
On the heat flow of equation of surfaces of constant

mean curvatures

Tao Huang∗ Zhong Tan† Changyou Wang∗

Abstract

We consider the initial and boundary value problem of heat flow of
equation of surfaces of constant mean curvatures. We give sufficient
conditions on the initial data such that the heat flow develops finite
time singularity. We also provide a new set of initial data to guarantee
the existence of global regular solutions to the heat flow that converges
to zero in H1 exponentially as time goes to infinity.

1 Introduction

Let Ω ⊂ R2 be a bounded smooth domain. Given a continuous function
H : R3 → R, a map u ∈ C2(Ω,R3) is called a H-surface, if it satisfies

4u = 2H(u)ux ∧ uy, in Ω. (1.1)

Here ∧ denotes the wedge product of R3. In fact, if u is a conformal repre-
sentation of a surface S in R3, i.e., ux · uy = 0 = |ux|2 − |uy|2, then H(u) is
the mean curvature of S at the point u.

The boundary value problem for the equation of H-surface (1.1) with
constant mean curvature H has been extensively studied by Wente [18],
Hildebrandt [9], Struwe [16], and Brezis-Coron [1][2]. For variable H, there
are recent works by Rey [12] and Caldiroli-Musina [3].

In this paper, we are interested in the initial-boundary value problem
for the heat flow of the equation of H-surface:

ut = 4u− 2H(u)ux ∧ uy, in Ω× (0,∞),
u
∣∣
t=0

= u0, in Ω,
u
∣∣
∂Ω

= χ, t > 0,
(1.2)
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where u0 ∈ H1(Ω), χ ∈ H
1
2 (∂Ω), and u0|∂Ω = χ. The equation (1.2)1−(1.2)2

has been employed by Struwe [16] to obtain the existence of surfaces of
constant mean curvatures H = H0 with free boundaries under the condition
|H0|‖u0‖L∞ < 1. Rey [12] extended the main result of [16] for variable H
under the Dirichlet boundary condition (1.2)3, provided

‖H‖L∞‖u0‖L∞ < 1. (1.3)

For an arbitrary Lipschitz continuous function H, Wang [17] proved
that if u ∈ H1(Ω× (0,+∞)) is a weak solution of (1.2)1, then u ∈ C2,α(Ω×
(0,+∞)\Σ,R3), where Σ =

⋃
t>0

Σt ⊂ Ω× (0,+∞) is a closed subset, whose

Lebesgue measure is zero and Σt ⊂ Ω × {t} is finite for almost all t > 0.
Chen-Levine [6] has shown the existence and uniqueness of short time regular
solution to (1.2) for u0 ∈ H1(Ω) and χ ∈ H

3
2 (∂Ω).

We would like to point out that the quadratic nonlinearity of (1.2) is
similar to that of the heat flow of harmonic maps in dimension two, and the
later has been extensively studied by many people (see, for example, Eells-
Sampson [7], Struwe [15], Chang [4], Qing [13], Qing-Tian [14], Lin-Wang
[11] and Chang-Liu [5]). It is natural to extend some of the techniques
for the heat flow of harmonic maps to study (1.2). However, there is an
essential difference between these two equations. For example, the heat
flow of harmonic maps is the negative gradient flow of the Dirichlet energy
functional, and the energy inequality∫

Ω
|∇u|2(·, t) ≤

∫
Ω
|∇u|2(·, s), 0 ≤ s ≤ t <∞, (1.4)

holds for smooth solutions. While even smooth solutions to (1.2) may not
satisfy (1.4). This makes the analysis of (1.2) more subtle.

The aim of this paper is to address the existence of finite time singu-
larities of (1.2) and provide new sufficient conditions on the initial data to
assure the existence of global regular solutions to (1.2).

In order to describe our results, we recall a few notations. For any
measurable set D ⊂ Ω, denote the Dirichlet energy of u on D by

E(u,D) =
1
2

∫
D
|∇u|2,

and write E(u) = E(u,Ω). Also, define

E(u) = E(u) + VH(u) = E(u) +
2
3

∫
Ω
H(u)u · ux ∧ uy.
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Define BR(z0) = {z ∈ R2| |z − z0| < R} and write BR = BR(0). Henceforth
we always assume

H ≡ H0 ∈ R \ {0}, and χ = 0. (1.5)

Then we have

Theorem 1.1 Under the assumption (1.5), if 0 6= u0 ∈ H1
0 (Ω,R3), then the

local regular solution u to (1.2) must blow up at finite time, provided that
either
(1) E(u0) ≤ 0, or
(2) 0 < E(u0) < 4π

3H2
0

and
∣∣∫

Ω u0 · u0x ∧ u0y

∣∣ > 4π
|H0|3 .

Theorem 1.2 Under the assumption (1.5), if 0 6= u0 ∈ H1
0 (Ω,R3) satisfies

0 < E(u0) <
4π

3H2
0

and
∣∣∣∣∫

Ω
u0 · u0x ∧ u0y

∣∣∣∣ < 4π
|H0|3

(1.6)

then there exists a unique global regular solution u to (1.2). Moreover, there
exists α > 0 such that

max{‖u(t)‖22, ‖∇u(t)‖22} = O(e−αt) as t→∞. (1.7)

We will see from section 2 that there is no u ∈ H1
0 (Ω,R3) such that

E(u) < 4π
3H2

0
and |

∫
Ω u0 · u0x ∧ u0y| = 4π

|H0|3 . Moreover, if |H0|‖u0‖L∞ < 1,

then either E(u0) ≥ 4π
3H2

0
or (1.6) holds. It remains an interesting question

to investigate (1.2) when the initial data u0 has E(u0) ≥ 4π
3H2

0
.

The paper is written as follows. In section 2, we prove Theorem 1.1. In
section 3, we prove Theorem 1.2.

2 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. First, we recall the
following isoperimetric inequality, whose proof can be found in [2] and [18].

Lemma 2.1 For any u ∈ H1
0 (Ω; R3), there holds∫

Ω
|∇u|2 ≥ 3

√
32π

(∫
Ω
u · ux ∧ uy

)2/3

. (2.1)
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Lemma 2.2 If u ∈ H1
0 (Ω,R3) satisfies

|
∫

Ω
u · ux ∧ uy| =

4π
|H0|3

, (2.2)

then
E(u) ≥ 4π

3H2
0

.

Proof. Applying the isoperimetric inequality (2.1), we obtain∫
Ω
|∇u|2 ≥ 3

√
32π

(∫
Ω
u · ux ∧ uy

)2/3

= 3
√

32π(
4π
|H0|3

)
2
3 =

8π
H2

0

.

Hence
E(u) ≥ 1

2

∫
Ω
|∇u|2 − 2|H0|

3
|
∫

Ω
u · ux ∧ uy| ≥

4π
3H2

0

.

This completes the proof. 2

We also need the following energy inequality for regular solutions to
(1.2).

Lemma 2.3 For 0 < T ≤ ∞, suppose that u : Ω× [0, T )→ R3 is a regular
solution to (1.2). Then it holds∫ t2

t1

∫
Ω
|ut|2 + E(u(t2)) = E(u(t1)), ∀0 ≤ t1 ≤ t2 < T. (2.3)

Proof. Multiplying (1.2)1 by ut and integrating over Ω, using the integration
by parts we have (2.3). 2

Proof of Theorem 1.1. We argue by contradiction. Suppose that there
would exist a global regular solution u ∈ C∞(Ω× (0,+∞),R3) to (1.2). Set

f(t) =
∫ t

0

∫
Ω
|u|2, t > 0.

Multiplying (1.2)1 by u and integrating over Ω× (0, t), we have∫
Ω
|u(t)|2 −

∫
Ω
|u0|2 = −2

∫ t

0

∫
Ω

(|∇u|2 + 2H0u · ux ∧ uy).
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By the definition of f(t), we have f ′(t) =
∫

Ω |u(t)|2 and hence

f ′(t) =
∫

Ω
|u0|2 − 2

∫ t

0

∫
Ω

(|∇u|2 + 2H0u · ux ∧ uy), (2.4)

and
f ′′(t) = −2

∫
Ω

(|∇u|2 + 2H0u · ux ∧ uy)(t). (2.5)

Since
2H0

∫
Ω
u · ux ∧ uy(t) = 3(E(u(t))− 1

2

∫
Ω
|∇u(t)|2),

(2.5) and (2.3) imply

f ′′(t) =
∫

Ω
|∇u(t)|2−6E(u(t)) = [

∫
Ω
|∇u(t)|2−6E(u0)]+6

∫ t

0

∫
Ω
|ut|2. (2.6)

Now we claim ∫
Ω
|∇u(t)|2 − 6E(u0) ≥ 0, t > 0. (2.7)

Assume this claim for the moment. Then (2.6) implies

f ′′(t) ≥ 6
∫ t

0

∫
Ω
|ut|2. (2.8)

Now we need to show ∫ 1

0

∫
Ω
|ut|2 > 0. (2.9)

For, otherwise, u0 satisfies

∆u0 = 2H0u0x ∧ u0y in Ω

so that, by multiplying the equation by u0 and integrating over Ω, we have∫
Ω
|∇u0|2 + 2H0

∫
Ω
u0 · u0x ∧ u0y = 0. (2.10)

Hence
E(u0) =

1
6

∫
Ω
|∇u0|2 > 0.

It then follows from the assumption of u0 that

E(u0) <
4π

3H2
0

5



and ∣∣∣∣∫
Ω
u0 · u0x ∧ u0y

∣∣∣∣ ≥ 4π
|H0|3

. (2.11)

In particular, ∫
Ω
|∇u0|2 <

8π
H2

0

. (2.12)

It is clear that (2.12) and (2.11) contradict (2.10). It follows from (2.9) that
f(t) is strictly convex for t ≥ 1. In fact,

f ′′(t) ≥ 6
∫ 1

0

∫
Ω
|ut|2 > 0, ∀t ≥ 1.

This implies
lim

t→+∞
f(t) = lim

t→+∞
f ′(t) = +∞. (2.13)

On the other hand, we have, for t ≥ 1,

f(t)f ′′(t) ≥6
(∫ t

0

∫
Ω
|u|2
)
·
(∫ t

0

∫
Ω
|ut|2

)
≥6
(∫ t

0

∫
Ω
uut

)2

=
3
2
(
f ′(t)− f ′(0)

)2
.

This, combined with (2.13), implies that there is a α ∈ (0, 1) such that for
any sufficiently large t,

f(t)f ′′(t) ≥ (1 + α)(f ′(t))2. (2.14)

This easily implies that f(t)−α is strictly concave for sufficiently large t.
This is impossible, since (2.13) implies

f(t)−α > 0, lim
t→+∞

f(t)−α = 0.

Thus the short time regular solution u to (1.2) must blow up at finite time.
Now we return to the proof of (2.7). It is obvious that (2.7) holds if

E(u0) ≤ 0. It remains to verify (2.7) when u0 satisfies the condition (2).
Since E(u0) < 4π

3H2
0
, Lemma 2.3 implies

E(u(t)) <
4π

3H2
0

, ∀t > 0. (2.15)

Now we claim ∣∣∣∣∫
Ω
u · ux ∧ uy

∣∣∣∣ (t) > 4π
|H0|3

, ∀t ≥ 0. (2.16)
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Notice (2.16) holds for t = 0. If (2.16) were false, then there would exist
t0 > 0 such that ∣∣∣∣∫

Ω
u · ux ∧ uy

∣∣∣∣ (t0) =
4π
|H0|3

. (2.17)

But (2.17) and (2.15) would contradict Lemma 2.2. Hence (2.16) holds.
It follows from (2.16) and the isoperimetric inequality that∫

Ω
|∇u(t)|2 ≥ 8π

H2
0

, ∀t > 0.

Hence ∫
Ω
|∇u(t)|2 − 6E(u0) ≥ 8π

H2
0

− 6(
4π

3H2
0

) = 0.

This proves (2.7). Hence the proof of Theorem 1.1 is complete. 2

3 Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. First we will show
that the short time regular solution can be extended to be global regular
solution. In order to do it, we perform the blow-up analysis to rule out any
possible finite singular time. Then we derive the exponential convergence at
time infinity.

Proof of Theorem 1.2. Suppose that the short time regular solution
develops a finite time singularity. Then we let 0 < T ∗ = T ∗max < +∞
be the maximal time interval such that there exists a regular solution u ∈
C∞(Ω × (0, T ∗),R3) to (1.2). It follows from Lemma 2.3 that there is a
δ0 > 0 such that

E(u(t)) ≤ E(u0) ≤ 4π
3H2

0

− δ0, 0 ≤ t < T ∗. (3.1)

We now claim ∣∣∣∣∫
Ω
u · ux ∧ uy

∣∣∣∣ (t) < 4π
|H0|3

, ∀0 ≤ t < T ∗. (3.2)

Notice (3.2) holds for t = 0. If (3.2) were false, then there exists 0 < t1 < T ∗

such that u2 = u(t1) satisfies∣∣∣∣∫
Ω
u2 · u2x ∧ u2y

∣∣∣∣ =
4π
|H0|3

. (3.3)
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But (3.3) and (3.2) would contradict Lemma 2.2.
It follows from (3.2) and (3.1) that∫

Ω
|∇u(t)|2 ≤ 8π

H2
0

− δ0, ∀0 ≤ t < T ∗. (3.4)

This, combined with Lemma 2.3, implies∫ T ∗

0

∫
Ω
|ut|2 ≤

4π
3H2

0

. (3.5)

Recall that by [6] Theorem 5.1, T ∗ can be characterized by

lim sup
t↗T ∗

max
z∈Ω

E(u(t); Ω ∩BR(z)) ≥ ε20, ∀R > 0, (3.6)

where ε0 > 0 is a universal constant. (3.6) implies that for any 0 < ε1 < ε0,
there exist 0 < t0 < T ∗, rn ↓ 0, and tn ↑ T ∗ such that

ε21 = max
z∈Ω,t0≤t≤tn

E(u(t); Ω ∩Brn(z)). (3.7)

If ε1 > 0 is sufficiently small, then (3.7) and the local energy inequality (see
[6] Lemma 4.5) imply that there exists θ0 ∈ (0, 1), depending only on ε1 and
E(u0), and zn ∈ Ω such that∫

Ω∩B2rn (zn)
|∇u|2(tn − θ0r

2
n) ≥ 1

2
max
z∈Ω

∫
Ω∩B2rn (z)

|∇u|2(tn − θ0r
2
n) ≥ ε21

4
.

Set Ωn = r−1
n (Ω \ {zn}). Define vn : Ωn × [ t0−tn

r2n
, 0]→ R3 by

vn(z, t) = u(zn + rn, tn + r2
nt).

Then vn solves (1.2) on Ωn × [ t0−tn
r2n

, 0], and satisfies∫
Ωn∩B2(0)

|∇vn|2(−θ0) ≥ ε21
4
, (3.8)

max
(z,t)∈Ωn×[

t0−tn

r2
n

,0]

∫
Ωn∩B1(z)

|∇vn(t)|2 ≤ ε21. (3.9)

Moreover, for any fixed T > 0, we have∫ 0

−T

∫
Ωn

|vnt|2 =
∫ tn

tn−Tr2n

∫
Ω
|ut|2 → 0, as n→ +∞. (3.10)
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It follows from (3.9) and the small energy regularity theorem (see [6] Lemma
4.6) that for any T > 0,

‖vn‖Ck((Ωn∩B1(z))×[−T,0]) ≤ C(k, T, ε1), ∀k ≥ 1, z ∈ Ωn. (3.11)

We may assume zn → z0 ∈ Ω. We divide the proof into two cases.
Case 1. z0 ∈ Ω. Then it is clear that

dist(zn, ∂Ω)
rn

→ +∞ and Ωn → R2.

Moreover, by (3.9), (3.10), and (3.11), we may assume that

vn → ω strongly in H1
loc ∩ C2

loc(R2 × (−∞, 0],R3).

It is clear that
ωt ≡ 0 on R2 × (−∞, 0], (3.12)∫

B2

|∇ω|2(−θ0) ≥ ε21
4
, (3.13)

and for any R > 0,∫
BR

|∇ω|2(−θ0) = lim
n→+∞

∫
BR

|∇vn|2

= lim
n→+∞

∫
Ω∩BRrn (zn)

|∇u|2(tn − θ0r
2
n)

≤ 8π
H2

0

− δ0. (3.14)

It follows from (3.12), (3.13), and (3.14) that ω ∈ H1 ∩ C∞(R2,R3) is a
nontrivial solution to

4ω = 2H0ωx ∧ ωy in R2, (3.15)

and satisfies ∫
R2

|∇ω|2 ≤ 8π
H2

0

− δ0. (3.16)

On the other hand, the well-known theorem of Brezis-Coron (see [1] Lemma
A.1) asserts that any nontrivial solution ω of (3.15) must have∫

R2

|∇ω|2 ≥ 8π
H2

0

.
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This contradicts (3.16).
Case 2. z0 ∈ ∂Ω. In this case, we have either
(2a) limn→∞

dist(zn,∂Ω)
rn

= +∞, or

(2b) limn→∞
dist(zn,∂Ω)

rn
= L < +∞.

It is not hard to see that the same argument as Case 1 shows (2a) can’t
happen. Hence we only need to consider (2b). For simplicity, we may assume
L = 0. Hence Ωn → R2

+ = {(x, y) ∈ R2 : y ≥ 0}. Since vn|∂Ωn = 0, we
see that vn → ω strongly in H1 ∩ C2(B+

R × [−R2, 0]) for any R > 0, where
B+
R = BR ∩ R2

+. Moreover,

ωt ≡ 0 on R2
+ × (−∞, 0], (3.17)

0 <
∫

R2
+

|∇ω|2 < 8π
H2

0

, (3.18)

and
∆ω = 2H0ωx ∧ ωy in R2

+; ω
∣∣
∂R2

+
= 0. (3.19)

It is a well-known fact that any H1-solution ω to (3.19) is zero. Here we
provide a simple proof (see also [1] Lemma A.1). First, let ω̂ : R2 → R3 be
the odd extension of ω with respect to y, i.e.

ω̂(x, y) = ω(x, y) for y ≥ 0; = −ω(x,−y) for y ≤ 0.

Then it is easy to verify that ω̂ ∈ H1(R2) ∩ C2(R2) also solves (3.15).
Consider the Hopf differential H(ω̂) = |ω̂x|2 − |ω̂y|2 − 2iω̂x · ω̂y of ω̂. Then
one can check that H(ω̂) is holomorphic, i.e.,

∂H(ω)
∂z̄

= 0 in R2.

Since H(ω̂) ∈ L1(R2), we conclude that H(ω̂) ≡ 0 in R2. In particular, ω is
conformal in R2

+. Since ω
∣∣
∂R2

+
= 0, ωx ≡ 0 on ∂R2. Hence ωy ≡ 0 on R2

+.

This then implies that ω ≡ 0 in R2
+, which contradicts (3.18).

The above argument implies that the local regular solution u is a global
regular solution. To prove (1.7), set

F (u) =
∫

Ω
|∇u|2 +

∫
Ω

2H0u · ux ∧ uy.
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First observe that (3.2) and the isoperimetric inequality (2.1) imply that∫
Ω
|∇u|2 ≥

(
32π

|
∫

Ω u · ux ∧ uy|

) 1
3
∣∣∣∣∫

Ω
u · ux ∧ uy

∣∣∣∣
= 3

√
8|H0|3

∣∣∣∣∫
Ω
u · ux ∧ uy

∣∣∣∣ = 2|H0

∫
Ω
u · ux ∧ uy|. (3.20)

Hence
E(u(t)) ≥ 1

6

∫
Ω
|∇u(t)|2, ∀t > 0. (3.21)

The isoperimetric inequality (2.1), (3.20), and (3.21) imply that for any
t > 0,∣∣∣∣∫

Ω
2H0u(t) · ux(t) ∧ uy(t)

∣∣∣∣ ≤ (
H2

0

8π

∫
Ω
|∇u(t)|2

) 1
2
∫

Ω
|∇u(t)|2

≤
(

3H2
0

4π
E(u(t))

) 1
2
∫

Ω
|∇u(t)|2

≤
(

3H2
0

4π
E(u0)

) 1
2
∫

Ω
|∇u(t)|2.

Since E(u0) < 4π
3H2

0
, we have

0 < δ ≡
(

3H2
0E(u0)
4π

)1/2

< 1.

Let γ = 1− δ > 0. Then we have, for any t > 0,∣∣∣∣∫
Ω

2H0u(t) · ux(t) ∧ uy(t)
∣∣∣∣ ≤ (1− γ)

∫
Ω
|∇u(t)|2. (3.22)

Hence
F (u(t)) ≥ γ

∫
Ω
|∇u(t)|2, ∀t > 0. (3.23)

Integrating the identity

d

dt

∫
Ω
|u(t)|2 = −2F (u(t))

over [t,+∞) yields∫ +∞

t
F (u(τ)) dτ ≤ 1

2

∫
Ω
|u(t)|2 ≤ C

∫
Ω
|∇u(t)|2, ∀t > 0, (3.24)
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where we have used the Poincaré inequality for the last inequality. Combin-
ing (3.23) with (3.24), we obtain∫ +∞

t

∫
Ω
|∇u|2 ≤ C

∫
Ω
|∇u(t)|2, ∀t > 0. (3.25)

Set G(t) =
∫ +∞
t

∫
Ω |∇u|

2. Then (3.25) becomes

CG′(t) +G(t) ≤ 0, ∀t > 0. (3.26)

Hence
G(t) ≤ G(0)e−

t
C , ∀t > 0. (3.27)

Since (3.20) also implies

E(u(t)) ≤ 5
6

∫
Ω
|∇u(t)|2, ∀t > 0,

(3.27) gives ∫ +∞

t
E(u(τ)) dτ ≤ C0e

− t
C , ∀t > 0. (3.28)

Since E(u(t)) is monotone decreasing, this implies

E(u(t+ 1)) ≤
∫ t+1

t
E(u(τ)) dτ ≤ C0e

− t
C , ∀t > 0.

This, combined with the Poincaré inequality, implies (1.7). The proof of
Theorem 1.2 is now complete. 2
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