∇kd||∇d|2 + |∇k+1d||∇d|+

k∑
l=2

(|∇ld|2 + |∇l(d#d)|2)
]
|∇k+2d|.

Since |d| = 1, it follows 〈d,∆d〉 = −|∇d|2 and

〈d,∆∇kd〉 = −∇k(|∇d|2)−
k−1∑
j=0

〈∆∇jd,∇k−jd〉.

Therefore we have∣∣∣〈∇k((d̂TAd̂)d),∆∇kd
〉∣∣∣

=
∣∣∣(d̂T∇kAd̂)〈d,∆∇kd〉+

〈
(

k−1∑
j=0

∇jA∇k−j(d#d))d,∆∇kd
〉

+
〈
(

k−1∑
j=0

∇j(d̂TAd̂)∇k−j)d,∆∇kd
〉∣∣∣
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=
∣∣∣− (d̂T∇kAd̂)

[
∇k(|∇d|2) +

k−1∑
j=0

〈∆∇jd,∇k−jd〉
]

+
〈 k−1∑
j=0

∇jA∇k−j(d#d))d,∆∇kd
〉

+
〈( k−1∑

j=0

∇j(d̂TAd̂)∇k−jd,∆∇kd
〉∣∣∣

. (|∇k+1d||∇d|+ |∇kd||∇d|2)|∇k+1u|+ |∇ku|(|∇(d#d)|+ |∇(d#d#d)|)|∇k+2d|

+
( k∑
l=2

|∇ld|2
)
|∇k+1u|+

[ k−1∑
l=1

(|∇lu|2 + |∇l+1(d#d)|2 + |∇l+1(d#d#d)|2)
]
|∇k+2d|.

Substituting these two estimates into K3, we would obtain

|K3|

.
ˆ
B2

[
|∇k+1d||∇d|+ |∇kd||∇d|2 + |∇ku|(|∇(d#d)|+ |∇(d#d#d)|)

]
(|∇k+1u|+ |∇k+2d|)η2

+

ˆ
B2

[ k−1∑
l=1

(|∇lu|2 + |∇ld|2 + |∇l+1(d#d)|2 + |∇l+1(d#d#d)|2)
]
(|∇k+1u|+ |∇k+2d|)η2

≤
[
δ +

ˆ
B2

(|∇ku|2 + |∇k+1d|2)η2
]ˆ

B2

(|∇k+1u|2 + |∇k+2d|2)η2

+C

ˆ
sptη

[
|∇d|4 + |∇d|8 +

k−1∑
l=1

(|∇lu|4 + |∇l+1d|4 + |∇l+1(d#d)|4 + |∇l+1(d#d#d)|4)
]

+C

ˆ
sptη

(|∇ku|2 + |∇k+1d|2)

ˆ
B2

(|∇ku|2 + |∇k+1d|2)η2. (3.90)

Finally, by substituting all these estimates on Ii’s, Ji’s, Ki’s, and Li’s into (3.86) we obtain

d

dt

ˆ
B2

(|∇ku|2 + |∇k+1d|2)η2 +

ˆ
B2

(
µ4|∇k+1u|2 +

2

|λ1|
|∇k+2d|2

)
η2

≤
[
δ + C

ˆ
B2

(|∇ku|2 + |∇k+1d|2)η2
] ˆ

B2

(|∇k+1u|2 + |∇k+2d|2)η2

+C

ˆ
sptη

(|∇ku|2 + |∇k+1d|2)

ˆ
B2

(|∇ku|2 + |∇k+1d|2)η2

+C

ˆ
sptη

[
|u|8 + |∇d|8 +

k−1∑
l=0

(|∇lu|4 + |∇l+1d|4 + |∇l+1(d#d)|4 + |∇l+1(d#d#d)|4)
]

+C

ˆ
sptη

[ k∑
l=1

(|∇lu|2 + |∇l+1d|2) + |∇l−1P |2
]
. (3.91)

By Fubini’s theorem, we can choose t∗ ∈ [−4,− 9
4 ] such that

ˆ
B2

(|∇ku|2 + |∇k+1d|2)η2(t∗) ≤ 8

ˆ
P2

(|∇ku|2 + |∇k+1d|2)η2 ≤ 8ε0.

For a large constant C1 > 8 to be chosen later, define T∗ ∈ [t∗, 0] by

T∗ = sup
t∗≤t≤0

{ˆ
B2

(|∇ku|2 + |∇k+1d|2)η2(s) < C1ε0, ∀ t∗ ≤ s ≤ t
}
.

Claim 1. If ε0 > 0 is sufficiently small, then T∗ = 0.
First, by continuity we know that T∗ > t∗. Suppose that T∗ < 0. Then we haveˆ

B2

(|∇ku|2 + |∇k+1d|2)η2(s) < C1ε0 ∀ t∗ ≤ s < T∗;

ˆ
B2

(|∇ku|2 + |∇k+1d|2)η2(T∗) = C1ε0. (3.92)
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By choosing sufficiently small ε0 > 0 and δ > 0, we may assume[
δ + C

ˆ
B2

(|∇ku|2 + |∇k+1d|2)η2(t)
]
≤ δ + CC1ε0 ≤

1

2
min

{
µ4,

2

|λ1|

}
, ∀ t∗ ≤ t ≤ T∗.

Set

φ(t) :=

ˆ t

t∗

ˆ
sptη

(|∇ku|2 + |∇k+1d|2)(s) ds, ∀t∗ ≤ t ≤ T∗.

Then by integrating (3.91) over t ∈ [t∗, T∗] and applying Gronwall’s inequality, we haveˆ
B2

(|∇ku|2 + |∇k+1d|2)η2(T∗) +
1

2

ˆ T∗

t∗

ˆ
B2

(
µ4|∇k+1u|2 +

2

|λ1|
|∇k+2d|2

)
η2

≤ eCφ(T∗)
[ ˆ

B2

(|∇ku|2 + |∇k+1d|2)η2(t∗) + C

k∑
l=1

ˆ
P

1+2−(l+1)

(
|∇lu|2 + |∇l+1d|2 + |∇l−1P |2

) ]
+ C

ˆ
P 3

2

[
|u|8 + |∇d|8

]
+ C

k−1∑
l=0

ˆ
P

1+2−(l+1)

[
|∇lu|4 + |∇l+1d|4 + |∇l+1(d#d)|4 + |∇l+1(d#d#d)|4)

]
≤ eCε0(8ε0 + Cε0), (3.93)

where we have used both (3.67), (3.68), and (3.69) in the last step.
It is easy to see that we can choose C1 > (C+8)eCε0 so that eCε0(8ε0 +Cε0) < C1ε0. Hence (3.93) impliesˆ

B2

(|∇ku|2 + |∇k+1d|2)η2(T∗) < C1ε0,

which contradicts the definition of T∗. Thus the claim holds true.
Since ∇kP satisfies

∆∇kP = −(∇·)2
[
∇k(u⊗ u+∇d�∇d− σL(u, d))

]
, (3.94)

the elliptic theory and (3.93) (with T∗ = 0) then yieldˆ
P

1+2−(k+2)

|∇kP |2 . sup
−(1+2−(k+1))2≤t≤0

ˆ
B

1+2−(k+1)

(|∇ku|2 + |∇k+1d|2)

+

ˆ
P

1+2−(k+1)

(
|P |2 + |∇k+1u|2 + |∇k+2d|2

)
≤ Cε0. (3.95)

This yields that the conclusion holds for l = k. Thus the proof is complete. �

Completion of Proof of Theorem 1.3: It is readily seen that by the Sobolev embedding theorem, lemma
3.4 implies that (∇ku,∇k+1d) ∈ L∞(P 3r0

4
(z0)) for any k ≥ 1. This, combined with the theory of linear

Stokes’ equation and heat equation, would imply the smoothness of (u, d) in P r0
2

(z0). �

4. Existence of global weak solutions of Ericksen-Leslie’s system (1.8)

In this section, by utilizing both the local energy inequality (2.14) for suitable weak solutions of (1.8) and
the regularity Theorem 1.3 for suitable weak solutions to (1.8), we will establish the existence of global weak
solutions to (1.8) and (1.14) that enjoy the regularity described as in Theorem 1.4. The argument is similar
to [23] Section 5.

First, we recall the following version of Ladyzhenskaya’s inequality (see [30] lemma 3.1 for the proof).

Lemma 4.1. There exists C0 > 0 such that for any T > 0, if u ∈ L∞t L
2
x ∩ L2

tH
1
x(R2 × [0, T ]), then for

0 < R ≤ +∞, it holdsˆ
R2×[0,T ]

|u|4 ≤ C0

(
sup

(x,t)∈R2×[0,T ]

ˆ
BR(x)

|u|2(·, t)
)[ ˆ

R2×[0,T ]

|∇u|2 +
1

R2

ˆ
R2×[0,T ]

|u|2
]
. (4.1)

Similar to [23] lemma 5.2, we can estimate the life span of smooth solutions to (1.8) in term of Sobolev
profiles of smooth initial data.
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Lemma 4.2. Assume (1.6), (1.7), and (1.15) hold. There exist ε1 > 0 and θ1 > 0 depending on (u0, d0)
such that if (u0, d0) ∈ C∞(R2,R2 × S2)

⋂
k≥0

(
Hk(R2,R2)×Hk+1

e0 (R2,S2)
)

satisfies

sup
x∈R2

ˆ
B2R0

(x)

(|u0|2 + |∇d0|2) ≤ ε21 (4.2)

for some R0 > 0. Then there exist T0 ≥ θ1R
2
0 and a unique solution (u, d) ∈ C∞(R2 × [0, T0],R2 × S2) of

(1.8) and (1.14) in R2, satisfying

sup
(x,t)∈R2×[0,T0]

ˆ
BR0

(x)

(|u|2 + |∇d|2)(t) ≤ 2ε21. (4.3)

Proof. By the theorem of Wang-Zhang-Zhang [33] on the local existence of smooth solutions, there exist
T0 > 0 and a unique smooth solution (u, d) ∈ C∞(R2 × [0, T0],R2 × S2) to (1.8) and (1.14). Let 0 < t0 ≤ T0

be the maximal time such that

sup
x∈R2

ˆ
BR0

(x)

(|u|2 + |∇d|2)(t) ≤ 2ε21, 0 ≤ t ≤ t0. (4.4)

Hence we have

sup
x∈R2

ˆ
BR0

(x)

(|u|2 + |∇d|2)(t0) = 2ε21. (4.5)

Without loss of generality, we assume t0 ≤ R2
0. Set

E(t) =

ˆ
R2

(|u|2 + |∇d|2)(t), E0 =

ˆ
R2

(|u0|2 + |∇d0|2).

Then by lemma 2.1 we have that for any 0 < t ≤ t0,

E(t) +

ˆ
R2×[0,t]

(
µ4|∇u|2 +

2

|λ1|
∣∣4d+ |∇d|2d

∣∣2) ≤ E0. (4.6)

By lemma 4.1, we have that for all 0 ≤ t ≤ t0,

ˆ
R2×[0,t]

|∇d|4 ≤ C0

(
sup

(x,s)∈R2×[0,t]

ˆ
BR0

(x)

|∇d|2(s)

)[ˆ
R2×[0,t]

|4d|2 +
1

R2
0

ˆ
R2×[0,t]

|∇d|2
]

≤ C0E2
R0

(t)
[ ˆ

R2×[0,t]

|4d|2 +
tE0

R2
0

]
(4.7)

where

E1
R0

(t) = sup
(x,s)∈R2×[0,t]

ˆ
BR0

(x)

|u|2(s), E2
R0

(t) = sup
(x,s)∈R2×[0,t]

ˆ
BR0

(x)

|∇d|2(s), ER0
(t) =

2∑
i=1

E iR0
(t).

By (4.4), we have ER0
(t) ≤ 2ε21, ∀ 0 ≤ t ≤ t0 so thatˆ

R2×[0,t0]

|∇d|4 ≤ C0ε
2
1

[ ˆ
R2×[0,t0]

|4d|2 +
t0E0

R2
0

]
. (4.8)

Hence we obtainˆ
R2×[0,t0]

|4d|2 =

ˆ
R2×[0,t0]

(
|4d+ |∇d|2d|2 + |∇d|4

)
≤ |λ1|

2
E0 +

ˆ
R2×[0,t0]

|∇d|4

≤ C0ε
2
1

ˆ
R2×[0,t0]

|4d|2 +

(
C0t0ε

2
1

R2
0

+
|λ1|
2

)
E0.

Choosing 0 < ε21 ≤
1

2C0
, we would have

ˆ
R2×[0,t0]

|∇2d|2 =

ˆ
R2×[0,t0]

|4d|2 ≤
(
|λ1|+

C0ε
2
1t0

R2
0

)
E0 ≤ C1E0. (4.9)
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This, combined with (4.8), also yields ˆ
R2×[0,t0]

|∇d|4 ≤ C1ε
2
1E0. (4.10)

We can also estimateˆ
R2×[0,t0]

|u|4 ≤ C0E1
R0

(t0)
[ ˆ

R2×[0,t0]

|∇u|2 +
1

R2
0

ˆ
R2×[0,t0]

|u|2
]

≤ C0E1
R0

(t0)

(
E0

µ4
+
t0E0

R2
0

)
≤ C1ε

2
1E0. (4.11)

Now we need to estimate ER0(t). Before we do it, we need to recall the following global L2-estimate of P :ˆ t0

0

ˆ
R2

|P |2 .
ˆ t0

0

ˆ
R2

(|u|4 + |∇d|4 + |σL(u, d)|2) .
ˆ t0

0

ˆ
R2

(|u|4 + |∇d|4 + |∇u|2 + |∇2d|2). (4.12)

For any x ∈ R2, let η ∈ C∞0 (B2R0
(x)) be a cut-off function of BR0

(x):

0 ≤ η ≤ 1, η ≡ 1 on BR0
(x), η ≡ 0 outside B2R0

(x), |∇η| ≤ 4R−1
0 .

Then, by applying lemma 2.2 with this η and the estimates (4.6), (4.10), (4.9), (4.11), and (4.12), we have

sup
0≤t≤t0

ˆ
BR0

(x)

(|u|2 + |∇d|2) + c0

ˆ t0

0

ˆ
BR0

(x)

(|∇u|2 + |∆d+ |∇d|2d|2)− E2R0
(0)

.
ˆ
R2×[0,t0]

[
|u|3 + |u||∇u|+ |u|2|∇d|+ |u||∇2d|+ |u||P |+ |∇d||∇2d|+ |u||∇d|2 + |∇d||∇u|

]
|∇η2|

.
1

R0

∥∥∥|u|+ |∇d|∥∥∥
L2(R2×[0,t0])

[ ∥∥|∇u|+ |∇2d|+ |P |
∥∥
L2(R2×[0,t0])

+ ‖|u|+ |∇d|‖2L4(R2×[0,t0])

]
≤ C

(
t0
R2

0

) 1
2

E
1
2
0 . (4.13)

Thus, by taking supremum over x ∈ R2 we obtain

2ε21 = sup
x∈R2, 0≤t≤t0

ˆ
BR0

(x)

(|u|2 + |∇d|2)(t)

≤ E2R0(0) + C

(
t0
R2

0

) 1
2

E
1
2
0 ≤ ε21 + C0

(
t0
R2

0

) 1
2

E
1
2
0 . (4.14)

This implies

t0 ≥
ε21

C2
0E0

R2
0 = θ1R

2
0, with θ1 ≡

ε21
C2

0E0
.

Set T0 = t0. Then we have that T0 ≥ θ1R
2
0 and (4.3) holds. This completes the proof. �

Before proving Theorem 1.4, we need the following density property of Sobolev maps (see [28] for the
proof).

Lemma 4.3. For n = 2 and any given map f ∈ H1
e0(R2,S2), there exist {fk} ⊂ C∞(R2,S2)

⋂
l≥1H

l
e0(R2,S2)

such that

lim
k→∞

‖fk − f‖H1(R2) = 0.

Proof of Theorem 1.4:
Since u0 ∈ H, there exists uk0 ∈ C∞0 (R2,R2), with ∇ · uk0 = 0, such that

lim
k→∞

‖uk0 − u0‖L2(R2) = 0.

Since d0 ∈ H1
e0(R2,S2), lemma 4.3 implies that there exist {dk0} ⊂ C∞(R2,S2)

⋂
l≥1H

l
e0(R2,S2) such that

lim
k→∞

‖dk0 − d0‖H1(R2) = 0.
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By the absolute continuity of

ˆ
(|u0|2 + |∇d0|2), there exists R0 > 0 such that

sup
x∈R2

ˆ
B2R0

(x)

(|u0|2 + |∇d0|2) ≤ ε21
2
, (4.15)

where ε1 > 0 is given by lemma 4.2. By the strong convergence of (uk0 ,∇dk0) to (u0,∇d0) in L2(R2), we have
that

sup
x∈R2

ˆ
B2R0

(x)

(|uk0 |2 + |∇dk0 |2) ≤ ε21, ∀k >> 1. (4.16)

For simplicity, we assume (4.16) holds for all k ≥ 1. By lemma 4.2, there exist θ0 = θ0(ε1, E0) ∈ (0, 1) and
T k0 ≥ θ0R

2
0 such that there exist solutions (uk, dk) ⊂ C∞(R2 × [0, T k0 ],R2 × S2) to (1.8) and (1.14) with the

initial condition:

(uk, dk)
∣∣
t=0

= (uk0 , d
k
0), (4.17)

that satisfies

sup
(x,t)∈R2×[0,Tk0 ]

ˆ
BR0

(x)

(|uk|2 + |∇dk|2)(t) ≤ 2ε21, ∀k ≥ 1. (4.18)

By lemma 2.1, we have that for all k ≥ 1,

sup
0≤t≤Tk0

ˆ
R2

(|uk|2 + |∇dk|2)(t) +

ˆ
R2×[0,Tk0 ]

(µ4|∇uk|2 +
2

|λ1|
|∇2dk|2)

≤
ˆ
R2

(|uk0 |2 + |∇dk0 |2) ≤ CE0. (4.19)

Combining (4.18) and (4.19) with lemma 4.2, we conclude thatˆ
R2×[0,Tk0 ]

(|uk|4 + |∇dk|4) ≤ Cε21E0, (4.20)

ˆ
R2×[0,Tk0 ]

(|∂tdk|2 + |∇2dk|2 + |P k|2) ≤ CE0, (4.21)

and

sup
x∈R2

ˆ Tk0

0

ˆ
BR0

(x)

(|∇uk|2 + |∇2dk|2 + |P k|2) ≤ Cε21. (4.22)

Furthermore, (1.8) implies that for any φ ∈ J,

〈∂tuk, φ〉 = −
ˆ
R2

∇uk · ∇φ+

ˆ
R2

(uk ⊗ uk +∇dk �∇dk − σL(uk, dk)) : ∇φ,

where 〈·, ·〉 denotes the pair between H−1(R2) and H1(R2), we conclude that ∂tu
k ∈ L2([0, T k0 ], H−1(R2))

and ∥∥∂tuk∥∥L2([0,Tk0 ],H−1(R2))
≤ CE0. (4.23)

It follows from (4.20) and (4.22) that

Φ
(
uk, dk, P k, (x, t), R0

)
≤ Cε21, ∀x ∈ R2, R2

0 ≤ t ≤ T k0 .
Hence, by Theorem 1.3, we conclude that for any δ > 0,∥∥(uk, dk)

∥∥
Cl(R2×[δ,Tk0 ])

≤ C (l, ε1, E0, δ) , ∀l ≥ 1. (4.24)

After passing to a subsequence, we may assume that there exist T0 ≥ θ0R
2
0, u ∈ L∞t L2

x∩L2
tH

1
x(R2×[0, T0],R2),

d ∈ L∞t H1
e0 ∩ L

2
tH

2
e0(R2 × [0, T0],S2), and P ∈ L2(R2 × [0, T0]) such that

uk ⇀ u in L2
tH

1
x(R2 × [0, T0],R2), dk ⇀ d in L2

tH
2
e0(R2 × [0, T0],S2), P k ⇀ P in L2(R2 × [0, T0]).

It follows from (4.21) and (4.23) that we can apply Aubin-Lions’ lemma to conclude that

uk → u, ∇dk → ∇d in L4
loc(R2 × [0, T0]).
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By (4.24), we may assume that for any 0 < δ < T0, 0 < R < +∞ and l ≥ 1,

lim
k→∞

∥∥(uk, dk)− (u, d)
∥∥
Cl(BR×[δ,T0])

= 0.

It is clear that u ∈ C∞(R2 × (0, T0],R2) ∩ (L∞t L
2
x ∩ L2

tH
1
x)(R2 × [0, T0],R2), d ∈ C∞(R2 × (0, T0],S2) ∩

(L2
tH

1
e0 ∩ L

2
tH

2
e0)(R2 × [0, T0],S2) solves (1.8) in R2 × (0, T0]. It follows from (4.23) and (4.21) that we can

assume

(u,∇d)(t) ⇀ (u0,∇d0) in L2(R2), as t ↓ 0.

In particular, by the lower semicontinuity we have that

E(0) ≤ lim inf
t↓0

E(t).

On the other hand, (4.19) implies

E(0) ≥ lim sup
t↓0

E(t).

This implies that (u,∇d)(t)→ (u0,∇d0) in L2(R2) and hence (u, d) satisfies the initial condition (1.14).
Let T1 ∈ [T0,+∞) be the first finite singular time of (u, d), i.e.,

(u, d) ∈ C∞(R2 × (0, T1),R2 × S2) but (u, d) /∈ C∞(R2 × (0, T1],R2 × S2).

Then we must have

lim sup
t↑T1

max
x∈R2

ˆ
BR(x)

(|u|2 + |∇d|2)(t) ≥ ε21, ∀R > 0. (4.25)

Now we look for an extension of this weak solution beyond T1. To do it, we define the new initial data at
t = T1.
Claim 2. (u, d) ∈ C0([0, T1], L2(R2)).
This follows easily from (4.23) and (4.21). By Claim 2, we can define

(u(T1), d(T1)) = lim
t↑T1

(u(t), d(t)) in L2(R2).

By lemma 2.1 we have that ∇d ∈ L∞([0, T1], L2(R2)) so that ∇d(t) ⇀ ∇d(T1) in L2(R2). In particular,
u(T1) ∈ H and d(T1) ∈ H1

e0(R2,S2).
Use (u(T1), d(T1)) as an initial data to obtain a continuation of (u, d) beyond T1 as a weak solution of (1.8)

and (1.14), we will show that this procedure will cease in finite steps and afterwards we will have constructed
a global weak solution. In fact, at any such singular time there is at least a loss of energy amount of ε21. By
(4.25), there exist ti ↑ T1 and x0 ∈ R2 such that

lim sup
ti↑T1

ˆ
BR(x0)

(|u|2 + |∇d|2)(ti) ≥ ε21 for all R > 0.

This impliesˆ
R2

(|u|2 + |∇d|2)(T1) = lim
R↓0

ˆ
R2\BR(x0)

(|u|2 + |∇d|2)(T1) ≤ lim
R↓0

lim inf
ti↑T1

ˆ
R2\BR(x0)

(|u|2 + |∇d|2)(ti)

≤ lim
R↓0

[
lim inf
ti↑T1

ˆ
R2

(|u|2 + |∇d|2)(ti)− lim sup
ti↑T1

ˆ
BR(x0)

(|u|2 + |∇d|2)(ti)
]
≤ E0 − ε21.

Hence the number of finite singular times must be bounded by L =

[
E0

ε21

]
. If 0 < TL < +∞ is the largest

finite singular time, then we can use (u(TL), d(TL)) as the initial data to construct a weak solution (u, d)
to (1.8) and (1.14) in R2 × [TL,+∞). Thus (i) of Theorem 1.4 is established. It is also clear that (iii) of
Theorem 1.4 holds for the solution constructed.

Now, we perform a blow-up analysis at each finite singular time. It follows from (4.25) that there exist
0 < t0 < T1, tm ↑ T1, rm ↓ 0 such that

ε21 = sup
x∈R2,t0≤t≤tm

ˆ
Brm (x)

(|u|2 + |∇d|2)(t). (4.26)
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By lemma 4.2, there exist θ0, depending only on ε1 and E0, and xm ∈ R2 such thatˆ
B2rm (xm)

(|u|2 + |∇d|2)(tm − θ0r
2
m) ≥ 1

2
sup
x∈R2

ˆ
B2rm (x)

(|u|2 + |∇d|2)(tm − θ0r
2
m) ≥ ε21

4
. (4.27)

By lemma 4.2 and (4.26), we have ˆ
R2×[t0,tm]

(|u|4 + |∇d|4) ≤ Cε21. (4.28)

Define the blow-up sequence (um, dm, Pm) : R2 × [ t0−tmr2m
, 0]→ R2 × S2 × R by

um(x, t) = rmu(xm + rmx, tm + r2
mt), dm(x, t) = d(xm + rmx, tm + r2

mt), Pm = r2
mP (xm + rmx, tm + r2

mt).

Then (um, dm, Pm) solves (1.8) in R2 × [ t0−tmr2m
, 0]. Moreover,

ˆ
B2(0)

(
|um|2 + |∇dm|2

)
(−θ0) ≥ ε21

2
,

ˆ
B1(x)

(
|um|2 + |∇dm|2

)
(t) ≤ ε21, ∀x ∈ R2,

t0 − tm
r2
m

≤ t ≤ 0,

ˆ
R2×[

t0−tm
r2m

,0]

(
|um|4 + |∇dm|4

)
≤ Cε21,

and ˆ
P2(z)

(
|∇um|2 + |∇2dm|2 + |Pm|2

)
≤ Cε21, ∀ z = (x, t) ∈ R2 × [

t0 − tm
r2
m

, 0].

It is easy to see t0−tm
r2m

→ −∞. Hence, by Theorem 1.3, we can assume that there exists a smooth solution

(u∞, d∞) : R2 × (−∞, 0]→ R2 × S2 to (1.8) such that for any l ≥ 1,

(um, dm)→ (u∞, d∞) in Clloc(R2 × [−∞, 0]).

Claim 3. u∞ ≡ 0.
In fact, since u ∈ L4(R2 × [0, T1]), we haveˆ

PR

|u∞|4 = lim
m→∞

ˆ
PR

|um|4 = lim
m→∞

ˆ
BRrm (xm)

ˆ tm

tm−R2r2m

|u|4 = 0.

Claim 4. d∞ ∈ C∞(R2,S2) is a nontrivial harmonic map with finite energy.
Since (∆d+ |∇d|2d) ∈ L2(R2 × [0, T1]), we have, for any compact K ⊂ R2,ˆ 0

−2θ0

ˆ
K

|∆d∞ + |∇d∞|2d∞|2 ≤ lim inf
m

ˆ 0

−2θ0

ˆ
Ωm

|∆dm + |∇dm|2dm|2

= lim
m

ˆ tm

tm−2θ0r2m

ˆ
R2

|∆d+ |∇d|2d|2 = 0.

By the equation (1.8)3 and u∞ ≡ 0, this implies ∂td∞ ≡ 0 on R2×[−2θ0, 0]. Hence d∞(t) ≡ d∞ ∈ C∞(R2,S2)
is a harmonic map. Since ˆ

B2

|∇d∞|2 = lim
m

ˆ
B2

(|um|2 + |∇dm|2)(−θ0) ≥ ε21
4
,

d∞ is a non-constant map. By the lower semicontinuity, we have that for any ball BR ⊂ R2,ˆ
BR

|∇d∞|2 ≤ lim inf
m

ˆ
BR

|∇dm|2(−θ0) = lim inf
m

ˆ
BrmR(xm)

|∇d|2(tm − θ0r
2
m) ≤ E0,

and hence d∞ has finite energy. It is well-known ([29] [30]) that d∞ can be lifted to be a non-constant
harmonic map from S2 to S2. In particular, d∞ has a non zero degree andˆ

R2

|∇d∞|2 ≥ 8π|deg(d∞)| ≥ 8π.
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It follows from the above argument that for any r > 0,

lim sup
t↑T1

max
x∈R2

ˆ
Br(x)

(|u|2 + |∇d|2)(t) ≥
ˆ
R2

(|u∞|2 + |∇d∞|2) ≥ 8π.

To show (iv). By lemma 2.1, there exists tk ↑ +∞ such that for (uk, dk) = (u(tk), d(tk)),ˆ
R2

(|uk|2 + |∇dk|2) ≤ E0, lim
k→∞

ˆ
R2

(|∇uk|2 + |∆dk + |∇dk|2dk|2) = 0.

It is easy to see that uk → 0 in H1(R2), and {dk} ⊂ H1
e0(R2,S2) is a bounded sequence of approximate

harmonic maps, with tension fields τ(dk) = ∆dk + |∇dk|2dk converging to zero in L2(R2). By the energy
identity result by Qing [27] and Lin-Wang [25], we can conclude that there exist a harmonic map d∞ ∈
C∞ ∩H1

e0(R2,S2), and finitely many points {xi}li=1, {mi}li=1 ⊂ N, such that

|∇dk|2 dx ⇀ |∇d∞|2 dx+

l∑
i=1

8πmiδxi

as convergence of Radon measures. This yields (iv).
To show (v) under the condition

´
R2(|u0|2 + |∇d0|2) ≤ 8π, we divide the argument into two cases:

(a) There exist no finite time singularities.
For, otherwise, (ii) implies that we can blow up near the first singular time T1 to obtain a nontrivial harmonic
map ω ∈ C∞(R2,S2) and

8π ≤
ˆ
R2

|∇ω|2 ≤ lim
t↑T1

ˆ
R2

(|u|2 + |∇d|2)(t) ≤
ˆ
R2

(|u0|2 + |∇d0|2) ≤ 8π.

This, combined with lemma 2.1, yieldsˆ T1

0

ˆ
R2

(|∇u|2 + |∆d+ |∇d|2d|2) = 0

so that u = ∂td ≡ 0 in R2 × [0, T1] and hence d(t) = d0 ∈ C∞ ∩H1
e0(R2,S2), 0 ≤ t ≤ T1, is a harmonic map.

This contradicts the fact that T1 is a singular time.
(b) φ(t) ≡ sup

x∈R2,τ≤t
(|u|+ |∇d|)(x, τ) remains bounded as t ↑ +∞.

For, otherwise, there exist tk ↑ +∞ and xk ∈ R2 such that λk = φ(tk) = (|u|+ |∇d|)(xk, tk)→ +∞. Define
(uk, dk) : R2 × [−tkλ2

k, 0]→ R2 × S2 by

uk(x, t) = λ−1
k u(xk+λ−1

k x, tk+λ−2
k t), dk(x, t) = d(xk+λ−1

k x, tk+λ−2
k t), Pk(x, t) = λ−2

k P (xk+λ−1
k x, tk+λ−2

k t).

Then (uk, dk, Pk) solves (1.8) on R2 × [−tkλ2
k, 0], and

1 = (|uk|+ |∇dk|)(0, 0) ≥ (|uk|+ |∇dk|)(x, t), ∀(x, t) ∈ R2 × [−tkλ2
k, 0].

As in the proof of (ii), we can conclude that (uk, dk) → (0, d∞) in C2
loc(R2), where d∞ ∈ C∞(R2,S2) is a

nontrivial harmonic map with finite energy. As in (a), this implies thatˆ ∞
0

ˆ
R2

(|∇u|2 + |∆d+ |∇d|2d|2) = 0

so that u = ∂td ≡ 0 in R2 × [0,+∞) and hence d(t) = d0 ∈ C∞(R2,S2), 0 ≤ t < +∞, is a harmonic map.
This implies that φ(t) is constant for 0 < t < +∞ and we get a desired contradiction.

Since φ(t) is a bounded function of t ∈ (0,+∞), the higher order regularity Theorem 1.3 implies that

‖∇lu(t)‖C0(R2) + ‖∇l+1d(t)‖C0(R2) ≤ C(l), ∀ l ≥ 1, ∀ t ≥ 1.

Thus we can choose tk ↑ ∞ such thatˆ
R2

(
|u|2 + |∇u|2

)
(tk) ≤ E0,

ˆ
R2

(
|∇u|2 + |∆d+ |∇d|2d|2

)
(tk)→ 0,

and
‖u(tk)‖C2(R2) + ‖d(tk)‖C2(R2) ≤ C.

Thus we may assume that there exist a harmonic map d∞ ∈ C∞ ∩H1
e0(R2,S2) such that

(u(tk), d(tk))→ (0, d∞) in C2
loc(R2,S2).
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This proves (v) under the first condition.
To show (v) under the condition (d0)3 ≥ 0. We argue as follows. First, we can approximate (u0, d0) by

smooth initial data (uk0 , d
k
0) such that the third component of dk0 is non-negative, i.e., (dk0)3 ≥ 0. Then we

can check that the short time smooth solutions (uk, dk) of (1.8), with the initial data (uk0 , d
k
0) at t = 0, on

R2 × [0, Tk], have bounded gradients:∥∥∥|∇uk|+ |∇dk|∥∥∥
C0(R2×[0,Tk])

≤ C(k) < +∞.

Since (dk)3 satisfies the equation(
∂t −

1

|λ1|
∆
)
(dk)3 + u · ∇(dk)3 =

( 1

|λ1|
|∇dk|2 +

λ2

λ1

(
(d̂k)TAkd̂k

)
(dk)3,

and the coefficient in front of (dk)3,
(

1
|λ1| |∇dk|

2 + λ2

λ1
((d̂k)TAkd̂k

)
is bounded. Hence we can apply the

maximum principle (see [15]) to conclude that (dk)3 ≥ 0 in R2 × [0, Tk]. Sending k to infinity, we conclude
that the global weak solution (u, d) to (1.8) and (1.14), obtained in the part (i), satisfies d3 ≥ 0. If (u, d) has
any finite time singularity, then by performing the blow-up argument we would obtain a nontrivial harmonic
map ω from S2 to S2 such that ω3 ≥ 0, which is impossible. Hence (u, d) has no finite time singularity. If
(u, d) has singularity at the time infinity, then we would also obtain a nontrivial harmonic map from S2 to
the upper hemisphere, which is also impossible. Therefore, (u, d) has bounded C2-norm in R2 × (δ,+∞) for
any δ > 0. This proves (v) under the second condition. The proof of Theorem 1.4 is now complete. �

Added Note. The third author presented the main results of this article in the workshop “Nonlinear
analysis of continuum theories: statics and dynamics” at the University of Oxford, April 8-12, 2013. During
the finalization of this paper, Wendong Wang sent the third author his preprint “GLOBAL EXISTENCE
OF WEAK SOLUTION FOR THE 2-D ERICKSEN-LESLIE SYSTEM”, in which they also claimed an
existence result, similar to part (i) of our Theorem 1.4, by a different argument. However, since they drawn
the conclusion by a global energy inequality of second order before the first time of energy concentration,
their proof is incomplete.

Acknowledgment

The second author is partially supported by NSF grants. The third author is partially supported by NSF
grants 1001115 and 1265574, NSF of China grant 11128102, and a Simons Fellowship in Mathematics. Part
of this work was done during the first author’s visit to the third author at the University of Kentucky. The
first author would like to thank the Department of Mathematics, University of Kentucky for its hospitalities.

References

[1] T. Beale, T. Kato, A. Majda, Remarks on the breakdown of smooth solutions for the 3D Euler equation. Commun. Math.

Phys. 94 (1984), 61–66.
[2] L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm.

Pure Appl. Math. 35 (1982), 771–831.

[3] K. C. Chang, W. Y. Ding, R. Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Diff. Geom. 36
(1992) (2), 507–515.

[4] S. J. Ding, H. Y. Wen, Solutions of incompressible hydrodynamic flow of liquid crystals. Nonlinear Anal. Real World Appl.

12 (2011), no. 3, 1510–1531.
[5] J. Ericksen, Conservation laws for liquid crystals. Trans. Soc. Rheol. 5 (1961), 22–34.

[6] J. Ericksen, Hydrostatic Theory of Liquid Crystal. Arch. Rational Mech. Anal. 9 (1962), 371–378.
[7] J. Ericksen, Continuum theory of nematic liquid crystals. Res. Mechanica 21 (1987), 381-392.

[8] P. De Gennes, G. Prost, The Physics of Liquid Crystals. Oxford Science Publications, 1993.

[9] R. Hardt, F. H. Lin, D. Kinderlerher, Existence and partial regularity of static liquid crystal configurations. Comm. Math.
Phys. 105 (1986), no. 4, 547–570.

[10] M. C. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two. Calc. Var. Partial

Differential Equations 40 (2011), no. 1-2, 15-36.
[11] M. C. Hong, Z. P. Xin, Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in R2. Adv. Math.

231 (2012), no. 3-4, 1364-1400.



THE ERICKSEN-LESLIE SYSTEM IN R2 33

[12] T. Huang, C. Y. Wang, Blow up criterion for nematic liquid crystal flows. Comm. Partial Differential Equations 37 (2012),

no. 5, 875-884.

[13] T. Huang, C. Y. Wang, Notes on the regularity of harmonic map systems. Proc. Amer. Math. Soc., 138 (2010) (6),
2015-2023.

[14] J. Hineman, C. Y. Wang, Well-posednedd of nematic liquid crystal flow in L3
uloc(R3). Arch. Ration. Mech. Anal., in press.

[15] O.A. Ladyz̆enskaja, V. A. Solonnikov, N. N. Ural’ceva, Linear and Quasilinear Equations of Parabolic Type. Translations
of Mathematical Monographs, 23, Amer. Math. Soc. Providence RI, 1967.

[16] J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta. Math. 63 (1934), 183-248.

[17] F. Leslie, Some constitutive equations for liquid crystals. Arch. Rational Mech. Anal. 28 (1968) 265–283.
[18] F. Leslie, Theory of flow phenomena in liquid crystals. In: The Theory of Liquid Cystals, Vol. 4, pp. 1-81. Academic Press,

London-New York, 1979.

[19] F.H. Lin, Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena. Comm. Pure Appl.
Math. 42 (1989) 789–814.

[20] F.H. Lin, C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals. Comm. Pure Appl. Math. 48 (1995)
501–537.

[21] F.H. Lin, C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals. Discrete

Contin. Dynam. Systems, 2 (1996) 1–22.
[22] F.H. Lin, C. Liu, Existence of solutions for the Ericksen-Leslie system. Arch. Rational Mech. Anal. 154 (2000) 135–156.

[23] F.H. Lin, J. Y. Lin, C. Y. Wang, Liquid crystal flows in two dimensions. Arch. Rational Mech. Anal. 197 (2010) 297–336.

[24] F. H. Lin, C. Y. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals.
Chin. Ann. Math. Ser. B 31 (2010), no. 6, 921–938.

[25] F. H. Lin, C. Y. Wang, Energy identity of harmonic map flows from surfaces at finite singular time. Calc. Var. & P.D.E.,

6 (1998), 4, 369-380.
[26] Z. Lei, D. Li, X. Y. Zhang, Remarks of Global Wellposedness of Liquid Crystal Flows and Heat Flows of Harmonic Maps

in Two Dimensions. Proc. Amer. Math. Soc., to appear.

[27] J. Qing, On singularities of the heat flow for harmonic maps from surfaces into spheres. Comm. Anal. Geom. 3 (1995), 12,
297–315.

[28] R. Schoen, K. Uhlenbeck, Approximation of Sobolev maps between Riemannian manifolds. Preprint (1984).
[29] J. Sacks, K. Uhlenbeck, The existence of minimal immersions of 2-spheres. Ann. Math. (2) 113 (1981), 1, 1–24.

[30] M. Struwe, On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helvetici, 60 (1985), 558–581.

[31] R. Temam, Navier-Stokes Equations. Studies in Mathematics and its Applications 2, North Holland, Amsterdam, 1977.
[32] C. Y. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data. Arch.

Ration. Mech. Anal. 200 (2011), no. 1, 1–19.

[33] W. Wang, P. W. Zhang, Z. F. Zhang, Well-posedness of the Ericksen-Leslie system. arXiv: 1208.6107.
[34] H. Wu, X. Xu, C. Liu, On the general Ericksen-Leslie system: Parodi’s relation, well-posedness and stablity. Arch. Ration.

Mech. Anal. 208 (2013), no. 1, 59–107.

[35] X. Xu, Z. F. Zhang, Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows. J. Differential
Equations 252 (2012), no. 2, 1169–1181.

School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China

E-mail address: huangjinrui1@163.com

Courant Institute of Mathematical Sciences, New York University, New York 100012, USA

E-mail address: linf@cims.nyu.edu

Department of Mathematics, University of Kentucky, Lexington, KY 40506, USA

E-mail address: cywang@ms.uky.edu


