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Abstract. In this paper, we establish the local well-posedness for the Cauchy problem of the simplified

version of hydrodynamic flow of nematic liquid crystals (1.1) in R3 for any initial data (u0, d0) having small

L3
uloc

-norm of (u0,∇d0). Here L3
uloc

(R3) is the space of uniformly locally L3-integrable functions. For any

initial data (u0, d0) with small ‖(u0,∇d0)‖L3(R3), we show that there exists a unique, global solution to

(1.1) which is smooth for t > 0 and has monotone deceasing L3-energy for t ≥ 0.

1. Introduction

In this paper, we consider the Cauchy problem for the following hydrodynamic system modeling the flow
of nematic liquid crystal materials in R3: for 0 < T ≤ ∞ and (u, P, d) : R3 × [0, T ) → R3 × R × S2, the
system is given by 

ut + u · ∇u− ν∆u+∇P = −λ∇ · (∇d�∇d), in R3 × (0, T ),

∇ · u = 0, in R3 × (0, T ),

dt + u · ∇d = γ(∆d+ |∇d|2d), in R3 × (0, T ),

(u, d) = (u0, d0), on R3 × {0},

(1.1)

for a given initial data (u0, d0) : R3 → R3 × S2 with ∇ · u0 = 0. Here u : R3 → R3 represents the velocity
field of the fluid, d : R3 → S2 – the unit sphere in R3 – is a unit vector field representing the macroscopic
molecular orientation of the nematic liquid crystal material, P : R3 → R represents the pressure function.
The constants ν, λ, and γ are positive constants that represent the viscosity of the fluid, the competition
between kinetic and potential energy, and the microscopic elastic relaxation time for the molecular orientation
field. ∇· denotes the divergence operator in R3, and ∇d�∇d denotes the symmetric 3× 3 matrix:

(∇d�∇d)ij = 〈∇id,∇jd〉, 1 ≤ i, j ≤ 3.

Throughout this paper, we denote 〈v, w〉 or v · w as the inner product in R3 for v, w ∈ R3.
The system (1.1) is a simplified version of the famous Ericksen-Leslie model for the hydrodynamics of

nematic liquid crystals developed by Ericksen and Leslie during the period of 1958 through 1968 [6, 15, 4].
This system reduces to the Ossen-Frank model in the static theory of liquid crystals. It is a macroscopic
continuum description of the time evolution of the materials under the influence of flow field u and the
macroscopic description of the microscopic orientation field d of rod-like liquid crystals. The current form of
system (1.1) was first proposed by Lin [17] back in the late 1980’s. From the mathematical point of view,
(1.1) is a system coupling the non-homogeneous incompressible Navier-Stokes equation and the transported
heat flow of harmonic maps to S2. Lin-Liu [19, 20] initiated the mathematical analysis of (1.1) by considering
its Ginzburg-Landau approximation or the so-called orientation with variable degrees in the terminology of

Ericksen. Namely, the Dirichlet energy

ˆ
1

2
|∇d|2 for d : R3 → S2 is replaced by the Ginzburg-Landau

energy

ˆ
1

2
|∇d|2 +

1

4ε2
(1− |d|2)2 (ε > 0) for d : R3 → R3. Hence (1.1)3 is replaced by

∂td+ u · ∇d = γ(∆d+
1

ε2
(1− |d|2)d). (1.2)

Lin-Liu proved in [19, 20] (i) the existence of a unique, global smooth solution in dimension two and in
dimension three under large viscosity ν; and (ii) the existence of suitable weak solutions and their partial
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regularity in dimension three, analogous to the celebrated regularity theorem by Caffarelli-Kohn-Nirenberg
[3] for the three-dimensional incompressible Navier-Stokes equation.

As already pointed out by [19, 20], it is a very challenging problem to study the convergence of solutions
(uε, Pε, dε) to (1.1)1-(1.1)2-(1.2) when ε ↓ 0. In particular, the existence of global Leray-Hopf type weak
solutions to the initial and boundary value problem of (1.1) has only been established recently by Lin-Lin-
Wang [21] in dimension two, see also Hong [9] and Xu-Zhang [29] and Hong-Xin [12] for related works.

Because of the super-critical nonlinear term ∇ · (∇d � ∇) in (1.1)1, it has been an outstanding open
problem whether there exists a global Leray-Hopf type weak solution to (1.1) in R3 for any initial data

(u0, d0) ∈ L2(R3,R3) × Ẇ 1,2(R3, S2) with ∇ · u0 = 0. It is standard that in R3 the local existence of a
unique, strong solution to (1.1) can be obtained for any initial data u0 ∈W s,2(R3) and d0 ∈W s+1,2(R3, S2)
for s > 3 with ∇·u0 = 0, see for example [28]. A blow-up criterion for local strong solutions to (1.1), similar
to the Beale-Kato-Majda criterion for the Navier-Stokes equation (see [1]), was obtained by Huang-Wang
[11]. For small initial data in certain Besov spaces, Li-Wang [23] obtained the global existence of strong
solutions to (1.1). We would like to mention that Wang [27] has recently obtained the global (or local)
well-posedness of (1.1) for initial data (u0, d0) belonging to possibly the largest space BMO−1 × BMO with
∇ · u0 = 0, which is a invariant space under parabolic scaling associated with (1.1), with small norms.

In this paper, we are mainly interested in the local well-posedness of (1.1) for any initial data (u0, d0)
such that (u0,∇d0) ∈ L3

uloc(R3). Henceforth L3
uloc(R3) denotes the space of uniformly locally L3-integrable

functions. It turns out that L3
uloc(R3) is also invariant under parabolic scaling associated with (1.1).

Now we give the definition of L3
uloc(R3). The readers can consult the monograph by Lemarié-Rieusset

[16] for applications of the space L3
uloc(R3) to the Navier-Stokes equation.

Definition 1.1. A function f ∈ L3
loc(R3) belongs to the space L3

uloc(R3) consisting of uniformly locally
L3-integrable functions, if there exists 0 < R < +∞ such that

‖f‖L3
R(R3) := sup

x∈R3

( ˆ
BR(x)

|f |3
) 1

3

< +∞. (1.3)

It is clear that

• L3(R3) ⊂ L3
uloc(R3).

• If f ∈ L3
uloc(R3), then ‖f‖L3

R(R3) is finite for any 0 < R < +∞. For any two 0 < R1 ≤ R2 < ∞, it

holds

‖f‖L3
R1

(R3) ≤ ‖f‖L3
R2

(R3) .

(
R2

R1

)
‖f‖L3

R1
(R3) , ∀ f ∈ L

3
uloc(R3). (1.4)

• L3
uloc(R3) ⊂

⋂
0<R<∞

BMO−1
R (R3) (see [13] or [27]). Moreover, for any 0 < R <∞, it holds

[f ]BMO−1
R (R3) . ‖f‖L3

R(R3) , ∀ f ∈ L
3
uloc(R3). (1.5)

Throughout this paper, we write A . B if there exists a universal constant C > 0 such that A ≤ CB.
Here are a few more notations and conventions that we will use through this paper. For two matrices M,N

of order 3, we use M : N =
∑

1≤i,j≤3

M ijN ij to denote their scalar product. For two vectors u, v ∈ R3, we

let u ⊗ v denote their tensor product: (u ⊗ v)ij = uivj , 1 ≤ i, j ≤ 3. For 0 < s < +∞ and 1 ≤ p ≤ ∞, we

denote by W s,p(R3) and Ẇ s,p(R3 as the Sobolev space and the homogeneous Sobolev spaces respectively.
For 0 ≤ a < b < +∞, denote

C∞b (R3 × [a, b]) =
⋂
m≥0

{
f ∈ Cm(R3 × [a, b]) : ‖f‖Cm(R3×[a,b]) < +∞

}
,

L∞([a, b], L3
uloc(R3)) =

{
f ∈ L∞([a, b], L3

1(R3))
}
,

and

C0
∗([a, b], L

3
uloc(R3)) =

{
f ∈ C((a, b], L3

1(R3)) ∩ L∞([a, b], L3
1(R3)) : as t ↓ 0, f(t)→ f(a) in L3

loc(R3)
}
.
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Repeated indices are summed unless specificized otherwise. Upper indices denote components and lower
indices denote derivatives.

Now we state our main theorem.

Theorem 1.2. There exist ε0 > 0 and τ0 > 0 such that if u0 : R3 → R3, with ∇ · u0 = 0, and d0 : R3 → S2

satisfies (d0 − e0) ∈ L3(R3) for some e0 ∈ S2, and

|||(u0,∇d0)|||L3
R(R3) := sup

x∈R3

(ˆ
BR(x)

|u0|3 + |∇d0|3
) 1

3

≤ ε0 (1.6)

for some 0 < R <∞, then there exist T0 ≥ τ0R
2 and a unique solution (u, d) : R3 × [0, T0)→ R3 × R× S2

of (1.1) such that the following properties hold:
(i) For t ↓ 0, (u(t), d(t))→ (u0, d0) and ∇d(t)→ ∇d0 in L3

loc(R3).
(ii)

(u, d) ∈
⋂

0<δ<T0

C∞b (R3 × [δ, T0 − δ],R3 × S2), (u,∇d) ∈
⋂

0<T ′<T0

C0
∗([0, T

′], L3
uloc(R3)).

(iii)

|||(u(t),∇d(t))|||L∞([0,τ0R2],L3
R(R3)) ≤ Cε0. (1.7)

(iv) If T0 < +∞ is the maximum time interval then it must hold

lim sup
t↑T0

|||(u(t),∇d(t))|||L3
r(R3) > ε0, ∀ 0 < r <∞. (1.8)

The ideas to prove Theorem 1.2 are motivated by those employed by [21]. There are five main ingredients,
which include

• approximate (u0, d0) by smooth (uk0 , d
k
0) (see Lemma 5.1 below) and obtain 0 < Tk < +∞ and a

sequence of smooth solutions (uk, P k, dk) of (1.1) in R3 × [0, Tk], under the initial data (uk0 , d
k
0);

• utilizing the local L3-energy inequality (3.1), obtain uniform lower bounds of Tk;
• apply the ε0-regularity Theorem 4.4 to obtain a priori derivative estimates of (uk, dk) and then take

limit to obtain the local existence of L3
uloc-solutions to (1.1);

• apply Theorem 4.4 again to characterize the finite maximal time interval; and
• adapt the proof of [27] to show the uniqueness.

For a solution (u, P, d) to (1.1), denote its L3-energy by

E3(u,∇d)(t) =

ˆ
R3

(|u(t)|3 + |∇d(t)|3), t ≥ 0.

Concerning the global well-posedness of (1.1), we have

Theorem 1.3. There exists an ε0 > 0 such that if (u0, d0) ∈ L3(R3,R3) × Ẇ 1,3(R3, S2), with ∇ · u0 = 0,
satisfies

E3(u0,∇d0) ≤ ε30, (1.9)

then there exists a unique global solution (u, d) : R3 × [0,∞) → R3 × R × S2 of (1.1) such that (u, d) ∈
C∞(R3 × (0,+∞)) ∩ C([0,∞), L3(R3)× Ẇ 1,3(R3)), E3(u,∇d)(t) is monotone decreasing for t ≥ 0, and

‖∇mu(t)‖L∞(R3) +
∥∥∇m+1d(t)

∥∥
L∞(R3)

≤ Cε0
t
m
2
, ∀ t > 0, m ≥ 0. (1.10)

We mention here that the first conclusion of Theorem 1.3 has been proven by [5], which is based on
refinement of the argument by Wang [27]. Since the exact values of ν, λ, γ don’t play a role in this paper,
we henceforth assume

ν = λ = γ = 1.

The paper is written as follows. In §2, we derive an inequality for the global L3-energy of smooth solutions
of (1.1). In §3, we derive an inequality for the local L3-energy of smooth solutions of (1.1) and prove Theorem
1.3. In §4, we will prove an ε0-regularity for suitable weak solutions to (1.1). In particular, a priori derivative
estimates hold for smooth solutions to (1.1) under a smallness condition. In §5, we will prove Theorem 1.2.
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2. Inequality on the global L3-energy and proof of Theorem 1.3

In this section, we will derive an inequality for the L3-energy E3(u,∇d)(t) for any smooth solution
(u, d) : R3 × [0, T ]→ R3 × S2, for 0 < T ≤ ∞, of the system (1.1) for nematic liquid crystals.

Lemma 2.1. There exists C > 0 such that for 0 < T ≤ ∞ if (u, d) ∈ C∞(R3 × [0, T ),R3 × S2) ∩
C([0, T ), L3(R3)× Ẇ 1,3(R3)) and P ∈ L∞([0, T ), L

3
2 (R3)) solves (1.1), then it holds

d

dt

ˆ
R3

(|u|3 + |∇d|3) +
[
1− C‖u‖2L3(R3)

] ˆ
R3

|u||∇u|2

+
[
1− C(‖u‖L3(R3) + ‖u‖L3(R3)‖∇d‖L3(R3) + ‖∇d‖2L3(R3))

] ˆ
R3

|∇d||∇2d|2 ≤ 0.

(2.1)

Proof. Taking spatial derivatives of (1.1)3, multiplying the resulting equation by |∇d|∇d, and integrating
over R3, we have

d

dt

ˆ
R3

1

3
|∇d|3 =

ˆ
R3

∇(∆d) : |∇d|∇d−
ˆ
R3

∇(u · ∇d) : |∇d|∇d−
ˆ
R3

∇(|∇d|2d) : |∇d|∇d. (2.2)

For terms on the right hand side of (2.2, by integration by parts we have
ˆ
R3

∇(∆d) : |∇d|∇d = −
ˆ
R3∩{|∇d|>0}

∇2d : ∇(|∇d|∇d)

= −
ˆ
R3∩{|∇d|>0}

(|∇d||∇2d|2 +
|∇2d · ∇d|2

|∇d|
)

≤ −
ˆ
R3

|∇d||∇2d|2,

ˆ
R3

∇(u · ∇d) : |∇d|∇d = −
ˆ
R3

(u · ∇d) · ((∇|∇d|) · ∇d+ |∇d|∆d)

.
ˆ
R3

|u||∇d|2|∇2d|,

and, using |d| = 1,

ˆ
R3

∇(|∇d|2d) : |∇d|∇d =

ˆ
R3

(∇|∇d|2) · |∇d|∇(
|d|2

2
) +

ˆ
R3

|∇d|2∇d : |∇d|2∇d

=

ˆ
R3

|∇d|5.

Putting these estimates into (2.2) yields

d

dt

ˆ
R3

|∇d|3 +

ˆ
R3

|∇(|∇d| 32 )|2 .
ˆ
R3

|∇d|5 + |u||∇d|2|∇2d|, (2.3)

where have used the following variant of the Kato inequality

|∇|∇d| 32 | = 3

2
|∇d| 12 |∇|∇d|| ≤ 3

2
|∇d| 12 |∇2d|.

Observe that by the Sobolev inequality and the Kato inequality above, we have

ˆ
R3

|∇d|9 =

ˆ
R3

(|∇d| 32 )6 .

(ˆ
R3

|∇|∇d| 32 |2
)3

.

(ˆ
R3

|∇d||∇2d|2
)3

. (2.4)

Hence, by the Hölder inequality and (2.4), we have

‖∇d‖5L5(R3) ≤ ‖∇d‖
2
L3(R3)‖∇d‖

3
L9(R3) .

(ˆ
R3

|∇d|3
)2/3(ˆ

R3

|∇d||∇2d|2
)
.
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For the second term on the right-hand side of (2.3), by the Hölder inequality and (2.4) we haveˆ
R3

|u||∇d|2|∇2d| ≤ ‖u‖L3(R3)‖|∇d|
3
2 ‖L6(R3)‖|∇d|

1
2 |∇2d|‖L2(R3)

. ‖u‖L3(R3)‖∇|∇d|
3
2 ‖L2(R3)‖|∇d|

1
2 |∇2d|‖L2(R3)

. ‖u‖L3(R3)‖|∇d|
1
2 |∇2d|‖2L2(R3).

Inserting these two estimates into (2.3) yields

d

dt

ˆ
R3

|∇d|3 +
[
1− C

(
‖∇d‖2L3(R3) + ‖u‖L3(R3)

)] ˆ
R3

|∇d||∇2d|2 ≤ 0. (2.5)

Next we estimate the L3-norm of u. Multiplying (1.1)1 by |u|u and integrating over R3 gives

d

dt

ˆ
R3

1

3
|u|3

=

ˆ
R3

∆u · |u|u−
ˆ
R3

(u · ∇u) · |u|u−
ˆ
R3

∇P · |u|u−
ˆ
R3

(∇ · (∇d�∇d)) · |u|u.
(2.6)

For the terms on the right hand side of (2.6), by integration by parts we haveˆ
R3

(∆u) · |u|u = −
ˆ
R3

|∇u|2|u|+ |u||∇|u||2,

ˆ
R3

(u · ∇u) · |u|u =

ˆ
R3

u · ∇
(
|u|3

3

)
= 0,

ˆ
R3

∇P · |u|u = −
ˆ
R3

Pu · ∇|u|+ P |u|(∇ · u) = −
ˆ
R3

Pu · ∇|u|,

and

−
ˆ
R3

(∇ · (∇d�∇d)) · |u|u =

ˆ
R3

(∇d�∇d) : ∇(|u|u)

=

ˆ
R3

(∇d�∇d) : ∇|u| ⊗ u+ |u|(∇d�∇d) : ∇u

.
ˆ
R3

|∇d|2|u||∇u|.

Substituting these estimates into (2.6), we obtain

d

dt

ˆ
R3

|u|3 +

ˆ
R3

|u||∇u|2|u| .
ˆ
R3

|P ||u||∇|u||+
ˆ
R3

|∇d|2|u||∇u|. (2.7)

Using the Kato inequality |∇|u|| ≤ |∇u|, the Cauchy inequality and the Hölder inequality in (2.7), we obtain

d

dt

ˆ
R3

|u|3 +

ˆ
R3

|u||∇u|2 ≤ C
ˆ
R3

|u|(|P |2 + |∇d|4) +
1

2

ˆ
R3

|u||∇u|2

≤ C(‖P‖2L3(R3) + ‖∇d‖4L6(R3))‖u‖L3(R3) +
1

2

ˆ
R3

|u||∇u|2.

Therefore we get
d

dt

ˆ
R3

|u|3 +

ˆ
R3

|u||∇u|2 . (‖P‖2L3(R3) + ‖∇d‖4L6(R3))‖u‖L3(R3). (2.8)

We need to estimate ‖P‖L3(R3). To do so, we take divergence of (1.1)1 to obtain

−∆P = ∇ · ∇ · (u⊗ u+∇d�∇d). (2.9)

Set

gjk := ujuk +∇jd · ∇kd, 1 ≤ j, k ≤ 3.

Then we have

P = ∆−1(∇2
jkg

jk) = −RjRk(gjk). (2.10)

Henceforth Rj = (−∆)−
1
2∇j denotes the jth-Riesz transform on R3 for 1 ≤ j ≤ 3.
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Since Rj : Lq(R3)→ Lq(R3) is bounded for 1 < q <∞ (see Stein [25]), we have

‖P‖L3(R3) = ‖RjRk(gjk)‖L3(R3) . ‖gjk‖L3(R3) . ‖u‖2L6(R3) + ‖∇d‖2L6(R3). (2.11)

Inserting (2.11) into (2.8) yields

d

dt

ˆ
R3

|u|3 +

ˆ
R3

|u||∇u|2 . (‖u‖4L6(R3) + ‖∇d‖4L6(R3))‖u‖L3(R3). (2.12)

Using the Hölder inequality, the Sobolev inequality, and |∇|u| 32 | . |∇u||u| 12 , we have

‖u‖4L6(R3) ≤ ‖u‖L3(R3)‖u‖3L9(R3) . ‖u‖L3(R3)‖∇|u|
3
2 ‖2L2(R3) ≤ ‖u‖L3(R3)

ˆ
R3

|u||∇|u||2.

Similarly we have

‖∇d‖4L6(R3) . ‖∇d‖L3(R3)

ˆ
R3

|∇d||∇2d|2.

Substituting these two estimates into (2.12), we obtain

d

dt

ˆ
R3

|u|3 +

ˆ
R3

|u||∇u|2 . ‖u‖2L3(R3)

ˆ
R3

|u||∇u|2 + ‖u‖L3(R3)‖∇d‖L3(R3)

ˆ
R3

|∇d||∇2d|2. (2.13)

Combining (2.5) and (2.13) yields (2.1). �

Corollary 2.2. There exists ε0 > 0 such that for 0 < T ≤ ∞, if (u, d) ∈ C∞(R3 × [0, T ),R3 × S2) ∩
L∞([0, T ), L3(R3)× Ẇ 1,3(R3)) is a solution to (1.1) satisfying

E3(u0,∇d0) ≤ ε30, (2.14)

then E3(u(t),∇d(t)) is monotone decreasing for 0 ≤ t < T .

Proof. Denote

E3(t) := E3(u(t),∇d(t)), t ≥ 0.

Let Tmax ∈ [0, T ) be defined by

Tmax = max
{
t ∈ [0, T ) : E3(s) ≤ 2ε30, ∀ 0 ≤ s ≤ t

}
.

By continuity and (2.14), we have that 0 < Tmax ≤ T , and

E3(t) ≤ 2ε30, 0 ≤ t < Tmax, E3(Tmax) = 2ε30. (2.15)

Suppose Tmax < T . Choose ε0 > 0 so small that

1− Cε20 ≥ 0 and 1− C(ε0 + 2ε20) ≥ 0.

Then (2.15) and (2.1) imply that

d

dt
E3(t) ≤ d

dt
E3(t) +

[
1− Cε20

] ˆ
R3

u||∇u|2 +
[
1− C(ε0 + 2ε20)

]ˆ
R3

|∇d||∇2d|2 ≤ 0

holds for 0 ≤ t ≤ Tmax. Hence E3(t) is decreasing in [0, Tmax] and

E3(Tmax) ≤ E3(0) ≤ ε30 < 2ε30.

This contradicts the definition of Tmax. Thus Tmax = T and E3(t) is monotone decreasing in [0, T ). �

Proof of Theorem 1.3: Since C∞(R3, S2) is dense in Ẇ 1,3(R3, S2) (see [24]), it is not hard to show that
there exist {(uk0 , dk0)} ⊂ C∞(R3,R3)× C∞(R3, S2) such that

∇ · uk0 = 0 in R3, lim
k→∞

(‖uk0 − u0‖L3(R3) + ‖∇(dk0 − d0)‖L3(R3)) = 0.

Consider the system (1.1) under the initial condition (u, d)|t=0 = (uk0 , d
k
0). It is standard that there exist

Tk > 0 and smooth solutions (uk, dk) ∈ C∞(R3 × [0, Tk],R3 × S2) ∩ C([0, Tk], L3(R3)× Ẇ 1,3(R3)) to (1.1).
Since E3(u0,∇d0) ≤ ε30, we may assume that E3(uk0 ,∇dk0) ≤ 2ε30 for all k ≥ 1. Hence by Corollary 2.2, we

conclude that

sup
0≤t≤Tk

E3(uk(t),∇dk(t)) ≤ E3(uk0 ,∇dk0) ≤ 2ε30, ∀ k ≥ 1.
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For the corresponding pressure functions P k, since

∆P k = −∇ · ∇ · (uk ⊗ uk +∇dk �∇dk) in R3,

we have

sup
0≤t≤Tk

‖P k‖
L

3
2 (R3)

. sup
0≤t≤Tk

(‖uk‖2L3(R3) + ‖∇dk‖2L3(R3)) ≤ Cε
2
0.

Let Tk be the maximal time interval for (uk, dk). If 0 < Tk < +∞, then by Theorem 4.4 in §4 below we
conclude that (uk, dk) ∈ C∞b (R3 × [0, Tk],R3 × S2). Hence (uk(Tk), dk(Tk)) ∈ C∞(R3,R3 × S2) ∩ L3(R3)×
Ẇ 1,3(R3), and

E3((uk(Tk),∇dk(Tk))) ≤ 2ε30

so that we can extend the smooth solutions (uk, dk) beyond the time Tk, which would contradict the maximal-
ity of Tk. Therefore Tk = ∞ and the smooth solution (uk, dk) exists globally. Moreover, E3(uk(t),∇dk(t))
is monotone decreasing and less than 2ε30. By Theorem 4.4, we have the derivative estimates:

‖∇muk(t)‖L∞(R3) +
∥∥∇m+1dk(t)

∥∥
L∞(R3)

≤ Cε0
t
m
2
, ∀ t > 0, m ≥ 1. (2.16)

After taking possible subsequences, we may assume that there exists (u, d) ∈ C∞(R3 × (0,+∞),R3 × S2) ∩
C([0,+∞), L3(R3) ∩ Ẇ 1,3(R3)) such that as k →∞,
(1) (uk, dk)→ (u, d) in Cmloc(R3 × (0,+∞)) for any m ≥ 1.
(2) (uk,∇dk)→ (u,∇d) weak∗ in L∞([0,+∞), L3(R3)).
Thus (u, d) ∈ C∞(R3 × (0,+∞),R3 × S2) solves (1.1)1, (1.1)2, and (1.1)3, and the estimate (1.10) holds.

Using the equation (1.1), we can get that for any 0 < T < +∞,

sup
k≥1

∥∥∥(∂tu
k, ∂td

k)
∥∥∥
L

3
2 ([0,T ),W−1, 3

2 (R3))
≤ C(T ) < +∞.

This implies that (u, d) ∈ C([0, T ], L3(R3) × Ẇ 1,3(R3)) and (u, d)|t=0 = (u0, d0). Applying Corollary 2.2
again, we conclude that E3(u(t),∇d(t)) is monotone decreasing for t ≥ 0. The part of uniqueness can be
proved as in the step 6 of the proof of Theorem 1.2 in §5, which is omitted here. The proof is complete. �

We would like to mention applications of Theorem 1.3 to the heat flow of harmonic maps and the Navier-
Stokes equation.
1) If u ≡ 0, then (1.1)3 reduces to the heat flow of harmonic maps to S2 for d : R3 × (0,+∞)→ S2:{

∂td = ∆d+ |∇d|2d in R3 × (0,+∞)

d = d0 on R3 × {0}.
(2.17)

2) If d is a constant unit vector, then (1.1)1 and (1.1)2 reduce to the Navier-Stokes equation:
∂tu+ u · ∇u−∆u+∇P = 0 in R3 × (0,+∞)

∇ · u = 0 in R3 × (0,+∞)

u = u0 on R3 × {0}.
(2.18)

The following properties follow directly from Theorem 1.3. We would like to point out the observation of
monotone decreasing property of the L3-energy seems new.

Remark 2.3. 1) There exists ε0 > 0 such that if d0 : R3 → S2 satisfies

ˆ
R3

|∇d0|3 ≤ ε30, then there is a

unique global solution d : R3 × [0,+∞)→ S2 of (2.17) such that d ∈ C([0,+∞), Ẇ 1,3(R3, S2)) ∩ C∞(R3 ×

(0,+∞), S2), and

ˆ
R3

|∇d(t)|3 is monotone decreasing for t ≥ 0.

2) There exists ε0 > 0 such that if u0 : R3 → R3, with∇·u0 = 0, satisfies

ˆ
R3

|u0|3 ≤ ε30, then there is a unique,

global solution u : R3 × [0,+∞)→ R3 of (2.18) such that u ∈ C([0,+∞), L3(R3)) ∩ C∞(R3 × (0,+∞),R3),

and

ˆ
R3

|u(t)|3 is monotone decreasing for t ≥ 0.
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3. Inequality of the local L3-energy

In this section, we will derive an inequality of the local L3-energy for smooth solutions (u, d) : R3×[0, T ]→
R3 × S2 for 0 < T ≤ ∞, of the system (1.1). More precisely, we have

Lemma 3.1. There exists C > 0 such that for 0 < T ≤ ∞, if (u, d) ∈ C∞(R3 × [0, T ),R3 × S2) ∩
C([0, T ), L2(R3)× Ẇ 1,2(R3)) is a smooth solution of the system (1.1), then

d

dt

ˆ
R3

(|u|3 + |∇d|3)φ2 +

ˆ
R3

(
|∇(|u| 32φ)|2 + |∇(|∇d| 32φ)|2

)
≤ C

ˆ
R3

(|u|3 + |∇d|3)|∇φ|2 + CR−2 sup
y∈R3

(ˆ
BR(y)

|u|3 + |∇d|3
) 5

3

+ C

(ˆ
sptφ

|u|3 + |∇d|3
) 2

3
ˆ
R3

(
|∇(|u| 32φ)|2 + |∇(|∇d| 32φ)|2

)
,

(3.1)

holds for any φ ∈ C∞0 (R3), with 0 ≤ φ ≤ 1, spt φ = BR(x0)1 for some R > 0 and x0 ∈ R3, and |∇φ| ≤ 4R−1.

Proof. We divide the proof into three steps.

Step 1. Estimation of the local L3-energy of ∇d. Differentiating (1.1)3 with respect to x, integrating against
φ2|∇d|∇d over R3, and applying integration by parts, we have

d

dt

ˆ
R3

|∇d|3φ2 + 3

ˆ
R3

∇2d : ∇(φ2|∇d|∇d)

≤ 3

ˆ
R3

|∇d|5φ2 + 3

ˆ
R3

(u · ∇d) · ∇ · (φ2|∇d|∇d),

(3.2)

where we have used |d| = 1 and the following identity to obtain the first term on the right hand side:

∇(|∇d|2d) · |∇d|(∇d) =
1

2
∇(|∇d|2)|∇d|∇(|d|2) + |∇d|3∇d · ∇d = |∇d|5.

For the second term on the left hand side of (3.2), direct calculations using |∇|∇d|| ≤ |∇2d| and the Hölder
inequality implyˆ

R3

∇2d : ∇(φ2|∇d|∇d) =

ˆ
R3

|∇d||∇2d|2φ2 +

ˆ
R3∩{|∇d|>0}

(|∇d|2∇|∇d| · ∇φ2 + |∇d||∇|∇d||2φ2)

≥ 1

2

ˆ
R3

|∇d||∇2d|2φ2 − C
ˆ
R3

|∇d|3|∇φ|2.

For the second term on the right hand side of (3.2), by the Cauchy inequality we haveˆ
R3

(u · ∇d) · ∇ · (φ2|∇d|∇d) ≤ 2

ˆ
R3

|u||∇d|2|∇2d|φ2 + |u||∇d|3φ|∇φ|

≤ 1

8

ˆ
R3

|∇d||∇2d|2φ2 + C

(ˆ
sptφ

|u|3
) 2

3
(ˆ

R3

|∇d|9φ6

) 1
3

+ C

(ˆ
sptφ

|u|3
) 1

3
(ˆ

R3

|∇d|9φ6

) 1
6
(ˆ

R3

|∇d|3|∇φ|2
) 1

2

≤ 1

8

ˆ
R3

|∇d||∇2d|2φ2 + C

ˆ
R3

|∇d|3|∇φ|2

+ C

(ˆ
sptφ

|u|3
) 2

3
(ˆ

R3

|∇d|9φ6

) 1
3

.

By the Hölder inequality and the Sobolev inequality, we have(ˆ
R3

|∇d|9φ6

) 1
3

.
ˆ
R3

|∇(|∇d| 32φ)|2,
ˆ
R3

|∇d|5φ2 .

(ˆ
sptφ

|∇d|3
) 2

3
ˆ
R3

|∇(|∇d| 32φ)|2.

1Here sptφ denotes the support of φ.
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Putting these estimates into (3.2) yields

d

dt

ˆ
R3

φ2|∇d|3 +

ˆ
R3

|∇2d|2|∇d|φ2

.
ˆ
R3

|∇d|3|∇φ|2 +

(ˆ
sptφ

|u|3 + |∇d|3
) 2

3
ˆ
R3

∣∣∣∇(|∇d| 32φ)
∣∣∣2 . (3.3)

Step 2. Estimation of the local L3-energy of u. Multiplying (1.1)1 by φ2|u|u and integrating over R3 yields

d

dt

ˆ
R3

|u|3φ2 + 3

ˆ
R3

∇u · ∇(φ2|u|u)

.
ˆ
R3

|∇d||∇2d||u|2φ2 +

ˆ
R3

|∇u||u|3φ2 +

ˆ
R3

|P − c||∇(φ2|u|u)|
(3.4)

where c ∈ R is a constant to be chosen later.
By the Cauchy inequality, the Hölder inequality, and the Sobolev inequality, we haveˆ

R3

∇u · ∇(φ2|u|u) ≥ 1

2

ˆ
R3

|u||∇u|2φ2 − 4

ˆ
R3

|u|3|∇φ|2,

ˆ
R3

|∇u||u|3φ2 ≤ 1

4

ˆ
R3

|u||∇u|2φ2 + C

(ˆ
sptφ

|u|3
) 2

3
ˆ
R3

∣∣∣∇(|u| 32φ)
∣∣∣2 ,

and ˆ
R3

|∇d||∇2d||u|2φ2 ≤ 1

8

ˆ
R3

|∇d||∇2d|2φ2 + C

ˆ
R3

|∇d||u|4φ2

≤ 1

8

ˆ
R3

|∇d||∇2d|2φ2 + C

(ˆ
sptφ

|∇d|3
) 1

3
(ˆ

sptφ

|u|3
) 1

3
(ˆ

R3

|u|9φ6

) 1
3

.

For the last term on the right hand side of (3.4) we haveˆ
R3

|P − c||∇ · (|u|uφ2)| ≤ 1

8

ˆ
R3

|u||∇u|2φ2 + C

ˆ
R3

|P − c|2|u|φ2 + C

ˆ
R3

|u|3|∇φ|2.

Putting these inequalities into (3.4) we obtain

d

dt

ˆ
R3

|u|3φ2 +

ˆ
R3

|u||∇u|2φ2

≤ C
ˆ
R3

|u|3|∇φ|2 +
1

4

ˆ
R3

|∇d||∇2d|2φ2 + C

ˆ
R3

|P − c|2|u|φ2

+ C

(ˆ
sptφ

|u|3 + |∇d|3
) 2

3
ˆ
R3

(|∇(|u| 32φ)|2 + |∇(|∇d| 32φ)|2).

(3.5)

Combining (3.3) with (3.5) yields

d

dt

ˆ
R3

(|u|3 + |∇d|3)φ2 +

ˆ
R3

(
|∇(|u| 32φ)|2 + |∇(|∇d| 32φ)|2

)
≤ C

ˆ
R3

(|u|3 + |∇d|3)|∇φ|2 + C

ˆ
R3

|u||P − c|2φ2

+ C

(ˆ
sptφ

|u|3 + |∇d|3
) 2

3
ˆ
R3

(
|∇(|u| 32φ)|2 + |∇(|∇d| 32φ)|2

)
.

(3.6)

Step 3. Estimation of the pressure function P . By the Hölder inequality, we have

ˆ
R3

|u||P − c|2φ2 ≤
(ˆ

sptφ

|u|3
) 1

3
(ˆ

R3

|P − c|3φ3

) 2
3

.

We see that (3.1) follows from (3.6) and the estimate (3.7) of Lemma 3.2 below. The proof is complete. �
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Lemma 3.2. Under the same assumptions as in Lemma 3.1, assume that φ ∈ C∞0 (R3) satisfies 0 ≤ φ ≤ 1,
spt φ = BR(x0) for some x0 ∈ R3, and |∇φ| ≤ 2R−1. Then there exists C > 0 such that for any t ∈ (0, T )
there is c(t) ∈ R so that the following estimate holds(ˆ

R3

|P (t)− c(t)|3φ3

) 1
3

≤ C
(ˆ

sptφ

|u(t)|3 + |∇d(t)|3
) 1

6
(ˆ

R3

(|∇(|u(t)| 32φ)|2 + |∇(|∇d(t)| 32φ)|2
) 1

2

+ CR−1 sup
y∈R3

(ˆ
BR(y)

|u(t)|3 + |∇d(t)|3
) 2

3

.

(3.7)

Proof. For simplicity, we write (u, P, d) and c for (u(t), P (t), d(t)) and c(t) respectively. Since

−∆P = ∇2
jk(gjk), gjk := ujuk +∇jd · ∇kd,

we have
P = −RjRk(gjk)

where Rj is the j-th Riesz transform on R3. Hence we have

(P − c)φ = −RjRk(gjk)φ− cφ

= −RjRk(gjkφ)− [φ,RjRk](gjk)− cφ
(3.8)

where [φ,RjRk] is the commutator between φ and RjRk given by

[φ,RjRk](f) = φ ·RjRk(f)−RjRk(fφ), f ∈ C∞0 (R3).

We now estimate [φ,RjRk] (gjk) as follows.

[φ,RjRk] (gjk)(x)

= φ(x)RjRk(gjk)(x)−RjRk(gjkφ)(x)

= φ(x)

ˆ
R3

(xj − yj)(xk − yk)

|x− y|5
gjk(y)−

ˆ
R3

(xj − yj)(xk − yk)

|x− y|5
φ(y)gjk(y)

=

ˆ
R3

(φ(x)− φ(y))(xj − yj)(xk − yk)

|x− y|5
gjk(y).

For any x ∈ spt φ = BR(x0), we have

[φ,RjRk] (gjk)(x) + cφ(x)

=

ˆ
B2R(x0)

(φ(x)− φ(y))(xj − yj)(xk − yk)

|x− y|5
gjk(y)dy + cφ(x)

+ φ(x)

[ˆ
R3\B2R(x0)

(xj − yj)(xk − yk)

|x− y|5
gjk(y)dy + c

]
= I(x) + II(x).

For I(x), we have that

|I(x)| ≤
ˆ
B2R(x0)

|φ(x)− φ(y)||xj − yj ||xk − yk|
|x− y|5

|gjk(y)|

≤ CR−1

ˆ
R3

χB2R(x0)(y)(|u|2 + |∇d|2)(y)

|x− y|2

= CR−1I1

(
(|u|2 + |∇d|2)χB2R(x0)

)
(x),

where χB2R(x0) is the characteristic function of B2R(x0), and I1 is the Riesz potential on R3 of order 1 given
by

I1(f)(x) =

ˆ
R3

|f(y)|
|x− y|2

, x ∈ R3, ∀ f ∈ L1(R3).

Recall that by the Hardy-Littlewood-Sobolev inequality, I1 : L
3
2 (R3)→ L3(R3) satisfies

‖I1(f)‖L3(R3) . ‖f‖L 3
2 (R3)

. (3.9)
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Hence we have
‖I‖L3(R3) . R

−1
∥∥I1

(
(|u|2 + |∇d|2)χB2R(x0)

)∥∥
L3(R3)

. R−1‖(|u|2 + |∇d|2)χB2R(x0)‖L 3
2 (R3)

. R−1

(ˆ
B2R(x0)

|u|3 + |∇d|3
) 2

3

. R−1 sup
y∈R3

(ˆ
BR(y)

|u|3 + |∇d|3
) 2

3

.

(3.10)

To estimate II, choose

c = −
ˆ
R3\B2R(x0)

(x0 − y)j(x0 − y)k

|x0 − y|5
gjk(y).

Note that

|c| . R−3
∑
j,k

ˆ
R3

|gjk| . R−3
(
‖u‖2L2(R3) + ‖∇d‖2L2(R3)

)
< +∞.

Therefore we have

|II(x)| =

∣∣∣∣∣φ(x)

ˆ
R3\B2R(x0)

(
(xj − yj)(xk − yk)

|x− y|5
− (x0 − y)j(x0 − y)k

|x0 − y|5

)
gjk(y)

∣∣∣∣∣
. R|φ(x)|

ˆ
R3\B2R(x0)

1

|x− y|4
(|u|2 + |∇d|2)(y),

where we have used the following inequality (see [25]):∣∣∣∣ (xj − yj)(xk − yk)

|x− y|5
− (x0 − y)j(x0 − y)k

|x0 − y|5

∣∣∣∣ . |x0 − x|
|x0 − y|4

, for x ∈ BR(x0) and y ∈ R3 \B2R(x0).

Thus we have

|II|(x) . R
ˆ
R3\B2R(x0)

1

|x0 − y|4
(|u|2 + |∇d|2)(y)

. R
∞∑
k=2

1

(kR)4

ˆ
B(k+1)R(x0)\BkR(x0)

(|u|2 + |∇d|2)

.
1

R3

[ ∞∑
k=2

1

k2

]
sup
y∈R3

ˆ
BR(y)

(|u|2 + |∇d|2)

. R−2 sup
y∈R3

(ˆ
BR(y)

|u|3 + |∇d|3
) 2

3

.

Integrating II over BR(x0) we get

‖II‖L3(R3) . R
−1 sup

y∈R3

(ˆ
BR(y)

|u|3 + |∇d|3
) 2

3

. (3.11)

Additionally, we have∥∥RjRk(gjkφ)
∥∥
L3(R3)

.

(ˆ
R3

(|u|6 + |∇d|6)φ3

) 1
3

.

(ˆ
sptφ

|u|3 + |∇d|3
) 1

6
(ˆ

R3

(|u|9 + |∇d|9)φ6

) 1
6

.

(ˆ
sptφ

|u|3 + |∇d|3
) 1

6
(ˆ

R3

(|∇(|u| 32φ)|2 + |∇(|∇d| 32φ)|2
) 1

2

.

(3.12)

Combining the estimates (3.10) and (3.11) with (3.12) yields (3.7). This completes the proof of Lemma
3.2. �
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4. Regularity of Suitable Weak Solutions

In this section, we will derive a priori estimates for smooth solutions to the system (1.1) under a smallness
condition for the L3-norm of (u,∇d). Since the method is flexible enough, it also yields the smoothness
for a subclass of suitable weak solutions to (1.1). We present the result in the context of suitable weak
solutions to (1.1). The notion of suitable weak solutions was first introduced by Caffarelli-Kohn-Nirenberg
[3] in the context of incompressible Navier-Stokes equations. Here we adapt this notion to (1.1), similar to
the definition given by Lin [18] on the Navier-Stokes equation.

Let 0 < T ≤ ∞ and Ω ⊂ R3 be a bounded smooth domain.

Definition 4.1. A triple of functions (u, P, d) : Ω× (0, T )→ R3 ×R× S2 is called a suitable weak solution
to the system (1.1) in Ω× (0, T ) if the following properties hold:

(1) u ∈ L∞t L2
x ∩ L2

tH
1
x(Ω× (0, T )), P ∈ L 3

2 (Ω× (0, T )) and d ∈ L2
tH

2
x(Ω× (0, T ));

(2) (u, P, d) satisfies the system (1.1) in the sense of distributions; and
(3) (u, P, d) satisfies the local energy inequality (4.1).

Now we would like to point out that the class of smooth solutions belongs to the class of suitable weak
solutions to the system (1.1). Let I3 denote the identity matrix of order 3.

Lemma 4.2. Suppose that (u, d) ∈ C∞(Ω× (0, T ),R3 × R× S2) is a solution of (1.1) in Ω× (0, T ). Then
for any nonnegative φ ∈ C∞0 (Ω× (0, T )), it holds that

2

ˆ
Ω×(0,T )

(
|∇u|2 + |∆d+ |∇d|2d|2

)
φ ≤
ˆ

Ω×(0,T )

(
|u|2 + |∇d|2

)
(φt + ∆φ)

+

ˆ
Ω×(0,T )

(|u|2 + |∇d|2 + 2P )u · ∇φ

+ 2

ˆ
Ω×(0,T )

(
∇d�∇d− |∇d|2I3

)
: ∇2φ

+ 2

ˆ
Ω×(0,T )

∇d�∇d : u⊗∇φ.

(4.1)

Proof. Multiplying (1.1)1 by uφ and integrating the resulting equation over Ω× (0, T ) yields

ˆ
Ω×(0,T )

ut · uφ+

ˆ
Ω×(0,T )

(u · ∇u) · uφ−
ˆ

Ω×(0,T )

∆u · uφ+

ˆ
Ω×(0,T )

∇P · uφ

=

ˆ
Ω×(0,T )

∇d�∇d : ∇(uφ).

(4.2)

Applying integration by parts, the terms on the left hand side of (4.2) can be estimated by

ˆ
Ω×(0,T )

ut · uφ = −
ˆ

Ω×(0,T )

1

2
|u|2φt,

ˆ
Ω×(0,T )

(u · ∇u) · uφ = −
ˆ

Ω×(0,T )

1

2
|u|2u · ∇φ,

ˆ
Ω×(0,T )

∆u · uφ = −
ˆ

Ω×(0,T )

|∇u|2φ+

ˆ
Ω×(0,T )

1

2
|u|2∆φ,

ˆ
Ω×(0,T )

∇P · uφ = −
ˆ

Ω×(0,T )

P (u · ∇φ).

For the term on the right hand side of (4.2), we have

ˆ
Ω×(0,T )

∇d�∇d : ∇ · (uφ) =

ˆ
Ω×(0,T )

∇d�∇d : [(∇u)φ+ u⊗∇φ] .
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Putting these identities into (4.2) yieldsˆ
Ω×(0,T )

−1

2
|u|2(φt + ∆φ)− (

1

2
|u|2 + P )(u · ∇φ) +

ˆ
Ω×(0,T )

|∇u|2φ

=

ˆ
Ω×(0,T )

(∇d�∇d) : [φ∇u+ u⊗∇φ] .

(4.3)

Differentiating (1.1)3 with respect to x and integrating against (∇d)φ, we haveˆ
Ω×(0,T )

(∇d)t : (∇d)φ+

ˆ
Ω×(0,T )

∇(u · ∇d) : (∇d)φ =

ˆ
Ω×(0,T )

∇
[
∆d+ |∇d|2d

]
: (∇d)φ (4.4)

For the first term on the left hand side of (4.4), we haveˆ
Ω×(0,T )

(∇d)t : (∇d)φ = −
ˆ

Ω×(0,T )

1

2
|∇d|2φt.

Using (1.1)2, we can simplify the second term on the left hand side of (4.4) intoˆ
Ω×(0,T )

∇(u · ∇d) : (∇d)φ =

ˆ
Ω×(0,T )

ujαdj · dαφ+

ˆ
Ω×(0,T )

ujdjα · dαφ

=

ˆ
Ω×(0,T )

∇u : ∇d�∇dφ+

ˆ
Ω×(0,T )

1

2
u · ∇(|∇d|2)φ

=

ˆ
Ω×(0,T )

∇u : ∇d�∇dφ−
ˆ

Ω×(0,T )

1

2
(u · ∇φ)|∇d|2.

For the term on the right hand side of (4.4), differentiating |d| = 1 gives

∇d · d = 0 and ∆d · d+ |∇d|2 = 0.

Thus, by integration by parts we haveˆ
Ω×(0,T )

∇
[
∆d+ |∇d|2d

]
· ∇dφ = −

ˆ
Ω×(0,T )

[
∆d+ |∇d|2d

]
· [∆dφ+∇d · ∇φ]

= −
ˆ

Ω×(0,T )

|∆d+ |∇d|2d|2φ−
ˆ

Ω×(0,T )

∆d · (∇d · ∇φ).

By integration by parts we have

−
ˆ

Ω×(0,T )

∆d(∇d · ∇φ) =

ˆ
Ω×(0,T )

(∇d�∇d) : ∇2φ−
ˆ

Ω×(0,T )

1

2
|∇d|2∆φ

=

ˆ
Ω×(0,T )

(
∇d�∇d− |∇d|2I3

)
: ∇2φ+

ˆ
Ω×(0,T )

1

2
|∇d|2∆φ.

Inserting these identities into (4.4) yieldsˆ
Ω×(0,T )

[−1

2
|∇d|2(φt + ∆φ)− 1

2
|∇d|2(u · ∇φ)] +

ˆ
Ω×(0,T )

∇u : ∇d�∇dφ

=

ˆ
Ω×(0,T )

(
∇d�∇d− |∇d|2I3

)
: ∇2φ−

ˆ
Ω×(0,T )

|∆d+ |∇d|2d|2φ.
(4.5)

Combining (4.3) with (4.5) yields (4.1). �

Corollary 4.3. Suppose that (u, P, d) : Ω× (0, T )→ R3 × R× S2 is a suitable weak solution of the system
(1.1) in Ω× (0, T ). Then for any nonnegative φ ∈ C∞(Ω× (0, T )) and 0 < t < T , it holdsˆ

Ω×{t}
(|u|2 + |∇d|2)φ+ 2

ˆ
Ω×(0,t)

(|∇u|2 + |∆d+ |∇d|2d|2)φ

≤
ˆ

Ω×(0,t)

(|u|2 + |∇d|2)(φt + ∆φ) +

ˆ
Ω×(0,t)

(|u|2 + |∇d|2 + 2P )u · ∇φ

+ 2

ˆ
Ω×(0,t)

(∇d�∇d− |∇d|2I3) : ∇2φ+ 2

ˆ
Ω×(0,t)

∇d�∇d : u⊗∇φ.

(4.6)
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Proof. For ε > 0, let ηε ∈ C∞([0, t]) be such that 0 ≤ η ≤ 1, η = 1 in [0, t− 2ε], and η = 0 in [t− ε, t]. (4.6)
follows by first applying (4.1), with φ replaced by ηε(t)φ(x, t), and then taking ε→ 0. �

Let C(3) > 0 denote the best Sobolev constant of R3:

C(3) := inf
{‖∇f‖L2(R3)

‖f‖L6(R3)
: 0 6= f ∈ C∞0 (R3)

}
, (4.7)

and D(3) > 0 denote the constant in the following W 2,2-estimate:

‖∇2f‖L2(B1) ≤ D(3)‖∆f‖L2(B1) + C‖∇f‖
W

1
2
,2(∂B1)

, ∀ f ∈W 2,2(B1). (4.8)

For z0 = (x0, t0) ∈ R3 × (0, T ) and r0 > 0, denote

Br0(x0) = {x ∈ R3 : |x− x0| < r0}, Pr0(z0) = Br0(x0)× (t0 − r2
0, t0].

Now we are ready to prove the following ε0-regularity theorem.

Theorem 4.4. For any δ > 0, there exists ε0 > 0 such that (u, P, d) : Ω× (0, T )→ R3×R×S2 is a suitable
weak solution to (1.1), and satisfies, for z0 = (x0, t0) ∈ Ω× (0, T ) and Pr0(z0) ⊂ Ω× (0, T ),(

r−2
0

ˆ
Pr0 (z0)

|u|3
) 1

3

+

(
r−2
0

ˆ
Pr0 (z0)

|P | 32
) 2

3

+

(
r−2
0

ˆ
Pr0 (z0)

|∇d|3
) 1

3

≤ ε0, (4.9)

and ∥∥∥∇d∥∥∥
L∞t L

3
x(Pr0 (z0))

<
1− δ
C(3)D(3)

, (4.10)

then (u, d) ∈ C∞(P r0
4

(z0),R3 × S2), and the following estimate holds:

‖(u, d)‖Cm(P r0
4

(z0)) ≤ C(m, r0, ε0), ∀ m ≥ 0. (4.11)

The crucial ingredient to prove Theorem 4.4 is the following decay lemma, which is analogous to that of
the Navier-Stokes equations by [18] and [7].

Lemma 4.5. For any δ > 0, there exist ε0 > 0 and θ0 ∈ (0, 1
2 ) such that if (u, P, d) : Ω×(0, T )→ R3×R×S2

is a suitable weak solution of (1.1), and satisfies, for z0 = (x0, t0) ∈ Ω × (0, T ) and Pr0(z0) ⊂ Ω × (0, T ),
both (4.9) and (4.10), then it holds that((θ0r0)−2

ˆ
Pθ0r0 (z0)

|u|3
) 1

3

+

(
(θ0r0)−2

ˆ
Pθ0r0 (z0)

|P | 32
) 2

3

+

(
(θ0r0)−2

ˆ
Pθ0r0 (z0)

|∇d|3
) 1

3


≤ 1

2

(r−2
0

ˆ
Pr0 (z0)

|u|3
) 1

3

+

(
r−2
0

ˆ
Pr0 (z0)

|P | 32
) 2

3

+

(
r−2
0

ˆ
Pr0 (z0)

|∇d|3
) 1

3

 .
(4.12)

Proof. By the invariance of (1.1) under translations and parabolic dilations, it suffices to consider the case
that z0 = (0, 0) and r0 = 1. We will prove the Lemma by contradiction. Suppose that the conclusion were
false. Then there would exist δ0 > 0 such that for any θ ∈ (0, 1) there are a sequence of suitable weak
solutions (ui, Pi, di) of (1.1) in P1, that satisfy(ˆ

P1

|ui|3
) 1

3

+

(ˆ
P1

|Pi|
3
2

) 2
3

+

(ˆ
P1

|∇di|3
) 1

3

= εi → 0, (4.13)

‖∇di‖L∞t L3
x(P1) ≤

1− δ0
C(3)D(3)

, (4.14)

and [(
θ−2

ˆ
Pθ

|ui|3
) 1

3

+

(
θ−2

ˆ
Pθ

|Pi|
3
2

) 2
3

+

(
θ−2

ˆ
Pθ

|∇di|3
) 1

3

]

>
1

2

[(ˆ
P1

|ui|3
) 1

3

+

(ˆ
P1

|Pi|
3
2

) 2
3

+

(ˆ
P1

|∇di|3
) 1

3

]
.

(4.15)
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Now we define the blow-up sequence (vi, Qi, ei) : P1 → R3 × R× R3 by

vi(z) =
ui(z)

εi
, Qi(z) =

Pi(z)

εi
, ei(z) =

di(z)− (di)1

εi
, z ∈ P1,

where (di)1 =
1

|P1|

ˆ
P1

di is the average of di over P1.

Then (vi, Qi, ei) satisfy the following equations in P1:
∂tvi −∆vi +∇Qi = −εi[vi · ∇vi +∇ · (∇ei �∇ei)],

∇ · vi = 0,

∂tei −∆ei = εi[|∇ei|2di − vi · ∇ei].
(4.16)

It follows from (4.13) and (4.15) that for any θ ∈ (0, 1
2 ),(ˆ

P1

|vi|3
) 1

3

+

(ˆ
P1

|Qi|
3
2

) 2
3

+

(ˆ
P1

|∇ei|3
) 1

3

= 1, (4.17)

and (
θ−2

ˆ
Pθ

|vi|3
) 1

3

+

(
θ−2

ˆ
Pθ

|Qi|
3
2

) 2
3

+

(
θ−2

ˆ
Pθ

|∇ei|3
) 1

3

>
1

2
. (4.18)

Applying the W 2,1
3
2

-estimate to the equation (4.16)3, we have that ∇2ei ∈ L
3
2 (P 7

8
) and∥∥∇2ei

∥∥
L

3
2 (P 7

8
)
.
(
‖vi‖2L3(P1) + ‖∇ei‖2L3(P1)

)
≤ C. (4.19)

By the Fubini Theorem and (4.19), we may assume thatˆ
∂B 3

4
×[−( 3

4 )2,0]

|∇2ei|
3
2 ≤ C

ˆ
P 7

8

|∇2ei|
3
2 ≤ C. (4.20)

Since (ui, Qi, di) satisfies (4.6) in P1, by choosing suitable test functions φ we have that

sup
−( 3

4 )
2≤t≤0

ˆ
B 3

4

(|ui|2 + |∇di|2) +

ˆ
P 3

4

(|∇ui|2 + |∆di + |∇di|2di|2)

≤ C
ˆ
P1

(|ui|2 + |∇di|2) + (|Qi|+ |ui|2 + |∇di|2)|ui|.
(4.21)

Rescaling (4.21), applying (4.17), and using the Hölder inequality, we have

sup
−( 3

4 )
2≤t≤0

ˆ
B 3

4

(|vi|2 + |∇ei|2) +

ˆ
P 3

4

(|∇vi|2 +
∣∣∆ei + εi|∇ei|2di

∣∣2)

≤ C
ˆ
P1

(|vi|2 + |∇ei|2) + (|Qi|+ εi|vi|2 + εi|∇ei|2)|vi| ≤ C.
(4.22)

By the W 2,2-estimate (4.8) and the Sobolev inequality, we haveˆ
B 3

4

|∇2ei|2 ≤ D2(3)

ˆ
B 3

4

|∆ei|2 + C‖∇ei‖2
W

1
2
,2(∂B 3

4
)

≤ D2(3)

ˆ
B 3

4

|∆ei|2 + C‖∇2ei‖2
W 2, 3

2 (∂B 3
4

)
,

so that, by integrating over t ∈ [−(
3

4
)2, 0] and applying (4.20), it holds that

ˆ
P 3

4

|∇2ei|2 ≤ D2(3)

ˆ
P 3

4

|∆ei|2 + C

ˆ 0

−( 3
4 )2
‖∇2ei‖2

W 2, 3
2 (∂B 3

4
)

≤ C +D2(3)

ˆ
P 3

4

|∆ei|2. (4.23)



16 J. HINEMAN AND C. WANG

By the point-wise identity |∆ei|2 = |∆ei + εi|∇ei|2di|2 + ε2i |∇ei|4, we haveˆ
P 3

4

|∆ei|2 =

ˆ
P 3

4

|∆ei + εi|∇ei|2di|2 + ε2i

ˆ
P 3

4

|∇ei|4. (4.24)

By the Hölder inequality, the Young inequality, and the Sobolev inequality, we have

‖∇ei‖4L4(B 3
4

) ≤ ‖∇ei‖
2
L3(B 3

4
)‖∇ei‖

2
L6(B 3

4
)

≤ ‖∇ei‖2L3(B 3
4

)

(
‖∇ei − (∇ei) 3

4
‖2L6(B 3

4
) + ‖(∇ei) 3

4
‖L6(B 3

4
)

)2

≤ (1 + δ0)2C2(3)‖∇ei‖2L3(B 3
4

)‖∇
2ei‖2L2(B 3

4
) + C(δ0)‖∇ei‖2L3(B 3

4
)‖∇ei‖

2
L2(B 3

4
), (4.25)

where (∇ei) 3
4

is the average of ∇ei over B 3
4
. Integrating (4.25) over t ∈ [−(

3

4
)2, 0] yields

ε2i

ˆ
P 3

4

|∇ei|4 ≤ (1 + δ0)2C2(3)‖∇di‖2L∞t L3
x(P 3

4
)

ˆ
P 3

4

|∇2ei|2

+C(δ0)( sup
−( 3

4 )2≤t≤0

ˆ
B 3

4

|∇di|2)‖∇ei‖2L3(P 3
4

)

≤ C(δ0) + (1 + δ0)2C2(3)‖∇di‖2L∞t L3
x(P 3

4
)

ˆ
P 3

4

|∇2ei|2. (4.26)

Inserting the estimate (4.26) first into (4.24) and then (4.23), we obtain[
1− (1 + δ0)2C2(3)D2(3)‖∇di‖2L∞t L3

x(P1)

] ˆ
P 3

4

|∇2ei|2

≤ C(δ0) + C

ˆ
P 3

4

|∆ei + εi|∇ei|2di|2 ≤ C(δ0). (4.27)

Therefore, by applying (4.22) to (4.27), we haveˆ
P 3

4

|∇2ei|2 ≤ C(δ0). (4.28)

Combining the estimates (4.22) and (4.28), we obtainˆ
P 1

2

|Qi|
3
2 + sup

t∈[− 1
4 ,0]

ˆ
B 1

2

(|vi|2 + |∇ei|2) +

ˆ
P 1

2

(|∇vi|2 + |∇2ei|2) ≤ C. (4.29)

We may assume, after taking possible subsequences, that
Qi → Q weakly in L

3
2 (P 1

2
),

vi → v strongly in L2(P 1
2
), ∇vi → ∇v weakly in L2(P 1

2
),

ei → e and ∇ei → ∇e strongly in L2(P 1
2
), ∇2ei → ∇2e weakly in L2(P 1

2
).

Sending i to ∞ in the equation (4.16) yields that (v,Q, e) satisfies in P 1
2

∂tv −∆v +∇Q = 0,

∇ · v = 0,

∂te−∆e = 0.

(4.30)

Using the Sobolev inequality and interpolations, we see that (4.29) givesˆ
P 1

2

|v|3 + |Q| 32 + |∇e|3 ≤ C. (4.31)
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Hence, by the standard estimates on the linear Stokes equation and the heat equation, we have that for any
θ ∈ (0, 1

2 ), it holds

θ−2

ˆ
Pθ

(|v|3 + |∇e|3) ≤ Cθ3

ˆ
P 1

2

(|v|3 + |∇e|3) ≤ Cθ3, θ−2

ˆ
Pθ

|Q| 32 ≤ Cθ
ˆ
P 1

2

|Q| 32 ≤ Cθ. (4.32)

In order to reach a contradiction, we need to show that (vi, Qi, ei) converges to (v,Q, e) strongly in L3(P 2
5
).

To do so, we recall the following Lemma (see [26]).

Lemma 4.6. Let X0 ⊂ X ⊂ X1 be Banach spaces such that X0 is compactly embedded in X, X is continu-
ously embedded in X1, and X0, X1 are reflexive. Then for 1 < α0, α1 <∞,{

u ∈ Lα0(0, T ;X0) : ∂tu ∈ Lα1(0, T ;X1)
}

is compactly embedded in Lα0(0, T ;X).

Now we have the following claims.
Claim 1. vi → v strongly in L2(P 2

5
). From (4.29) and interpolation inequalities, we have

‖vi‖
L

10
3 (P 1

2
)

+ ‖vi‖L∞t L2
x(P 1

2
) + ‖∇vi‖L2(P 1

2
) ≤ C,

‖∇ei‖
L

10
3 (P 1

2
)

+ ‖∇ei‖L∞t L2
x(P 1

2
) + ‖∇2ei‖L2(P 1

2
) ≤ C.

So by the Hölder inequality, we have

ˆ
P 1

2

|vi · ∇vi|
5
4 ≤

ˆ
P 1

2

|vi|
10
3

 3
8
ˆ

P 1
2

|∇vi|2
 5

8

≤ C,

ˆ
P 1

2

|∇ · (∇ei �∇ei)|
5
4 ≤

ˆ
P 1

2

|∇2ei|2
 5

8
ˆ

P 1
2

|∇ei|
10
3

 3
8

≤ C.

These inequalities imply ∥∥∥εi [vi · ∇vi +∇ · (∇ei �∇ei)]
∥∥∥
L

5
4 (P 1

2
)
≤ C. (4.33)

By (4.33) and the W 2,1
α -estimate of the linear Stokes equation, we have∥∥∥∂tvi∥∥∥

L
5
4 (P 2

5
)
≤ C. (4.34)

Hence {vi} is bounded in

X1 =
{
u ∈ L2

tH
1
x(P 2

5
) : ∂tu ∈ L

5
4
t L

5
4
x (P 2

5
)
}
.

Since X1 is compactly embedded in L2
tL

2
x(P 2

5
) by Lemma 4.6, we conclude that vi → v strongly in L2(P 2

5
).

Claim 2. ∇ei → ∇e strongly in L2(P 2
5
). Using (4) and the Hölder inequality we have

‖vi · ∇ei‖
L

20
11 (P 1

2
)
≤ ‖vi‖

L
10
3 (P 1

2
)
‖∇ei‖L4(P 1

2
) ≤ C,

so that ∥∥|∇ei|2di + vi · ∇ei
∥∥
L

20
11 (P 1

2
)
≤ C. (4.35)

Hence the W 2,1
α -estimate for the heat equation implies

‖∂t∇ei‖
L

20
9
t W

−1, 20
9

x (P 2
5

)
≤ C. (4.36)

By (4) and (4.36), we have {∇ei} is bounded in

X2 =
{
u ∈ L2

tH
1
x(P 2

5
) : ∂tu ∈ L

20
9
t W

−1, 209
x (P 2

5
)
}
,

and so by Lemma 4.6, we have that ∇ei → ∇e strongly in L2(P 2
5
). It is easy to see that by interpolations,

the claims imply that
vi → v, ∇ei → ∇e strongly in L3(P 2

5
). (4.37)
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From (4.37) and (4.32), we conclude that for any θ ∈ (0, 1
4 ) and i sufficiently large,

θ−2

ˆ
Pθ

|vi|3 + |∇ei|3 ≤ θ−2

ˆ
Pθ

|v|3 + |∇e|3 + o(1) ≤ Cθ3. (4.38)

Finally using the estimate (4.40) below, with τ = θ and r = 1
2 , we have that for any 0 < θ < 1

4 ,

θ−2

ˆ
Pθ

|Pi|
3
2 ≤ C

θ−2

ˆ
P 1

2

(|ui|3 + |∇di|3) + θ

ˆ
P 1

2

|Pi|
3
2

 .
After scaling, this implies that for any 0 < θ < 1

4 ,

θ−2

ˆ
Pθ

|Qi|
3
2 ≤ C

θ−2ε
3
2
i

ˆ
P 1

2

(|vi|3 + |∇ei|3) + θ

ˆ
P 1

2

|Qi|
3
2

 ≤ C(ε
3
2
i θ
−2 + θ). (4.39)

Combining (4.38) and (4.39), we have that for sufficiently large i = i(θ),

θ−2

ˆ
Pθ

(|vi|3 + |∇ei|3 + |Qi|
3
2 ) ≤ Cθ.

This contradicts (4.18), if we choose θ ∈ (0, 1
4 ) sufficiently small. �

The next Lemma gives the estimate of pressure function, which is needed in the proof of Lemma 4.5.

Lemma 4.7. Suppose that (u, P, d) is a suitable weak solution of (1.1) on P1. Then for any 0 < r ≤ 1 and
τ ∈ (0, r2 ), it holds that

1

τ2

ˆ
Pτ

|P | 32 ≤ C
[( r
τ

)2 1

r2

ˆ
Pr

(|u− ur(t)|3 + |∇d|3) +
(τ
r

) 1

r2

ˆ
Pr

|P | 32
]
, (4.40)

where ur(t) =
1

|Br|

ˆ
Br

u(x, t) for −r2 ≤ t ≤ 0. In particular, it holds that

1

τ2

ˆ
Pτ

|P | 32 ≤ C
( r
τ

)2
(

sup
−r2≤t≤0

1

r

ˆ
Br

|u|2
) 3

4 (
1

r

ˆ
Pr

|∇u|2
) 3

4

+ C

[( r
τ

)2 1

r2

ˆ
Pr

|∇d|3 +
(τ
r

) 1

r2

ˆ
Pr

|P | 32
]
.

(4.41)

Proof. By scaling, it suffices to consider the case r = 1. Using the equation (1.1)2, we have

div div [(u− u1(t))⊗ (u− u1(t))] = ∇j∇i
(
(u− u1(t))i(u− u1(t))j

)
= ∇j

(
(u− u1(t))i∇i(u− u1(t))j

)
= ∇j

(
(u− u1(t))i∇iuj

)
= ∇j(u− u1(t))i∇iuj + (u− u1(t))i∇i∇juj

= (∇jui)(∇iuj) = ∇j∇i(uiuj) = div div(u⊗ u).

Taking the divergence of (1.1)1, this yields

∆P = −div div [(u− u1(t))⊗ (u− u1(t)) +∇d�∇d] . (4.42)

Let η ∈ C∞0 (R3) be a cut-off function of B 1
2
, i.e. 0 ≤ η ≤ 1, η ≡ 1 on B 1

2
, η ≡ 0 outside B1, and |∇η| ≤ C.

Define P̃ by

P̃ (x, t) = −
ˆ
R3

∇2
yG(x− y) : η2(y) ((u− u1(t))⊗ (u− u1(t)) +∇d�∇d) (y, t),

where G is the fundamental solution of the Laplace equation on R3. We have

∆P̃ = div div ((u− u1(t))⊗ (u− u1(t)) +∇d�∇d) in R3.
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By the Calderon-Zygmund Lp-theory we haveˆ
Bτ

|P̃ (t)| 32 ≤
ˆ
R3

|P̃ (t)| 32 .
ˆ
R3

η3 |(u− u1(t))⊗ (u− u1(t)) +∇d�∇d|
3
2

.
ˆ
B1

(
|u− u1(t)|3 + |∇d|3

)
.

Integrating this inequality over t ∈ (−τ2, 0) yields

1

τ2

ˆ
Pτ

|P̃ | 32 ≤ C

τ2

ˆ
P1

(|u− u1(t)|3 + |∇d|3). (4.43)

Since the function Q := P − P̃ ∈ L 3
2 (P1) satisfies

∆Q(t) = 0 in B 1
2
, ∀ t ∈ [−1

4
, 0],

we have by the Harnack inequality that for any 0 < τ < 1
2 ,

1

τ2

ˆ
Bτ

|Q| 32 ≤ Cτ
ˆ
B 1

2

|Q| 32 ≤ Cτ
[ˆ

B1

|P | 32 +

ˆ
B1

|P̃ | 32
]

≤ Cτ
[ˆ

B1

|P | 32 +

ˆ
B1

|u− u1(t)|3 + |∇d|3
]
.

Integrating this inequality over t ∈ [−τ2, 0] implies

1

τ2

ˆ
Pτ

|Q| 32 ≤ Cτ
[ˆ

P1

|P | 32 +

ˆ
P1

|u− u1(t)|3 + |∇d|3
]
. (4.44)

It is now readily seen that (4.40) follows by adding the inequalities (4.43) and (4.44). Using interpolation
and the Sobolev inequality, we have

ˆ
B1

|u− u1|3 ≤ C
(ˆ

B1

|u|2
) 3

4
(ˆ

B1

|∇u|2
) 3

4

. (4.45)

Inserting (4.45) into (4.40) yields (4.41). �

Continuing to iterate the above process, we have

Corollary 4.8. Under the same assumptions as Lemma 4.5, there exists α ∈ (0, 1) such that for any
z1 ∈ P r0

2
(z0) and 0 < τ < r < r0

2 , it holds(
1

τ2

ˆ
Pτ (z1)

|u|3
) 1

3

+

(
1

τ2

ˆ
Pτ (z1)

|P | 32
) 2

3

+

(
1

τ2

ˆ
Pτ (z1)

|∇d|3
) 1

3

≤
(τ
r

)α ( 1

r2

ˆ
Pr(z1)

|u|3
) 1

3

+

(
1

r2

ˆ
Pr(z1)

|P | 32
) 2

3

+

(
1

r2

ˆ
Pr(z1)

|∇d|3
) 1

3

 .
(4.46)

Proof. Set r1 = r0
2 and ε1 = 2

8
3 ε0. Then it follows from (4.9) and (4.10) that for any z1 ∈ P r0

2
(z0), both (4.9)

and (4.10) also hold for (u, P, d) with z0, r0 and ε0 replaced by z1, r1 and ε1 respectively. For 0 < ρ < r1,
define Φ(ρ) by

Φ(ρ) :=

(
1

ρ2

ˆ
Pρ(z1)

|u|3
) 1

3

+

(
1

ρ2

ˆ
Pρ(z1)

|P | 32
) 2

3

+

(
1

ρ2

ˆ
Pρ(z1)

|∇d|3
) 1

3

.

Then applying Lemma 4.5 for (u, P, d) on Pr1(z1), there exists θ0 ∈ (0, 1
2 ) such that for any 0 < r ≤ r1, it

holds that

Φ(θ0r) ≤
1

2
Φ(r) ≤ 1

2
ε1.

Iterating (4) k-times, k ≥ 1, yields

Φ(θk0r) ≤ 2−kΦ(r).
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It is well known that this implies that there exists α ∈ (0, 1) such that for any 0 < τ < r ≤ r1, Φ(τ) ≤
(
τ

r
)αΦ(r). Therefore (4.46) holds. �

Proof of Theorem 4.4. We will now prove the smoothness of (u, d) in P r0
4

(z0) by the estimate (4.46).

The idea is based on the Riesz potential estimates between Morrey spaces, that is analogous to those of
Huang-Wang [10] and Lin-Wang [22].

First, let’s recall the notion of Morrey spaces on R3 × R, equipped with the parabolic metric δ:

δ
(

(x, t), (y, s)
)

= max
{
|x− y|,

√
|t− s|

}
, ∀ (x, t), (y, s) ∈ R3 × R.

For any open set U ⊂ R3+1, 1 ≤ p < +∞, and 0 ≤ λ ≤ 5, define the Morrey Space Mp,λ(U) by

Mp,λ(U) :=

{
v ∈ Lploc(U) : ‖v‖pMp,λ(U) ≡ sup

z∈U,r>0
rλ−5

ˆ
Pr(z)∩U

|v|p <∞

}
. (4.47)

By Corollary 4.8 we have that for some α ∈ (0, 1),

u, ∇d ∈M3,3(1−α)
(
P r0

2
(z0)

)
. (4.48)

Write the equation (1.1)3 as

∂td−∆d = f, with f := (|∇d|2d− u · ∇d). (4.49)

By (4.48), we see that

f ∈M 3
2 ,3(1−α)

(
P r0

2
(z0)

)
.

As in [22] and [10], let η ∈ C∞0 (R3+1) be a cut-off function of P r0
2

(z0): 0 ≤ η ≤ 1, η ≡ 1 in P r0
2

(z0), and

|∂tη|+ |∇2η| ≤ Cr−2
0 . Set w = η2d. Then we have

∂tw −∆w = F, F := η2f + (∂tη
2 −∆η2)d− 2∇η2 · ∇d. (4.50)

It is easy to check that F ∈M 3
2 ,3(1−α)(R3+1) and satisfies the estimate∥∥∥F∥∥∥

M
3
2
,3(1−α)(R3+1)

≤ C
[
1 + ‖f‖

M
3
2
,3(1−α)(P r0

2
(z0))

]
≤ C(1 + ε0). (4.51)

Let Γ(x, t) denote the fundamental solution of the heat equation on R3. Then by the Duhamel formula for
(4.50) and the estimate (see [10] Lemma 3.1):

|∇Γ|(x, t) . 1

δ4((x, t), (0, 0))
, ∀(x, t) 6= (0, 0),

we have

|∇w(x, t)| ≤
ˆ t

0

ˆ
R3

|∇Γ(x− y, t− s)||F (y, s)| ≤ C
ˆ
R4

|F (y, s)|
δ4((x, t), (y, s))

:= CI1(|F |)(x, t), (4.52)

where Iβ is the Riesz potential of order β on R4 (β ∈ [0, 5]), defined by

Iβ(g) =

ˆ
R4

|g(y, s)|
δ((x, t), (y, s))5−β , g ∈ Lp(R4). (4.53)

Applying the Riesz potential estimates (see [10] Theorem 3.1), we conclude that ∇w ∈ M
3(1−α)
1−2α ,3(1−α)(R4)

and ∥∥∥∇w∥∥∥
M

3(1−α)
1−2α

,3(1−α)
(R4)
.
∥∥∥F∥∥∥

M
3
2
,3(1−α)(R4)

.

[
1 + ‖f‖

M
3
2
,3(1−α)(P r0

2
(z0))

]
. (1 + ε0). (4.54)

Choosing α ↑ 1
2 and using limα↑ 1

2

3(1−α)
1−2α = +∞, we can conclude that for any 1 < q <∞, ∇w ∈ Lq(Pr0(z0))

and ∥∥∥∇w∥∥∥
Lq(Pr0 (z0))

≤ C(q, r0, ε0). (4.55)

Since (d− w) solves

∂t(d− w)−∆(d− w) = 0 in P r0
2

(z0),
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it follows from the standard estimate on the heat equation that for any 1 < q < +∞, ∇d ∈ Lq(P r0
4

(z0)) and∥∥∥∇d∥∥∥
Lq(P r0

4
(z0))

≤ C(q, r0, ε0). (4.56)

Now we proceed with the estimation of u. Let v : R3 × [0,+∞)→ R3 solve the Stokes equation:
∂tv −∆v +∇Q = −∇ · [η2(∇d�∇d+ u⊗ u)] in R3 × (0,∞),

∇ · v = 0 in R3 × (0,∞),

v(·, 0) = 0 in R3.

(4.57)

By using the Oseen kernel (see Leray [14]), an estimate for v, similar to (4.52), can be given by

|v(x, t)| ≤ C
ˆ t

0

ˆ
R3

|X(y, s)|
δ((x, t), (y, s))3+1

≤ CI1(|X|)(x, t), (x, t) ∈ R3 × (0,+∞), (4.58)

where X = η2(∇d�∇d+ u⊗ u). As above, we can check that X ∈M 3
2 ,3(1−α)(R4) and∥∥∥X∥∥∥

M
3
2
,3(1−α)(R4)

≤ C
[
‖∇d‖2M3,3(1−α)(P r0

2
(z0)) + ‖u‖2M3,3(1−α)(P r0

2
(z0))

]
.

Hence, by [10] Theorem 3.1, we have that v ∈M
3(1−α)
1−2α ,3(1−α)(R4), and∥∥∥v∥∥∥

M
3(1−α)
1−2α

,3(1−α)
(R4)
≤ C

∥∥∥X∥∥∥
M

3
2
,3(1−α)(R4)

≤ C
[
‖∇d‖2M3,3(1−α)(P r0

2
(z0)) + ‖u‖2M3,3(1−α)(P r0

2
(z0))

]
. (4.59)

By sending α ↑ 1
2 , (4.59) implies that for any 1 < q < +∞, v ∈ Lq (Pr0(z0)) and∥∥∥v∥∥∥

Lq(Pr0 (z0))
≤ C(q, r0, ε0). (4.60)

Note that (u− v) satisfies the linear homogeneous Stokes equation in P r0
2

(z0):

∂t(u− v)−∆(u− v) +∇(P −Q) = 0, ∇ · (u− v) = 0 in P r0
2

(z0).

It is well-known that (u − v) ∈ L∞(P r0
4

(z0)). Therefore we conclude that for any 1 < q < +∞, u ∈
Lq(P r0

4
(z0)), and ∥∥∥u∥∥∥

Lq(P r0
4

(z0))
≤ C(q, r0, ε0). (4.61)

It is now standard that by (4.56) and (4.61), and estimates for the linear parabolic equation and the linear
Stokes equation, (u, d) ∈ C∞(P r0

4
(z0),R3 × S2) and the estimate (4.11) holds. �

5. Existence of L3
uloc-solutions and Proofs of Theorem 1.2

In this section, we will prove our main result – Theorem 1.2.

Proof of Theorem 1.2. First, observe that by the scaling invariance of (1.1), (u, P, d) : R3 × [0, T ) →
R3 × R × S2 solves (1.1) under the initial condition (u0, d0) if and only if for any λ > 0, (uλ, Pλ, dλ) :
R3 × [0, Tλ)→ R3 × R× S2 solves (1.1) under the initial condition (uλ0 , d

λ
0 ). Here

Tλ = λ−2T, (uλ0 (x), dλ0 (x)) = (λu0(λx), d0(λx)) for x ∈ R3;

and (
uλ(x, t), Pλ(x, t), dλ(x, t)

)
=
(
λu(λx, λ2t), λ2P (λx, λ2t), d(λx, λ2t)

)
for (x, t) ∈ R3 × [0, Tλ).

Therefore it suffices to prove Theorem 4.4 for R = 1. We divide the proof into six steps.

Step 1. Approximation of (u0, d0) by smooth initial data. We summarize this step into the following lemma.
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Lemma 5.1. For a sufficiently small ε0 > 0, let (u0, d0) : R3 → R3 × S2, with u0 ∈ L3
uloc(R3) divergence

free and (d0 − e0) ∈ L3(R3) for some e0 ∈ S2, satisfy

|||(u0,∇d0)|||L3
1(R3) ≤ ε0. (5.1)

Then there exist a large constant C0 > 0 and

{(uk0 , dk0)} ⊂ C∞(R3,R3 × S2) ∩
3⋂
p=2

(Lp(R3,R3)× Ẇ 1,p(R3, S2))

such that the following properties hold:
(i) ∇ · uk0 = 0 in R3 for all k ≥ 1.
(ii) As k →∞,

(uk0 , d
k
0)→ (u0, d0) and ∇dk0 → ∇d0 in Lploc(R3) for p = 2, 3. (5.2)

(iii) There exists k0 > 1 such that for any k ≥ k0,

|||(uk0 ,∇dk0)|||L3
1(R3) ≤ C0ε0. (5.3)

We assume Lemma 5.1 for the moment and continue the proof of Theorem 1.2. By modifying the proof of
the local existence Theorem 3.1 of Lin-Lin-Wang [21]2, we can conclude that there exist 0 < Tk < +∞ and
smooth solutions (uk, P k, dk) : R3× [0, Tk]→ R3×R×S2 of (1.1), under the initial condition (uk, dk)|t=0 =
(uk0 , d

k
0). Observe that by applying the proof of Lemma 4.2 with φ ≡ 1, the following energy inequality holds:ˆ

R3

(|uk(t)|2 + |∇dk(t)|2) + 2

ˆ t

0

ˆ
R3

|∇uk|2 + |∆dk + |∇dk|2dk|2 =

ˆ
R3

(|uk0 |2 + |∇dk0 |2), 0 ≤ t ≤ Tk. (5.4)

In particular, we have that (uk, dk) ∈ C([0, Tk], L2(R3)× Ẇ 1,2(R3)).

Step 2. Uniform lower bounds of Tk. To see this, we first need to show

Claim. There exists τ0 > 0 such that if Tk is the maximal time interval for the smooth solutions (uk, dk)
obtained in step 1, then Tk ≥ τ0, and

sup
0≤t≤τ0

|||(uk(t),∇dk(t))|||3L3
1
2

(R3) ≤ 2C3
0ε

3
0. (5.5)

To see (5.5), note that (5.3) implies that there exists a maximal time t∗k ∈ (0, Tk] such that

sup
0≤t≤t∗k

|||(uk(t),∇dk(t))|||3L3
1
2

(R3) ≤ 2C3
0ε

3
0. (5.6)

Hence

|||(uk(t∗k),∇dk(t∗k))|||3L3
1
2

(R3) = 2C3
0ε

3
0. (5.7)

By a simple covering argument, we see that (5.6) implies

sup
0≤t≤t∗k

sup
x∈R3

ˆ
B1(x)

(|uk(t)|3 + |∇dk(t)|3) ≤ Cε30. (5.8)

For any fixed x0 ∈ R3, let φ0 ∈ C∞0 (R3) be a cut-off function of B 1
2
(x0):

0 ≤ φ0 ≤ 1, φ0 ≡ 1 on B 1
2
(x0), φ0 ≡ 0 outside B1(x0), and |∇φ0| ≤ 4.

For convenience, we set for 0 ≤ t ≤ t∗k,

Ek3 (φ0; (x0, t)) :=

ˆ
R3

[
|uk(t)|3 + |∇dk(t)|3

]
φ2

0. (5.9)

2For K > 0 and 0 < α < 1, first choose the solution space

XT =
{

(u, d) : R3 × [0, T ]→ R3 × R3 : ∇ · u = 0, ∇2f, ∂tf ∈ Cb(R3 × [0, T ]) ∩ Cα(R3 × [0, T ]),

(u, d)|t=0 = (uk0 , d
k
0), ‖(u− uk0 , d− dk0)‖

C
2,1
α (R3×[0,1])

≤ K
}
,

then follow the fixed point argument as in [21] with slight modifications, one can obtain the local existence of smooth solutions.
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Then by (3.6) and (5.8) we have that for any 0 ≤ t ≤ t∗k,

d

dt
Ek3 (φ0; (x0, t)) + (1− Cε20)

ˆ
R3

[|∇(|uk(t)| 32φ0)|2 + |∇(|∇dk(t)| 32φ0)|2]

≤ C
ˆ
R3

(|uk(t)|3 + |∇dk(t)|3)|∇φ0|2 + C sup
y∈R3

(ˆ
B1(y)

|uk(t)|3 + |∇dk(t)|3
) 5

3

≤ Cε30 + Cε50 ≤ Cε30.

(5.10)

Integrating (5.10) with respect to t ∈ [0, t∗k] yields

Ek3 (φ0; (x0, t
∗
k)) + (1− Cε20)

ˆ t∗k

0

ˆ
R3

[|∇(|uk| 32φ0)|2 + |∇(|∇dk| 32φ0)|2]

≤ Cε30t∗k + Ek3 (φ0; (x0, 0)) ≤ Cε30t∗k + C3
0ε

3
0,

(5.11)

where we have used (5.3) in the last step. Therefore if ε0 > 0 is chosen such that 1 − Cε20 ≥ 0, then (5.11)
implies

Ek3 (φ0; (x0, t
∗
k)) ≤ Cε30t∗k + C3

0ε
3
0.

Taking the supremum of Ek3 (φ0; (x0, t
∗
k)) over x0 ∈ R3, we obtain

2C3
0ε

3
0 = |||(uk(t∗k),∇dk(t∗k)|||3L3

1
2

(R3) ≤ sup
x0∈R3

Ek3 (φ0; (x0, t
∗
k)) ≤ Cε30t∗k + C3

0ε
3
0.

This clearly implies that there exists τ0 > 0 such that Tk ≥ t∗k ≥ τ0. By the definition of t∗k, we also see that
the estimate (5.5) holds.

Step 3. Uniform estimation of (uk, dk). Note that P k satisfies

∆P k = −div2(uk ⊗ uk +∇dk �∇dk) in R3.

It follows from (5.4), (5.5) and Lemma 3.2 that

sup
0≤t≤τ0

sup
x∈R3

∥∥P k(t)− ckx(t)
∥∥
L3(B1(x))

≤ Cε0, (5.12)

where ckx(t) ∈ R depends on both x ∈ R3 and t ∈ [0, τ0]. By (5.5) and (5.12), we see that for any x0 ∈ R3,
(uk, P k − ckx0

, dk) satisfies the conditions of Theorem 4.4 in P√τ0(x0, τ0) := B√τ0(x0) × [0, τ0]. Hence by

Theorem 4.4 we obtain that (uk, dk) ∈ C∞(R3 × (0, τ0),R3 × S2), and

sup
k

∥∥(uk,∇dk)
∥∥
Cm(R3×[δ,τ0])

≤ C(m, δ, ε0) (5.13)

holds for any 0 < δ < τ0
2 and m ≥ 0.

Step 4. Passage to the limit. Based on the estimates of (uk, dk), we may assume, after taking subsequences,

that (u, d) ∈
⋂

0<δ<τ0

C∞b (R3 × [δ, τ0],R3 × S2), with (u,∇d) ∈ L∞([0, τ0], L3
uloc(R3), such that

(uk,∇dk)→ (u,∇d) weakly in L3(R3× [0, τ0]), (uk, dk)→ (u, d) in Cm(BR× [δ, τ0]), ∀ m ≥ 0, R > 0, δ < τ0.

Sending k →∞ in (5.8) yields
sup

0≤t≤τ0
‖(u,∇d)‖L3

1(R3) ≤ Cε0.

We can check from (1.1) and (5.8) that for any R > 0,∥∥(∂tu
k, ∂td

k)
∥∥
L

3
2 ([0,τ0],W−1, 3

2 (BR))
≤ C(R) < +∞.

This implies that
(u(t),∇d(t))→ (u0,∇d0) strongly in L3

loc(R3) as t ↓ 0. (5.14)

In particular, we have that (u0,∇d0) ∈ C0
∗([0, τ0], L3

uloc(R3)).

Step 5. Characterization of the maximal time interval T0. Let T0 > τ0 be the maximal time interval in
which the solution (u, d) constructed in step 4 exists. Suppose that T0 < +∞ and (1.8) were false. Then
there exists r0 > 0 so that

lim sup
t↑T0

|||(u(t),∇d(t))|||L3
r0

(R3) ≤ ε0.
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In particular, there exists r1 ∈ (0, r0] such that

sup
T0−r21≤t≤T0

|||(u(t),∇d(t))|||L3
r1

(R3) ≤ ε0.

Hence by Theorem 4.4, we conclude that (u, d) ∈ C∞b (R3× [0, T0])∩L∞([0, T0], L3
uloc(R3)). This contradicts

the maximality of T0. Hence (1.8) holds.

Step 6. Uniqueness. Let (u1, d1), (u2, d0) : R3× [0, T0]→ R3×S2 be two solutions of (1.1), under the same
initial condition (u0, d0), that satisfy the properties of Theorem 1.2. We first show (u1, d1) ≡ (u2, d2) in
R3 × [0, τ0]. This can be done by the argument of [27] page 15-16. For convenience, we sketch it here.

Set u = u1 − u2, d = d1 − d2. Then (u, d) satisfies
∂tu−∆u = −P∇ · [u1 ⊗ u1 − u2 ⊗ u2 +∇d1 �∇d1 −∇d2 �∇d2]

∂td−∆d = −(u1 · ∇d1 − u2 · ∇d2) + |∇d1|2d1 − |∇d2|2d2

(u, d) |t=0 = (0, 0).

By the Duhamel formula, we have{
u(t) = −V[u1 ⊗ u1 − u2 ⊗ u2 +∇d1 �∇d1 −∇d2 �∇d2]

d(t) = −S[(u1 · ∇d1 − u2 · ∇d2)− (|∇d1|2d1 − |∇d2|2d2)],

where

Sf(t) =

ˆ t

0

e−(t−s)∆f(s) ds, Vf(t) =

ˆ t

0

e−(t−s)∆P∇ · f(s) ds, ∀f : R3 × [0,+∞)→ R3.

Recall the three function spaces used in [27]. Let Xτ0 denote the space of functions f on R3 × [0, τ0] such
that

|||f |||Xτ0
:= sup

0<t≤τ0
‖f(t)‖L∞(R3) + ‖f‖Xτ0 < +∞,

where

‖f‖Xτ0
:= sup

0<t≤τ0

√
t‖∇f(t)‖L∞(R3) + sup

x∈R3,0<r≤√τ0
(r−3

ˆ
Pr(x,r2)

|∇f |2)
1
2 ,

Yτ0 denote the space of functions g on R3 × [0, τ0] such that

||g||Yτ0
:= sup

0<t≤τ0
t‖g(t)‖L∞(R3) + sup

x∈R3,0<r≤√τ0
r−3

ˆ
Pr(x,r2)

|g| < +∞,

and Zτ0 the space of functions h on R3 × [0, τ0] such that

‖h‖Zτ0 := sup
0<t≤τ0

√
t‖h(t)‖L∞(R3) + sup

x∈R3,0<r≤√τ0
(r−3

ˆ
Pr(x,r2)

|h|2)
1
2 < +∞.

Since (ui, di) ∈ L∞([0, τ0], L2(R3) × Ẇ 1,2(R3)) satisfies (1.7) for i = 1, 2, Theorem 4.4 and the Hölder
inequality imply that ui ∈ Zτ0 , di ∈ Xτ0 for i = 1, 2, and

2∑
i=1

(‖ui‖Zτ0 + ‖di‖Xτ0
) ≤ Cε0.

It follows from Lemma 3.1 and Lemma 4.1 of [27] that

‖u‖Zτ0 + |||d|||Xτ0
.

∥∥∥(|u1|+ |u2|)|u|+ (|∇d1|+ |∇d2|)|∇d|
∥∥∥
Yτ0

+
∥∥∥|u||∇d2|+ |u1||∇d|+ (|∇d1|+ |∇d2|)|∇d|+ |∇d2|2|d|

∥∥∥
Yτ0

. [

2∑
i=1

(‖di‖Xτ0
+ ‖ui‖Zτ0 )]‖u‖Zτ0 + [

2∑
i=1

(‖ui‖Zτ0 + ‖di‖Xτ0
)]|||d|||Xτ0

. ε0[‖u‖Zτ0 + |||d|||Xτ0
].

This clearly implies that (u1, d1) ≡ (u2, d2) in R3× [0, τ0]. Since (u1, d1) and (u2, d2) are classical solutions of
(1.1) in R3× [τ0, T0), and (u1, d1) = (u2, d2) at t = τ0, it is well-known that (u1, d1) ≡ (u2, d2) in R3× [τ0, T0).
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The proof is complete. �

Finally, we provide the proof of Lemma 5.1.

Proof of Lemma 5.1: Let θ ∈ C∞([0,+∞)) be such that

θ(r) = 1 for 0 ≤ r ≤ 1; 0 ≤ θ(r) ≤ 1 for 1 ≤ r ≤ 2; θ(r) = 0 for r ≥ 2.

Let η ∈ C∞0 (R3) be a standard mollifier, and define for k ≥ 1

η 1
k

(x) = k3η(kx) and θk(x) = θ(
x

k
) for x ∈ R3.

Step 1. Approximation of d0. This will be done by two rounds of approximation. It follows from (d0− e0) ∈
L3(R3) that there exists k0 > 1 such that for any k ≥ k0, it holdsˆ

R3\Bk−1

|d0 − e0|3 ≤ ε30. (5.15)

By the Fubini theorem, we may assume that for k ≥ k0, it also holds
´
∂Bk
|d0 − e0|3 dH2 ≤ 2

´
R3\Bk−1

|d0 − e0|3 ≤ 2ε30,

supx∈∂Bk
´
∂Bk∩B2(x)

|∇d0|3 dH2 ≤ 4 ‖∇d0‖3L3
2(R3) ≤ Cε30,´

∂Bk
|∇d0|3 dH2 ≤ 2

´
Bk+1

|∇d0|3 . k3 ‖∇d0‖3L3
1(R3) ≤ k3ε30.

(5.16)

Define the approximate sequence d̃k0 : R3 → R3 by

d̃k0(x) =


d0(x) if |x| ≤ k
(|x| − k)e0 + (k + 1− |x|)d0(k x

|x| ) if k ≤ |x| ≤ k + 1

e0 if |x| ≥ k + 1.

Then by direct calculations we have that

‖∇d̃k0‖
p
L(R3)

=

ˆ
Bk

|∇d0|p +

ˆ
Bk+1\Bk

|∇d̃k0 |p

.
ˆ
Bk

|∇d0|p +

ˆ
∂Bk

|∇d0|p dH2 +

ˆ
∂Bk

|d0 − e0|p dH2

. kpεp0 < +∞, for p = 2, 3,∥∥∥∇d̃k0∥∥∥3

L3
1(R3)

. ‖∇d0‖3L3
1(R3) + sup

x∈∂Bk

ˆ
∂Bk∩B1(x)

|d0 − e0|3 dH2

+ sup
x∈∂Bk

ˆ
∂Bk∩B1(x)

|∇d0|3 dH2

≤ Cε30,

and for any x0 ∈ Bk+1 \Bk,

dist(d̃k0(x0), S2) ≤ 1

|B1|

ˆ
B1(x0)

∣∣∣d̃k0(x0)− d0(y)
∣∣∣

.
ˆ
B1(x0)

∣∣∣∣(|x0| − k)e0 + (k + 1− |x0|)d0(k
x0

|x0|
)− d0(y)

∣∣∣∣
.
ˆ
B1(x0)

|d0(y)− e0|+
∣∣∣∣d0(y)− d0(k

x0

|x0|
)

∣∣∣∣
.

(ˆ
R3\Bk

|d0 − e0|3
) 1

3

+ ‖∇d0‖L3
1(R3) ≤ 2ε0.

This implies

sup
x0∈R3

dist(d̃k0(x0), S2) = sup
x0∈Bk+1\Bk

dist(d̃k0(x0), S2) ≤ 2ε0
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so that if ε0 > 0 is chosen sufficiently small then d̃k0(x) remains close to S2 uniformly for x ∈ R3. Therefore

we can project d̃k0 onto S2 to get d̂k0(x) =
d̃k0(x)

|d̃k0(x)|
for x ∈ R3. It is easy to see that d̂k0 : R3 → S2 satisfies:

d̂k0 = d0 in Bk, d̂k0 = e0 in R3\Bk+1,
∥∥∥∇d̂k0∥∥∥

L3
1(R3)

≤ Cε0, and

ˆ
R3

∣∣∣∇d̂k0∣∣∣p ≤ Ckpεp0 < +∞ (p = 2, 3). (5.17)

For any l, k ≥ 1, define dk,l0 (x) =
(
η 1
l
∗ d̂k0

)
(x) for x ∈ R3. Then dk,l0 ∈ C∞(R3,R3) satisfies∥∥∥∇dk,l0

∥∥∥
L3

1(R3)
≤ Cε0, and

ˆ
R3

∣∣∣∇dk,l0

∣∣∣p ≤ Ckpε30 < +∞, ∀ l ≥ 1, (p = 2, 3), (5.18)

and by the modified Poincaré inequality it holds that

sup
x∈R3

dist(dk,l0 (x), S2) .
∥∥∥∇dk,l0

∥∥∥
L3

1(R3)
≤ Cε0, ∀ l ≥ 1, (5.19)

and for any k ≥ 1,

lim
l→∞

(
‖dk,l0 − d0‖Lp(Bk−1) + ‖∇(dk,l0 − d0)‖L(Bk−1)

)
= 0, for p = 2, 3.

Therefore, by the Cauchy diagonal process we may conclude that, after taking possible subsequences, there
exist l(k)→∞ as k →∞ such that

dk0(x) =
d
k,l(k)
0∣∣∣dk,l(k)
0

∣∣∣ (x), ∀ x ∈ R3,

satisfies the desired properties of approximation: dk0 ∈ C∞(R3, S2) ∩ Ẇ 1,p(R3, S2) (p = 2, 3), and∥∥∇dk0∥∥L3
1(R3)

≤ C0ε0, (5.20)

and for any 0 < R < +∞,

lim
k→∞

[
‖dk0 − d0‖Lp(BR) + ‖∇(dk0 − d0)‖Lp(BR)

]
= 0, for p = 2, 3. (5.21)

Next we would like to obtain the desired approximation of u0, whose proof is similar to [2] Theorem 1.4.
For the completeness, we outline the detail below.

Step 2. Approximation of u0. Let P : L2(R3) → PL2(R3) denote the Leray projection operator. For k ≥ 1,
define

ũk0(x) = P[θku0](x), x ∈ R3.

Since θku0 ∈ Lp(R3,R3) and P : Lp(R3) → PLp(R3) is bounded, it follows that ∇ · ũk0 = 0 in R3 and

ũk0 ∈ Lp(R3) for p = 2, 3. Now we want to show∥∥∥ũk0∥∥∥
L3

1(R3)
.
∥∥∥u0

∥∥∥
L3

1(R3)
, (5.22)

and

ũk0 → u0 strongly in Lploc(R3) for p = 2, 3. (5.23)

Since

ũk0(x) = (θku0)(x)−∇∆−1∇ · [θku0](x),

and ‖θku0‖L3
1(R3) ≤ ‖u0‖L3

1(R3), it suffices to show∥∥∥∇∆−1∇ · [θku0]
∥∥∥
L3

1(R3)
.
∥∥∥u0

∥∥∥
L3

1(R3)
.

Set Φ = ∇∆−1∇ · [θku0]. Then we have

ũk0(x) = θ(
x

k
)u0(x)− Φ(x), x ∈ R3.
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It follows from ∇ · u0 = 0 that we have

Φ(x) = ∇∆−1∇ · [θku0](x) = ∇∆−1[(∇θk) · u0](x)

=
1

k

ˆ
R3

K(x− y)∇θ(y
k

) · u0(y)

=
1

k

ˆ
Bk(x)

K(x− y)∇θ(y
k

) · u0(y) +
1

k

ˆ
R3\Bk(x)

K(x− y)∇θ(y
k

) · u0(y)

= I(x) + II(x),

where K(x) = c3
x

|x|3
, c3 =

1

3|B1|
, is the kernel of the operator ∇∆−1. We estimate I and II separately as

follows. It is easy to see that

‖I‖L3
1(R3) ≤

1

k
‖K‖L1(Bk)

∥∥∥∇θ( ·
k

) · u0

∥∥∥
L3

1(R3)
≤ C

∥∥∥u0

∥∥∥
L3

1(R3)
,

while

|II(x)| ≤ C

k3

ˆ
B2k

|u0(y)| ≤ C
∥∥∥u0

∥∥∥
L3

1(R3)
,

so that
‖II‖L3

1(R3) ≤ C ‖u0‖L3
1(R3) .

Combining these two estimates implies (5.22).
For any fixed compact set E ⊂ R3 and x ∈ E, we write

Φ(x) =
c3
k

ˆ
R3

(
x− y
|x− y|3

+
y

|y|3

)
∇θ(y

k
) · u0(y)− c3

k

ˆ
R3

y

|y|3
∇θ(y

k
) · u0(y)

= IIIk(x) + IVk(u0).

Since ∇θ( yk ) has its support in B2k \Bk, for k sufficiently large we have that∣∣∣∣ x− y|x− y|3
+

y

|y|3

∣∣∣∣ ≤ CE
k3

, for x ∈ E and y ∈ B2k \Bk,

and hence it holds

|IIIk(x)| ≤ CE
k4

ˆ
B2k\Bk

|u0(y)| ≤ CE
k

∥∥∥u0

∥∥∥
L3

1(R3)
→ 0 as k →∞,

while it is easy to bound IVk(u0) by

|IVk(u0)| . 1

k3

ˆ
B2k

|u0(y)| .
∥∥∥u0

∥∥∥
L3

1(R3)
.

Hence we may assume that there exists a constant vector c ∈ R3, with |c| ≤ C‖u0‖L3
1(R3), such that

lim
k→∞

IVk(u0) = c.

Now we define

ûk0(x) = ũk0(x) +
3

2
P[θ(

x

k
)c], x ∈ R3.

Then we have that ûk0 ∈ Lp(R3) for p = 2, 3, and∥∥∥ûk0∥∥∥
L3

1(R3)
≤ C

∥∥∥u0

∥∥∥
L3

1(R3)
.

It is easy to check that for any x ∈ E, if k →∞ then

P[θ(
x

k
)c] = θ(

x

k
)c−∇∆−1∇ · [θ(x

k
)c] = θ(

x

k
)c+ o(1) +

c3
k

ˆ
R3

y

|y|3
∇θ(y

k
) · c→ 2

3
c.

Therefore, for any x ∈ E, if k →∞ then

ûk0(x)− u0(x) = (θ(
x

k
)− 1)u0(x)− Φ(x) +

3

2
P[θ(

x

k
)c]

= (θ(
x

k
)− 1)u0(x)− IIIk(x)− IVk(u0) +

3

2
P[θ(

x

k
)c]→ 0.
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This clearly implies (5.23). The proof of Lemma 5.1 is not complete yet, since ûk0 /∈ C∞(R3,R3). To overcome

this, we mollify ûk0 to get

uk,l0 (x) =
(
η 1
l
∗ uk

)
(x), x ∈ R3,∀ l ≥ 1.

Then it is straightforward to check that uk,l0 ∈ C∞(R3,R3) ∩ Lp(R3,R3) for p = 2, 3, ∇ · uk,l0 = 0,∥∥∥uk,l0

∥∥∥
L3

1(R3)
≤
∥∥∥ûk0∥∥∥

L3
1(R3)

≤ C
∥∥∥u0

∥∥∥
L3

1(R3)
,

and for any k ≥ 1,

uk,l0 → ûk0 strongly in Lploc(R3) for p = 2, 3, as l→∞.
Thus, by the Cauchy diagonal process we may assume that there exist l(k)→∞ as k →∞ such that

uk0(x) = u
k,l(k)
0 (x), x ∈ R3

satisfies the required properties of approximation of u0: uk0 ∈ C∞(R3,R3)∩Lp(R3,R3) for p = 2, 3, ∇·uk0 = 0,∥∥∥uk0∥∥∥
L3

1(R3)
≤ C

∥∥∥u0

∥∥∥
L3

1(R3)
,

and

uk0 → u0 strongly in Lploc(R3) for p = 2, 3, as k →∞.
This completes the proof of Lemma 5.1. �
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