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Abstract. For any compact n-dimensional Riemannian manifold (M, g) without bound-
ary, a compact Riemannian manifold N C R* without boundary, and 0 < T < 400, we
prove that forn >4, if u : M x (0,T] — N is a weak solution to the heat flow of harmonic
maps such that Vu € L2L(M % (0,T]), then u € C*°(M x (0,T],N). As a consequence,
we show that forn > 3, if 0 < T < 400 is the maximal time interval for the unique smooth
solution u € C°(M x [0,T),N) of (1.1), then ||V u(t)| p»rr)y blows up ast T T.

§1. Introduction

For n > 1, let (M, g) be a smooth, compact n-dimensional Riemannian manifold
without boundary, and N C R*, £k > 2, be a compact Riemannian manifold without
boundary. For 0 < T < +o0, recall that a map u € C?(M x (0,T), N) is a solution to the

heat flow of harmonic maps, if

n
Ju Ou
_ — s il B
(11) Ut Agu = aﬂZZIQQ A(U)(axaa 8-'17[5') in M x (OvT)a
where A, is the Laplace-Beltrami operator of (M, g), A(-)(-,-) is the second fundamental
form of N C R¥, and (g*") = (gapg) ! is the inverse of g = (gap). By the classical theorem
of Eells-Sampson [ES], it is well-known that for any ¢ € C*°(M, N), there is a maximal
time interval 0 < T'= T'(¢) < 400 such that there exists a unique v € C*°(M x [0,T), N)

solving (1.1) along with the initial condition:
(1.2) u(z,0) = ¢(x), =€ M.
Moreover, T' can be characterized by
(1.3) limsup ||Vu(t)||cmry = +oc.
T
In this paper, we are interested in an optimal characterization of the maximal time

interval T that is scaling invariant. In fact, we show the smoothness of weak solutions of

the heat flow of harmonic maps whose gradients belong to L?L°(M x [0,T]) for n > 4.
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First, let’s recall the notion of weak solutions of (1.1).

Definition 1.0. A map u: M x [0,T] — N is a weak solution to (1.1), if
(1) w € LZL3(M x [0,T]), Vu € L2L§*(M x [0,T)),

(2) w satisfies (1.1) in the distribution sense:
T T
/ / W+ Vi Vg = / / Aw)(Vu, Vu) - 6, V¥ ¢ € C°(M x (0,T), R).
0o Jum o Jum

Definition 1.1. For 1 < p,q < 400, we say a function f = f(z,t) : M x [0,T] — R is in
LEL{(M x [0,T7), if

T
a 1
lzzszoromy = ([ ([ aorant i, 1< o<+,
0
1= essupepo ) |lf ()| e 0y q = +o0
is finite. If p = ¢, then we simply write [|f||Lr(arxjo,r)) for || fllzzLr (arxio,))-

By a simple argument, we see that a scaling invariant norm for Vu is Vu € LE L (M x

[0,T) for some p € [n,+00) and ¢ € [2, +o0] satisfying
(1.4)
Recall that the scaling invariant space LPL{, with (p, q) satisfying (1.4), has played an

important role in the regularity issue of Navier-Stokes equation for v : R3 x (0, +00) — R3
and p: R3 x (0,+00) — R

(1.5) vy —Av+v-Vuo=Vp, xcR> tc(0,+00),
(1.6) dive = 0, r € R t€(0,4+00),
(1.7) v(z,0) = vo(x), x € R3.

Leray [Lj] first established the existence of a global weak solution for (1.5)-(1.7), now

called Leray-Hopf weak solution, that satisfies an energy inequality:

t
(1.9 o +2 [ [ 190 < ool gu

Although the regularity issue for Leray-Hopf weak solutions of (1.5)-(1.7) remains

open, it is well-known that both uniqueness and smoothness for the class of weak solutions
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v of (1.5)-(1.7), in which v € LELI(R3 x (0, 40o0)) for some p € (3,+00] and ¢ € [2, +00)
satisfying Serrin’s condition (1.4), have been established through works by Prodi [P], Serrin
[Sj], and Ladyzhenskaya [Lo| in 1960’s. On the other hand, for the end point case p =
3,q = 400, only until very recently Escauriaza-Seregin-Sverak [ESV1,2] have finally proved
the smoothness for weak solutions v € L3 L (R3 x (0, +00)) of (1.5)-(1.7).

Motivated by these results for the Navier-Stokes equation, we consider the class of
weak solutions u : M x[0,T] — N of (1.1) with Vu € LY L{(M x[0, T]) for some p € [n, +00]
and q € (2, +o0] satisfying Serrin’s condition (1.4).

In this context, our first result deals the end point case p = n and g = +oc.

Theorem 1.2. Forn >4, ifu: M x [0,T] — N is a weak solution of (1.1) satisfying
Vu € LML (M x [0,T)), then u € C®(M x (0,T], N).

Remark 1.3. The example by Chang-Ding-Ye [CDY] on finite time singularity of (1.1)
indicates that theorem 1.2 fails for n = 2. It is unclear to the author whether theorem
1.2 is true for n = 3, since we can’t verify the local energy inequality (2.7) and the energy
monotonicity inequality (2.10) for weak solutions u of (1.1), with Vu € L3 L (M x [0, T1)).

As a consequence of both theorem 1.2 for n > 4 and some modifications of its proof

for n = 3, we are able to prove

Corollary 1.4. Forn > 3 and ¢ € C>*°(M,N), assume that T = T(¢) € (0,+00) is the
mazximal time interval for a smooth solution u € C*°(M x [0,T),N) of (1.1)-(1.2). Then

(1.9) lirilT?upHVu(t)HLn(M) = +00.

For non-end point cases p € (n,+oo] and ¢ € [2,400) of (1.4), we have

Theorem 1.5. Forn > 2, let u : M x [0,T] — N be a weak solution of (1.1), with
Vu € LELI(M x [0,T]) for some p > n,q > 2 satisfying (1.4). If either n > 4 or
2<n<4andp>4, thenue C°(M x (0,T],N).

The paper is organized as follows. In §2, we derive, for n > 4, both the energy
inequality and the energy monotonicity inequality for solutions u of (1.1) with Vu € LT L$°.
In §3, we establish a small energy regularity theorem for weak solution of (1.1) with

Vu € LT?L° and prove theorem 1.2, corollary 1.4. In §4, we prove theorem 1.5.

§2. Preliminary properties



In this section, we outline some preliminary properties for the class of weak solutions
to (1.1) whose gradients are in LZL$°. These include both the energy inequality and

Struwe’s energy monotonicity inequality [Sm].

First we have

Lemma 2.1. Forn > 2 and 0 < T < 400, suppose that u : M x [0,T] — N is a weak
solution of (1.1) with Vu € L"L¥(M x [0,T]). Then we have that u € C([0,T], L™(M)),

and

(2.1) IVu@)||Le )y < N Vullpnpee vrxio,r, ¥t € [0,T].

Proof. For for any 0 < t; < ty < T, since u; € L*(M x [0,T]), we have, by Holder

inequality,

(2.2) (- t1) —u(es t2)llz2ary < lwellL2 (aaxer o)) V1T — t2l.
This implies u € C([0,T], L?>(M)). If n > 3, then we have, by interpolation inequalities,
2 n-2
1) = s E2) L ary < 2luCert) = 6 )| acan 1l oz
2
(2.3 < Cllut1) = u, )| acany

as u is bounded on M x [0,T]. This implies u € C([0,T],L™(M)). To see (2.1), observe
that, according to the definition, there exists F C [0,T] with |E| = 0 such that (2.1) is
true for any ¢ € [0,T]\ E. For t, € E, since |E| = 0, there exist {t;} C [0,7]\ £ such that

t; — to. Since u(-,t;) = u(-,to) in L™(M), we have, by the lower semicontinuity,

IVuto)l|nary < liminf [Vt ey < IVullLgpg= (vxio,m)-

The proof is complete. [ |

Lemma 2.2. For 0 < T < +o0, let u: M x [0,T] = N be a weak solution of (1.1) with
Vu € L'L(M x [0,T]). If n > 4, then

t
2,2 2,2 22 2 2
(2.4) /wa] g2 + /M|w<t>| < /M|Vu<s>| 5 14 / /M'V“' 2
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holds for any ¢ € C°(M) and 0 < s <t < T. In particular, for any 0 < s <t < T, we

have

(25) /MXM g |* + /le(t)l2 < /M|Vu(8)|2.

Proof. Since |u; — Au| = |A(u)(Vu, Vu)| < C|Vul?> € L3 (M x [0,T)), it follows from the
theory of linear parabolic equations (cf. [Lg]) that for n > 3, us, V2u € L= (M x [0,T]). If
n > 4, then we can multiply (1.1) by u;¢? and integrate it over M. Since A(u)(Vu, Vu) L

uz¢?, we have, by integration by parts,

d
(2.6) 2/ lug|29% + d_/ |Vul?¢p? = —4/ dpuVu - V.
M tJm M
Integrating (2.6) over [s,t] and applying Holder inequality, we get (2.4). Notice that (2.5)
follows from (2.4) by letting ¢ = 1. |

Let ips > 0 be the injectivity radius of M. For € M, t > 0, and 0 < r < min{iyy, \/f},
let B,.(x) C M be the ball with center z and radius r, and P,(x,t) = B,.(z) x [t — 72, ]
be the parabolic cylinder with center (x,t) and radius r. Now we have a local energy
inequality.

Corollary 2.3. Under the same conditions as in Lemma 2.2, we have, for any zog =

(xo,t0) € M x (0,T] and 0 < r < min{ip, /to},

(2.7) HVUH%ngo(P%(zO)) +/

|Ut|2 < C’r—2/ |Vu|2.
P% (Zo) Pr(ZO)

Proof. Let ¢ € C§°(B,(2¢)) be such that 0 <4 <1, =1 on Bz (o), and [Ve)| < 4r~ 1.
Let sq € (tog — r2,to — %) be such that

(2.8) / |Vu(so)|* < 2r_2/ |Vul?.
Br(wo) Pr(zO)

Applying (2.4) with ¢ =9 and [s, t] = [so, to], we get (2.7). |
Now we derive the energy monotonicity inequality of Struwe’s type for u. For this, we

need some notations. For zg = (zo,t9) € M x (0,T] and 0 < 7 < min{@, in}s let
S, (20) = {(z,t) € M x (0,+00) | t = tq — r?},
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T, (20) = {(z,t) € M x (0,+00) | tg — 4r> <t < to —r?},
and

1 |z — mo]?

29 B O P e ()

), € R", t <ty

be the fundamental solution to the backward heat equation on R™ x (0, +00). If zg = (0,0),
then we simply write G = G g0y, T = 1,-(0,0), B, = B,.(0),andP,.(0,0) = P,. For small
do € (0, ipr), let ng € C§°(Bs, (z0)) be such that g = 1 on Bs, (xg), 7o = 0 outside By, (xo),
and |Vno| < %. 2

For a weak solution u : M x (0,T] — N, define two normalized energy quantities as

follows:
U (u, 20, R) = / 12 (2) [Vl (2, )Gy (1, ),
SR(zo)

B(u, 20, R) = / 72 (2) [Vl (2, £) G (2, 1),
TR(zo)

for 0 < R < min{‘/—zt_o, in}

Now we establish the energy monotonicity formula of Struwe’s type ([Sm]) for the

class of weak solutions under consideration.

Lemma 2.4. Under the same conditions as in Lemma 2.2, there exist c¢,C > 0 depend-
ing only on M,g,n such that for any zo = (zo,t0) € M x (0,T] and 0 < Ry < Ry <
min{@, ir }, the following inequality holds:

®(u, 29, R1) + ¢

R2£/ 2\ =) Vut 2~ to)ual?
R1 r TT(Z()) 0 |t0_t| 0

(2.10) S GC(R2_R1)(I)(U, 205, Rg) + C(R2 - Rl)Eo,
where Eg = [}, [Vu(xz,0)|? is the Dirichlet energy of u(-,0).

Proof. As in Lemma 2.2, we have u;, V2u € L= (M x [0,T]) C L>(M x [0,T]) for n > 4.
Hence, for any & € C§5°(M x [0,T]) and 6 € C§°(M x [0,T]), we can multiply (1.1) by
¢ - Vu+ 0uy and integrate over M x [0, T]. By integration by parts and direct calculations

(see, for example, Feldman [F] Proposition 8), we get
1
(2.11) / [us - Vu + 0|ug|> — = |Vul*(divé + 0;) + Vu ® Vu : VE+u;Vu - VO] = 0.
Mx[0,T] 2
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As in [F] Proposition 8, for 0 < r < R < min{@, ing}, let € = 0 and 0 = n2tG B (t), where
Be € C3°([to — R%,to —r?]) besuch that 0 < 8. < 1,and B. = 1 on [tg— R2+¢€,tg — 1% — €.
For simplicity, assume zo = (0,0) and M = R" (since the integration on M is taken in the

support of 79). Inserting such chosen ¢, 0 into (2.11) and sending € to zero, we get

(2.12) V(u, ) U(u, (0,0),r)

/ / [2t (usVu - V2 G 4+ ndusVu - VG + |ug|*n2G) — 02| Vu? (tG)q).

Since VG = £@ and (1G), = —"52G — 2L.G, we have

(2.13) ¥(u, (0,0),R) — ¥(u, (0,0),r)

2

—r 2
= —/ G[ztutvuvng+ng(uta;vu+2t|ut|2+(”T '“7| STRIACRL
n _R2

Now, inserting ¢ = n2xG,0 = 0 into (2.11) and integrating over R™ x [—~R2, —r?], and
using div(zG) = (% +n)G and V(2G) = G(I + £22), we get

—r2 1
(2.14) / / [naz - Vuug — 2% Vnd | Vul|?
n —R2

el n=20 0
770( At 9 )|VU|

2 |z - Vul?

o7 + - VuVnd - Vu]G = 0.

Adding (2.13) and (2.14), we obtain
(2.15) U (u, (0,0) R) ¥ (u, (0,0),7)

2
/ / 2|a: Vu + 2tuy| G
n 2|t|

+ / / [—:E V| Vul? — (z - Vu + 2tuy) V2 - VulG

2
/ / 2|a: Vu + 2tuy| G
n 4t|

—of | (el + TP T

Notice that

(2.16) B(u, (0,0), R) = 2 / O, (0,0),7)

R r
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As in [F] Proposition 10 or [Sm], (2.10) follows from ((2.15) and (2.16). |

As an immediate consequence of (2.10) and (2.15), we have

Corollary 2.5. Under the same conditions as in Lemma 2.2. There exists C > 0 depend-

ing only on M, g,n such that for any zo = (zo,t0) € M x (0,T] and 0 < r < min{@, iv},

(2.17) r_"/ Vul? < Cro_"/ V2
Pr(z) PTO(ZO)

holds for any z € Pro(20) and 0 <r < 7.

Proof. Using (2.10) and (2.15) and choosing a suitable cut-off function 7y € C§° (B, (o),
(2.17) can be proved exactly in the same way as Chen-Li-Lin [CLL] Lemma 2.2. We omit
the details here. |

We end this section with a remark on Corollary 2.3 and Corollary 2.5 for short time

smooth solutions to (1.1).

Remark 2.6. For n > 2 and 0 < T' < +o00. Suppose that u € C°(M x (0,7),N) is
a smooth solution of (1.1) and T is the singular time of u. Then both (2.7) and (2.17)

remain true for all 0 < to < T.

Proof. It is easy to see that the arguments to prove Lemma 2.2 and Lemma 2.4 are valid
for all smooth solutions u € C*°(M x (0,T),N) to (1.1). Therefore, the conclusions of
Corollary 2.3 and 2.5 hold. [ |

63. Apriori estimates and proof of Theorem 1.2, Corollary 1.4

This section is devoted to the proof of Theorem 1.2. The first step is to establish apriori
estimates under a small energy condition, which yields that there are at most finitely many
singular points at any time ¢. The second step is to exclude the existence of nontrivial,
self-similar solutions ¢(z,t) = gb(\/L_—t) : R N of (1.1) with V¢ € L?L(R™H) and
¢(-,0) = constant. Henceforth, we denote R*™! = R™ x (=00, 0]. We would like to remark,
by the work of Lin-Wang [LW], that the existence of such nontrivial, self-similar solutions

(or quasi-harmonic spheres) is an obstruction to smoothness of suitable weak solutions to
(1.1).

Lemma 3.1. Forn > 4, let A > 0 be any given number. Then there exist ¢g > 0,
0o € (0, %), and Cy > 0 depending only on M, g,n, A such that if u is a weak solution of
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(1.1) and satisfies, for zo = (zo,to) € M x (0,T] and 0 < ¢ < min{@, im},

(3.1) IVullps oy sy < A and 7«0—”/ IVl < &,
Po(zo)
then
1
(3.2) (Boro) " / Yl < Srom / Vul2.
Pogrg (20) 2 Py, (20)

Proof. Since this is a local result, we may assume, for simplicity, (M, g) = (R",dz?). By

translation and dilation, we further assume zy = (0,0) and ro = 1.

Since n > 4, it follows from Corollary 2.3 and 2.5 that we have

1
(3.3) 7'_"/ (|Vul> +r?|w|®) < C | |Vul|?>, Vz€P1 and0<r < -,
Py (2) P ! 4

Denote the average of u over P,.(z) by up, (,) = m f Po(z) W By Poincaré inequality,
(3.3) implies

[WBMOp, ) = sup{r~ " /P( | lu—up,(z)|: Pr(z) C Py}

<C sup {r‘"/ (|Vu|2+r2|ut|2)}%
Pr(z)CP% P, (z)

(3.4) <o /P Vul?)?.

It follows from John-Nirenberg’s inequality ([JN]) that for any p > 2, there exists C'(n,p) >
0 such that for any 0 < r < %, we have

(3.5) {r= () /P o up [P} < C(n, p) =+ /P fu — up |2},

For r € (0,1) to be chosen later, let v : P, — R" solve

(3.6) vy —Av =0 in P,,
(3.7) v=u on J,F,,

where 0, P, = (0B, x [-r%,0]) U (B, x {—r?}) is the parabolic boundary of P,.
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Subtracting (1.1) by (3.6), multiplying the resulting equation by u—wv, and integrating

it over P,, we obtain

(3.8) 2/ IV(u—wv)]? < C’/ (Vul?|u — v|?
B, B,

< C(/BT 'V“'z)%(/& V([ e

r

2n

where 2* = 2% Integrating (3.8) over ¢ € [—r?,0] and applying Holder inequality, we

then have

(3.9) r_"/P IV (u—v)?

SCT‘"/_(;(/B V| )%(/ V" )%(/B u— v]>)7*
< O Vullpr e, (r~ /qu| 2{r~ /_r (/B lu—v|?)F )2

r

§C’A{r‘”/ |Vul }f{r_(”+2)/ |u—v|2 }2_*.
P, P,

By the theory of linear parabolic equations (cf. [Lg]), we have

(3.10) / u— ol < C(n,p)/ u—up, [P, ¥ p € (1,4+00),
P, r
and
-n 2 2,.—n 2 1
(3.11) (0r) / Vol? < COr / Vul, V60 € (0,5).
Py, P 2

Putting (3.5) together with (3.10) (p = 2*), we have

(3.12) {7"_("+2)/ u— o} < C{r_(”+2)/ BELIES
P, P,

By (3.11), (3.12), (2.17) and Holder inequality, (3.9) gives

o [ v < 2o / vl (o) / V0P

T

<cletr [ vaP 4o raf [ 9P e [ )
P,- P'r P"‘

1
(3.13) < (CO* 4 = / |Vu|? + CO2n A2~ (n+2) / lu —up |*
P P,

7
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To proceed with the proof, we need the following claim.

Claim. There exist ¢g > 0, r1 € (0, %), C > 0 depending on n such that if u: P, — N 1is
a weak solution of (1.1), and
[ wut <,
Py

then

(3.14) r—<n+2>/ u—upP<Cr? [ Va2, VO<r<r.
P, P,

To prove this claim, we argue by contradiction. Suppose that (3.14) were false. Then

for any ry € (0,3) and L > 0, there exist a sequence of weak solutions {u;} of (1.1) such

that

(3.15) |Vu;|? = €2 =0,
Py
but
(3.16) O [ e, 2 10t [Vl
Prl Py
wi—(ui)py

Define v; = % : P, — RF. Then we have
(3.17) (v;)p, =0 and / V|2 =1,

2 131
(3.18) 7‘1_(”+2)/ lvi — (vi)p,, > > L,

P,

and
(3.19) (vi)t — Av; = €;A(u;)(Vvi, Vo;), in Pp.

On the other hand, by Corollary 2.3, we have

(3.20) / |(v3)e]® < C/ |Vu;|? < L.
P Py

1
2
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After taking possible subsequences, we may assume v; — v weakly in H 1(P% ,R¥) and

strongly in L*(Py, R¥). (3.18) and (3.19) imply that v satisfies vp, =0, [, Vo[> <1,
2 2

and

vt—szoinP%.
Hence, by (3.11), we have
(3.21) 7“1_("+2)/ lv—wvp, |* < Cr%/ IVol? < Cri.
Prl Py

This contradicts (3.18), provided that L > 0 is sufficiently large. Hence (3.14) holds.
Inserting (3.14) into (3.13), we get

1
(3.22) (0r1)" / [Vul? < [C07 4 7+ Con A% / V.
Py P,

1

Therefore, if we choose sufficiently small 6 = 6; € (0, 1) and 71 = r1(A,61) € (0, 1), then

1
(3.23) (917«1)—"/ vuP < [ v
P917‘1 2 Pl
Hence (3.14) holds with 6y = 6171. The proof of Lemma 3.1 is complete. [ |

Proposition 3.2. For n > 4, assume that uw : M x (0,T] — N is a weak solution of
(1.1) with Vu € LTL(M x [0,T]). Then there exists ¢ > 0 depending on M,g,n and
IVullpe Loe (amrxjo,T)) such that if, for 2o = (wo,t0) € M x (0,T] and 0 < g < min{@, iv},

rg / Vup < &,
PT() (ZO)

then u € C*° (P (20),N), and

2

(3.24) HUHCI(P%O(ZO)) < C(n, 1,19, €0, [|VullLnLoe (arxjo,77))-

Proof. Set A = ||Vul[znr=mrx[o,1)- Let €0 = eo(n, A) > 0 be given by Lemma 3.1, since

To

(3.25) (—)—"/ |Vul? < 2%, ¥ 2 € Pra(2),
2 Pro (2) ?
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Lemma 3.1 implies that there is 6y € (0, §) such that
1

(3.26) (907'0)_"/ Vul? < —ro_"/ Vul, V 2 € Py (20).
27 Jrye :

By iterating (3.26) I-times, we have

1 —n
(3.27) (967“0)_"/ |Vu|? < (5)17’0 /P . Vul?, V z € Pro (20).
l ro (Z

PGOrO (z)

It follows from (3.27) and Corollary 2.3 that there exists g € (0,1) such that

r —n
(3.28) r_"/ (Vul? + r2|u2) < C()200 / Vul2,
P.(z) To P

0 (ZO)

holds for all z € P%o (20) and 0 < r < %, Hence, by the Morrey’s decay Lemma (cf.
[F]), we have u € C*°(Pro(20), N). By the standard method (cf. [F]), the higher order
regularity of u and (2.24) follow. This completes the proof. [ |

For any weak solution u : M x (0,T] — N of (1.1), define
Y ={z0 = (xo,tp) € M x (0,T] | u is discontinuous at zp},

and
E(to) =N {to}, for tg € (O,T]

Lemma 3.3. Forn > 4, let u : M x (0,T] — N be a weak solution of (1.1) with
Vu € LYL (M x [0,T]). Then, for any tog € (0,T], X(to) is finite and

- I _
(3.29) card(%(to)) < €y " limsup — / / IVu()]" < ¢ n”V“”sz;w(Mx[o,T])'
pd0  P7 Jtg—p2 M

Proof. By Proposition 3.2, we have that 2o € X(to) iff there exists ¢y > 0 such that
(3.30) r_"/ |Vul? > e, Vr>0.
Pr.(z0,t0)
By Hélder inequality, (3.30) implies
(3.31) 7'_2/ Vu|™ > €y, Vr>0.
Py (z0,t0)
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Now, for any finite subset {z1,---, 7} C %(to), let 79 > 0 be so small that {B,(x;)}\_,
are mutually disjoint for any 0 < r < ry. By (3.31), we have

(3.32) 7'_2/ Vu)|* > en, 1< <.
P (xi,t0)

Therefore we have, for any 0 < r < 7y,

l to
lef < r~2 Z/ |Vul™ < 7“_2/ / |Vu|™
i=1 P,«(wl ,to) to—’r2 Uliler(CEi)

to
(3.33) gr—2/ / |Vu|™.
to—r2 J M

This implies (3.29) and the proof is complete. [ |

Proof of Theorem 1.2:

We prove theorem 1.2 by contradiction. For simplicity, assume M = R™. Suppose
that (o) # (0. Then, by Proposition 3.2, there exists xg € X(tp) C R™ such that

(3.34) r_"/ |Vul? > e, Vr>0.
Pr(:lto,to)

For r; | 0, define v;(w,t) = u(xo + ryw, to + r2t) : R x (—=r; *to,0] — N. Then it is easy

to see that v; is a weak solution of (1.1),

(3.35) vai(t)”LngO(Rnx[—r;2t0,0]) = ||[Vu(®)||Lr e ®7 x[0,t0]) < +00,

and

(3.36) R‘”/ Vu;|* = (Rri)_”/ |Vul?> > €2, VR > 0.
Pr Pryr, (z0,t0)

By (3.35) and Holder inequality, we have

(3.37) Sup/P Vil < R [Vull3 e o x gy < CR™, ¥ R > 0,
R

(2

Moreover, by Corollary 2.3, we have

(3.38) sup/ |(v)¢|* < CR™2 Sup/ V|2 < CR"™2, V R > 0.
i J Pr i J Pap

? 7
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It follows from (3.37) and (3.38) that {v;} C HIIOC(RT'l, N) is a bounded sequence. Hence

we may assume that there exists v : R"™* — N such that Vv; — Vv weakly in LIZOC(RTFI),

and v; — v strongly in L? (R™*!). Since

loc
(3.39) (v3)s — Av; = A(v;)(Vog, Vo) in R™ x (—r;tg,0],
and
(3.40) |A(vi) (Vvi, Vog)| < C|Vuif* is bounded in L (R™),

the convergence theorem of Chen-Hong-Hungerbiihler [CHH] implies
(3.41) Vuv; — Vo for a.e. z € R™TL,
This, combined with (3.35), implies
(3.42) Vv; — Vo strongly in Lfoc (R™1h),
Therefore, v : R**! — N is a weak solution of (1.1), with Vo € L?L°(R™), and
(3.43) R—"/P |Vv|> > €2, VR > 0.
R

Applying the monotonicity inequality (2.10) with 79 = 1, we have that for any zy =
($07t0) € R" x (07T]7
O(u, zp) = lim ®,, ,(u)
rl0

exists and is finite. For any R > 0, observe
@0,0),r(V) = / |Vo|?G = lim Vv |?G
Tr 1—00 Tr
= lim IVul2G (g, 1) (2, )
12— 00 Trr; (to) (o,to)
(344) = :lr‘iil:gl(l)(mo,to),r(u)'
Since v also satisfies (2.10), (3.44) implies that for any R > 0,

0= ®,0),r(v) — O(v,(0,0)) = Liﬁ)l(@(o,O),R(U) — @0,0),r(v))

R ) 2
> Tim dr / |z - Vv + 2tuy| a
r0 J. T g 2|t|
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Hence we have

Vv + 2tv; |2
/lx vt Ut'G:O,‘v’r>0,
T, It

or equivalently,
(3.45) (z- Vv + 2tv)(x,t) =0 for a.e. (z,t) € R*TL,
We divide (3.45) into two cases.

Case 1. vy(x,t) = 0 for a.e. (z,t) € R™'. By (3.45), we have

v(z,t) = ¢(x) = gb(%) for a.e. (z,t) € R

Since Vv € LPL°(R™1), we have
+oo
T \in dr -
[ ov@Eor= [ Vs din < o,
n |ZL'| 0 T Sn—1
This forces ¢ to be a constant, which contradicts (3.43).

Case 2. v is t-dependent. By (3.45), we have (cf. [Sm] [LW]) that there exists a map
¢ : R™ — N such that

(3.46) v(x,t) = ¢(

T

Ne

), for a.e. (z,t) € R™L.
Moreover,

IVlln@ry = [[VOll o oo mrry < +00,
and ¢ satisfies the so-called quasi-harmonic map equation (cf. [LW]):

1
(3.47) A¢p — 3% Vo+ A(p)(Vp, Vo) =0, z € R"™.
Since the singular set of ¢ coincides with the singular set of v(-, —1), Lemma 3.1 implies
that there exists a finite subset {z;}!_, C R™ such that ¢ € C°(R" \ {z;}._;, N).
Now we want to show that ¢ is a constant map. To do it, first we need

Claim 2. There exist pg € N such that v(z,0) = po for a.e. x € R™.

In fact, by Lemma 2.1, we have v;(-,0) — v(+,0) in L} C(R”). Hence, for any R > 0,

lo
we have
/ l0(z,0) — vg|™ < 2" lim (/ (i (z, 0) — v(x, 0)|" +/ (2, 0) — (v3) ™)
BR 72— 00 BR BR
< CR" lim |Vv;|"(z,0)
71— 00 BR
= CR" lim |Vul™(x,ty) =0,

71— 00 BR” (330 )
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where vp = ﬁ [, v(@,0)dz, (v;)r = IB—lal 5, vi(2,0) dz, and we have used the Poincaré

inequality and Vu(-,to) € L™(R"™) in the last two steps.

Since

0
[ Lo <190l e gy <+,

there exists a sufficiently large Ry = Ro(€p) > 0 such that

0
(3.48) / / Vol < e,
-1 Rn\BRo—l

where ¢y > 0 is given by Lemma 3.1. Hence Lemma 3.1 implies that for any £ > 1,
(3.49) |Vkv|(a:,t) < C(ep, k), Y(z,t) € (R™\ Bg,) x [-1,0].
Set w = Vu. Then w satisfies:

(3.50) |wi — Aw| = |V(A(v)(Vv,Vv))| < C(|lw| + |Vw]), in (R"\ Bg,) x [—1,0],
(3.51) w(z,0) =0, x € R"\ Bg,.

Therefore, the unique continuation theorem of [ESS1] implies w = 0 on (R™\ Bg, ) x[—1, 0].
In particular, ¢(x) = py for z € R™ \ Bg,. On the other hand, if we define Q = Bsp, \
{x;}_,, then Q C R™ is a connected open set and ¢ € C>°(Q, N) solves (3.47). Hence, by
the standard unique continuation theorem on 2nd elliptic equations, we conclude ¢ = pg

in Bp,, and hence ¢ = py on R".

This clearly contradicts (3.43). Hence the proof of Theorem 1.2 is complete. |

Proof of Corollary 1.4:

We argue by contradiction. Suppose that 0 < T' < +oc is the first singular time for
u, and Vu € LPL(M x [0,T]). If n > 4, then it contradicts theorem 1.2. If n = 3, then
it follows from Remark 2.6 that u satisfies both (2.7) and (2.17). Moreover, one can check
that the proof for both Lemma 3.1 and theorem 1.2 work as long as n > 3 and u satisfies
(2.7), (2.17). In particular, u € C*°(M x (0,T],N) for n = 3. Hence T is not the first

singular time for u and we get the desired contradiction. [ |

84. Proof of Theorem 1.5
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It is similar to that of Lemma 3.1 and Proposition 3.2. By Holder inequality, we have
that for any zo = (z9,t0) € M x (0,T] and 0 < r < /to,

(r—"/P o Vul?)? < rl‘(%+%)HVuHLng(pr(zO)), for n < p < +o0, 2 < ¢ < +o0,
r {20

to L
(4.1 S IV, oy 0¥ for =400, g =2

o—7T

Hence, for any pair (p,q) € (n,+00] x [2,+00) satisfying (1.4), we have

4.2 lim(r—" %)z =i =0.
(4.2) i /PAZO)WUHQ i IVelezeye e =0

Therefore, for any small €5 > 0 there exists 0 < rg < @ such that

(4.3) r_"/P - |Vul? < “V”“%ng(Pr(zo)) <e, VO <7< 2.
r (20

Now we need

(4.4) 7'2_"/ lug|> < Ce2, ¥V 0 <r <.
P,«(Zo)

Forp >n>4orn=23and p > 4, since Vu € LPL{(M x [0,T]), it follows that for
a.e. t € [0,T], [Vu(t)| € L2 (M) C L>(M), |Au(t)| < |us(t)| + C|Vu(t)|? € L>(M). Hence
V2u(t) € L*(M) for a.e. t € [0,7T], and hence Lemma 2.2 is applicable and u satisfies
(2.7). Hence (4.4) follows.

Based on (4.3) and (4.4), we can adapt the proof of Lemma 3.1 and Proposition 3.2
to show u € C°°(Pro(20), N) as follows. First, (4.3) and (4.4) imply

(4.5) [UIBMO Py ooy < Cl73" / (IVul? + r2ju )} < Ceo.

Pro (ZO)

As in §3, we have, for any 1 < p < 400 and P,(z) C Pro (),

1

(46)  {r 2 / = s [P} < O, p) =+ / = w2
P, (z) Pr(z)

For any fixed P,.(z) C Pra (20), let v : Pr(z) — Rk solve

(4.7) vy —Av =01n P.(2); v =u on 0, P, (z).
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We divide the proof into two cases.

Case 1. n < p < 400 and 2 < ¢ < +oo. Notice ¢ = pszn. As in (3.8) and (3.9), we have

| va-p
P.(z)

t

Y A IVu($)|z2(B, (@) | Vul(s) || e (B, @) 1 (u ,U)(S)“LPsz?(Br(aﬂ)

< a i
< CIVullze I Vullszgeenlie =l e, o,

nt2_nt2
< Cr = =T IVl e, o) IVull e Lo e, ol = vll e, ()

< Cr Y|Vl e pap, ) IV ullL2p, 2 llu = vl L2 (P, (2))

(4.8) < C|Vullperap, ) IVull Lz, IV (u = )| L2 (P, (2)) 5

where [ = max{pQsz, %}, and we have used (4.6) and Poincaré inequality:

(4.9) / lu —v|? < CT‘2/ |V (u—v)|?
P.(z) P.(z)

in the last step.
Case 2. p = +oc and ¢ = 2. Lemma 2.1 and 2.2 imply

(4.10) sup / |Vu(s)|? < Cr‘z/ |Vul?.
B, (z)

SE[t—r2,t] Py (2)

Similar to (4.8), we have, by (4.9) and (4.10),

t
ARy A\ O PR O T (o L e
(2 —r

< ClIVullrzLse (P, (o)) [IVUll Lo 2 (P, (2 1 — vl 2P, (2))
< Cr MVl 2(pyy (o) IV Ul oo 12 (o |t = 0] L2, ()

(4.11) < ClIVullLz2(py, () I VUl Lo L2(p, (2 [V (4 = V) | L2 (P, (2)) -

Combining (4.8) with (4.11), we have
(4.12) 7"_”/ IV (u—v)* < C||V“||?:§C’L3(Pr(z))(27”)_n/ [Vul®
Pr(z) Pgr(z)
< 063(27")_"/ |Vul?.

PQT(Z)
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This, combined with (3.11), implies that there is 6y € (0, 3) such that

(007')_"/ |Vu|2 < 0(90_"6% + 03)7"_"/ |Vu|2
PeoT(z) P,

(z)
po / Vul?.
Pr(z)

provided that 6y and €, are chosen to be sufficiently small. Applying (4.13) repeatedly and

(4.13) <

[N

using Proposition 3.2, we conclude that u € C°(Pro (20), V). Hence the proof of theorem
1.5 is complete. u
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