MA 523/Spring 2017
Homework 2
(Due Thursday, February 9 in class or before 3pm in MATH 714)

1. Modify the proof of the mean value formulas to show that for n > 3, it holds that
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provided
—Au=f in B(0,r)
u=yg on 0B(0,r).
2. We say v € C?(U) is subharmonic if
—Av <0in U.

(a) Prove for subharmonic v that

v(z) < / vdy for all B(z,r) C U.
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(b) Prove that maxg v = maxyy v.

(c) Let ¢ : R — R be smooth and convex. Assume u is harmonic and v = ¢(u).
Prove v is subharmonic.

(d) Prove v = |Du|? is subharmonic, whenever v is harmonic.
3. Prove that there exists a constant C', depending only on n, such that
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whenever u is a smooth solution of
—Au=f in B(0,1)
u=g on 0B(0,1).
4. Use Poisson’s formula for the ball to prove
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whenever u is positive and harmonic in B(0, 7).
5. If u € C?(R") is a harmonic function, which satisfies the growth condition:
lu(z)] < C(1+|z|%), Vo € R,

for some constant C' > 0 and a positive integer k, prove that u is a polynomial of
degree at most k.



