MA 523/Spring 2017

Homework 4

(Due Thursday, March 9 in class or before 3pm in MATH 714)

- 1. Suppose u is smooth and solves $u_t \Delta u = 0$ in $\mathbb{R}^n \times (0, \infty)$.
 - (i) Show $u_{\lambda}(x,t) = u(\lambda x, \lambda^2 t)$ also solves the heat equaltion for each $\lambda \in \mathbb{R}$.
 - (ii) Use (i) to show $v(x,t) = x \cdot Du(x,t) + 2tu_t(x,t)$ solves the heat equation as well
- 2. Assume n = 1 and $u(x, t) = v(\frac{x^2}{t})$.
 - (a) Show $u_t = u_{xx}$ if and only if

$$4zv''(z) + (2+z)v'(z) = 0(z > 0).$$
(1)

(b) Show that the general solution of (1) is

$$v(z) = c \int_0^z e^{-\frac{s}{4}} s^{-\frac{1}{2}} ds + d.$$

- (c) Differentiate $v(\frac{x^2}{t})$ with respect to x and select the constant c properly, so as to obtain the fundamental solution Φ for n = 1.
- 3. Write down an explicit formula for a solution of

$$\begin{cases} u_t - \Delta u + cu = f & in \ \mathbb{R}^n \times (0, \infty) \\ u = g & on \ \mathbb{R}^n \times \{t = 0\}, \end{cases}$$
 (2)

where $c \in \mathbb{R}$.

4. Given $g:[0,\infty)\to\mathbb{R}$, with g(0)=0, derive the formula

$$u(x,t) = \frac{x}{\sqrt{4\pi}} \int_0^t \frac{1}{(t-s)^{\frac{3}{2}}} e^{-\frac{x^2}{4(t-s)}} g(s) \, ds$$

for a solution of the initial/boundary-value problem

$$\begin{cases} u_t - u_{xx} = 0 & in \ \mathbb{R}_+ \times (0, \infty) \\ u = 0 & on \ \mathbb{R}_+ \times \{t = 0\} \\ u = g & on \ \{x = 0\} \times [0, \infty). \end{cases}$$

(Hint: Let v(x,t) = u(x,t) - g(t) and extend v to $\{x < 0\}$ by odd reflection.)

5. We say $v \in C_1^2(\mathbb{R}^n \times (0,T))$ is a subsolution of the heat equation if

$$v_t - \Delta v \le 0 \text{ in } \mathbb{R}^n \times (0, T).$$

Show that

- (i) if u is a solution of the heat equation and $\phi : \mathbb{R} \to \mathbb{R}$ is smooth and convex, then $v = \phi(u)$ is a subsolution to the heat equation.
- (ii) if u solves the heat equation, then $v := |Du|^2 + u_t^2$ is a subsolution of the heat equation.

1

6. Let $u_1(x,t), \dots, u_n(s,t)$ be n solutions of $u_t = u_{ss}$. Prove that

$$u(x,t) = u(x_1, \dots, x_n, t) = \prod_{k=1}^{n} u_k(x_k, t)$$

solves $u_t = \Delta u$ in $\mathbb{R}^n \times (0, +\infty)$.

7. Let n=1 and μ be a positive constant. Let u(x,t) be a positive solution of class C^2 of

$$u_t = \mu u_{xx}$$
, in $\mathbb{R} \times (0, \infty)$.

Show that $\theta = -\frac{2\mu u_x}{u}$ solves the Burger equation:

$$\theta_t + \theta \theta_x = \mu \theta_{xx}$$
.

8. Define for $x, y, t \in \mathbb{R}, t \neq 0$

$$K(x, y, t) = (4\pi |t|)^{-\frac{1}{2}} \exp(-\frac{(x-y)^2}{4t}).$$

Show that

$$K(x,0,s+t) = \int K(x,y,t)K(y,0,s) dy$$

holds

- (a) when s > 0, t > 0
- (b) when 0 < t < -s.