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Abstract. For a bounded domain @ C R™ endowed with L*-metric g, and a C°-
Riemannian manifold (N,h) C RF without boundary, let v € W12(Q, N) be a weakly
harmonic map, we prove that (1) u € C*(2, N) for n = 2, and (2) for n > 3, if, in
additions, g € VMO(QY) and u satisfies the quasi-monotonicity inequality (1.5), then there
exists a closed set X C Q, with H"=%(X) = 0, such that u € C*(Q\ X, N) for some
a € (0,1).

§1. Introduction

For n > 2, let © be a bounded domain in R™. Throughout this paper, let g be a
bounded (or L°°), measurable Riemannian metric on R", namely, there exists A > 0 such

that g = Zz,ﬂﬂ Jap dxo dzg satisfies:
(1.1) AL, < (gap)(z) < AT, Vo € R™.

Let (N,h) C RF be a compact, at least C°-Riemannian manifold without boundary, iso-
metrically embedded into an Euclidean space R*. For 1 < p < oo, define the Sobolev
space W1P(Q, N) by

WYP(Q,N) :={u:Q— RF | E,(u) < +oo, u(z) € N for a. e. x € Q}
where
k o
By(w) = [ (30 1Vt v,
i=1

is the p-th Dirichlet energy of u w.r.t. g,

n

, out Ou’
Vut|? = § B L 1<i <k,
| r g 0z Oxg™  —
a,f=1

where (g*°) = (gap) !, and dvy = \/gdz = \/det(gap) dz is the volume element of (€2, g).

* Partially supported by NSF.



Let dg4(z,y) and do(z,y) = |z — y| be the distance functions w.r.t. g and go (the
Euclidean metric) respectively. Since g is L°°-Riemannian metric on R", it is easy to see
that there exists 0 < C'A < +oc such that

(12) Cdeo(éﬁ,y) S dg(xvy) S CAdO(xmy)v \VIQS', Yy € R".

In particular, f € C*(Q,N) w.rt. g iff f € C*(Q,N) w.r.t. go, and for any open set
UCR™and 1<p< —+o0o,

(1.3) c;l/U|h|gdvg g/U|h|Pdg;g CA/U|h|§dvg

holds for any vector field h € LP(U,R™), here |h| = (3 i, h2)z and dz is the volume

element of g.

Definition 1. A map u € WH%(Q, N) is a weakly harmonic map, if it is a critical point
of E2 ()

It is readily seen that any weakly harmonic map u € W12(Q, N) satisfies the harmonic

map equation:
(1.4) Agu+ Ag(u)(Vu, Vu) = 0, in D'(Q)

where Ay = \/ig ZZ’le %(\/gg"‘ﬂ%) is the Laplace-Beltrami operator of (£2,¢), and
Ay)(-,-) : TyN xTyN — (T,N)*, y € N is the second fundamental form of N C R¥, and

n

Ag(u)(Vu, Vu) = Y g™ Au)(

a,B=1

Ju OJu
TR

Regularity of harmonic maps from manifolds with C'°°-Riemannian metrics g has
been extensively studied by many people. Schoen-Uhlenbeck [SU], Giaquinta-Guisti [GG]
independently proved that any minimizing harmonic map is smooth off a closed set whose
Hausdorff dimension is at most (n — 3). Hélein [H1,2] proved that any weakly harmonic
map from a Riemannian surface is smooth. Evans [E] and Bethuel [B] proved that any
stationary harmonic map in dimensions at least three is smooth off a closed set of zero

(n — 2)-dimensional Hausdorff measure.

In this paper, we are mainly interested in seeking the minimal reqularity assumption
on Riemannian metrics g such that any weakly harmonic map u € WH2(Q, N) enjoys

(partial) Holder continuity.

In this context, our first theorem is



Theorem A. For n =2 and a L*-Riemannian metric g on R"™, let u € W12(Q, N) be a
weakly harmonic map. Then u € C*(Q, N) for some a € (0,1).

Remark 1. For n > 2, if, in addition, g € C™#(Q) for some m > 0 and 3 € (0,1) and
N € C™*° | then theorem A and the theory of higher regularity of harmonic maps (cf.
Giaquinta [G]) imply that if w € C*(Q, N), then v € C™*+19(Q, N) for § = min{«, 8}.
For n > 3, Riviére [R] constructed an example of weakly harmonic map from B>
to S? that is singular everywhere. It turns out that the stationarity or suitable energy
monotonicity inequality plays a crucial role for the partial regularity of weakly harmonic

maps. To this end, we introduce

Definition 2 (quasi-monotonicity inequality). A map u € W12(Q, N) enjoys the quasi-
monotonicity inequality property, if there exist K = K(n,g) > 0 and 79 = ro(n,g) > 0
such that for any z € Q and 0 < r < R < min{ro, dist(x, 9Q)}, we have

(1.5) 7’2_"/ |Vul|? dz < KRQ_"/ |Vul|? dr.
B,«((L‘) BR((L')

Remark 2. (a) For n = 2, (1.5) holds automatically for u € W12(Q, N) with K = 1.

(b) For n > 3 and g € C%(Q), it is well-known that both minimizing harmonic maps and
stationary (or C?)-harmonic maps enjoy the quasi-monotonicity inequality property (cf.
[SU], Preiss [P], and Schoen [S]).

(¢) In proposition 5.1 and 5.2 below, we verify that for n > 3, both minimizing harmonic
maps w.r.t. Dini continuous g and stationary harmonic maps w.r.t. Lipschitz continuous
g enjoy the quasi-monotonicity inequality property.

It is also well-known that certain regularity of the coefficients is necessary for the

regularity of second order elliptic systems (cf. [G]). To this end, we recall

Definition 3. (a) For any open set U C R", a function f € BMO(U), if f € Llloc(U) and

[fIBMO®W) = sup{m o) |f = farl | Br(z) CU} < o0

where f;, = 7|Brl(x)| fBr(x) f.
(b) For any open set U C R", a function f € VMO(U), if f € BMO(U) and

}i_I)I(l) 2gg[f]BMO(UﬁBr(fﬂ)) =0

Now we are ready to state our second theorem.
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Theorem B. Forn > 3 and g € VMO(S)), suppose that uw € WH2(Q, N) is a weakly
harmonic map satisfying the quasi-monotonicity inequality (1.5). Then there exist a closed
set ¥ C Q, with H"2(X) = 0, and o € (0,1) such that u € C*(Q2\ X, N). Here H"2
denotes the (n — 2)-dimensional Hausdorff measure w.r.t. go.

We would like to mention that Shi [Sy] proved the partial regularity theorem, similar
to theorem B, for minimizing harmonic maps from manifolds with L°°-Riemannian metrics.

However, the argument in [Sy] relies heavily on the minimality property. Our method is
of PDE nature and partly motivated by the techniques developed by [H1,2], [B], [E].

The paper is written as follows. In §2, for any C°-Riemannian manifold N, we outline
the Coulomb gauge frame construction by Hélein [H] on u*T'N|q with respect to g. In
§3, we utilize the W, "?-solvablity theorem on V - (AVu) = V - F by Meyers [M] (n = 2)
and Di Fazio [D] (n > 3) for bounded measurable elliptic matrix A to obtain the Div-Curl
decomposition theorem on (£2,g). In §4, we establish the decay Lemma on the MP"~P
norm of u, ||ul| prp.n—»r(.y, under the smallness condition of ||Vul|pr2,n—2(.). In §5, we provide
two examples in which the quasi-monotonicity inequality (1.5) holds. In §6, we make some

final remarks.
§2. Construction of Coulomb gauge frame

In this section, we sketch the Coulomb gauge frame construction on u*T'N by Hélein

[H1,2] to (€2, g) for any C°-Riemannian manifold N and L*°-Riemannian metric g on R".

Let | = dim(N). For any ball B C Q, {e;}\_; ¢ W12(B,R¥) is called to be a frame
of w*T'N on B, if {e;(z)}\_; forms an orthonormal base of T},,;)N for a.e. z € B.

For a vector field V = (Vq,---,V,,) : @ — R™, define the divergence of V w.r.t. g by
0
divg(V) = > %(ﬁgaﬁvﬂ)-
a,f=1 @
First we have

Lemma 2.1. Assume that there exist a C°-Riemannian manifold N c R¥ and a totally
geodesic, isometric embedding i : N — N. Ifu € Wh2(Q, N) solves (1.4), then it =iou €
Wh2(Q,N) also solves (1.4).

Proof. Straightforward calculations (cf. Jost [J]) imply that

ou Ou

Agi = Vi(u)(Dgu) + > gaﬁw%)(u)(%,@)

a,B=1
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Vi(u)(Ag(u)(Vu, Vu))
Ay () (ViL, Vi)

where A denotes the second fundamental form of N in RF. [ ]

With help of Lemma 2.1 and the enlargement construction by Hélein [H1,2], we may

assume that N is parallelizable so that we have

Proposition 2.2. Assume that N € C° is parallelizable and g is L>°-Riemannian metric
on R™. Let Q C R" be a bounded domian and B C Q be a ball. If u € W12(B, N), then
there exists a Coulomb gauge frame {e;}t_, C WH2(B,R¥) of u*TN on B, i.e.

(2.1) divg((Vei,e;)) =0 in B, 1 <14,j <l

(2.2) Z gaﬁ(%,ej)xlg =0 ondB, 1<14,j<I,
a,f=1 B

and

l
(2.3) Z/ |Ve;|? dz < c/ \Vu|? dz.
i=1"B B

Proof. As N is parallelizable, there exists a smooth orthonormal frame {¢&;(y)}._, of TN.
For 1 < i <, define &;(z) = é;(u(z)) for a.e. x € B. Then {&;}!_, forms a frame of u*TN
on B. Denote SO(I) as the special orthonormal group of order I, consider the minimization

problem:

!
(2.4) inf{ 3" /B|V(Rijéj)|3dvg:R:(Rij)€W1’2(B,SO(Z))}.

7,7=1

By the direct method, there is R® € W12(B, SO(l)) such that e, (z) = Z,l@,:l R 5(x)ep(x),
1 < a <, satisfies

l l
(2.5) Z/ Veal2dvg < ) / IV (Ragep)|2 dvg, YR € W-(B,SO(1)).
a=17B B

a,f=1

In particular, we have

l 1
(2.6) Z/ Veal2dug < S / |V(5aﬁéﬂ)|gdvggc/ Vul? du,.
/B B B

a,B=1



This, combined with (1.3), implies (2.3). Moreover, the first variation similar to [H1,2]
implies that (Ve;,e;), 1 < i,j < I, satisfies the Euler-Lagrange equation (2.1) and the
Neumann condition (2.2). Hence the proof is complete. |

§3. Div-curl decomposition

In this section, we prove that if the metric g is either L> for n = 2 or in VMO(Q)
for n > 3, then the div-curl decomposition holds, namely, any F € LP(Q,R™) can be
decomposed into the sum of VG, with G € Wol’p(Q), and a divg-free H € LP(Q,R"), for
p sufficiently close to —=+. The key ingredients are VVO1 P_solvability results by Meyers [M]
for n = 2, and Di Fazio [D] for n > 3.

More precisely, we have

Theorem 3.1. Let g be L*°-Riemannian metric on R™ and B C Q C R"™ be a ball.
If, in addition, g € VMO(Q) for n > 3, then there exists 69 = d(n,g) > 0 such that
for p € (25 — do, %5 + do) and any F' € LP(B,R") there exist G € Wy P(B) and

H € L?(B,R"), with divg(H) = 0 in Q, such that

(3.1) F=VG+H in B,
and
(3.2) VG| trB) + [ H]|zr By < C(p, 9)||F||Lr ()

where LP(B) is LP-space w.r.t. go.

The proof of Theorem 3.1 relies on the following WO1 P_solvability result.
Proposition 3.2 [M]. For n > 2 and any ball B C Q, assume that A = (a;;) €
L>°(B,R™ ™) is symmetric and uniformly elliptic, then there exists 5o = do(n) > 0 such

that, for any p € (2 — 00,2 4+ o) and F € LP(B,R"), there erists a unique solution
u € WyP(B) to the Dirichlet problem:

3.3 —(a—) = , n B,
( ) ijzzl 8.’L’Z (a J 8.’17j ) ; 81‘, m

u =20, on 0B.
Moreover,
(3.4) IVulle By < Cp, A F||r(B)-
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Proposition 3.3 [D]. For n > 3 and ball B C Q, assume that A = (a;;) € L>® N
VMO(B,R"*™) is symmetric and uniformly elliptic, then for any p € (1,400) and F €
L?(B,R™), there exists a unique solution w € Wy (B) to (3.3) satisfying (3.4).

Proof of Theorem 3.1. Consider the Dirichlet problem:

(3.5) divy(VG) = divy(F'), in B
G =0, on 0B.

Observe that (3.5) is equivalent to

n 8 ‘
(3.6) Z ax, ij ax Z 8:01

,j=1

GzO, on 0B

where a;; = \/gg" and E, = Z 1 /997 F;. Since g satisfies (1.1), it is easy to see that
(ai;) € L°°(B,R™*™) is symmetric and uniformly elliptic. Moreover, we have ||F lzr(B) <
|F||r(B). For n = 2, Proposition 3.2 implies that there exists §o > 0 such that (3.5) is
uniquely solvable in Wy ?(B) for any p € (2 — 8y,2 + dp). For n > 3, since g € VMO(B)
implies (a;;) € VMO(B), Proposition 3.3 implies (3.5) is uniquely solvable in W, (B) for
any 1 < p < oco. Set H=F — VG, (3.5) implies divy(H) = 0 in B. Moreover, for any
p € (25 — do, 25 + do), (3.4) yields

(3.7) | H||zrBy < 1FllzrB) + [IVGllLrBy < ClF| Lo (B)-

The completes the proof of Theorem 3.1. [ |
§4. Decay Estimate in Morrey Spaces

In this section, we prove both theorem A and B. The crucial step is to establish
that under the smallness condition of ||Vul| pr2.n-2(By, |4 prr.n—»(B,) decays as r* for some
€ (0,1). The ideas are suitable modifications of techniques developed by Hélein [H1,2],
Evans [E], and Bethuel [B]. In order to achieve it, we need two new ingredients: (1) the
div-curl decomposition Proposition 3.1, and (2) a new approach to estimate the LP norm

of div4-free vector fields.

First we define Morrey spaces.



Definition 4.1. For 1 < p < n and any open set U C R", the Morrey space MP"~P(U)
is defined by

MPP(U) = {f € LP(U) | ||f||€v1p,n—p(U) = sup {rp—”/ |fIP dz} < +oo}.
B, (z)CU By (z)

Now we have

Lemma 4.1 (ep-decay estimate). For any bounded domain 2 C R™ and L*-Riemannian
metric g on R™. If, in addition, g € VMO(Q) for n > 3, then there ezist 6,, > 0,
€0 = €o(g,N) > 0, and 6y = (g, N) € (0,1) such that if u € WH2(Q, N) is a weakly
harmonic map satisfying the quasi-monotonicity inequality (1.5), and for B,(z) C €,

(4.1) 7“2_"/ |Vu|§ dvg < €
B, (x)

then, for any p € (25 — 0n, -27),

1
(4.2) ”vu”Mp,n—p(Beor(w)) < - HVUHMP»n—P(BT(w))-

Proof of Lemma 4.1.

By Lemma 2.1, assume that N is parallelizable. For z € Q and r > 0, let g, ,(y) =
g(x + ry) and ug,(y) = u(x + ry) for y € B. Observe that g, , is L°°-Riemannian
metric on B and u,, € WL2(B, N) is a weakly harmonic map w.r.t. Jz,r, satisfies the

quasi-monotonicity inequality (1.5), and
(4.3) / |Vu|§w,r dvg, . = 7’2_"/ |Vu|3 dvg < €.
B B, (z)

Hence, without loss of generality, assume = 0 and r = 1. It follows from (1.5) that
there exists K > 0 such that

(44) ||V”U,||M2,n—2(B%) < K||VU||L2(B) < KG%

For any 6 € (0,3), let Byg C By be an arbitrary ball of radius 20 and n € C§°(B)
be such that 0 < < 1,7 =1 on By, n = 0 outside Bog, and |Vn| < 2601, Denote the

average of u over Bag by ugg = @ fBge uwdvg, and |Bag| is the volume of By w.r.t. g.

Let {eq}l,_; € W12(Byy, R¥) be the Coulomb gauge frame of u*T'N on Bag given by
Proposition 2.2.



Let

ZPZQM b, g Z g szja p_(pla"'vpn)v q:(q177Qn) ERn
7,7=1

denote the inner products w.r.t. go and g on R" respectively.

By Theorem 3.1, there exists d, > 0 such that for any p € (;%7 — 6n, ;1) there are
bo € Wy (Bag) and 1), € LP(Byg) such that

(4.5) (V((u—u29)n),eq) = Vo +1q, divy(he) =0, in Bag,
and
(4.6) IVéallLe (Bse) + 1WallLr(Bse) < ClIV (4 — w2g)M)||Lr(Bs) < ClIVUllLr(Bsy)

where we have used the Poincaré inequality in the last inequality of (4.6).

Using the Coulomb gauge frame {e,}’,_;, (1.4) can be written as:

ou 8ea
(4.7) divy((Vu, eq)) Z Z g¥ (9 (9 ,eg)yes in Bag.
B=1i,5=1 .’177, Tj

We estimate ¢,, 1, as follows. Let gb&l) € W12(Bg) be the weak solution of

n o (1) .
(4.8) Z aij 8(/5 ) =0, in By
(4.9) o) = ¢, on dBy.

where a;; = \/§gij, 1<14,5 <n. Let qﬁf(xz) = o — qﬁ&l), then gb&z) satisfies

"9 (2) : ou 8ea
(4.10) Z % aij aw Z Z g" 3:0 3:6 ——.€eg))eg, in By,
ij=1"" p=1i,j=1 !
(4.11) ¢@ =0, on 0By.

Step I(a). Estimation of \Z

It is well-known (cf. [GT]) that there exists 6 € (0,1) such that o € C°(By), and
forany0<r§gandp>1,

l\DI%

[ 5,y < CO”™ "/B IVeDIP dz, 0 < r
6
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On the other hand, since ¢$2 € W, "?(Bg) satisfies

DAL I
8.’13,; ZJ 8.I‘j __, 8.’17Z ZJ 8.’17]'

,j=1 ,j=1

Theorem 3.1 implies that there exists d, > 0 such that, for p € (%5 — dn, -77).

n e
IV Lo (Bs) < ClIVoallrBs) < ClIVUllLo(Ba0)-

In particular, we have

IV Lo (By) < IVdallre) + IVOP 20 (Bs) < ClIVUl| Lo (Br0):

and,f0r0<r§§andp€(ﬁ—5 n),

) n—1

(612 5, < COPT / Vul? da.
B2y

This, combined with the Cacciopolli inequality, implies that for any 7 € (0, %) and p €

(25 — On, 25 ), we have

(4.12) (r0)P~" /B 9 VoD P dz < Cl6W s, )

< CTp59p_”/ |VulP dz
Bag

< O Vullpron-r(By)-

Step I (b). Estimation of V¢,
First, we claim

There exists 6, > 0 such that for any p € (%5 — 6n, 7)., if f € Wol’p(Bg) then

ny n—1
(4.13) IV fllr B,y < Csup{ : (Vf,Vv)gdu, :v € Wol’p (By), HV'UHLPI(BG) =1}
0

where p' = %.

To see (4.13), observe that by LP-duality, there exists v € L? (By), with vl 2o (By) =
1, such that

(4.14) IV £ Lo cze) < c/B (V1,0), dvy.
2]
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On the other hand, by Theorem 3.1, there exists d, > 0 such that if p € (-5 — 6n, 777)

ny pn—1/°

then there exist v, € Wol’pl(Bg) and vy € LP (Bg, R™), with div,(vz) = 0 in By, such that
(4.15) v = Vv + vy in By, HVUIHLP'(Bg) + HU2”LP'(B9) < C||v||LP'(B9)'

This and (4.14) imply
va”LP(Bg) S C(/B <Vf, V2)1>g dvg + /; <Vf, U2>g dvg)
6 6

=C/ (Vf,Vu1)gdug,
By

where we have used div,(v2) = 0 in the last step. Hence (4.13) holds.

Applying (4.13) to eqn. (4.7), we have that for p € (-5 — d,, "), there exists
v E Wol’pl(Bg) such that

(410 156y <€ [ (T, V), oy

= —CZ Z \fgm 8; (ge"f eg))(egv) dx.

B=114,5=1

To estimate the right hand side, we need the Hardy-BMO duality theorem (cf. [FS])
and the tri-linear estimate (cf. [CLMS], [E]).

Proposition 4.2 ([E]). Suppose that f € WH2(R"), h € L*(R",R") with div(h) =

Dy gZ’ =0, and v € BMO(R™). Then we have

(417) | . <Vf, h>Ud$| S C”foL2(R")Hh”L2(R")”U”BMO(Rn)

Let @ : R™ — R* be an extension of u such that
(4.18) IVl 2mny < ClIVullz2 sy, [EBMO®Rn) < ClUIBMO(8,0):

Let ng = Z,l821 Z?:l \/59”('32“76,8) 1 <i<n,and wy = (wév -+, wy). Then, by
(2.1), we have

" ow'
div(we) = Z ol R \/_Zdlvg (Veq,e3)) =0 on Bag.

B=1
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This, combined with (2.2), implies that there exists an extension w, € L?(R™, R") of w,
such that

(419) le(’lZ}a) =01in Rn, ”waHL2(R") S CHU}QHL2(B29) S CHVUHLQ(BM)'

Putting (4.17)-(4.19) into (4.16), we have

V6 ) < =C [ (T (o) do

=C (G, Wa)V(vey) dx
R”

< C[Q]BMO(Rn)”wa”LQ(R")”v(vea)”LQ(R")

(4.20) < Ol Vull L2 (B20) (W BMO (830) IV (Vo) [ L2 (85)

To estimate ||V (veq)||r2(By), note that for p € (1, -2 1), p’ = ;&5 > n and hence the
Sobolev embedding theorem implies v € W, *(By) C C’ T (Bg), and

(4.21) 0] oe (y) < CO' 75 = COHE,

Moreover, by Holder inequality, we have

(4.22) IV0llz2my) < COF ¥ [Vl g,y < CO7E.

Therefore we have

. IV(vea)llL2(my) < CU[[VllL2(B,) + 10]l (Bs)[[VeallL2(Bs))
< COFH[1 4 03|Vl 12y
< COPTE(1+ ||Vul yzn-2(p,))
<COPTE(1+ ) <COPTE.

Putting (4.23) into (4.20), and combining with (4.12), we have, for any 7 € (0, 1),

(4.24) {(ro)P— /B Val? do}s < CIr° + 77 % 0] | Vtl pgon—n (1)
6

where we have used the Poincaré inequality:

(4.25) [u ]BMO(B29) ClIVullprn-r(Bag) < ClIVullarrn—r(B,)-

Step II. Estimation of 1.
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It follows from (4.5) and Proposition 4.2 that we have

(4.26) / Ya2 dvg = Z/ ai il dx

1,5=1

Z /; ang %Mn),ecJ dx

zgl

. ey,
= _ Z /B aij g ((u — w29, %) dx

< CllYallzz (o) IVeallLz (g [(w — v20)n1lBMO (5,)
< CllYallL2 (o) IVullL2 (B VUl arpn—r(5y)

where we have used the fact divy (1) = 0, i.e.

; 0
Z / az‘j’ﬁ&# dz =0, ¥ € Wy > (By),
By J

1,7=1

and
(4.27) [(u — u29)n ]BMO(B )y < < Clu ]BMO(BQ(;) < Ol Vul| pen—»(B,)-

By Hélder inequality, (4.26) yields
(428) {01’_"/ |,¢a|p daj)% S CG()HVU“Mp,n—p(Bl).
By
It follows from (4.5), (4.24), and (4.28) that for any 7 € (0, 1), any ball By C By,

(4.29) {(ro)P—" /B VulP de}7 < C(r0 + 7% 60) ||Vl aon—s(B,)-
T6

Taking superum over all balls Bog C B 1, we have

(4.30) ||vu||MP,n—P(B%) S C'(T(s + Tl_%CO)HVUHMp,n—p(Bl).

Therefore, by choosing 7 = 1 = 4C = and € = %7‘0&_1 sufficiently small, we have, for
To = % > 0,

(4.31) IVullaren-»(B,,) < 2||V“||MP" »(By)-
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This completes the proof of Lemma 4.1. [ |

Proof of Theorem A. For n = 2, the absolute continuity of f |Vu|? implies that there

exists rg > 0 such that
(4.31) / \Vul?dr < €3, Vr<ro, =€
B, (z)
Hence, applying Lemma 4.1 repeatedly, we have that for some p € (1,2) and 7 € (0, 3),

4.32 Mo )P 2 VulP <27 ym > 1, Va €.
0 0
B-rmro (ZI?)

This implies that there exists ag € (0,1) such that

(4.33) 7"”_2/ |VulP < C(eg,p)r®, Vre (0,r9), =€ Q.
B, (z)

Hence, by Morrey’s Lemma (cf. [G]), we conclude v € C*(Q2, N). This completes the proof
of Theorem A. |

Proof of Theorem B. Define

Y={ze: limr2_"/ |Vul> > €2}
'I'J,O BT($)

It is well-known (cf. [SU]) that H"~2(X) = 0. Moreover, by Lemma 4.1, ¥ C  is a closed
set. For any xzo € Q\ X, there exists ro > 0 such that Ba,,(z9) N X = (), and

7“2_"/ |Vul? < €2, Yz € B, (x0), r<ro.
B, (z)

Therefore, by Lemma 4.1, we have that for some p € (1, -"*7) and 79 € (0, 1),

(4.34) (7'6”7’0)7’_"/ |VulP <27P"el Ym > 1, Vr € B, (x).
Brmro (3})
This implies that there is a € (0, 1) such that
(4.35) rp_"/ |VulP < C(eg, p)rP*, Vz € B, (x9), Yr € (0,r9).
B, (z)

Hence, by Morrey’s Lemma, we conclude v € C*(B,,(z¢),N) and u € C*(Q\ X,N). ®
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§5. Quasi-monotonicity inequality

In this section, we derive the quasi-monotonicity inequality (1.5) for two classes of
harmonic maps in dimensions n > 3: (1) minimizing harmonic maps w.r.t. Dini-continuous

metrics g, and (2) stationary harmonic maps w.r.t. Lipschitz continuous metrics g.

Definition 5.1. A map u € W12(Q, N) is a minimizing harmonic map, if

(5.1) / |Vu|§dvg < / |Vv|§dvg, Yo € WH2(Q, N) with v]aq = u|sq.
Q Q

Recall that f : Q@ — R™*™ is Dini-continuous, if there exist 7o > 0 and a monotonically

non-decreasing w : [0,79] — R, with w(0) =0 and [ ° @ dt < oo, such that

(5:2) [f (@) = fW)| S w(lz = y]), Yo,y € Q, |z —y| <ro.

Proposition 5.1. For n > 3, suppose that g is a Dini-continuous metric on £ and
u € WH2(Q, N) is a minimizing harmonic map. Then u satisfies the quasi-monotonicity
inequality (1.5).

Proof. It suffices to prove (1.5) for x = 0 € Q. Assume go = ¢(0) is the Euclidean metric
on R™. For 0 < r < min{ro, dist(0,9Q)}, define

v(z) =u(—), = € B,

re
]
=u(z), =ze€Q\B,.

Then the minimality of u implies

(5.3) /|Vu|3dvg§/ |Vfu|3dvg.
B, B,

It follows from the Dini-continuity of g that

max lg(x) — go| < w(r), YO < r < min{rg,dist(0,00)},

where w is the modular of continuity of g. This and (5.3) imply that there exists Cy > 0
such that

(54) (1 Cow(r)) /

|Vu|? dz < / (V|2 dz, YO < r < min{rg, dist(0, 9Q)}.
B, B,

15



Direct calculations imply

9 r 9 ou n-1
\V4 - V dH
/BT| o da n_2/c’)Br(| ul’ = |37“| )

Therefore we have, for 0 < r < min{ro, dist(0,0)},

(5.5) (n—2)(1—- C’ow(r))rl_"/

|Vu|? dz < 7'2_”/ |Vul? dH" 1
Br

0B,

_,’,2—n/ | |2dHn 1.
9B,

This yields, for 0 < r < min{rg, dist(0,99)},
d _ T w(t)
(56) %{e{(n 2)Co fo 3 dt},r2—n/ |VU|2 diL'}

r

> {(’I’L 2)0 fT w(t) dt} 2 n/ |?|2dHn—1
r

OB,
>,r2—n/ | |2 Hn 1
N OB,

Integrating (5.6), we have, for 0 < r < R < min{rg, dist(0,02)},

(5.7) / |z|?~ ”|8u|2d$+r2_"/ |Vu|? da
Br\B, .
w(t)
<e {(n— 2)C°f dt} p2- "/ |Vul|? dz.
Br
70 w(t)
This implies (1.5) holds for K = l(n=2)Co Js dt} u

Next we consider stationary harmonic maps.

Definition 5.2. A weakly harmonic map v € W12(Q, N) is a stationary harmonic map,

if it is a critical point of Fy w.r.t. the domain variations:

(5.8) %h:o/ﬁ [Vu(z +tX (2))]2 dvy =0, VX € C5(2,R").

We have

Proposition 5.2. Forn > 3, let g be a Lipschitz continuous Riemannian metric on ).
Then any stationary map u € W12(Q, N) satisfies (1.5) for some K = K(n,g) > 0.

Proof. For simplicity, assume x = 0 € Q and ¢g(0) = go. Define the energy-stress tensor

Ju Ou

Ju Uy 1 <a,8<n.
axa’axg>’ Saf<n

1
Sap = §|VU|§9a,@ —{

16



Then it is well-known (cf. [H2]) that the stationarity (5.8) implies

(5.9) Z / Lxg®?)Sapdvy, = 0

a,f=1

where

n
dg*f 09X 0X
Lva® = xX. =2 a y8 __ Y4B ~a
X9 ;[ Y dx, Oz, Oz A
is the Lie derivative of (g®’) with respect to X.

For B, C Q, and n(z) = n(|z|) € C3(B,) with 0 < n < 1, let X (z) = zn(|z|). Then

we have
0X, Lol
= darnn(|]) + ' (|2)) =, 1<,y <m,
O 2]

and
n

a agaﬁ a - x a
Lxg®™ =n(|z) Y 2y 5 — = 20(a])g ’3—2n’(|wl)z e
Y

y=1
Since g is Lipschitz continuous, there exist 7o > 0 and Cy > 0 depending on Lip(g)

such that

(5.10) Vg || L= (B,) < CoLip(g), Y0 < r < rq.

Let I=320 521 /5, zm(|z]) % BSag dvg. Then we have

89
< 3 / 15

a,B,y=1

< 7|V (B, Z / |Sap| dv, < Cr/ Vul? dug
7ﬁ 1

for C = CyLip(g).
Set IT= =237 51 [5 1(|2])9* Sap dvg. Then we have

=2y / (129 (51 Vulgas — (O, T

) 0z Ozg

—(2-n) / n(l)|Vul? du,.

B,
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For ITT=-2370 5 [ 7 |x|)mffl’ g*7Sap dvg, we have

TRT ou Ou
IIT = -2 Z / (|z]) ﬁ 7 7( IVUIggaﬂ o ,@deg
a,B,y=1 ¢

. /B o (j) ][Vl dv,g

0
3 [ 2

o Byl 8$a 837,3
=IV+V.

Observe that (5.10) implies, for 0 < r < 7,
997 (x) = bany + hay(2), |hay|(z) < CoLip(g)|z|, Vz € B,, V1 < a,y < n.

Hence we have

(Ga1) V=2 |x|n<|x|>|—|2dvg+2 Z 7 (2] har( o, 2 duy,
ox, Or
a,7=1
As
0= Z / Lxg*?)Sapdvy =1+ IT+I1I,
7ﬂ 1
we have
ou
(5.12) (2—n)/ 77(|90|)|VUIEdvg—/B [’ (|2 (| Vulg = 2| 571%) dv,
Ju Ou
> C’r/ |Vu|gdvg—2 Z / "(|z))zy on(a D or ) dvg.

a,y=1
For small € > 0, let 7 = n.(|z|) € CY'(B,) be such that 5.(t) = 1 for 0 < t < 7 —
ne(t) =0 for t > r, and n(t) = —1 for r — e < ¢ < r. Putting 7 into (5.12) and sending €

to zero, we obtain

(5.13) (2—n)/ |vu|§dvg+7«/ IVl dH
B, 9B,
ou .
> 2r/ |E|2dH9 1—07‘/3 |Vu|3dvg
= ou Ou e
+2 ) / a:vhav(a o) dH; !

ou e
> 27’/ |E|2dﬂg ! —Cr/ |Vu|3dvg
aB, B,

— Cr3/ |Vu|3 dH;_1

r
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where ng_l is the (n — 1)-dimensional Hausdorff measure w.r.t. g, and we have used the

Holder inequality in the last step:

a('“)u@u e
2Z|/ h78—8—>dH91|

a,y=1
n

ou
< el dHn—l ha’y2/ v ZdHn—l
_r/83|ar| y7r (Y ) [ vl

ay=1 "

Sr/ | |2 dHJ™ Ly ord / |Vu|3ng_1.
aB, aB,

Let f(r) = [ |Vul;dvg, we have f'(r) = [,5 |VulzdH""" for a.e. 7 > 0. Hence
(5.13) ylelds

2—n+Cr)f(r)+r(1+Cr)f'(r) > r/aB |%|2d}[3_1.

In particular, there exists a small 7o > 0 depending on g such that for 0 < r < rq,

(519 @t O 4 )= [
where C~17 < O(r) < Cr. Therefore we have, 0 < r < 1,

d Oo(r),.2—n 1 o(r),.2—n 2 n— 1
(5.15) — (e f(r) > =Py | | dH,

dT 2 8B

Integrating (5.15) over 0 < r < R < rp, we have

1
(5.16) OWR () > )+ [ e S
2 /Br\B,
This, combined with (1.3), implies (1.5) with K = @), |

Remark 5.1. The monotonicity inequality (5.15) has been derived by Garofalo-Lin [GL]

for second order elliptic equations with divergence structure by a different method.
66. Final remarks

This section is devoted to some further discussions on theorem A and B. The first
remark asserts that for n > 3, g € VMO(Q2) can be weaken. The second remark concerns

the optimal Hausdorff dimension estimate on minimizing harmonic map from domains with
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Dini continuous metrics. The third remark concerns the blow-up analysis of stationary

harmonic maps from domians with Lipschitz continuous Riemannian metrics.

Theorem 6.1. For n > 3, there exists §g > 0 such that if g is a L°°-Riemannian metric
on Q with [g]BMO(Q) < 6o and u € WH2(Q, N) is a weakly harmonic map satisfying the
quasi-monotonicity inequality (1.5), then there are oo € (0,1) and closed subset ¥ C €2,
with H"=2(X) = 0, such that u € C*(Q\ &, N).

Proof. It follows from the same arguments as in theorem B, except that we need to
replace Proposition 3.3 by the following proposition, due to Byun-Wang [SW] (see also
Caffarelli-Peral [CP]).

Lemma 6.2. For n > 3 and ball B C Q, assume that A = (a;5) € L*°(B,R"*") is
symmetric, and uniformly elliptic with ellipticity constant A > 0. For any p € (1,+00)
and F € L?(B,R"™), there exists 6, > 0 such that if [g]BMO(B) < 6, then there exists a
unique solution G € Wy (B) to the Dirichlet problem:

0 0G " JF,
.1 ~ 1) = 9 ) B
(6 ) z’jzzl 8:02 (a J 833]) ; 6:10, o
(6.2) G =0, on 0B.
Moreover,
(6.3) IVGlle ) < (Al BpOs): v MIF | Lr(5)-

Theorem 6.2. For n > 3 and a Dini-continuous Riemannian metric g in Q C R", if
u € WH2(Q,N) is a minimizing harmonic map, then there exist a € (0,1) and closed
subset Q@ C Q, which is discrete for n = 3 and has Hausdorff dimension at most (n — 3)
forn >4, such that u € C*(Q2\ X, N).

Proof. Note that the Dini-continuity of g implies ¢ € VMO(£2). Since u is a minimizing
harmonic map, Proposition 5.1 implies that u satisfies the monotonicity inequality (5.7).
Define

(6.2) Y={zx e Q| O(u,x)= limrz_”/ |Vul? > e}
rl0 B, (z)
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where ¢ is given by Lemma 4.1. Then, by theorem B, we have that u € C*(Q\ 3, N) for
some « € (0,1).

To prove the Hausdorff dimension estimate of 3, define the rescalled map ug, ,, (z) =
u(xo+r;x) : By — N for any z¢g € ¥ and r; | 0. It is easy to see that uy, ,, is minimizing
harmonic map w.r.t. g;(z) = g(xo + 7;x). Since g is Dini-continuous, we know g; — go,

the Euclidean metric, uniformly on Bs.

It follows from Luckhaus’ extension Lemma (see [Ls]) and the minimality of u that
there exists a minimizing harmonic map ¢ € W12(By, N) w.r.t. go such that after taking
possible subsequences, Uy, ,, (z) = u(xo+r;z) — ¢ strongly in WhH?(Bs, N). Moreover, the
monotonicity inequality (5.7) yields % =0 a.e. in By and ¢(z) = ¢(|$—I) for a.e. € Bs.

Now we can apply Federer’s dimension reduction argument (cf. [SU]) to conclude that 3

is discrete for n = 3, and has Hausdorff dimension at most (n — 3) for n > 4. [ |

Theorem 6.3. For n > 3 and a Lipschitz continuous metric g on Q C R™. Assume that
N doesn’t support nonconstant harmonic maps from S?. If u € W12(Q, N) is a stationary
harmonic map, then there exist o € (0,1) and closed subset X C Q, which is discrete for
n =4, and has Hausdorff dimension at most (n—4) forn > 5, such that u € C*(Q\ X, N).

Proof. Note that the Lipschitz continuity of g implies ¢ € VMO(Q2). It follows from
the stationarity and Proposition 5.2 that u satisfies the monotonicity inequality (5.16).
Therefore, Theorem B implies u € C*(Q\ X, N) for some a € (0, 1), with ¥ given by (6.2).

For any w9 € ¥ and r; | 0, ug,,, € W12(By, N) are stationary harmonic maps
w.r.t. g;. It follows from (5.16) that there is a harmonic map ¢ € W12(By, N) w.r.t.go,
which is homogeneous of degree zero, such that after passing to subsequences, ug, ,, (z) =
u(xg + rir) — ¢ weakly in W12(By, N). One can check the blow-up analysis by Lin [L]
applies to stationary harmonic maps w.r.t. Lipschitz continuous metrics g as long as we
have theorem B, (5.16), and N doesn’t support harmonic S?’s. In particular, ugz, ,, — ¢
strongly in WH2(By, N). With this strong convergence, one can show ¥ is discrete for

n = 4, and has Hausdorff dimension at most (n — 4) for n > 5. |
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