WELL-POSEDNESS OF NEMATIC LIQUID CRYSTAL FLOW IN Lguloc(RS)

JAY LAWRENCE HINEMAN AND CHANGYOU WANG

ABSTRACT. In this paper, we establish the local well-posedness for the Cauchy problem of the simplified
version of hydrodynamic flow of nematic liquid crystals (1.1) in R? for any initial data (ug,do) having small
Lf’ﬂoc-norm of (uo, Vdp). Here L3, (R3) is the space of uniformly locally L3-integrable functions. For any

initial data (uo,do) with small ||(uo, Vdo)l|13(r3y, we show that there exists a unique, global solution to
(1.1) which is smooth for ¢ > 0 and has monotone deceasing L3-energy for t > 0.

1. INTRODUCTION

In this paper, we consider the Cauchy problem for the following hydrodynamic system modeling the flow
of nematic liquid crystal materials in R?: for 0 < T < oo and (u, P,d) : R3 x [0,T) — R3 x R x S2, the
system is given by

ug +u-Vu—vAu+ VP = -\V - (Vd® Vd), inR®x (0,7T),

V-u=0, in R x (0,7), 1)
di +u-Vd=~(Ad+ |Vd*d), inR3x(0,T), '
(U,d) = (UO,do), on Rg X {O},

for a given initial data (ug,dp) : R® — R3 x S? with V - ug = 0. Here u : R® — R? represents the velocity
field of the fluid, d : R® — S2 — the unit sphere in R? — is a unit vector field representing the macroscopic
molecular orientation of the nematic liquid crystal material, P : R3 — R represents the pressure function.
The constants v, A\, and « are positive constants that represent the viscosity of the fluid, the competition
between kinetic and potential energy, and the microscopic elastic relaxation time for the molecular orientation
field. V- denotes the divergence operator in R3, and Vd ® Vd denotes the symmetric 3 x 3 matrix:

(Vd® Vd),; = (Vid,V;d), 1 <i,j <3.

Throughout this paper, we denote (v, w) or v - w as the inner product in R? for v,w € R3.

The system (1.1) is a simplified version of the famous Ericksen-Leslie model for the hydrodynamics of
nematic liquid crystals developed by Ericksen and Leslie during the period of 1958 through 1968 [6, 15, 4].
This system reduces to the Ossen-Frank model in the static theory of liquid crystals. It is a macroscopic
continuum description of the time evolution of the materials under the influence of flow field v and the
macroscopic description of the microscopic orientation field d of rod-like liquid crystals. The current form of
system (1.1) was first proposed by Lin [17] back in the late 1980’s. From the mathematical point of view,
(1.1) is a system coupling the non-homogeneous incompressible Navier-Stokes equation and the transported
heat flow of harmonic maps to S2. Lin-Liu [19, 20] initiated the mathematical analysis of (1.1) by considering
its Ginzburg-Landau approximation or the so-called orientation with variable degrees in the terminology of

1
Ericksen. Namely, the Dirichlet energy / §|Vd|2 for d : R — S? is replaced by the Ginzburg-Landau

1 1
energy /Q\Vd|2 + @(1 —|d|*)? (e > 0) for d : R® — R3. Hence (1.1)3 is replaced by

atdﬂ.w:fymmé(u |d|2)d). (1.2)

Lin-Liu proved in [19, 20] (i) the existence of a unique, global smooth solution in dimension two and in
dimension three under large viscosity v; and (ii) the existence of suitable weak solutions and their partial
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regularity in dimension three, analogous to the celebrated regularity theorem by Caffarelli-Kohn-Nirenberg
[3] for the three-dimensional incompressible Navier-Stokes equation.

As already pointed out by [19, 20], it is a very challenging problem to study the convergence of solutions
(te, Peyde) to (1.1)1-(1.1)2-(1.2) when € | 0. In particular, the existence of global Leray-Hopf type weak
solutions to the initial and boundary value problem of (1.1) has only been established recently by Lin-Lin-
Wang [21] in dimension two, see also Hong [9] and Xu-Zhang [29] and Hong-Xin [12] for related works.

Because of the super-critical nonlinear term V - (Vd ® V) in (1.1);, it has been an outstanding open
problem whether there exists a global Leray-Hopf type weak solution to (1.1) in R?® for any initial data
(uo,do) € L*(R3 R3) x WH2(R?, 5?) with V - ug = 0. It is standard that in R? the local existence of a
unique, strong solution to (1.1) can be obtained for any initial data ug € W*?2(R?) and dy € W*+1.2(R3, 52)
for s > 3 with V- ug = 0, see for example [28]. A blow-up criterion for local strong solutions to (1.1), similar
to the Beale-Kato-Majda criterion for the Navier-Stokes equation (see [1]), was obtained by Huang-Wang
[11]. For small initial data in certain Besov spaces, Li-Wang [23] obtained the global existence of strong
solutions to (1.1). We would like to mention that Wang [27] has recently obtained the global (or local)
well-posedness of (1.1) for initial data (ug, dy) belonging to possibly the largest space BMO™! x BMO with
V - ug = 0, which is a invariant space under parabolic scaling associated with (1.1), with small norms.

In this paper, we are mainly interested in the local well-posedness of (1.1) for any initial data (ug,do)
such that (ug, Vdp) € L3, .(R?). Henceforth Li’l 1OC(R?’) denotes the space of uniformly locally L3-integrable

functions. It turns out that Lf’l loc(Rg) is also invariant under parabolic scaling associated with (1.1).

uloc

Now we give the definition of L31 (R3). The readers can consult the monograph by Lemarié-Rieusset

[16] for applications of the space L? (R3) to the Navier-Stokes equation.

uloc

Definition 1.1. A function f € L} (R3) belongs to the space L3, (R®) consisting of uniformly locally
L3-integrable functions, if there exists 0 < R < +o00 such that

13 = sup /
sy = s ([,

1
|f|3) ? < +oo. (1.3)
r(z)
It is clear that

o L3(R%) C L3, (R3).

uloc

o If f € L7 .(R®), then || f|| 13 ms) is finite for any 0 < R < +o0. For any two 0 < Ry < Ry < o0, it

holds
R .
113, < W 5 (2 ) g o ¥ £ € Eigoe B (14)
. Luloc(R3 ﬂ BMOp, L(R3) (see [13] or [27]). Moreover, for any 0 < R < oo, it holds
O0<R<o©
mBMo;(n@) S HfHLL;’?(]R?’ Ve Luloc(Rg)' (1.5)

Throughout this paper, we write A < B if there exists a universal constant C' > 0 such that A < CB.
Here are a few more notations and conventions that we will use through this paper. For two matrices M, N
of order 3, we use M : N = Z MUY N to denote their scalar product. For two vectors u,v € R?, we

1<4,5<3
let © ® v denote their tensor product: (u ® v)ij = uivj, 1<4,j<3. For0<s<4ooand 1 <p< oo, we
denote by W*P(R3) and WP (R? as the Sobolev space and the homogeneous Sobolev spaces respectively.
For 0 < a < b < +00, denote

@ x[a,b)) = () {f € C"(®* x[a,8]) : [Iflom(msxias < +00,

m>0

L([a,b), Lo (BY) = { £ € L ([a.b], LI(®?)) |
and

CY([a, 8], Linoe(R?) = { € C((a, ], LH(R?) 0 L=([a,B], LI(R?) 5 as ¢ 10, f(t) = fla) in Lih (R®) }.
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Repeated indices are summed unless specificized otherwise. Upper indices denote components and lower
indices denote derivatives.

Now we state our main theorem.

Theorem 1.2. There exist g > 0 and 79 > 0 such that if up : R> = R3, with V -uo =0, and dy : R® — 52
satisfies (do — eg) € L3(R3) for some eg € S?, and

1

3

I[[(uo, Vo)l L3, (r#) := sup (/ Juo|* + |Vd0|3> < € (1.6)
rER3 BR(x)

for some 0 < R < oo, then there exist Ty > ToR? and a unique solution (u,d) : R® x [0,Ty) — R3 x R x §?
of (1.1) such that the following properties hold:
(i) For t [0, (u(t),d(t)) — (uo,do) and Vd(t) — Vdo in L} (R?).
(1)
(wd)e [ CPRx[6,To—0R*xS?), (u,Vd)e [\ CX0,T'], L, (R?)).

uloc

0<6<To 0<T'<To
(iii)
[[(uw(®), VA@))l o (10,70 r21,13, (R8)) < Ceo. (1.7)
(i) If Ty < 400 is the mazimum time interval then it must hold
limsup ||[(u(t), Vd(t))|||Ls®s) > €0, ¥ 0 <1 < o0. (1.8)
t1To

The ideas to prove Theorem 1.2 are motivated by those employed by [21]. There are five main ingredients,
which include

e approximate (ug,dg) by smooth (uf,dk) (see Lemma 5.1 below) and obtain 0 < T} < +oo and a
sequence of smooth solutions (u*, P* d*) of (1.1) in R® x [0, T}], under the initial data (uf, d5);

e utilizing the local L3-energy inequality (3.1), obtain uniform lower bounds of Tj;

e apply the ep-regularity Theorem 4.4 to obtain a priori derivative estimates of (u*,d*) and then take
limit to obtain the local existence of L2, -solutions to (1.1);

e apply Theorem 4.4 again to characterize the finite maximal time interval; and
e adapt the proof of [27] to show the uniqueness.

For a solution (u, P,d) to (1.1), denote its L3-energy by

Ba(w, V() = [ () + [Vd(o), ¢ 0.

R3
Concerning the global well-posedness of (1.1), we have

Theorem 1.3. There exists an ey > 0 such that if (ug,do) € L3(R? R?) x W1*3(R3, S?), with V - ug = 0,
satisfies

Es(ug, Vdy) < €5, (1.9)
then there exists a unique global solution (u,d) : R3 x [0,00) — R?® x R x S? of (1.1) such that (u,d) €
O (R3 x (0, +00)) N C([0,00), L3(R3) x WH3(R?)), Es(u, Vd)(t) is monotone decreasing for t > 0, and

m m Ce
Hv u(t)HLOO(RZS) + ||v +1d(t)HL°°(R3) S T%zoa v t > 0; m Z 0 (110)

We mention here that the first conclusion of Theorem 1.3 has been proven by [5], which is based on
refinement of the argument by Wang [27]. Since the exact values of v, A,y don’t play a role in this paper,
we henceforth assume

v=A=~vy=1.

The paper is written as follows. In §2, we derive an inequality for the global L3-energy of smooth solutions
of (1.1). In §3, we derive an inequality for the local L3-energy of smooth solutions of (1.1) and prove Theorem
1.3. In §4, we will prove an eg-regularity for suitable weak solutions to (1.1). In particular, a priori derivative
estimates hold for smooth solutions to (1.1) under a smallness condition. In §5, we will prove Theorem 1.2.
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2. INEQUALITY ON THE GLOBAL L3-ENERGY AND PROOF OF THEOREM 1.3

In this section, we will derive an inequality for the L3-energy F3(u,Vd)(t) for any smooth solution

(u,d) : R3 x [0,T] — R3 x §?, for 0 < T < 00, of the system (1.1) for nematic liquid crystals.

Lemma 2.1. There exists C > 0 such that for 0 < T < oo if (u,d) € C®(R? x [0,T),R3 x S?) N

C([0,T), L3(R?) x W3(R3)) and P € L>=([0,T), L2 (R3)) solves (1.1), then it holds

3 3 2 2
G |+ 194 + [1 = Clulogen] [ 1wl

+ [1= Cllulls ) + o) |Vl ooy + 1933 )] / |vd||v?dP <.

(2.1)

Proof. Taking spatial derivatives of (1.1)3, multiplying the resulting equation by |Vd|Vd, and integrating

over R3, we have

4
dt

For terms on the right hand side of (2.2, by integration by parts we have

/ V(Ad) : |Vd|Vd = —/ V3d : V(|Vd|Vd)
R3 R3N{|Vd|>0}

V24 Vd|?
=- Vd||V3d]* + [V2d: Vd[?
/Rsm{w>o}(| I1v=dl |Vd] )

< —/ V|| V2d?,
RB

/ V(u-w);wd\wz—/ (u-Vd) - ((V|Vd]) - Vd + |Vd|Ad)
R3

R3
S [ livdpvdl
R3
and, using |d| = 1,

d2
/ V(|Vd|2d);|w|w:/ (V|Vd|2)-|Vd|V(u)+/ |Vd|*Vd : |Vd|*Vd
R3 R3 R3

2
:/ |Vd|®.
R3

Putting these estimates into (2.2) yields

d

G Lwde s [ wqvatiEs [ vap s+ jvae et

dt R3 R3 R3
where have used the following variant of the Kato inequality

: 3 3
IVIVd|2| = 5|Vl |V|Vd]| < 5|Vd*|V?d].

Observe that by the Sobolev inequality and the Kato inequality above, we have

3 3
[avar = [ <|Vd|3>65(/ WdﬁF) 5(/ Vd||v2d|2) .
R3 R3 R3 R3

Hence, by the Holder inequality and (2.4), we have

2/3
IVl ey < IVl IVl 5 ([ 19) ([ walivap).

1
/ f\Vd|3:/ V(Ad) : \Vd|Vd—/ V(u-Vd): \Vd|Vd—/ V(|Vd|*d) : |Vd|Vd.
R3 3 R3 R3 R3

(2.2)

(2.4)
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For the second term on the right-hand side of (2.3), by the Holder inequality and (2.4) we have
3 1
/Rs [l IV V2d] < Jlullps @) V] 2 || o) 1 VAl 2 V2d] | 2 (rs)

3 1
< lull 2 | VIVA]? | L2 ey [V ]2 [V2d] | L2z
1
< lullps @) IIVd|Z V2|72 sy -

Inserting these two estimates into (2.3) yields

d
G [ 1vap+ (1= € (19dises) + Nullsws))] [ 1992 <. (2.5)
R3 R3
Next we estimate the L3-norm of u. Multiplying (1.1); by |u|u and integrating over R? gives
I
dt 3
R (2.6)

= Au - |uju — / (u-Vu) - |uju — / VP |ulu— / (V- (Vdo Vd)) - |ulu.
R? R3 R? R3

For the terms on the right hand side of (2.6), by integration by parts we have

/ (D) - uu = — / IVl ] + Ju] [V ] 2.
R3 R3

/Rg(u-vu)-|u|u=/wu v('l;'?’) =0,

VP - |ulu = —/ Pu-V|u| + Plu|(V -u) = —/ Pu - V|ul,
RS R3 RS

and

—/ (V-(Vd@Vd))-|u|u=/ (Vd o Vd) : V(julu)
R3 R3

= / (VdoVd) : Vul@u+ |u|(Vd e Vd) : Vu
R3

< / V][V

Substituting these estimates into (2.6), we obtain

/ uf® + / [Vl ] < / IPlul|Vul| + / V2 ][V (2.7)

Using the Kato inequality |V|u|| < |Vu|, the Cauchy inequality and the Holder inequality in (2.7), we obtain

G Lo [ vap <c [ ulqpE e van g [ v
< CUIPIsn + IV louo) lulloges) + 5 [ [ull VP

Therefore we get

d
G Lttt [ lvu < Py + IVl ogeoy el zsca 28)
We need to estimate || P||z3(rs). To do so, we take divergence of (1.1); to obtain
—AP=V V- (u®@u+Vdo Vd). (2.9)

Set
¢F = wuF +V;d-Vid, 1<,k <3.
Then we have
P = A7 (V207") = —R;Ri(¢). (2.10)

Henceforth R; = (—A)_%Vj denotes the j*"-Riesz transform on R? for 1 < j < 3.
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Since R; : LY(R3) — L(R?) is bounded for 1 < ¢ < oo (see Stein [25]), we have

1Pl s @) = IR R& (7)o @s) S 197 I Ls@s) S wllFomsy + 1Vl T gsy- (2.11)
Inserting (2.11) into (2.8) yields
d
G Lot [ lVul S o + IVl oqeoy) el sy (212)

Using the Hélder inequality, the Sobolev inequality, and |V]u|2| < [Vul|u|2, we have

3
ey <l ey ooy 91l ey < Nellzscasy [ 1ull1al P
Similarly we have
IVleqesy  IVlzsqasy [ 1ValIv*dP

Substituting these two estimates into (2.12), we obtain

d
G Ll [l S ey [l FuR + s 9dlzs) [ 9dIVRE (213)
dt Jrs R3 R3 R3

Combining (2.5) and (2.13) yields (2.1). O

Corollary 2.2. There exists ¢g > 0 such that for 0 < T < oo, if (u,d) € C®(R3 x [0,T),R3 x S?) N
L>=([0,T), L3(R?) x WL3(R3)) is a solution to (1.1) satisfying

E3(uo, Vdo) < €, (2.14)
then Es(u(t), Vd(t)) is monotone decreasing for 0 <t < T.

Proof. Denote
E5(t) := E3(u(t), Vd(t)), t>0.
Let Thax € [0,T) be defined by
Tnax = Max {t €[0,7): Bs(s) <23, V0<s< t}.
By continuity and (2.14), we have that 0 < Typax < T, and
E3(t) <263, 0 <t < Toax, E3(Timax) = 2€5. (2.15)
Suppose Thax < T. Choose €y > 0 so small that
1-Ce>0and 1—C(e +2¢2) > 0.

Then (2.15) and (2.1) imply that

SGE) < SEaln) + [1- 0] [
holds for 0 < ¢ < Tihax. Hence E3(t) is decreasing in [0, Tryax] and

E3(Thax) < F3(0) < €3 < 2¢;.

This contradicts the definition of Tiyax. Thus Timax = T and F3(t) is monotone decreasing in [0, T). O

ul|Vul® + [1 = Cleo + 2€7)] / |Vd||V3d|* <0
3 R3

Proof of Theorem 1.3: Since C*®(R?, $?) is dense in W13(R?, $2) (see [24]), it is not hard to show that

there exist {(uf,dk)} ¢ C®(R3 R3) x C>(R?, S?) such that

V- ué: =0in Rs, klg{)lo(Hulg — uOHLS(RS) + HV(d’S - dO)||L3(R3)) =0.

Consider the system (1.1) under the initial condition (u,d)|;—o = (uf,dk). Tt is standard that there exist

Ty > 0 and smooth solutions (u,dx) € C(R? x [0, T}],R* x $?) N C([0, Tx], L3 (R?) x WH3(R?)) to (1.1).
Since E3(ug, Vdo) < €5, we may assume that Ez(uf, Vd§) < 2¢ for all k > 1. Hence by Corollary 2.2, we

conclude that

sup Ez(uf(t), VdF(t)) < Es(uf,VdE) <2e3, V k> 1.
0<t<T}
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For the corresponding pressure functions P*, since
APF = -V .V - (u* @ u* + Vd* © Vd*) in R?,

we have

sup ||P¥||, 3

< k|2 de 2 < C 2.
0<t<T} LE(R3) ~ (Jlu ||L3(R3) + ||L3(R3)) < C¢;

sup
<t<Ty
Let Ty be the maximal time interval for (uy,dy). If 0 < Ty < 400, then by Theorem 4.4 in §4 below we
conclude that (uy,d;) € Cf°(R? x [0, Tx], R x S?). Hence (ux(T}k),dr(Tk)) € C*°(R* R* x S?) N L*(R?) x
WhH3(R3), and

Bs((un(Ty), Vdr(Ty))) < 2€5

so that we can extend the smooth solutions (uy, di) beyond the time T}, which would contradict the maximal-
ity of Tj,. Therefore Ty, = oo and the smooth solution (uy,dy) exists globally. Moreover, E3(ug(t), Vd(t))
is monotone decreasing and less than 2¢3. By Theorem 4.4, we have the derivative estimates:

m m Ceo
IV ()l oo sy + [V (O] e oy < 750 V>0, m 2 1. (2.16)

After taking possible subsequences, we may assume that there exists (u,d) € C*(R?® x (0, 400), R* x )N

C([0, 400), L*(R3) n W13(R?)) such that as k — oo,

(1) (ug,dy) — (u,d) in Cf7 (R? x (0,400)) for any m > 1.

(2) (ug, Vdi) — (u, Vd) weak* in L>([0, +o0), L3(R?)).

Thus (u,d) € C*®(R3 x (0, +00),R? x S?) solves (1.1)1, (1.1)2, and (1.1)3, and the estimate (1.10) holds.
Using the equation (1.1), we can get that for any 0 < T < 400,

sup H(@tuk, 8tdk)’ C(T) < +o0.

k>1

) <
L3 (o,r),w3 (r3)) ~

This implies that (u,d) € C([0,T], L3(R?) x W'3(R3)) and (u,d)|—0 = (uo,do). Applying Corollary 2.2
again, we conclude that Fs(u(t), Vd(t)) is monotone decreasing for ¢ > 0. The part of uniqueness can be
proved as in the step 6 of the proof of Theorem 1.2 in §5, which is omitted here. The proof is complete. [

We would like to mention applications of Theorem 1.3 to the heat flow of harmonic maps and the Navier-
Stokes equation.
1) If u = 0, then (1.1)3 reduces to the heat flow of harmonic maps to S? for d : R x (0, +00) — S

{@d =Ad+ |Vd|2d inR3 x (0, +00) (2.17)

d = dy on R? x {0}.
2) If d is a constant unit vector, then (1.1); and (1.1)2 reduce to the Navier-Stokes equation:
Ou+u-Vu—Au+VP=0 inR3 x (0,+00)

Vou=0 inR?x (0,400) (2.18)
u=ug onR?x{0}.

The following properties follow directly from Theorem 1.3. We would like to point out the observation of
monotone decreasing property of the L3-energy seems new.
Remark 2.3. 1) There exists €y > 0 such that if dg : R® — S? satisfies / |Vdo|® < €3, then there is a
R3
unique global solution d : R? x [0, +00) — S? of (2.17) such that d € C([0,4+00), W3(R?, $%)) N C>(R? x
(0, +00), S%), and / |Vd(t)[? is monotone decreasing for t > 0.
R3

2) There exists ¢y > 0 such that if ug : R® — R3, with V-ug = 0, satisfies / luo|® < €p, then there is a unique,
R3
global solution u : R? x [0, +00) — R? of (2.18) such that u € C([0, +00), L*(R?)) N C>(R? x (0, +00), R?),

and / lu(t)|? is monotone decreasing for ¢ > 0.
R3
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3. INEQUALITY OF THE LOCAL L3-ENERGY

In this section, we will derive an inequality of the local L3-energy for smooth solutions (u, d) : R®x[0,T] —
R3 x §% for 0 < T < oo, of the system (1.1). More precisely, we have

Lemma 3.1. There exists C' > 0 such that for 0 < T < oo, if (u,d) € C>®(R? x [0,T),R* x $?) N
C([0,T), L*(R?) x W'2(R?)) is a smooth solution of the system (1.1), then

G Lt 1vatyer + [ (1vulEof + 1v(vaiol)

wlon

< C/ (|u® + |Vd]*)|Vé|* + CR™2 sup (/ lul® + |Vd|3> (3.1)
R3 Br(y)

yER3

’ % 34)[2 382
+C</spt¢) |ul +|Vd|> /]RS (|V(|u| P2 +|V(|Vd|3 )| )7

holds for any ¢ € C$°(R3), with 0 < ¢ < 1, spt ¢ = Br(x0)* for some R > 0 and x¢ € R3, and |V¢| < 4R
Proof. We divide the proof into three steps.

Step 1. Estimation of the local L3-energy of Vd. Differentiating (1.1)3 with respect to z, integrating against
$?|Vd|Vd over R3, and applying integration by parts, we have

i/ |Vd|3¢2+3/ V2d : V(¢?|Vd|Vd)

dt ]R3 ]R3 (32)

§3/ \Vd|5¢2+3/ (u-Vd)- V- (¢*|Vd|Vd),
R3 R3

where we have used |d| = 1 and the following identity to obtain the first term on the right hand side:
1
V(|Vd|*d) - |Vd|(Vd) = 5V(|Vd|2)|vcl|V(|d|2) +|Vd*Vd - Vd = |Vd]°.

For the second term on the left hand side of (3.2), direct calculations using |V|Vd|| < |V?2d| and the Hélder
inequality imply

/ v2d:V(¢2|Vd|Vd):/ |Vd|\V2d|2¢2+/ (|Vd|*V|Vd| - V¢? + |Vd||V|Vd|[*¢?)
R3 R3 R3N{|Vd|>0}

1
> 5 [ vdivare - c [ varver
2 R3 R3
For the second term on the right hand side of (3.2), by the Cauchy inequality we have

/ (u-Vd)-V - (¢*|Vd|Vd) < 2 / VARV d1? + [l [V V)
R3 R3

. :
- d 2d2 2 C 3 d9 6
<4 [ Ivalviape + (/spw'“') (/stqﬁ)
+C(/ |u|3)3(/ |w9¢>6>6(/ Vd|3v¢|2)2
spt¢ R3 R3

1
< f/ |Vd||V2d|2¢2+C/ |Vd|]3|V|*
8 R3 R3

o) ()

By the Holder inequality and the Sobolev inequality, we have

9 46 %< EAE: 512 < 3% 3 N2
(fLwarss) s [ wawaior. [ wares ([ wap)” [ vovator

Here spt¢ denotes the support of ¢.
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Putting these estimates into (3.2) yields

d
%/ ¢2|Vd|3+/ |V2d|?|Vd|¢?
R3 R3

o
s [wapwop s ([ eeivap) [ [vvaiel”
R3 spte R3

Step 2. Estimation of the local L3-energy of u. Multiplying (1.1); by ¢?|u|u and integrating over R? yields

d

G [ ke s [ vl

dt R3 R3

S [ VIV + [ (Culat+ [P dIv(@?lafu)
R3 R3 R3

where ¢ € R is a constant to be chosen later.
By the Cauchy inequality, the Holder inequality, and the Sobolev inequality, we have

1
[ Ve v@llw =5 [ plvare -1 [ jufver
R3 R3 R3

[t < 5 [ wivape o[ |u|3)g [, |9uite)

1
/ V[ V2d][uf?¢? < © / Vd||V2d?? + C / V]
R3 8 Jgrs R3

1 A\ 5 A\ 5 3
g vaape o ([ war) ([ e ([ )
R3 spt¢ spto R3

For the last term on the right hand side of (3.4) we have

1
/ |Pfc||V~(|u|u¢2)|§f/ |u||w|2¢2+c/ |P—c|2\u|¢)2+0/ [ul®|V |
R3 8 R3 R3 R3

Putting these inequalities into (3.4) we obtain

d
G [ule s [ ulvape
R3 R3

1
< c/ |u\3|V¢\2+*/ |Vd|\V2d|2¢2+0/ [P — c*|ul¢? (3.5)
R3 4 R3 R3

(3.3)

(3.4)

2
)

and

co [ wpewa)” [ aviuior + w(vatop).
spto R3
Combining (3.3) with (3.5) yields
G [t vats+ [ (IVGatoR + v (vaie)?)

<C [ (uP+ 1Yo +C [ pullP - oe? (3.6

+C </spt¢ |u|3 + Vd|3) \/Rs (|V(|u|§¢)|2 4 |V(|Vd|§¢)|2) )

Step 3. Estimation of the pressure function P. By the Hdélder inequality, we have

_ o242 3 s 1343
[omip—cper< ([ ) ([ 1p-eer)

We see that (3.1) follows from (3.6) and the estimate (3.7) of Lemma 3.2 below. The proof is complete. [

2
3
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Lemma 3.2. Under the same assumptions as in Lemma 3.1, assume that ¢ € C§°(R3) satisfies 0 < ¢ < 1,
spt ¢ = Br(xo) for some xo € R3, and |V¢| < 2R™Y. Then there exists C > 0 such that for any t € (0,7)
there is c(t) € R so that the following estimate holds

([ 1w o) = (] O wa) ([ (suerior-+ wawaoior)

1
2

2 (3.7)
+CR™* sup / lu(t)® +|Vd()[?
y€R® \ / Br(y)
Proof. For simplicity, we write (u, P,d) and ¢ for (u(t), P(t),d(t)) and c(t) respectively. Since
—AP =V3(¢""), ¢" =wu +V;d- Vi,
we have 4
P = -R;Ry(¢"")
where R; is the j-th Riesz transform on R®. Hence we have
P—¢)¢p = —R,;Rip(¢"%)p — co
(P —¢) iRi(g”") (3.8)

= —R,;Ri (9" ¢) — [¢, R;Ri] (") — co
where [¢, R;jR] is the commutator between ¢ and R;Ry given by
[0, RjR4](f) = ¢ - RjRi(f) — R;Ry(f9), [ e C5(R).

We now estimate [¢, R;Ri] (¢7%) as follows.

[0, R;R] (¢7%) ()

= ¢(2)R;Ri(¢”")(z) — R;Ri(¢""9) ()

_ (27 — yj)(xk - yk) kN (27 — yj)(mk - Z/k) ik

= ¢(x) /Rs v —yF 9" (y) /Ra = oF o(y)g’" (v)

T)— 2l — oy (2P —yF)
:/Rs(cb() o)) —y)( y)ﬂg(y)‘

g
[z =yl

For any = € spt ¢ = Br(zg), we have
(6, RjRe] (9°%) () + co()
x) — o — ) (k- k)
:/ (¢(z) = o(y) (=" — y/)(z" — ") it (y)
Bar(zo0)

|z -yl

+ ¢(x)

=I(z)+ I1(x).

|z —y>

J— IV (xF — k) .
/ (I Y )(I Y )gjk(y)dy+c
R3\ B2 (z0)

For I(z), we have that

x)— ol — ||k =y

|z -yl

com [ X+ 0))
- R3 |z —y[?

= CR'L ((Jul® + [Vd*)XBan(ao)) (@),

where X, («,) is the characteristic function of Bagr(z0), and 1 is the Riesz potential on R? of order 1 given
by

11<f><x>=/R WL crs, v e @),

s o —yl?
Recall that by the Hardy-Littlewood-Sobolev inequality, Iy : L3 (R3) — L3(R3) satisfies
L (Dllzsesy S 1715 g (3.9
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Hence we have - 2 2
1 Lsesy S B || ((Jul? + V4| )XBzR(xU))HH(W)
< R (ul? + VAP XBnen) | 3 o,
2

3

se ([ e var (3.10)
Bar(zo)
< R~ ! sup / lu|® + |Vd|?
yeRS3 Br(y)

zo —y) (zo —v)*
. _/ ( 0 ) ( 05 ) ggk(y).
R3\ B2 g (z0) |zo — |

ol

To estimate 11, choose

Note that
SRS [ 1041 R (ke + IVdlEae) < +o.
Jik

Therefore we have

2 —y?) (b — P zo —y) (zo —y)*\
|II(x)|¢(x)As\B ( )<( y)( y)i( 0 y) ( 0 y) )gjk(y)

lx —yl° lzo — yl°

S Rlo(z)| g ([ul? +[VdP*)(y),

R3\By(wo) 1T Y|
where we have used the following inequality (see [25]):
(=7 —y)(@* —y*) (o —y)! (w0 —y)*
|z =yl |0 — y[®
Thus we have

|zo — |
~ao —ylt

for x € Br(xo) and y € R*\ Bag(zo).

1
IT)(x) < R / (VR
RS\BQ}? :l?() |‘/I’.O - y|4

o0
1
SRY. |, (uf? + V)
z:; kR) Bk+1)r(20)\Brr(z0)
1 |1
S 53 = SUP/ ul? +|Vd|?
= gk]R o (1 +194E)

ol

< R2 sup / luf® + |Vd|?
y€ER3 Br(y)

Integrating I1 over Br(xzo) we get

2
3

11| psgey S R bup / lul® +|Vd]* | . (3.11)
€ER Br(y)

3

Additionally, we have

IRoRela™0) e < ([l 1906 )

( o Jul® + VdIB’)é (/RS(W + |Vd|9)¢6>zé (3.12)

( spto ' WP)é </3(|V(|UI3¢)I2+ |v(vcz|3¢)|2>é

Combining the estimates (3.10) and (3.11) with (3.12) yields (3.7). This completes the proof of Lemma
3.2. |
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4. REGULARITY OF SUITABLE WEAK SOLUTIONS

In this section, we will derive a priori estimates for smooth solutions to the system (1.1) under a smallness
condition for the L3-norm of (u,Vd). Since the method is flexible enough, it also yields the smoothness
for a subclass of suitable weak solutions to (1.1). We present the result in the context of suitable weak
solutions to (1.1). The notion of suitable weak solutions was first introduced by Caffarelli-Kohn-Nirenberg
[3] in the context of incompressible Navier-Stokes equations. Here we adapt this notion to (1.1), similar to
the definition given by Lin [18] on the Navier-Stokes equation.

Let 0 < T < oo and © C R? be a bounded smooth domain.

Definition 4.1. A triple of functions (u, P,d) : Q2 x (0,T) — R3 x R x 52 is called a suitable weak solution
to the system (1.1) in Q x (0,T) if the following properties hold:

(1) we LPL2 N L2ZHY(Q x (0,T)), P e L3 (Q x (0,T)) and d € L2H2(Q x (0,T));
(2) (u, P,d) satisfies the system (1.1) in the sense of distributions; and
(3) (u, P,d) satisfies the local energy inequality (4.1).

Now we would like to point out that the class of smooth solutions belongs to the class of suitable weak
solutions to the system (1.1). Let I3 denote the identity matrix of order 3.

Lemma 4.2. Suppose that (u,d) € C=(Q x (0,T),R? x R x S?) is a solution of (1.1) in Q x (0,T). Then
for any nonnegative ¢ € C§°(Q x (0,T)), it holds that

2 (VuPAd 4V o [+ VaP) (6 + A9
Qx(0,T) Qx(0,T)
+/ (lul® + |Vd]* + 2P)u - V¢
Qx(0,7) (4 1)
+2/ (Vd o Vd — |Vd|’l;) : V¢
Qx(0,T)
+2/ VdoVd:u® V.
Qx(0,T)
Proof. Multiplying (1.1); by u¢ and integrating the resulting equation over 2 x (0,7T) yields
/ ut~u¢—|—/ (u-Vu) - up — Au-ugb—i—/ VP -ud
Qx(0,T) Qx(0,T) Qx(0,T) Qx(0,T) (4 2)

= / Vd o Vd: V(ugp).
Qx(0,T)

Applying integration by parts, the terms on the left hand side of (4.2) can be estimated by

1
/ Ug - uP = */ §|U|2¢tv
Qx(0,T) 2x(0,T)
1
| wvgwe=- [ Jutuve,
Qx(0,T) 2x(0,T) 2
1
[ swwo=- [ waPor [ Cupas,
Qx(0,7T) Qx(0,T) Qx(0,T) 2

/ VP-uqS:—/ P(u-Vo).
Qx(0,T) Qx(0,T)

For the term on the right hand side of (4.2), we have

/ Vd@Vd:V-(uqS):/ VAo Vd: [(Vu)p+ueVe|.
Qx(0,T) Qx(0,T)
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Putting these identities into (4.2) yields

e VLI . ,
/Q><(07T) 5lul™ (e + A¢) — (Slul” + P)(u V¢)+/ Va2

Qx(0,T)
:/ (Vdo Vd) : [¢pVu+u® V).
Qx(0,7)
Differentiating (1.1)s with respect to « and integrating against (Vd)¢, we have
/ (Vd); : (Vd)o +/ V(u-Vd): (Vd)p = V [Ad + |Vd|*d] : (Vd)¢ (4.4)
Qx(0,T) Qx(0,T) Qx(0,T)
For the first term on the left hand side of (4.4), we have
1

| v de=- [ JiPe.
Qx(0,T) Qx(0,T)
Using (1.1)2, we can simplify the second term on the left hand side of (4.4) into

/ V(u-Vd): (Vd)¢ = uld; - dod + / Wdje - dat
Qx(0,7)

Qx(0,T) Qx(0,T)

1
:/ Vu:Vd@Vd¢>+/ fu-V(\Vd|2)¢
Qx(0,T) x(0,T) 2

1
:/ Vu:Vd©® Vdp — —(u-Ve)|Vd*
Qx(0,T) Qx(0,T) 2

For the term on the right hand side of (4.4), differentiating |d| = 1 gives
Vd-d=0 and Ad-d+|Vd?=0.
Thus, by integration by parts we have

/ V [Ad + |Vd|*d] - Vdp = f/ [Ad+ |Vd|*d] - [Ad¢ + Vd - V]
Qx(0,T) Qx(0,T)

- _/ Ad + |Vd?dP6 — Ad-(Vd- V).
2x(0,T) 2x(0,T)

By integration by parts we have

1
- / Ad(Vd - V) = / (Vd o Vd): Vi — —|Vd|?Ad
Qx(0,T) Qx(0,T) Qx(0,1) 2

1
7/ (Vd o Vd — |Vd|’;) ;v2¢+/ —|Vd*A¢.
Qx(0,T) ax(0,1) 2

Inserting these identities into (4.4) yields
1 1
/ [—5|Vd* (¢ + Ag) — S |Vd[* (u- V)] +/ Vu: Vd© Vdp
ax(0,1) 2 2 Qx(0,T)
(4.5)
=/ (Vd© Vd — |Vd|*I;) :v%-/ |Ad + |Vd|*d|*¢.
Qx(0,T) Qx(0,T)

Combining (4.3) with (4.5) yields (4.1). O

Corollary 4.3. Suppose that (u, P,d) : Q x (0,T) — R3 x R x S? is a suitable weak solution of the system
(1.1) in Q x (0,T). Then for any nonnegative ¢ € C°(Q x (0,T)) and 0 <t < T, it holds

/ (uf? + |Vd2)6 + 2 / (IVul? + |Ad + [Vd2d*)é
Qx{t} Qx(0,t)

< / (uf? + [VdP) (6 + A) + / (luf? + |V + 2P)u - Vb (46)
Qx(0,t) 2x(0,t)

+2/ (Vd@vcl—|w|2]13):v2¢+2/ VdoVd:u® V.
Qx(0,t) Qx(0,t)
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Proof. For € > 0, let n. € C>°([0,¢]) be such that 0 <n <1, n=1in[0,t —2¢], and n = 0 in [t — €, ¢]. (4.6)
follows by first applying (4.1), with ¢ replaced by n.(t)¢(z,t), and then taking € — 0. |

Let C(3) > 0 denote the best Sobolev constant of R?:

eIV llze@ey o/
C(3) = 1nf{7”f||L6(R3) L 04 feCRR )}7 (4.7)

and D(3) > 0 denote the constant in the following W?2:2-estimate:
IV2 iz s < DAL L2(s) + CIUVLIL,

For 2y = (z0,t0) € R? x (0,T) and 79 > 0, denote
By (o) = {x €R® : |x —x0| <70}, Pry(20) = Bry(0) X (to — 75, to]-

20m) ¥ fewW**(By). (4.8)

Now we are ready to prove the following eg-regularity theorem.

Theorem 4.4. For any § > 0, there exists €9 > 0 such that (u, P,d) : 2 x (0,T) — R3 x R x S? is a suitable
weak solution to (1.1), and satisfies, for zo = (xg,t0) € & x (0,T) and P,,(z) C 2 x (0,T),

(rﬁ / |u|3> +<r52 / |P|3>
Prq(20) Prq(20)

wlrt [ var) < (4.9)
Prq(20)

1-94§

1 2
3 3

and

Vd’ <2 4.10
H L L3(Pry(20))  C(3)D(3) (4.10)
then (u,d) € CW(P%(ZO),Ri)’ x S?), and the following estimate holds:

s ey () < Clomro,co), ¥ im 20, (411)

The crucial ingredient to prove Theorem 4.4 is the following decay lemma, which is analogous to that of
the Navier-Stokes equations by [18] and [7].

Lemma 4.5. For any § > 0, there exist o > 0 and 6y € (0, %) such that if (u, P,d) : @x (0,T) — R* xR x 52
is a suitable weak solution of (1.1), and satisfies, for zo = (xo,t9) € Q x (0,T) and P, (z0) C @ x (0,7,
both (4.9) and (4.10), then it holds that

1 2
3 3
((907«0)—2/ |u|3> + ((907«0)—2/ |P|%> + ((907‘0)_2/ |Vd|3>
Pogry (20) Pogro (20) Pogyry (20)
1 2 1
1 3 s 3 3
<1 ( / |u|3> +(r52 / |P2> +(ra2 / |w|3>
Py (20) Py (20) Pry(20)

Proof. By the invariance of (1.1) under translations and parabolic dilations, it suffices to consider the case
that zg = (0,0) and ro = 1. We will prove the Lemma by contradiction. Suppose that the conclusion were
false. Then there would exist 9 > 0 such that for any 6 € (0,1) there are a sequence of suitable weak
solutions (u;, P;,d;) of (1.1) in Py, that satisfy

</ |ui|3) +</ |a|3) +</ |le-|3) =€ — 0, (4.13)
Py Py Py

1—46o

1
3

(4.12)

IVdill oo 3 () < CODE) (4.14)
and . ) .
() (o ) o) |
L B i (4.15)
=3[ o) ([ (f war) ]
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Now we define the blow-up sequence (v;, Q;,e;) : P — R3 x R x R3 by

i P di(z) — (d;
wi(e) = B gy = BB gy 2 R Z W
€i € €
1 .
where (d;); = @ d; is the average of d; over Pi.
Py

Then (v;, @i, e;) satisfy the following equations in P;:
Opv; — Av; + VQl = —€; [Ui -Vv; +V - (Vez ® Vel-)],
V UV = 0,
81561' — Aei = ei[|Vei|2di —V; - Vez]
It follows from (4.13) and (4.15) that for any 6 € (0, 1),

(/P1 Ui|3>é + (/P1 Qi|g)g + </P1 |Vei|3)é =1,
(9_2/13 |'Ui|3>§ + (9_2/13 |Ql|g>§ n (9_2/13 |V6i|3)é N %

Applying the Wg’l—estimate to the equation (4.16)3, we have that VZe; € L%(P7) and
2

8

and

19,15, (Il + 19eilscny) <
8

By the Fubini Theorem and (4.19), we may assume that

/ |V2e;]7 < c/ |V2e;]7 < C.
ang[f(%)z,O] P

7
8

Since (u;, Q;,d;) satisfies (4.6) in P;, by choosing suitable test functions ¢ we have that

sup /(|ui|2+|Vdi|2)+/ (|Vug)® 4 |Ad; + |Vd;|*d;|?)
B P

~(%)"st=0’ 53 %
<C [ (il + 1)+ (i + sl + Vs
Py
Rescaling (4.21), applying (4.17), and using the Holder inequality, we have

2
sup / (|Ui|2+|vei|2)+/ (IVoi* + | Ae; + €| Vel *d;|)
B P

~(3)"st=0” By

w0

< C/ (loil? + [Ves?) + (1Qi] + €lvil> + €| Ves|*) |vi] < C.
P

By the W?22-estimate (4.8) and the Sobolev inequality, we have

J,

2,12 & 12 12 12
3 V2|2 <D (3)/33 |Ae;] +C||Vez\|W%,2(3B%)
3 1

< D2 12 2,112
<P'®) [ 18el sl i3 oy
a

so that, by integrating over t € [7(2)2, 0] and applying (4.20), it holds that

0
/ Ve < DA(3) / Aei? +C / V2],
p% P% —(3)2 w 2(63%)

< C+D2(3)/ |Ae; 2.
P

IN

3
4

15

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)
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By the point-wise identity |Ae;|? = |Ae; + €;|Vei|2di|* + €2|Ve;|*, we have

/ |Ae,»|2:/ |Aei+ei\Vei|2di|2+e?/ Veil
Py P P

3 3
1 1

By the Holder inequality, the Young inequality, and the Sobolev inequality, we have

\|V€i||i4(3%) < HveiHQLs(B%)”VeiH%G(B%)

2
o+ (Ve llzoqsy))

3
4

< IVeillfasy) (IVe: = (Veo)s los
4
< (1+80°C2 @) Veil 2o, Vil F20s,) + COOIVeillda ) IVeilFaa, ),
4 4 4 4

where (Ve;)s is the average of Ve; over Bs. Integrating (4.25) over t € [—(%)2, 0] yields

3
4

ef/ Ve|* < (1+60)2C2(3)”Vdi”%‘g°Lg(P§)/ [V2e;?
& P

+OGo)( sup /B Vi) Vel

—(§)?<t<0/ B3

<O+ 1+ BPCENT ey [ V26l

N

Inserting the estimate (4.26) first into (4.24) and then (4.23), we obtain

(1= 0+ 8PPVl e ryir] [ Ve

3

4

S 0(50) + C/ |A€Z + ei|Vei|2di|2 S 0(50)
P3

Therefore, by applying (4.22) to (4.27), we have

/ V%, < C(5).

P3

4

Combining the estimates (4.22) and (4.28), we obtain

/ Qi+ sup / (\vi|2+|wi|2>+/ (Vo + [V?eil?) < C.
P% t B% P

E[—%,O]

N

We may assume, after taking possible subsequences, that
Qi — Q weakly in L3 (Py),
v; — v strongly in LQ(P%), Vv; — Vv weakly in LQ(P%),
e; — e and Ve; — Ve strongly in L? (P%)7 V2e; — V2e weakly in LQ(P%).
Sending ¢ to oo in the equation (4.16) yields that (v, @, e) satisfies in P%
v —Av+VQ =0,

V.-v=0,
Ore — Ae = 0.

Using the Sobolev inequality and interpolations, we see that (4.29) gives

[ +iQlt +vep <c.
Py

2

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)
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Hence, by the standard estimates on the linear Stokes equation and the heat equation, we have that for any
6 € (0, %), it holds

Py

072 | (vl +[Vel) < 093/ ([0 +|Vef’) < C°, 0—2/ QI% < ce/ QI <co.  (4.32)
P% Py P%
In order to reach a contradiction, we need to show that (v;, Q;,e;) converges to (v, @, e) strongly in L3(P%).
To do so, we recall the following Lemma (see [26]).

Lemma 4.6. Let Xy C X C X3 be Banach spaces such that X is compactly embedded in X, X is continu-
ously embedded in X1, and Xo, X1 are reflexive. Then for 1 < ag, a1 < o0,

{u € L (0,T; Xo) : Opu € L*(0,T Xl)} is compactly embedded in L*°(0,T; X).

Now we have the following claims.
Claim 1. v; — v strongly in L?(Pz). From (4.29) and interpolation inequalities, we have

||Uz‘||L1—§(P1) + ”viHLf"Li(P%) + HVWHL?(P%) <C,
2

2
||V€i\|L%(P%) + Hvez‘HL?Lg(P%) + IV 61‘||L2(P%) <C.

So by the Holder inequality, we have

8

oolot

/|vi~wi|%s / o] /|w2 e
Pl Pl Pl
2 2 2
5 3
8 8
/|v.<v6i@wi)|%g / V26,2 /|vei|%° <c
Py Py Py
2 2 2

These inequalities imply

€ [vi- Vi + V- (Ve; © Ve;)] ‘

., <cC. (4.33)
LZ(P%)

By (4.33) and the W2!-estimate of the linear Stokes equation, we have
’ Opv;

X, = {u € LIHL(P;) : diue LELE(Pg)}.

<C. 4.34
Lipy) ~ (4.34)

5

Hence {v;} is bounded in

Since X is compactly embedded in L?L2 (Pz) by Lemma 4.6, we conclude that v; — v strongly in L? (Pz).
Claim 2. Ve; — Ve strongly in L?(Pz). Using (4) and the Holder inequality we have
) ||VeiHL4(P%) S 07

lvi - Veill 20 p ) < Hlvill 20

LT (Py 1
2 2
so that
2
[1Veildi +vi - Veil| 5., | < C- (4.35)
2
Hence the W2'1-estimate for the heat equation implies
HatveiHLt%OWJI’%O(P%) <C. (4.36)

By (4) and (4.36), we have {Ve;} is bounded in
271 oLy
X, = {u € L2HY(P:) : Qe L2 Wy 7 (Pg)},

and so by Lemma 4.6, we have that Ve; — Ve strongly in L? (P%) It is easy to see that by interpolations,
the claims imply that
v; = v, Ve; — Ve strongly in L?’(P%). (4.37)
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From (4.37) and (4.32), we conclude that for any 6 € (0, %) and i sufficiently large,
072 [ |ul*+ Ve <072 [ |v* 4+ |Vel* +0(1) < CH°. (4.38)
Py Py

Finally using the estimate (4.40) below, with 7 = 0 and r = %, we have that for any 0 < 6 < %,

o2 [ |pli<c 9*2/ (wl® +[Vd?)+6 [ |3
P

Py !
2 2

After scaling, this implies that for any 0 < 6 < %,

3
2

02 | |t <C 9*261‘/
P

(\fui|3+|Vei|3)+0/ 0| <cio+0). (4.39)
Py P1

1
2

Combining (4.38) and (4.39), we have that for sufficiently large ¢ = i(0),
02 [ (il + Vi + 1@sf%) < .
Py

This contradicts (4.18), if we choose 0 € (0, 1) sufficiently small. O

The next Lemma gives the estimate of pressure function, which is needed in the proof of Lemma 4.5.

Lemma 4.7. Suppose that (u, P,d) is a suitable weak solution of (1.1) on Py. Then for any 0 <r <1 and
7€ (0,3), it holds that

1 3 r\2 1 T 1 3
— 2 < —-) = —u. (B 3 )= 3 .
=/ P —C[(T> - /pﬂ“ wrO)F +19d%) + (1) /P 1P| } (4.40)

1
where u,(t) = ﬁ/ u(x,t) for —r? <t < 0. In particular, it holds that
T B,

1 2 1 % 1 %
= |P|% <C (C) ( sup f/ u|2> (/ |Vu|2>
72 Jp. T —r2<t<0 " JB, rJp, (4.41)
™2 1 3 7\ 1 3
+0|(5) % [ v+ () /)

Proof. By scaling, it suffices to consider the case r = 1. Using the equation (1.1)s, we have
divdiv [(u—ui () ® (u—u(t))] = V; Vi ((w = ug (¢) (uw — uy (t))7)
=V, ((u—ur(t))'Vi(u—u (1)) = V; ((u— s (t))'Viu?)
=V;(u—u(t)'Viv! + (u—ui(t))'V,;V,u’
= (V;u") (V! ) = V; Vi (u'n?) = divdiv(u @ u).
Taking the divergence of (1.1)1, this yields
AP = —divdiv[(u —ui(?)) ® (u —u1(t)) + Vd © Vd]. (4.42)
Let n € C§°(R3?) be a cut-off function of By ie. 0<n<1,n=1on By, n=0outside By, and [Vy| < C.
Define P by

P(z,t) = — /3 ViG( —y) :n?(y) (u—ui(1) © (u—wi (1)) + Vd © Vd) (y,1),
R
where G is the fundamental solution of the Laplace equation on R3. We have

AP = divdiv ((u—u1(t)) ® (u—uy(t)) + Vd© Vd) in R>.
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By the Calderon-Zygmund LP-theory we have

[t < [ 1POFE < [ Pl ) o - n@) + Vdo v
B, R3 R3

S [ (- wOP + vdp).

1
Integrating this inequality over t € (—72,0) yields
= 1P} < TC;/Pl(u — (1) + V). (4.43)
Since the function Q := P — P € L3 (P,) satisfies
AQ()=0 in By, Vie [-i,o},
we have by the Harnack inequality that for any 0 < 7 < %,

1 3 3 3 ~ 3
5[ ekserf IQ|2§CTU Pl [ |P|2]
T B B B, B

2

<Crt V |P|%+/ |u—u1(t)|3+|Vd|3}
By By

Integrating this inequality over ¢ € [—72,0] implies

1 : .
5[t <er| [ P [ u-woP+ v, (149)
72 P, Py Py

It is now readily seen that (4.40) follows by adding the inequalities (4.43) and (4.44). Using interpolation
and the Sobolev inequality, we have

/B1 lu—uy|? <C(/B1 u|2>?1 (/B1 Vu2>i. (4.45)

Inserting (4.45) into (4.40) yields (4.41). O
Continuing to iterate the above process, we have

Corollary 4.8. Under the same assumptions as Lemma 4.5, there exists a € (0,1) such that for any

21 € Pro(20) and 0 <7 <r <73, it holds

1 2 1
1 3 1 3 1 3
S[oowl) (s ) (5 e
T Pr(z1) T Pr(z1) T Pr(z1)
1 2
alf1 ? 1 ¢ 1 f
< (Z) 7/ ul® |+ 7/ P2 )+ *2/ Vd|®
r T JP.(z1) ™ JP.(z1) T JP.(z1)

Proof. Set i = 3 and ¢; = 2% ¢p. Then it follows from (4.9) and (4.10) that for any 2, € Pro (20), both (4.9)
and (4.10) also hold for (u, P,d) with zg, 7o and €y replaced by 21,71 and €1 respectively. For 0 < p < rq,

define ®(p) by
3 3 3
1 1 3 1
ep)= (5 [ wl) (e (5[ var)
P” JP,(21) P JP,(21) P JP,(21)

1
2

(4.46)

ol

Then applying Lemma 4.5 for (u, P,d) on P, (#1), there exists 6y € (0
holds that

) such that for any 0 < r < rq, it

1 1
@(907") S 5@(7’) S 561.

Tterating (4) k-times, k > 1, yields
D(Okr) <27k (r).
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It is well known that this implies that there exists o € (0,1) such that for any 0 < 7 < r < 1, ®(7) <
(I)O‘@(T). Therefore (4.46) holds. O
r

Proof of Theorem 4.4. We will now prove the smoothness of (u,d) in Pra(29) by the estimate (4.46).
The idea is based on the Riesz potential estimates between Morrey spaces, that is analogous to those of
Huang-Wang [10] and Lin-Wang [22].

First, let’s recall the notion of Morrey spaces on R? x R, equipped with the parabolic metric §:

5<(z,t),(y,s)) = max{|x—y|, Vit = 5|}, Y (z,t), (y,s) € R® x R.

For any open set U C R3*1 1 < p < 400, and 0 < A < 5, define the Morrey Space MP*(U) by

MPAU) = { € Lo lollpray = s [ s oo} . (4.47)
zeU,r>0 P (z)NU
By Corollary 4.8 we have that for some o € (0,1),
u, Vd € M33(1-2) (PTO(ZO)). (4.48)
Write the equation (1.1)5 as
owd — Ad = f, with f:= (|Vd|*d —u - Vd). (4.49)

By (4.48), we see that
f e M330-a) (P%o(zo)) .
As in [22] and [10], let n € C§°(R3*T1) be a cut-off function of Pro(20): 0<n <1, n=1in Pra(z), and
10| + V33| < Crg?. Set w = n?d. Then we have
Ow—Aw=F, F:=n*f+(0m*— An?)d —2Vn? - Vd. (4.50)
It is easy to check that F' ¢ M%’?’(l_o‘)(R?’“) and satisfies the estimate

[Pl 0oy < € [ Mooy | < €0+ 0 (4.51)

Let I'(x,t) denote the fundamental solution of the heat equation on R3. Then by the Duhamel formula for
(4.50) and the estimate (see [10] Lemma 3.1):

VIl t) S s YO # 0.0
we have
Vw(z, )| </ / VT (x =y, t — 8)||F(y,5)| < c/ M — CL(F)(x,1), (4.52)

where Z3 is the Riesz potential of order 8 on R* (8 € [0,5]), defined by

Tolo) = | | 5((x’|tg)fzg’yf)8|))5ﬂ, g€ LP(RY). (4.53)

Applying the Riesz potential estimates (see [10] Theorem 3.1), we conclude that Vw € MESR 0 @) (R%)
and

< <
vaH gt sa- Ry ™ HFHM%S'U*Q)(RAL) ~ [

3(1—a)
12«

v

O (d —w) — A(d —w) =0 in P%o (20),

<
1+ ||fHM%,3(lfa)(P12Q oy | (1 + 60). (4.54)

Choosing o 1 2 5 and using hma% = 400, we can conclude that for any 1 < ¢ < oo, Vw € LI(P,,(20))
and

< C(g,70, €0)- (4.55)

L4(Pry (20))
Since (d — w) solves



LIQUID CRYSTAL FLOW IN Lfﬂoc(Ri") 21

it follows from the standard estimate on the heat equation that for any 1 < g < +o00, Vd € L9(Prg (2)) and

|vd

Now we proceed with the estimation of u. Let v : R x [0, +00) — R? solve the Stokes equation:
v —Av+VQ=-V-[*(VdoVd+u®u) inR3 x (0,00),
V-u=0 in R? x (0, 00), (4.57)
v(-,0) =0 in R3.

< C(q,70,€0)- 4.56
g < 0T (4.56)

By using the Oseen kernel (see Leray [14]) an estimate for v, similar to (4.52), can be given by

v(a,t)| < C/ /R D, i)gﬂ < O (X)) (2, 1), (z,t) € R® x (0, +00), (4.58)

where X = 72(Vd © Vd 4 u @ u). As above, we can check that X € M2-31-2)(R%) and

2
(B P11 AR M M B
2 2

Hence, by [10] Theorem 3.1, we have that v € M31<1_;Z>,3(1—a)(R4), and

HUHMSSE?S(PG)(R‘;) < CHXHM2 31— (g 4) [||Vd||M3 3(1— a)(p& (20)) ‘|‘ HUHMs 3(1— a)(P& (ZO)):| . (4.59)

By sending a 1 3, (4.59) implies that for any 1 < ¢ < +00, v € L9 (Py,(2)) and

Note that (u — v) satisfies the linear homogeneous Stokes equation in Pra (2 (20):

< C(q,70,€0)- 4.60
ooy < C@70,60) (4.60)

Oh(u—v)=Alu—v)+ V(P -Q)=0, V- (u—-v) =0 in Pra(z0).

It is well-known that (u —v) € L*(Pr(20)). Therefore we conclude that for any 1 < ¢ < +oo, u €
L9(Ps (=), and

|

It is now standard that by (4.56) and (4.61), and estimates for the linear parabolic equation and the linear
Stokes equation, (u,d) € COO(P%O(ZO),RB x S%) and the estimate (4.11) holds. O

< C(q, 70, €0)- (4.61)

L"(Pgl (20))

5. EXISTENCE OF L3, -SOLUTIONS AND PROOFS OF THEOREM 1.2

uloc™
In this section, we will prove our main result — Theorem 1.2.

Proof of Theorem 1.2. First, observe that by the scaling invariance of (1.1), (u, P,d) : R® x [0,T) —
R? x R x 5% solves (1.1) under the initial condition (ug,dp) if and only if for any A > 0, (u*, P*,d*) :
R? x [0,7*) — R3 x R x S? solves (1.1) under the initial condition (u}),d}). Here

T = X727, (ud(x),d)(z)) = Mug(Ax),do(Mx)) for = € R3;
and
(M, 1), PM(2,t),d (2, t)) = (Mu(Ax, A\*t), \2P(Ax, A*t), d( Az, \*t))  for (z,t) € R® x [0,T%).
Therefore it suffices to prove Theorem 4.4 for R = 1. We divide the proof into six steps.

Step 1. Approzimation of (ug,dy) by smooth initial data. We summarize this step into the following lemma.
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Lemma 5.1. For a sufficiently small e > 0, let (ug,dp) : R® — R3 x S?, with uy € L3 .(R?) divergence
free and (dy — eg) € L3(R?) for some eq € S?, satisfy

[[[(uo, Vo)l L3 (ms) < €o (5.1)
Then there exist a large constant Cy > 0 and
3
{(uf, d5)} € C*(R*, R x §%) N [ (L (R®, R%) x W' (R®, 5%))
p=2
such that the following properties hold:
(i) V -uk =0 in R? for all k > 1.
(i) As k — oo,
(uf, d&) — (uo,do) and Vdg — Vdo in LY (R?) for p =2,3. (5.2)
(iii) There exists ko > 1 such that for any k > ko,
|||<u§an§)|HL§(]R3) < Coéo.- (5.3)

We assume Lemma 5.1 for the moment and continue the proof of Theorem 1.2. By modifying the proof of
the local existence Theorem 3.1 of Lin-Lin-Wang [21]?, we can conclude that there exist 0 < T} < 400 and
smooth solutions (u*, P* d*) : R? x [0, T}] — R® x R x S? of (1.1), under the initial condition (u*,d*)|,—o =
(ug , d’g ). Observe that by applying the proof of Lemma 4.2 with ¢ = 1, the following energy inequality holds:

t
/(|u’f(t)|2+|wk(t)|2)+2// |Vu’“\2+|Ad’“+|de|2d’“\2:/ (k2 + [VaE2), 0<t < Ty (5.4)
R3 0 R3 R3

In particular, we have that (ug,d;) € C([0, Ty, L?(R?) x W12(R3)).

Step 2. Uniform lower bounds of Ty. To see this, we first need to show
Claim. There exists 79 > 0 such that if T} is the maximal time interval for the smooth solutions (u*,d*)
obtained in step 1, then T} > 79, and

sup [[|(u* (1), T (O)][[35 nsy < 26565 (5.5)

0<t<7o

To see (5.5), note that (5.3) implies that there exists a maximal time ¢} € (0, Tg] such that

sup 1w (8), Vd* (0)[|12 a) < 203¢6, (5.6)
0<t<tr 1
Hence
[11(a"(t5), VA"t 5 (gsy = 2C5 €5 (5.7)
2

By a simple covering argument, we see that (5.6) implies

sup sup / (|u(@®)]® + |Vd*()|?) < Cép. (5.8)
Bl(x)

0<t<t; z€R3
For any fixed 7o € R?, let ¢g € C5°(R?) be a cut-off function of B (zo):
0<¢g<1, ¢9=1o0n B%(xo), ¢o = 0 outside Bi(xg), and |Veo| < 4.

For convenience, we set for 0 < ¢ <¢f,

5(onsaont) == [ [HOF + V(0] 6 (59

2For K >0and 0 < a < 1, first choose the solution space
Xp = {(u,d) REX[0,T] 5 R3xR3:V.-u=0, V2f,0,f € Cp(R® x [0,T]) N C(R3 x [0,T)),
(w, D=0 = (ub, db), 1w —uf,d = dB)ll 2.1 g ) < K}

then follow the fixed point argument as in [21] with slight modifications, one can obtain the local existence of smooth solutions.
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Then by (3.6) and (5.8) we have that for any 0 <t < ¢},

jt § (603 (20, 1) + (1= Cg) /R V(02 60) + [V (V1)) 60)]]
< C/ (™ (@) + [Va*(t)]*)|V o |* + C sup (/ uk(t)3+|de<t)|3> ’ (5.10)
R3 yers \J B, ()

< Cej+ Cey < Cel.
Integrating (5.10) with respect to t € [0, ¢}] yields

t;z 3 3
eb(ons aonti)) + (1= ) [ [ 1900t TEo0) + 19 (Ve En)

< Cegty + E5 (o3 (0,0)) < Cedty + Coe,

where we have used (5.3) in the last step. Therefore if €y > 0 is chosen such that 1 — C'e3 > 0, then (5.11)
implies

(5.11)

&5 (¢o; (wo, 1)) < Cegty, + Cieg.
Taking the supremum of £ (¢o; (z0,t})) over xg € R3, we obtain

2C5eg = [[[(u*(t5), de(tk)mLS ®3) = sup E5(o; (x0,t},)) < Cegty, + Cilep.

This clearly implies that there exists 79 > 0 such that Tk >ty > 79. By the definition of ¢}, we also see that
the estimate (5.5) holds.

Step 3. Uniform estimation of (u*,d"). Note that P* satisfies
APF = —div’(u* @ u* + Vd* © VdF) in RS
It follows from (5.4), (5.5) and Lemma 3.2 that

sup sup HPk < Ce, (5.12)

0<t<ro zER?
where cf(¢) € R depends on both # € R? and t € [0,70]. By (5.5) and (5.12), we see that for any zo € R?,
(uk, P* — ¢k d*) satisfies the conditions of Theorem 4.4 in P sz (20,70) = B /m(w0) x [0,70]. Hence by

Theorem 4.4 we obtain that (u*,d*) € C=(R3 x (0,7), R x §2), and
Sup |(u*, Vd*)] < C(m,d,¢) (5.13)

Ol o, )

C™(R3x[8,70])
holds for any 0 < ¢ < 3 and m > 0.

Step 4. Passage to the limit. Based on the estimates of (u*,d"), we may assume, after taking subsequences,
that (u,d) € () C5°(R® x [§,70],R® x S?), with (u, Vd) € L>([0,70], L}),.(R?), such that
0<6<T9

(u*, Vd*) — (u, Vd) weakly in L3(R3 x [0, 70]), (u*,d*) = (u,d) in C™(Bg x [§,70]), Vm > 0,R > 0,5 < 79.
Sending k — oo in (5.8) yields

uloc(

sup ||(U, Vd)HL?(RJ) S CGQ.
0<t<1g

We can check from (1.1) and (5.8) that for any R > 0,

| (0pu®, Dpd") < C(R) < +oo.

It ompw—r2 oy =
This implies that

(u(t),Vd(t)) — (ug, Vdo) strongly in LY (R?) as t | 0. (5.14)
In particular, we have that (ug, Vdy) € C2([0, 7o), L3,,.(R?)).

Step 5. Characterization of the mazimal time interval Ty. Let Ty > 79 be the maximal time interval in
which the solution (u,d) constructed in step 4 exists. Suppose that Ty < +oo and (1.8) were false. Then
there exists rg > 0 so that

lirgsup (u(t), V()| L3, (rs) < €0

To
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In particular, there exists r1 € (0,7¢] such that

sup |[|(u(t), Vd(t))[|Ls (ms) < €o-
To—r2<t<T,

Hence by Theorem 4.4, we conclude that (u,d) € Cp°(R? x [0, Tp]) N L>([0, To], L3, .(R?)). This contradicts
the maximality of Ty. Hence (1.8) holds.

Step 6. Uniqueness. Let (uy,dy), (ua,dp) : R? x [0, Tp] — R? x S? be two solutions of (1.1), under the same
initial condition (ug,do), that satisfy the properties of Theorem 1.2. We first show (u1,d1) = (ug2,d2) in
R3 x [0, 70]. This can be done by the argument of [27] page 15-16. For convenience, we sketch it here.
Set u = w3 — ug,d = dy — da. Then (u,d) satisfies
8tu—Au: —PV'[U1®U1 —U2®’LL2+VCZ1®V(11 —VdQQVdQ]
8td — Ad = 7(U1 . le —Uug - Vdg) + |Vd1|2d1 — |Vd2‘2d2
(u,d) |t=0 = (0,0).
By the Duhamel formula, we have

u(t) = —V[Ul XU — Uz Q us + le O] le — de O) Vdg]
d(t) = —S[(u1 . le — U - Vdg) - (|Vd1|2d1 - ‘Vd2|2d2)],

her
where . .
Sf(t) :/ e~ =98 f(s)ds, Vf(t) :/ e~ E=IAPY . f(s)ds, Vf: R3 x [0, 4+00) = R3,
0 0

Recall the three function spaces used in [27]. Let X,, denote the space of functions f on R? x [0, 7] such
that

A%, = sup [f @)@y + [ fllx,, <+oo,
0<t<7o

where

Iflx., == sup VEAVOllpw@ny+ swp (3 / VIP)E,
0<t<ro P, (z,r?)

z€R3,0<r<{/T0
Y, denote the space of functions g on R? x [0, 79] such that
llglly., == sup t[[g(t)]|Lo(ms) + sup 7"_3/ lg| < +o0,
0<t<1g z€R3,0<r< /70 Py (z,r?)
and Z,, the space of functions h on R3 x [0, 9] such that

_ 1
lhllz,, = sup VEIA@Dlpwmn+ s (r 3/ Ih[2)} < o0,
0<t<7g z€R3,0<r< /70 P, (z,r?)

Since (ug,d;) € L([0,70], L2(R?) x W12(R?)) satisfies (1.7) for ¢ = 1,2, Theorem 4.4 and the Holder
inequality imply that u; € Z,,,d; € X, for i = 1,2, and
2
> (luillz., + lldillx.,) < Ceo.

=1

It follows from Lemma 3.1 and Lemma 4.1 of [27] that

lullz, + lldlllx, S ||(ul+ [ua)lul + (V| + Vs ]) V]

Yo,

[ lel1V ol + a1Vl + (Vs + Vo) V] + Vo]

Y.,
2 2
S D_ldilix., +lluillz, lelz,, + Dz, + Idillx, )],
i=1 i=1
S eollullz,, +lldllx.,]-
This clearly implies that (ug,d;) = (ug,ds) in R® x [0, 79]. Since (u1,d;) and (ug,ds) are classical solutions of
(1.1) in R x [10, Tp), and (u1,d;) = (ug,ds) at t = 79, it is well-known that (u1,d1) = (u2, d2) in R3 x [, Tp).
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The proof is complete. O

Finally, we provide the proof of Lemma 5.1.
Proof of Lemma 5.1: Let § € C*°([0,+00)) be such that

Or)y=1for0<r<1; 0<f(r)<lforl<r<2; 6(r)=0forr>2.
Let n € C§°(R3) be a standard mollifier, and define for k > 1
ni(z) = k*n(kx) and O (z) = 9(%) for z € R®.

Step 1. Approzimation of dy. This will be done by two rounds of approximation. It follows from (dy —eg) €
L3(R3) that there exists ko > 1 such that for any k > ko, it holds

/ |d0 — 60‘3 S 68. (515)
RS\Bk_l

By the Fubini theorem, we may assume that for k > kg, it also holds
3 3
faBk |do — eol” dH? < 2fR3\Bk,1 |do — eol” < 26,
3
SUP,com, Jop,nps () | Vaol® dH? < 4| Vdo|l73s) < O, (5.16)
3 3 b 3 b q
fc’?Bk |Vdo|” dH? < 2ka+1 |Vdo|” < k3 |\Vd0||L?(R3) < k3€}.

Define the approximate sequence df : R® — R3 by

. do(z) if |z] <k
di(z) =< (|z| — k)eo + (k+ 1 — z)do(kpy) i k<|z[<k+1
€0 if |z] > k+ 1.

Then by direct calculations we have that

A R B\
By, By11\Bxk

/|vcz0|p+/ \Vd0|de2+/ \do — eo|? dH?
By OBy OB

S KkPel < +o0, for p=2,3,

A

—~— 3
de] < Vol sy + sup/ do — eo|® dH?
H OllLs (s | OHL?(W) z€DBy, aBkﬁBl(z)‘ 0 o
+ sup / |Vdo|® dH?
r€0By J OB, NB1(x)
< Ce,
and for any zg € Bgy1 \ Bk,
o~ 1 ~
dist(df(z0),5?) < == [ |d§(zo) ~ do(w)
|B1‘ Bi(zo)
X
S I R (R A do(y)‘
Bi(z0) |zol
To
< [ b -al+ do<y>—do<k>]
Bi (o) |zol
3
S (/ |d0€0|5> + Vol 13 sy < 2€0-
R3\ By,

This implies

sup dist(df(zo), S?) = sup dist(Zl\g(aco), 5%) < 2¢
zo€ER3 20€Bk4+1\ Bk
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so that if €y > 0 is chosen sufficiently small then df(z) remains close to S? uniformly for € R®. Therefore

— — dF —
we can project df onto S? to get df(x) = Ao,(m) for € R3. It is easy to see that df : R3 — S? satisfies:
|d (<))
— — . — —p
d5 = doin By, d§ = eg in R¥\ By 11, ||Vdk (5 < Ceg, and / Vd’g‘ < CkPel < +oo (p=2,3). (5.17)
Ly (R R3

For any [,k > 1, define di''(z) = (77% * Zlg) (z) for z € R3. Then di' € C=(R?, R3) satisfies

v

and by the modified Poincaré inequality it holds that

< Cep, and v

< CkPed < L VI>1, (p=2,3), 5.18
L 5 <O} < oo, VI L, (p=2.3) (518)

‘ p

sup dist(d5 (z), §%) < chzg’l‘ < Cep, V1> 1, (5.19)

T€ER3

L3 (R3)
and for any k > 1,
Jim (ld6" = doll (s, ) + IV (5 = o), ,)) =0, for p=2,3.
Therefore, by the Cauchy diagonal process we may conclude that, after taking possible subsequences, there
exist [(k) — oo as k — oo such that
dlg,l(k)

d(z) = (z), Vo € R3,
4

satisfies the desired properties of approximation: df € C*(R3,S%) N W'?(R3,5?) (p = 2,3), and

k
||Vd0 HL?(RQ‘) S CV0€07 (520)
and for any 0 < R < +0o0,
Jim [|ld5 — dol| Lo (5n) + V(5 — do)l| o (5] =0, for p=2,3. (5.21)

Next we would like to obtain the desired approximation of ug, whose proof is similar to [2] Theorem 1.4.
For the completeness, we outline the detail below.

Step 2. Approzimation of ug. Let P : L?(R3) — PL?(R3) denote the Leray projection operator. For k > 1,
define

ub(x) = P[Opuo](z), = € R®.
Since Orug € LP(R3,R3) and P : LP(R?) — PLP(R?) is bounded, it follows that V - uf = 0 in R® and
uk € LP(R3) for p = 2,3. Now we want to show

ok

<

(5.22)

L3(R?) L3(®3)

and

uf — g strongly in LP (R?) for p = 2, 3. (5.23)

loc

Since

ug(z) = (Bruo)(x) — VATV - [Ouo) (),

and [|0kuol| L3 (rs) < ||uollL3(rs), it suffices to show

Hvxlv : [Gkuo]’

S o] g
L3®s) ~ L3 (R?)

Set @ = VA~V - [@xup]. Then we have

uk(z) = 9(%)u0(x) — ®(z), = € RE.
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It follows from V - ug = 0 that we have

O(z) = VATV [puo)(x) = VATH(VO) - uo](z)
= [ K)o wol)
RS

1

= I(2) + II(x),

z 1
here K(x) = ,

where K(x) = 03‘ E c3 = 3B

follows. It is easy to see that

‘va

o

@) < 55 [ ol < €l

< ol

1
Mlges) < 7 1K1,y

L3 (%) 3R

while

LY(RS)’
so that
11 L3 gsy < C lluoll Lo gs) -
Combining these two estimates implies (5.22).
For any fixed compact set E C R and x € E, we write

a2y Y Y opy [ Y
o = § L (Fo ) Yo = v
= II]k( )—I—IVk(UO)

Since V(%) has its support in By, \ By, for k sufficiently large we have that

r—y y
lz—yP " |yl

C’
< k:?” for x € E and y € By, \ By,

and hence it holds

CE/ C’E
I11(z)] < =& uo(y)| < Hu ‘
[[11k(2)] < =3 B%\Bk| o)l |l s asy

while it is easy to bound IV (ug) by

1
[TV (u0)] < E/ luo(v)| < Huo‘
B

L3(R3)

— 0 as k — o0,

Y 1 y
= S KV ) [ K90

uo(y)

Hence we may assume that there exists a constant vector ¢ € R?, with |c| < C|lugl| 3 (g, such that

lim IVk(uo) =C.
k—o0

Now we define

., 3

ub(z) = uk(x) + 5@[9(%)4, z € R3

Then we have that uf € LP(R?) for p = 2,3, and

< Cfu
L3 (R3)

Hug .
L3(R9)

It is easy to check that for any = € F, if k — oo then

]P’[G(%)c] = 9(%)0 ~ VAV [9(%)4 = 9(%)(: +o(1) + ij /R |er(k) e 2¢
Therefore, for any « € F, if k — oo then
ab(w) ~uo(e) = (O(3) ~ Duo(x) — B(x) + SPIO(3)d
= (O~ Vuola) — ITTx(a) — IVi(uo) + SO

3¢

27

is the kernel of the operator VA~!. We estimate I and II separately as
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This clearly implies (5.23). The proof of Lemma 5.1 is not complete yet, since uf ¢ C°°(R3,R3). To overcome
this, we mollify uf to get
ulg’l(m) = (n% *uk> (x), z € R3,V1>1.

Then it is straightforward to check that uf’ € C°°(R3 R3) N LP(R3,R3) for p = 2,3, V - ub' =0,

H k,l

o
G e

< Clfus)
L3(®?)

HL?(D@) L3®?)’
and for any k > 1,
upt — uk strongly in LP. (R?) for p = 2,3, as | — oo.

loc

Thus, by the Cauchy diagonal process we may assume that there exist [(k) — oo as k — oo such that
ul(z) = ug’l(k)(x), reR?

satisfies the required properties of approximation of ug: uf € C*°(R3 R?*)NLP(R3,R3) for p = 2,3, V-uf = 0,

k
-4

< CJu
L3(R?)

L3(R?)
and

ug — ug strongly in LfOC(R?’) for p=2,3, as k — oo.

This completes the proof of Lemma 5.1. |
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