Harmonic maps from manifolds of L^{∞} -Riemannian metrics

W. Ishizuka¹, C. Y. Wang^{2,*}

¹ Providence College, Providence, RI 02918

Abstract. For a bounded domain $\Omega \subset \mathbf{R}^n$ endowed with L^{∞} -metric g, and a C^5 -Riemannian manifold $(N,h) \subset \mathbf{R}^k$ without boundary, let $u \in W^{1,2}(\Omega,N)$ be a weakly harmonic map, we prove that (1) $u \in C^{\alpha}(\Omega,N)$ for n=2, and (2) for $n \geq 3$, if, in additions, $g \in VMO(\Omega)$ and u satisfies the quasi-monotonicity inequality (1.5), then there exists a closed set $\Sigma \subset \Omega$, with $H^{n-2}(\Sigma) = 0$, such that $u \in C^{\alpha}(\Omega \setminus \Sigma, N)$ for some $\alpha \in (0,1)$.

§1. Introduction

For $n \geq 2$, let Ω be a bounded domain in \mathbf{R}^n . Throughout this paper, let g be a bounded (or L^{∞}), measurable Riemannian metric on \mathbf{R}^n , namely, there exists $\Lambda > 0$ such that $g = \sum_{\alpha,\beta=1}^n g_{\alpha\beta} dx_{\alpha} dx_{\beta}$ satisfies:

(1.1)
$$\Lambda^{-1}I_n \le (g_{\alpha\beta})(x) \le \Lambda I_n, \ \forall x \in \mathbf{R}^n.$$

Let $(N,h) \subset \mathbf{R}^k$ be a compact, at least C^5 -Riemannian manifold without boundary, isometrically embedded into an Euclidean space \mathbf{R}^k . For $1 , define the Sobolev space <math>W^{1,p}(\Omega,N)$ by

$$W^{1,p}(\Omega,N):=\{u:\Omega\to\mathbf{R}^k\ |\ E_p(u)<+\infty,\ u(x)\in N \text{ for a. e. } x\in\Omega\}$$

where

$$E_p(u) = \int_{\Omega} (\sum_{i=1}^k |\nabla u^i|_g^2)^{\frac{p}{2}} dv_g$$

is the p-th Dirichlet energy of u w.r.t. q,

$$|\nabla u^i|_g^2 = \sum_{\alpha,\beta=1}^n g^{\alpha\beta} \frac{\partial u^i}{\partial x_\alpha} \frac{\partial u^i}{\partial x_\beta}, \ 1 \le i \le k,$$

where $(g^{\alpha\beta}) = (g_{\alpha\beta})^{-1}$, and $dv_g = \sqrt{g} dx = \sqrt{\det(g_{\alpha\beta})} dx$ is the volume element of (Ω, g) .

² Department of Mathematics, University of Kentucky, Lexington, KY 40506

^{*} Partially supported by NSF.

Let $d_g(x,y)$ and $d_0(x,y) \equiv |x-y|$ be the distance functions w.r.t. g and g_0 (the Euclidean metric) respectively. Since g is L^{∞} -Riemannian metric on \mathbf{R}^n , it is easy to see that there exists $0 < C_{\Lambda} < +\infty$ such that

(1.2)
$$C_{\Lambda}^{-1}d_0(x,y) \le d_g(x,y) \le C_{\Lambda}d_0(x,y), \ \forall x, \ y \in \mathbf{R}^n.$$

In particular, $f \in C^{\alpha}(\Omega, N)$ w.r.t. g iff $f \in C^{\alpha}(\Omega, N)$ w.r.t. g_0 , and for any open set $U \subset \mathbf{R}^m$ and $1 \leq p < +\infty$,

(1.3)
$$C_{\Lambda}^{-1} \int_{U} |h|_{g}^{p} dv_{g} \leq \int_{U} |h|^{p} dx \leq C_{\Lambda} \int_{U} |h|_{g}^{p} dv_{g}$$

holds for any vector field $h \in L^p(U, \mathbf{R}^n)$, here $|h| = (\sum_{i=1}^n h_i^2)^{\frac{1}{2}}$ and dx is the volume element of g_0 .

Definition 1. A map $u \in W^{1,2}(\Omega, N)$ is a weakly harmonic map, if it is a critical point of $E_2(\cdot)$.

It is readily seen that any weakly harmonic map $u \in W^{1,2}(\Omega, N)$ satisfies the harmonic map equation:

(1.4)
$$\Delta_g u + A_g(u)(\nabla u, \nabla u) = 0, \text{ in } \mathcal{D}'(\Omega)$$

where $\Delta_g = \frac{1}{\sqrt{g}} \sum_{\alpha,\beta=1}^n \frac{\partial}{\partial x_\alpha} (\sqrt{g} g^{\alpha\beta} \frac{\partial}{\partial x_\beta})$ is the Laplace-Beltrami operator of (Ω,g) , and $A(y)(\cdot,\cdot): T_yN \times T_yN \to (T_yN)^{\perp}, \ y \in N$ is the second fundamental form of $N \subset \mathbf{R}^k$, and

$$A_g(u)(\nabla u, \nabla u) = \sum_{\alpha, \beta=1}^n g^{\alpha\beta} A(u) \left(\frac{\partial u}{\partial x_\alpha}, \frac{\partial u}{\partial x_\beta}\right).$$

Regularity of harmonic maps from manifolds with C^{∞} -Riemannian metrics g has been extensively studied by many people. Schoen-Uhlenbeck [SU], Giaquinta-Guisti [GG] independently proved that any minimizing harmonic map is smooth off a closed set whose Hausdorff dimension is at most (n-3). Hélein [H1,2] proved that any weakly harmonic map from a Riemannian surface is smooth. Evans [E] and Bethuel [B] proved that any stationary harmonic map in dimensions at least three is smooth off a closed set of zero (n-2)-dimensional Hausdorff measure.

In this paper, we are mainly interested in seeking the minimal regularity assumption on Riemannian metrics g such that any weakly harmonic map $u \in W^{1,2}(\Omega, N)$ enjoys (partial) Hölder continuity.

In this context, our first theorem is

Theorem A. For n = 2 and a L^{∞} -Riemannian metric g on \mathbb{R}^n , let $u \in W^{1,2}(\Omega, N)$ be a weakly harmonic map. Then $u \in C^{\alpha}(\Omega, N)$ for some $\alpha \in (0, 1)$.

Remark 1. For $n \geq 2$, if, in addition, $g \in C^{m,\beta}(\Omega)$ for some $m \geq 0$ and $\beta \in (0,1)$ and $N \in C^{m+5}$, then theorem A and the theory of higher regularity of harmonic maps (cf. Giaquinta [G]) imply that if $u \in C^{\alpha}(\Omega, N)$, then $u \in C^{m+1,\delta}(\Omega, N)$ for $\delta = \min\{\alpha, \beta\}$.

For $n \geq 3$, Riviére [R] constructed an example of weakly harmonic map from B^3 to S^2 that is singular everywhere. It turns out that the stationarity or suitable energy monotonicity inequality plays a crucial role for the partial regularity of weakly harmonic maps. To this end, we introduce

Definition 2 (quasi-monotonicity inequality). A map $u \in W^{1,2}(\Omega, N)$ enjoys the quasi-monotonicity inequality property, if there exist K = K(n, g) > 0 and $r_0 = r_0(n, g) > 0$ such that for any $x \in \Omega$ and $0 < r \le R < \min\{r_0, \operatorname{dist}(x, \partial\Omega)\}$, we have

(1.5)
$$r^{2-n} \int_{B_r(x)} |\nabla u|^2 dx \le KR^{2-n} \int_{B_R(x)} |\nabla u|^2 dx.$$

Remark 2. (a) For n = 2, (1.5) holds automatically for $u \in W^{1,2}(\Omega, N)$ with K = 1.

- (b) For $n \geq 3$ and $g \in C^2(\Omega)$, it is well-known that both minimizing harmonic maps and stationary (or C^2)-harmonic maps enjoy the quasi-monotonicity inequality property (cf. [SU], Preiss [P], and Schoen [S]).
- (c) In proposition 5.1 and 5.2 below, we verify that for $n \geq 3$, both minimizing harmonic maps w.r.t. Dini continuous g and stationary harmonic maps w.r.t. Lipschitz continuous g enjoy the quasi-monotonicity inequality property.

It is also well-known that certain regularity of the coefficients is necessary for the regularity of second order elliptic systems (cf. [G]). To this end, we recall

Definition 3. (a) For any open set $U \subset \mathbf{R}^n$, a function $f \in BMO(U)$, if $f \in L^1_{loc}(U)$ and

$$[f]_{\text{BMO}(U)} := \sup \{ \frac{1}{|B_r(x)|} \int_{B_r(x)} |f - f_{x,r}| \mid B_r(x) \subset U \} < \infty$$

where $f_{x,r} = \frac{1}{|B_r(x)|} \int_{B_r(x)} f$.

(b) For any open set $U \subset \mathbf{R}^n$, a function $f \in \text{VMO}(U)$, if $f \in \text{BMO}(U)$ and

$$\lim_{r \to 0} \sup_{x \in U} [f]_{\text{BMO}(U \cap B_r(x))} = 0.$$

Now we are ready to state our second theorem.

Theorem B. For $n \geq 3$ and $g \in VMO(\Omega)$, suppose that $u \in W^{1,2}(\Omega, N)$ is a weakly harmonic map satisfying the quasi-monotonicity inequality (1.5). Then there exist a closed set $\Sigma \subset \Omega$, with $H^{n-2}(\Sigma) = 0$, and $\alpha \in (0,1)$ such that $u \in C^{\alpha}(\Omega \setminus \Sigma, N)$. Here H^{n-2} denotes the (n-2)-dimensional Hausdorff measure w.r.t. g_0 .

We would like to mention that Shi [Sy] proved the partial regularity theorem, similar to theorem B, for minimizing harmonic maps from manifolds with L^{∞} -Riemannian metrics. However, the argument in [Sy] relies heavily on the minimality property. Our method is of PDE nature and partly motivated by the techniques developed by [H1,2], [B], [E].

The paper is written as follows. In §2, for any C^5 -Riemannian manifold N, we outline the Coulomb gauge frame construction by Hélein [H] on $u^*TN|_{\Omega}$ with respect to g. In §3, we utilize the $W_0^{1,p}$ -solvablity theorem on $\nabla \cdot (A\nabla u) = \nabla \cdot F$ by Meyers [M] (n=2) and Di Fazio [D] $(n \geq 3)$ for bounded measurable elliptic matrix A to obtain the Div-Curl decomposition theorem on (Ω, g) . In §4, we establish the decay Lemma on the $M^{p,n-p}$ norm of u, $||u||_{M^{p,n-p}(\cdot)}$, under the smallness condition of $||\nabla u||_{M^{2,n-2}(\cdot)}$. In §5, we provide two examples in which the quasi-monotonicity inequality (1.5) holds. In §6, we make some final remarks.

§2. Construction of Coulomb gauge frame

In this section, we sketch the Coulomb gauge frame construction on u^*TN by Hélein [H1,2] to (Ω, g) for any C^5 -Riemannian manifold N and L^{∞} -Riemannian metric g on \mathbb{R}^n .

Let $l = \dim(N)$. For any ball $B \subset \Omega$, $\{e_i\}_{i=1}^l \subset W^{1,2}(B, \mathbf{R}^k)$ is called to be a frame of u^*TN on B, if $\{e_i(x)\}_{i=1}^l$ forms an orthonormal base of $T_{u(x)}N$ for a.e. $x \in B$.

For a vector field $V = (V_1, \dots, V_n) : \Omega \to \mathbf{R}^n$, define the divergence of V w.r.t. g by

$$\operatorname{div}_{g}(V) = \sum_{\alpha,\beta=1}^{n} \frac{\partial}{\partial x_{\alpha}} (\sqrt{g} g^{\alpha\beta} V_{\beta}).$$

First we have

Lemma 2.1. Assume that there exist a C^5 -Riemannian manifold $\hat{N} \subset \mathbf{R}^k$ and a totally geodesic, isometric embedding $i: N \to \hat{N}$. If $u \in W^{1,2}(\Omega, N)$ solves (1.4), then $\hat{u} = i \circ u \in W^{1,2}(\Omega, \hat{N})$ also solves (1.4).

Proof. Straightforward calculations (cf. Jost [J]) imply that

$$\Delta_g \hat{u} = \nabla i(u)(\Delta_g u) + \sum_{\alpha,\beta=1}^n g^{\alpha\beta}(\nabla^2 i)(u)(\frac{\partial u}{\partial x_\alpha}, \frac{\partial u}{\partial x_\beta})$$

$$= \nabla i(u) (A_g(u)(\nabla u, \nabla u))$$
$$= \hat{A}_g(\hat{u})(\nabla \hat{u}, \nabla \hat{u})$$

where \hat{A} denotes the second fundamental form of \hat{N} in \mathbf{R}^k .

With help of Lemma 2.1 and the enlargement construction by Hélein [H1,2], we may assume that N is parallelizable so that we have

Proposition 2.2. Assume that $N \in C^5$ is parallelizable and g is L^{∞} -Riemannian metric on \mathbf{R}^n . Let $\Omega \subset \mathbf{R}^n$ be a bounded domian and $B \subset \Omega$ be a ball. If $u \in W^{1,2}(B,N)$, then there exists a Coulomb gauge frame $\{e_i\}_{i=1}^l \subset W^{1,2}(B,\mathbf{R}^k)$ of u^*TN on B, i.e.

(2.1)
$$div_g(\langle \nabla e_i, e_j \rangle) = 0 \quad in \ B, \ 1 \le i, j \le l$$

(2.2)
$$\sum_{\alpha,\beta=1}^{n} g^{\alpha\beta} \langle \frac{\partial e_i}{\partial x_\beta}, e_j \rangle x_\beta = 0 \quad on \ \partial B, \ 1 \le i, j \le l,$$

and

(2.3)
$$\sum_{i=1}^{l} \int_{B} |\nabla e_{i}|^{2} dx \leq C \int_{B} |\nabla u|^{2} dx.$$

Proof. As N is parallelizable, there exists a smooth orthonormal frame $\{\hat{e}_i(y)\}_{i=1}^l$ of TN. For $1 \leq i \leq l$, define $\bar{e}_i(x) = \hat{e}_i(u(x))$ for a.e. $x \in B$. Then $\{\bar{e}_i\}_{i=1}^l$ forms a frame of u^*TN on B. Denote SO(l) as the special orthonormal group of order l, consider the minimization problem:

(2.4)
$$\inf \{ \sum_{i,j=1}^{l} \int_{B} |\nabla(R_{ij}\bar{e}_{j})|_{g}^{2} dv_{g} : R = (R_{ij}) \in W^{1,2}(B, SO(l)) \}.$$

By the direct method, there is $R^0 \in W^{1,2}(B, SO(l))$ such that $e_{\alpha}(x) = \sum_{\beta=1}^{l} R_{\alpha\beta}^0(x) \bar{e}_{\beta}(x)$, $1 \le \alpha \le l$, satisfies

$$(2.5) \qquad \sum_{\alpha=1}^{l} \int_{B} |\nabla e_{\alpha}|_{g}^{2} dv_{g} \leq \sum_{\alpha,\beta=1}^{l} \int_{B} |\nabla (R_{\alpha\beta}\bar{e}_{\beta})|_{g}^{2} dv_{g}, \quad \forall R \in W^{1,2}(B, \mathrm{SO}(l)).$$

In particular, we have

(2.6)
$$\sum_{\alpha=1}^{l} \int_{B} |\nabla e_{\alpha}|_{g}^{2} dv_{g} \leq \sum_{\alpha,\beta=1}^{l} \int_{B} |\nabla (\delta_{\alpha\beta} \bar{e}_{\beta})|_{g}^{2} dv_{g} \leq C \int_{B} |\nabla u|_{g}^{2} dv_{g}.$$

This, combined with (1.3), implies (2.3). Moreover, the first variation similar to [H1,2] implies that $\langle \nabla e_i, e_j \rangle$, $1 \leq i, j \leq l$, satisfies the Euler-Lagrange equation (2.1) and the Neumann condition (2.2). Hence the proof is complete.

§3. Div-curl decomposition

In this section, we prove that if the metric g is either L^{∞} for n=2 or in $VMO(\Omega)$ for $n\geq 3$, then the div-curl decomposition holds, namely, any $F\in L^p(\Omega,\mathbf{R}^n)$ can be decomposed into the sum of ∇G , with $G\in W^{1,p}_0(\Omega)$, and a div_g-free $H\in L^p(\Omega,\mathbf{R}^n)$, for p sufficiently close to $\frac{n}{n-1}$. The key ingredients are $W^{1,p}_0$ -solvability results by Meyers [M] for n=2, and Di Fazio [D] for $n\geq 3$.

More precisely, we have

Theorem 3.1. Let g be L^{∞} -Riemannian metric on \mathbf{R}^n and $B \subset \Omega \subset \mathbf{R}^n$ be a ball. If, in addition, $g \in VMO(\Omega)$ for $n \geq 3$, then there exists $\delta_0 = \delta(n,g) > 0$ such that for $p \in (\frac{n}{n-1} - \delta_0, \frac{n}{n-1} + \delta_0)$ and any $F \in L^p(B, \mathbf{R}^n)$ there exist $G \in W_0^{1,p}(B)$ and $H \in L^p(B, \mathbf{R}^n)$, with $div_q(H) = 0$ in Ω , such that

$$(3.1) F = \nabla G + H in B,$$

and

(3.2)
$$\|\nabla G\|_{L^p(B)} + \|H\|_{L^p(B)} \le C(p,g) \|F\|_{L^p(B)}$$

where $L^p(B)$ is L^p -space w.r.t. g_0 .

The proof of Theorem 3.1 relies on the following $W_0^{1,p}$ -solvability result.

Proposition 3.2 [M]. For $n \geq 2$ and any ball $B \subset \Omega$, assume that $A = (a_{ij}) \in L^{\infty}(B, \mathbf{R}^{n \times n})$ is symmetric and uniformly elliptic, then there exists $\delta_0 = \delta_0(n) > 0$ such that, for any $p \in (2 - \delta_0, 2 + \delta_0)$ and $F \in L^p(B, \mathbf{R}^n)$, there exists a unique solution $u \in W_0^{1,p}(B)$ to the Dirichlet problem:

(3.3)
$$\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} (a_{ij} \frac{\partial u}{\partial x_j}) = \sum_{i=1}^{n} \frac{\partial F_i}{\partial x_i}, \quad in B,$$
$$u = 0, \quad on \partial B.$$

Moreover,

(3.4)
$$\|\nabla u\|_{L^p(B)} \le C(p, A)\|F\|_{L^p(B)}.$$

Proposition 3.3 [D]. For $n \geq 3$ and ball $B \subset \Omega$, assume that $A = (a_{ij}) \in L^{\infty} \cap VMO(B, \mathbf{R}^{n \times n})$ is symmetric and uniformly elliptic, then for any $p \in (1, +\infty)$ and $F \in L^p(B, \mathbf{R}^n)$, there exists a unique solution $u \in W_0^{1,p}(B)$ to (3.3) satisfying (3.4).

Proof of Theorem 3.1. Consider the Dirichlet problem:

(3.5)
$$\operatorname{div}_{g}(\nabla G) = \operatorname{div}_{g}(F), \text{ in } B$$

$$G = 0, \text{ on } \partial B.$$

Observe that (3.5) is equivalent to

(3.6)
$$\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} (a_{ij} \frac{\partial G}{\partial x_j}) = \sum_{i=1}^{n} \frac{\partial \hat{F}_i}{\partial x_i}, \text{ in } B$$
$$G = 0, \quad \text{on } \partial B$$

where $a_{ij} = \sqrt{g}g^{ij}$ and $\hat{F}_i = \sum_{j=1}^n \sqrt{g}g^{ij}F_j$. Since g satisfies (1.1), it is easy to see that $(a_{ij}) \in L^{\infty}(B, \mathbf{R}^{n \times n})$ is symmetric and uniformly elliptic. Moreover, we have $\|\hat{F}\|_{L^p(B)} \le \|F\|_{L^p(B)}$. For n = 2, Proposition 3.2 implies that there exists $\delta_0 > 0$ such that (3.5) is uniquely solvable in $W_0^{1,p}(B)$ for any $p \in (2 - \delta_0, 2 + \delta_0)$. For $n \geq 3$, since $g \in \text{VMO}(B)$ implies $(a_{ij}) \in \text{VMO}(B)$, Proposition 3.3 implies (3.5) is uniquely solvable in $W_0^{1,p}(B)$ for any $1 . Set <math>H = F - \nabla G$, (3.5) implies $\text{div}_g(H) = 0$ in B. Moreover, for any $p \in (\frac{n}{n-1} - \delta_0, \frac{n}{n-1} + \delta_0)$, (3.4) yields

(3.7)
$$||H||_{L^{p}(B)} \leq ||F||_{L^{p}(B)} + ||\nabla G||_{L^{p}(B)} \leq C||F||_{L^{p}(B)}.$$

The completes the proof of Theorem 3.1.

§4. Decay Estimate in Morrey Spaces

In this section, we prove both theorem A and B. The crucial step is to establish that under the smallness condition of $\|\nabla u\|_{M^{2,n-2}(B)}$, $\|u\|_{M^{p,n-p}(B_r)}$ decays as r^{α} for some $\alpha \in (0,1)$. The ideas are suitable modifications of techniques developed by Hélein [H1,2], Evans [E], and Bethuel [B]. In order to achieve it, we need two new ingredients: (1) the div-curl decomposition Proposition 3.1, and (2) a new approach to estimate the L^p norm of div_g-free vector fields.

First we define Morrey spaces.

Definition 4.1. For $1 \le p \le n$ and any open set $U \subset \mathbf{R}^n$, the Morrey space $M^{p,n-p}(U)$ is defined by

$$M^{p,n-p}(U) = \{ f \in L^p(U) \mid ||f||_{M^{p,n-p}(U)}^p \equiv \sup_{B_r(x) \subset U} \{ r^{p-n} \int_{B_r(x)} |f|^p \, dx \} < +\infty \}.$$

Now we have

Lemma 4.1 (ϵ_0 -decay estimate). For any bounded domain $\Omega \subset \mathbb{R}^n$ and L^{∞} -Riemannian metric g on \mathbb{R}^n . If, in addition, $g \in VMO(\Omega)$ for $n \geq 3$, then there exist $\delta_n > 0$, $\epsilon_0 = \epsilon_0(g, N) > 0$, and $\theta_0 = \theta_0(g, N) \in (0, \frac{1}{2})$ such that if $u \in W^{1,2}(\Omega, N)$ is a weakly harmonic map satisfying the quasi-monotonicity inequality (1.5), and for $B_r(x) \subset \Omega$,

(4.1)
$$r^{2-n} \int_{B_r(x)} |\nabla u|_g^2 \, dv_g \le \epsilon_0^2$$

then, for any $p \in (\frac{n}{n-1} - \delta_n, \frac{n}{n-1})$,

(4.2)
$$\|\nabla u\|_{M^{p,n-p}(B_{\theta_0r}(x))} \le \frac{1}{2} \|\nabla u\|_{M^{p,n-p}(B_r(x))}.$$

Proof of Lemma 4.1.

By Lemma 2.1, assume that N is parallelizable. For $x \in \Omega$ and r > 0, let $g_{x,r}(y) = g(x+ry)$ and $u_{x,r}(y) = u(x+ry)$ for $y \in B$. Observe that $g_{x,r}$ is L^{∞} -Riemannian metric on B and $u_{x,r} \in W^{1,2}(B,N)$ is a weakly harmonic map w.r.t. $g_{x,r}$, satisfies the quasi-monotonicity inequality (1.5), and

(4.3)
$$\int_{B} |\nabla u|_{g_{x,r}}^{2} dv_{g_{x,r}} = r^{2-n} \int_{B_{r}(x)} |\nabla u|_{g}^{2} dv_{g} \le \epsilon_{0}^{2}.$$

Hence, without loss of generality, assume x=0 and r=1. It follows from (1.5) that there exists K>0 such that

(4.4)
$$\|\nabla u\|_{M^{2,n-2}(B_{\frac{1}{2}})} \le K \|\nabla u\|_{L^2(B)} \le K\epsilon_0^2.$$

For any $\theta \in (0, \frac{1}{2})$, let $B_{2\theta} \subset B_{\frac{1}{2}}$ be an arbitrary ball of radius 2θ and $\eta \in C_0^{\infty}(B)$ be such that $0 \leq \eta \leq 1$, $\eta \equiv 1$ on B_{θ} , $\eta = 0$ outside $B_{2\theta}$, and $|\nabla \eta| \leq 2\theta^{-1}$. Denote the average of u over $B_{2\theta}$ by $u_{2\theta} = \frac{1}{|B_{2\theta}|} \int_{B_{2\theta}} u \, dv_g$, and $|B_{2\theta}|$ is the volume of $B_{2\theta}$ w.r.t. g.

Let $\{e_{\alpha}\}_{\alpha=1}^{l} \in W^{1,2}(B_{2\theta}, \mathbf{R}^{k})$ be the Coulomb gauge frame of $u^{*}TN$ on $B_{2\theta}$ given by Proposition 2.2.

Let

$$\langle p, q \rangle = \sum_{i=1}^{n} p_i q_i, \ \langle p, g \rangle_g = \sum_{i,j=1}^{n} g^{ij} p_i q_j, \ p = (p_1, \dots, p_n), \ q = (q_1, \dots, q_n) \in \mathbf{R}^n$$

denote the inner products w.r.t. g_0 and g on \mathbb{R}^n respectively.

By Theorem 3.1, there exists $\delta_n > 0$ such that for any $p \in (\frac{n}{n-1} - \delta_n, \frac{n}{n-1})$, there are $\phi_{\alpha} \in W_0^{1,p}(B_{2\theta})$ and $\psi_{\alpha} \in L^p(B_{2\theta})$ such that

(4.5)
$$\langle \nabla((u-u_{2\theta})\eta), e_{\alpha} \rangle = \nabla \phi_{\alpha} + \psi_{\alpha}, \operatorname{div}_{q}(\psi_{\alpha}) = 0, \text{ in } B_{2\theta},$$

and

$$(4.6) \|\nabla\phi_{\alpha}\|_{L^{p}(B_{2\theta})} + \|\psi_{\alpha}\|_{L^{p}(B_{2\theta})} \le C\|\nabla((u-u_{2\theta})\eta)\|_{L^{p}(B_{2\theta})} \le C\|\nabla u\|_{L^{p}(B_{2\theta})}$$

where we have used the Poincaré inequality in the last inequality of (4.6).

Using the Coulomb gauge frame $\{e_{\alpha}\}_{\alpha=1}^{l}$, (1.4) can be written as:

(4.7)
$$\operatorname{div}_{g}(\langle \nabla u, e_{\alpha} \rangle) = \sum_{\beta=1}^{l} \sum_{i,j=1}^{n} g^{ij} \langle \frac{\partial u}{\partial x_{i}}, \langle \frac{\partial e_{\alpha}}{\partial x_{j}}, e_{\beta} \rangle \rangle e_{\beta} \quad \text{in } B_{2\theta}.$$

We estimate $\phi_{\alpha}, \psi_{\alpha}$ as follows. Let $\phi_{\alpha}^{(1)} \in W^{1,2}(B_{\theta})$ be the weak solution of

(4.8)
$$\sum_{i=j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial \phi_{\alpha}^{(1)}}{\partial x_j} \right) = 0, \quad \text{in } B_{\theta}$$

(4.9)
$$\phi_{\alpha}^{(1)} = \phi_{\alpha}, \text{ on } \partial B_{\theta}.$$

where $a_{ij} = \sqrt{g}g^{ij}$, $1 \le i, j \le n$. Let $\phi_{\alpha}^{(2)} = \phi_{\alpha} - \phi_{\alpha}^{(1)}$, then $\phi_{\alpha}^{(2)}$ satisfies

(4.10)
$$\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} (a_{ij} \frac{\partial \phi_{\alpha}^{(2)}}{\partial x_j}) = \sum_{\beta=1}^{l} \sum_{i,j=1}^{n} g^{ij} \langle \frac{\partial u}{\partial x_i}, \langle \frac{\partial e_{\alpha}}{\partial x_j}, e_{\beta} \rangle \rangle e_{\beta}, \text{ in } B_{\theta},$$

(4.11)
$$\phi_{\alpha}^{(2)} = 0, \qquad \text{on } \partial B_{\theta}.$$

Step I(a). Estimation of $\nabla \phi_{\alpha}^{(1)}$.

It is well-known (cf. [GT]) that there exists $\delta \in (0,1)$ such that $\phi_{\alpha}^{(1)} \in C^{\delta}(B_{\theta})$, and for any $0 < r \le \frac{\theta}{2}$ and p > 1,

$$[\phi_{\alpha}^{(1)}]_{C^{\delta}(B_r)}^p \le C\theta^{p-n} \int_{B_{\theta}} |\nabla \phi_{\alpha}^{(1)}|^p dx, \ 0 < r \le \frac{\theta}{2}.$$

On the other hand, since $\phi_{\alpha}^{(2)} \in W_0^{1,2}(B_{\theta})$ satisfies

$$\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} (a_{ij} \frac{\partial \phi_{\alpha}^{(2)}}{\partial x_j}) = \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} (a_{ij} \frac{\partial \phi_{\alpha}}{\partial x_j}), \text{ in } B_{\theta},$$

Theorem 3.1 implies that there exists $\delta_n > 0$ such that, for $p \in (\frac{n}{n-1} - \delta_n, \frac{n}{n-1})$,

$$\|\nabla \phi_{\alpha}^{(2)}\|_{L^{p}(B_{\theta})} \le C\|\nabla \phi_{\alpha}\|_{L^{p}(B_{\theta})} \le C\|\nabla u\|_{L^{p}(B_{2\theta})}.$$

In particular, we have

$$\|\nabla \phi_{\alpha}^{(1)}\|_{L^{p}(B_{\theta})} \leq \|\nabla \phi_{\alpha}\|_{L^{p}(B_{\theta})} + \|\nabla \phi_{\alpha}^{(2)}\|_{L^{p}(B_{\theta})} \leq C\|\nabla u\|_{L^{p}(B_{2\theta})},$$

and, for $0 < r \le \frac{\theta}{2}$ and $p \in (\frac{n}{n-1} - \delta_n, \frac{n}{n-1})$,

$$[\phi_{\alpha}^{(1)}]_{C^{\delta}(B_r)}^p \le C\theta^{p-n} \int_{B_{2\theta}} |\nabla u|^p dx.$$

This, combined with the Cacciopolli inequality, implies that for any $\tau \in (0, \frac{1}{4})$ and $p \in (\frac{n}{n-1} - \delta_n, \frac{n}{n-1})$, we have

$$(4.12) \qquad (\tau\theta)^{p-n} \int_{B_{\tau\theta}} |\nabla \phi_{\alpha}^{(1)}|^p dx \leq C[\phi_{\alpha}^{(1)}]_{C^{\delta}(B_{2\tau\theta})}^p$$

$$\leq C\tau^{p\delta}\theta^{p-n} \int_{B_{2\theta}} |\nabla u|^p dx$$

$$\leq C\tau^{p\delta} \|\nabla u\|_{M^{p,n-p}(B_1)}.$$

Step I (b). Estimation of $\nabla \phi_{\alpha}^{(2)}$.

First, we claim

There exists $\delta_n > 0$ such that for any $p \in (\frac{n}{n-1} - \delta_n, \frac{n}{n-1})$, if $f \in W_0^{1,p}(B_\theta)$ then

where $p' = \frac{p}{p-1}$.

To see (4.13), observe that by L^p -duality, there exists $v \in L^{p'}(B_\theta)$, with $||v||_{L^{p'}(B_\theta)} = 1$, such that

On the other hand, by Theorem 3.1, there exists $\delta_n > 0$ such that if $p \in (\frac{n}{n-1} - \delta_n, \frac{n}{n-1})$, then there exist $v_1 \in W_0^{1,p'}(B_\theta)$ and $v_2 \in L^{p'}(B_\theta, \mathbf{R}^n)$, with $\operatorname{div}_g(v_2) = 0$ in B_θ , such that

$$(4.15) v = \nabla v_1 + v_2 \text{ in } B_{\theta}, \ \|\nabla v_1\|_{L^{p'}(B_{\theta})} + \|v_2\|_{L^{p'}(B_{\theta})} \le C\|v\|_{L^{p'}(B_{\theta})}.$$

This and (4.14) imply

$$\|\nabla f\|_{L^p(B_\theta)} \le C(\int_{B_\theta} \langle \nabla f, \nabla v_1 \rangle_g \, dv_g + \int_{B_\theta} \langle \nabla f, v_2 \rangle_g \, dv_g)$$
$$= C \int_{B_\theta} \langle \nabla f, \nabla v_1 \rangle_g \, dv_g,$$

where we have used $\operatorname{div}_g(v_2) = 0$ in the last step. Hence (4.13) holds.

Applying (4.13) to eqn. (4.7), we have that for $p \in (\frac{n}{n-1} - \delta_n, \frac{n}{n-1})$, there exists $v \in W_0^{1,p'}(B_\theta)$ such that

$$(4.16) \|\nabla\phi_{\alpha}^{(2)}\|_{L^{p}(B_{\theta})} \leq C \int_{B_{\theta}} \langle \nabla\phi_{\alpha}^{(2)}, \nabla v \rangle_{g} \, dv_{g}$$

$$= -C \sum_{\beta=1}^{l} \sum_{i,j=1}^{n} \int_{B_{\theta}} \sqrt{g} g^{ij} \langle \frac{\partial u}{\partial x_{i}}, \langle \frac{\partial e_{\alpha}}{\partial x_{j}}, e_{\beta} \rangle \rangle \langle e_{\beta} v) \, dx.$$

To estimate the right hand side, we need the Hardy-BMO duality theorem (cf. [FS]) and the tri-linear estimate (cf. [CLMS], [E]).

Proposition 4.2 ([E]). Suppose that $f \in W^{1,2}(\mathbf{R}^n)$, $h \in L^2(\mathbf{R}^n, \mathbf{R}^n)$ with $div(h) = \sum_{i=1}^n \frac{\partial h_i}{\partial x_i} = 0$, and $v \in BMO(\mathbf{R}^n)$. Then we have

Let $\hat{u}: \mathbf{R}^n \to \mathbf{R}^k$ be an extension of u such that

Let $w_{\alpha}^{i} = \sum_{\beta=1}^{l} \sum_{j=1}^{n} \sqrt{g} g^{ij} \langle \frac{\partial e_{\alpha}}{\partial x_{j}}, e_{\beta} \rangle$, $1 \leq i \leq n$, and $w_{\alpha} = (w_{\alpha}^{1}, \dots, w_{\alpha}^{n})$. Then, by (2.1), we have

$$\operatorname{div}(w_{\alpha}) = \sum_{i=1}^{n} \frac{\partial w_{\alpha}^{i}}{\partial x_{i}} = \sqrt{g} \sum_{\beta=1}^{l} \operatorname{div}_{g}(\langle \nabla e_{\alpha}, e_{\beta} \rangle) = 0 \text{ on } B_{2\theta}.$$

This, combined with (2.2), implies that there exists an extension $\hat{w}_{\alpha} \in L^2(\mathbf{R}^n, \mathbf{R}^n)$ of w_{α} such that

(4.19)
$$\operatorname{div}(\hat{w}_{\alpha}) = 0 \text{ in } \mathbf{R}^{n}, \ \|\hat{w}_{\alpha}\|_{L^{2}(\mathbf{R}^{n})} \le C \|w_{\alpha}\|_{L^{2}(B_{2\theta})} \le C \|\nabla u\|_{L^{2}(B_{2\theta})}.$$

Putting (4.17)-(4.19) into (4.16), we have

$$\|\nabla\phi_{\alpha}^{(2)}\|_{L^{p}(B_{\theta})} \leq -C \int_{\mathbf{R}^{n}} \langle \nabla u, \hat{\omega}_{\alpha} \rangle (ve_{\alpha}) dx$$

$$= C \int_{\mathbf{R}^{n}} \langle \hat{u}, \hat{w}_{\alpha} \rangle \nabla (ve_{\alpha}) dx$$

$$\leq C[\hat{u}]_{\mathrm{BMO}(\mathbf{R}^{n})} \|\hat{w}_{\alpha}\|_{L^{2}(\mathbf{R}^{n})} \|\nabla (ve_{\alpha})\|_{L^{2}(\mathbf{R}^{n})}$$

$$\leq C\|\nabla u\|_{L^{2}(B_{2\theta})} [u]_{\mathrm{BMO}(B_{2\theta})} \|\nabla (ve_{\alpha})\|_{L^{2}(B_{\theta})}.$$

$$(4.20)$$

To estimate $\|\nabla(ve_{\alpha})\|_{L^{2}(B_{\theta})}$, note that for $p \in (1, \frac{n}{n-1})$, $p' = \frac{p}{p-1} > n$ and hence the Sobolev embedding theorem implies $v \in W_{0}^{1,p'}(B_{\theta}) \subset C_{0}^{1-\frac{n}{p'}}(B_{\theta})$, and

(4.21)
$$||v||_{L^{\infty}(B_{\theta})} \le C\theta^{1-\frac{n}{p'}} = C\theta^{1-n+\frac{n}{p}}.$$

Moreover, by Hölder inequality, we have

Therefore we have

Putting (4.23) into (4.20), and combining with (4.12), we have, for any $\tau \in (0, \frac{1}{4})$,

$$(4.24) {\{(\tau\theta)^{p-n} \int_{B_{\tau\theta}} |\nabla\phi_{\alpha}|^p dx\}^{\frac{1}{p}}} \le C[\tau^{\delta} + \tau^{1-\frac{n}{p}} \epsilon_0] ||\nabla u||_{M^{p,n-p}(B_1)}$$

where we have used the Poincaré inequality:

$$(4.25) [u]_{BMO(B_{2\theta})} \le C \|\nabla u\|_{M^{p,n-p}(B_{2\theta})} \le C \|\nabla u\|_{M^{p,n-p}(B_1)}.$$

Step II. Estimation of ψ_{α} .

It follows from (4.5) and Proposition 4.2 that we have

$$(4.26) \qquad \int_{B_{\theta}} |\psi_{\alpha}|_{g}^{2} dv_{g} = \sum_{i,j=1}^{n} \int_{B_{\theta}} a_{ij} \psi_{\alpha}^{i} \psi_{\alpha}^{j} dx$$

$$= \sum_{i,j=1}^{n} \int_{B_{\theta}} a_{ij} \psi_{\alpha}^{i} \left\langle \frac{\partial ((u - u_{2\theta})\eta)}{\partial x_{j}}, e_{\alpha} \right\rangle dx$$

$$- \sum_{i,j=1}^{n} \int_{B_{\theta}} a_{ij} \psi_{\alpha}^{i} \frac{\partial \phi_{\alpha}}{\partial x_{j}} dx$$

$$= - \sum_{i,j=1}^{n} \int_{B_{\theta}} a_{ij} \psi_{\alpha}^{i} \left\langle (u - u_{2\theta})\eta, \frac{\partial e_{\alpha}}{\partial x_{j}} \right\rangle dx$$

$$\leq C \|\psi_{\alpha}\|_{L^{2}(B_{\theta})} \|\nabla e_{\alpha}\|_{L^{2}(B_{\theta})} \|\nabla u\|_{M^{p,n-p}(B_{1})}$$

$$\leq C \|\psi_{\alpha}\|_{L^{2}(B_{\theta})} \|\nabla u\|_{L^{2}(B_{\theta})} \|\nabla u\|_{M^{p,n-p}(B_{1})}$$

where we have used the fact $\operatorname{div}_g(\psi_\alpha) = 0$, i.e.

$$\sum_{i,j=1}^{n} \int_{B_{\theta}} a_{ij} \psi_{\alpha}^{i} \frac{\partial \eta}{\partial x_{j}} dx = 0, \ \forall \eta \in W_{0}^{1,2}(B_{\theta}),$$

and

$$(4.27) [(u - u_{2\theta})\eta]_{BMO(B_{\theta})} \le C[u]_{BMO(B_{2\theta})} \le C||\nabla u||_{M^{p,n-p}(B_1)}.$$

By Hölder inequality, (4.26) yields

$$(4.28) \{\theta^{p-n} \int_{B_{\theta}} |\psi_{\alpha}|^p dx\}^{\frac{1}{p}} \leq C\epsilon_0 \|\nabla u\|_{M^{p,n-p}(B_1)}.$$

It follows from (4.5), (4.24), and (4.28) that for any $\tau \in (0, \frac{1}{4})$, any ball $B_{2\theta} \subset B_{\frac{1}{2}}$,

$$(4.29) \qquad \{(\tau\theta)^{p-n} \int_{B_{\tau\theta}} |\nabla u|^p \, dx\}^{\frac{1}{p}} \le C(\tau^{\delta} + \tau^{1-\frac{n}{p}} \epsilon_0) ||\nabla u||_{M^{p,n-p}(B_1)}.$$

Taking superum over all balls $B_{2\theta} \subset B_{\frac{1}{2}}$, we have

Therefore, by choosing $\tau = \tau_1 = 4C^{\frac{-1}{\delta}}$ and $\epsilon_0 = \frac{1}{4C}\tau_0^{\frac{n}{p}-1}$ sufficiently small, we have, for $\tau_0 = \frac{\tau_1}{2} > 0$,

(4.31)
$$\|\nabla u\|_{M^{p,n-p}(B_{\tau_0})} \le \frac{1}{2} \|\nabla u\|_{M^{p,n-p}(B_1)}.$$

This completes the proof of Lemma 4.1.

Proof of Theorem A. For n = 2, the absolute continuity of $\int |\nabla u|^2$ implies that there exists $r_0 > 0$ such that

(4.31)
$$\int_{B_r(x)} |\nabla u|^2 dx \le \epsilon_0^2, \quad \forall r \le r_0, \quad x \in \Omega.$$

Hence, applying Lemma 4.1 repeatedly, we have that for some $p \in (1,2)$ and $\tau_0 \in (0,\frac{1}{2})$,

(4.32)
$$(\tau_0^m r_0)^{p-2} \int_{B_{\tau_0^m r_0}(x)} |\nabla u|^p \le 2^{-pm} \epsilon_0^p, \quad \forall m \ge 1, \quad \forall x \in \Omega.$$

This implies that there exists $\alpha_0 \in (0,1)$ such that

$$(4.33) r^{p-2} \int_{B_r(x)} |\nabla u|^p \le C(\epsilon_0, p) r^{\alpha}, \quad \forall r \in (0, r_0), \quad x \in \Omega.$$

Hence, by Morrey's Lemma (cf. [G]), we conclude $u \in C^{\alpha}(\Omega, N)$. This completes the proof of Theorem A.

Proof of Theorem B. Define

$$\Sigma = \{ x \in \Omega : \lim_{r \downarrow 0} r^{2-n} \int_{B_r(x)} |\nabla u|^2 \ge \epsilon_0^2 \}.$$

It is well-known (cf. [SU]) that $H^{n-2}(\Sigma) = 0$. Moreover, by Lemma 4.1, $\Sigma \subset \Omega$ is a closed set. For any $x_0 \in \Omega \setminus \Sigma$, there exists $r_0 > 0$ such that $B_{2r_0}(x_0) \cap \Sigma = \emptyset$, and

$$r^{2-n} \int_{B_r(x)} |\nabla u|^2 \le \epsilon_0^2, \quad \forall x \in B_{r_0}(x_0), \quad r \le r_0.$$

Therefore, by Lemma 4.1, we have that for some $p \in (1, \frac{n}{n-1})$ and $\tau_0 \in (0,1)$,

$$(4.34) (\tau_0^m r_0)^{p-n} \int_{B_{\tau_0^m r_0}(x)} |\nabla u|^p \le 2^{-pm} \epsilon_0^p, \quad \forall m \ge 1, \quad \forall x \in B_{r_0}(x_0).$$

This implies that there is $\alpha \in (0,1)$ such that

(4.35)
$$r^{p-n} \int_{B_r(x)} |\nabla u|^p \le C(\epsilon_0, p) r^{p\alpha}, \quad \forall x \in B_{r_0}(x_0), \quad \forall r \in (0, r_0).$$

Hence, by Morrey's Lemma, we conclude $u \in C^{\alpha}(B_{r_0}(x_0), N)$ and $u \in C^{\alpha}(\Omega \setminus \Sigma, N)$.

§5. Quasi-monotonicity inequality

In this section, we derive the quasi-monotonicity inequality (1.5) for two classes of harmonic maps in dimensions $n \geq 3$: (1) minimizing harmonic maps w.r.t. Dini-continuous metrics g, and (2) stationary harmonic maps w.r.t. Lipschitz continuous metrics g.

Definition 5.1. A map $u \in W^{1,2}(\Omega, N)$ is a minimizing harmonic map, if

(5.1)
$$\int_{\Omega} |\nabla u|_g^2 dv_g \le \int_{\Omega} |\nabla v|_g^2 dv_g, \ \forall v \in W^{1,2}(\Omega, N) \text{ with } v|_{\partial\Omega} = u|_{\partial\Omega}.$$

Recall that $f: \Omega \to \mathbf{R}^{n \times n}$ is Dini-continuous, if there exist $r_0 > 0$ and a monotonically non-decreasing $\omega: [0, r_0] \to \mathbf{R}_+$, with $\omega(0) = 0$ and $\int_0^{r_0} \frac{\omega(t)}{t} dt < \infty$, such that

$$|f(x) - f(y)| \le \omega(|x - y|), \ \forall x, y \in \Omega, \ |x - y| \le r_0.$$

Proposition 5.1. For $n \geq 3$, suppose that g is a Dini-continuous metric on Ω and $u \in W^{1,2}(\Omega, N)$ is a minimizing harmonic map. Then u satisfies the quasi-monotonicity inequality (1.5).

Proof. It suffices to prove (1.5) for $x = 0 \in \Omega$. Assume $g_0 = g(0)$ is the Euclidean metric on \mathbb{R}^n . For $0 < r < \min\{r_0, \operatorname{dist}(0, \partial\Omega)\}$, define

$$v(x) = u(\frac{rx}{|x|}), \ x \in B_r$$

= $u(x), \quad x \in \Omega \setminus B_r$.

Then the minimality of u implies

(5.3)
$$\int_{B_r} |\nabla u|_g^2 \, dv_g \le \int_{B_r} |\nabla v|_g^2 \, dv_g.$$

It follows from the Dini-continuity of g that

$$\max_{x \in B_r} |g(x) - g_0| \le \omega(r), \ \forall 0 < r \le \min\{r_0, \operatorname{dist}(0, \partial \Omega)\},\$$

where ω is the modular of continuity of g. This and (5.3) imply that there exists $C_0 > 0$ such that

$$(5.4) (1 - C_0 \omega(r)) \int_{B_r} |\nabla u|^2 dx \le \int_{B_r} |\nabla v|^2 dx, \ \forall 0 < r \le \min\{r_0, \operatorname{dist}(0, \partial\Omega)\}.$$

Direct calculations imply

$$\int_{B_r} |\nabla v|^2 \, dx = \frac{r}{n-2} \int_{\partial B_r} (|\nabla u|^2 - |\frac{\partial u}{\partial r}|^2) \, dH^{n-1}.$$

Therefore we have, for $0 < r \le \min\{r_0, \operatorname{dist}(0, \partial\Omega)\}\$,

(5.5)
$$(n-2)(1-C_0\omega(r))r^{1-n} \int_{B_r} |\nabla u|^2 dx \le r^{2-n} \int_{\partial B_r} |\nabla u|^2 dH^{n-1}$$
$$-r^{2-n} \int_{\partial B_r} |\frac{\partial u}{\partial r}|^2 dH^{n-1}.$$

This yields, for $0 < r \le \min\{r_0, \operatorname{dist}(0, \partial\Omega)\}\$,

(5.6)
$$\frac{d}{dr} \left\{ e^{\left\{ (n-2)C_0 \int_0^r \frac{\omega(t)}{t} dt \right\}} r^{2-n} \int_{B_r} |\nabla u|^2 dx \right\}$$
$$\geq e^{\left\{ (n-2)C_0 \int_0^r \frac{\omega(t)}{t} dt \right\}} r^{2-n} \int_{\partial B_r} \left| \frac{\partial u}{\partial r} \right|^2 dH^{n-1}$$
$$\geq r^{2-n} \int_{\partial B_r} \left| \frac{\partial u}{\partial r} \right|^2 dH^{n-1}.$$

Integrating (5.6), we have, for $0 < r \le R \le \min\{r_0, \operatorname{dist}(0, \partial\Omega)\}\$,

(5.7)
$$\int_{B_R \setminus B_r} |x|^{2-n} \left| \frac{\partial u}{\partial r} \right|^2 dx + r^{2-n} \int_{B_r} |\nabla u|^2 dx$$

$$\leq e^{\{(n-2)C_0 \int_0^R \frac{\omega(t)}{t} dt\}} R^{2-n} \int_{B_R} |\nabla u|^2 dx.$$

This implies (1.5) holds for $K = e^{\{(n-2)C_0 \int_0^{r_0} \frac{\omega(t)}{t} dt\}}$

Next we consider stationary harmonic maps.

Definition 5.2. A weakly harmonic map $u \in W^{1,2}(\Omega, N)$ is a stationary harmonic map, if it is a critical point of E_2 w.r.t. the domain variations:

(5.8)
$$\frac{d}{dt}|_{t=0} \int_{\Omega} |\nabla u(x+tX(x))|_g^2 dv_g = 0, \ \forall X \in C_0^1(\Omega, \mathbf{R}^n).$$

We have

Proposition 5.2. For $n \geq 3$, let g be a Lipschitz continuous Riemannian metric on Ω . Then any stationary map $u \in W^{1,2}(\Omega, N)$ satisfies (1.5) for some K = K(n, g) > 0.

Proof. For simplicity, assume $x = 0 \in \Omega$ and $g(0) = g_0$. Define the energy-stress tensor

$$S_{\alpha\beta} = \frac{1}{2} |\nabla u|_g^2 g_{\alpha\beta} - \langle \frac{\partial u}{\partial x_\alpha}, \frac{\partial u}{\partial x_\beta} \rangle, \quad 1 \le \alpha, \beta \le n.$$

Then it is well-known (cf. [H2]) that the stationarity (5.8) implies

(5.9)
$$\sum_{\alpha,\beta=1}^{n} \int_{\Omega} (L_X g^{\alpha\beta}) S_{\alpha\beta} \, dv_g = 0$$

where

$$L_X g^{\alpha\beta} = \sum_{\gamma=1}^{n} \left[X_{\gamma} \frac{\partial g^{\alpha\beta}}{\partial x_{\gamma}} - \frac{\partial X_{\alpha}}{\partial x_{\gamma}} g^{\gamma\beta} - \frac{\partial X_{\beta}}{\partial x_{\gamma}} g^{\gamma\alpha} \right]$$

is the Lie derivative of $(g^{\alpha\beta})$ with respect to X.

For $B_r \subset \Omega$, and $\eta(x) = \eta(|x|) \in C_0^1(B_r)$ with $0 \le \eta \le 1$, let $X(x) = x\eta(|x|)$. Then we have

$$\frac{\partial X_{\alpha}}{\partial x_{\gamma}} = \delta_{\alpha\gamma} \eta(|x|) + \eta'(|x|) \frac{x_{\alpha} x_{\gamma}}{|x|}, \quad 1 \le \alpha, \gamma \le n,$$

and

$$L_X g^{\alpha\beta} = \eta(|x|) \sum_{\gamma=1}^n x_\gamma \frac{\partial g^{\alpha\beta}}{\partial x_\gamma} - 2\eta(|x|) g^{\alpha\beta} - 2\eta'(|x|) \sum_{\gamma=1}^n \frac{x_\beta x_\gamma}{|x|} g^{\alpha\gamma}.$$

Since g is Lipschitz continuous, there exist $r_0 > 0$ and $C_0 > 0$ depending on Lip(g) such that

(5.10)
$$\|\nabla g^{\alpha\beta}\|_{L^{\infty}(B_r)} \le C_0 \operatorname{Lip}(g), \ \forall 0 < r \le r_0.$$

Let $I \equiv \sum_{\alpha,\beta,\gamma=1}^{n} \int_{B_r} x_{\gamma} \eta(|x|) \frac{\partial g^{\alpha\beta}}{\partial x_{\gamma}} S_{\alpha\beta} dv_g$. Then we have

$$|I| \leq \sum_{\alpha,\beta,\gamma=1}^{n} \int_{B_r} |x_{\gamma}| \frac{\partial g^{\alpha\beta}}{\partial x_{\gamma}} ||S_{\alpha\beta}| \, dv_g$$

$$\leq r ||\nabla g^{\alpha\beta}||_{L^{\infty}(B_r)} \sum_{\alpha,\beta=1}^{n} \int_{B_r} |S_{\alpha\beta}| \, dv_g \leq Cr \int_{B_r} |\nabla u|_g^2 \, dv_g$$

for $C = C_0 \operatorname{Lip}(g)$.

Set $II \equiv -2 \sum_{\alpha,\beta=1}^n \int_{B_r} \eta(|x|) g^{\alpha\beta} S_{\alpha\beta} \, dv_g$. Then we have

$$\begin{split} II &= -2\sum_{\alpha,\beta=1}^{n} \int_{B_r} \eta(|x|) g^{\alpha\beta} (\frac{1}{2} |\nabla u|_g^2 g_{\alpha\beta} - \langle \frac{\partial u}{\partial x_\alpha}, \frac{\partial u}{\partial x_\beta} \rangle) \, dv_g \\ &= (2-n) \int_{B_r} \eta(|x|) |\nabla u|_g^2 \, dv_g. \end{split}$$

For
$$III \equiv -2\sum_{\alpha,\beta,\gamma=1}^{n} \int_{B_r} \eta'(|x|) \frac{x_{\beta}x_{\gamma}}{|x|} g^{\alpha\gamma} S_{\alpha\beta} \, dv_g$$
, we have
$$III = -2\sum_{\alpha,\beta,\gamma=1}^{n} \int_{B_r} \eta'(|x|) \frac{x_{\beta}x_{\gamma}}{|x|} g^{\alpha\gamma} (\frac{1}{2} |\nabla u|_g^2 g_{\alpha\beta} - \langle \frac{\partial u}{\partial x_{\alpha}}, \frac{\partial u}{\partial x_{\beta}} \rangle) \, dv_g$$

$$= -\int_{B_r} \eta'(|x|) |x| |\nabla u|_g^2 \, dv_g$$

$$+ 2\sum_{\alpha,\beta,\gamma=1}^{n} \int_{B_r} \eta'(|x|) \frac{x_{\beta}x_{\gamma}}{|x|} g^{\alpha\gamma} \langle \frac{\partial u}{\partial x_{\alpha}}, \frac{\partial u}{\partial x_{\beta}} \rangle \, dv_g$$

Observe that (5.10) implies, for $0 < r \le r_0$,

= IV + V.

$$g^{\alpha\gamma}(x) = \delta_{\alpha\gamma} + h_{\alpha\gamma}(x), |h_{\alpha\gamma}|(x) \le C_0 \text{Lip}(g)|x|, \forall x \in B_r, \forall 1 \le \alpha, \gamma \le n.$$

Hence we have

(5.11)
$$V = 2 \int_{B_r} |x| \eta'(|x|) |\frac{\partial u}{\partial r}|^2 dv_g + 2 \sum_{\alpha, \gamma = 1}^n \int_{B_r} \eta'(|x|) x_\gamma h_{\alpha\gamma} \langle \frac{\partial u}{\partial x_\alpha}, \frac{\partial u}{\partial r} \rangle dv_g.$$

As

$$0 = \sum_{\alpha,\beta=1}^{n} \int_{\Omega} (L_X g^{\alpha\beta}) S_{\alpha\beta} \, dv_g = I + II + III,$$

we have

$$(5.12) (2-n) \int_{B_r} \eta(|x|) |\nabla u|_g^2 dv_g - \int_{B_r} |x| \eta'(|x|) (|\nabla u|_g^2 - 2|\frac{\partial u}{\partial r}|^2) dv_g$$

$$\geq -Cr \int_{B_r} |\nabla u|_g^2 dv_g - 2 \sum_{\alpha, \gamma = 1}^n \int_{B_r} \eta'(|x|) x_\gamma h_{\alpha\gamma} \langle \frac{\partial u}{\partial x_\alpha}, \frac{\partial u}{\partial r} \rangle dv_g.$$

For small $\epsilon > 0$, let $\eta = \eta_{\epsilon}(|x|) \in C_0^{0,1}(B_r)$ be such that $\eta_{\epsilon}(t) = 1$ for $0 \le t \le r - \epsilon$, $\eta_{\epsilon}(t) = 0$ for $t \ge r$, and $\eta'_{\epsilon}(t) = -\frac{1}{\epsilon}$ for $r - \epsilon \le t \le r$. Putting η into (5.12) and sending ϵ to zero, we obtain

$$(5.13) \qquad (2-n)\int_{B_r} |\nabla u|_g^2 \, dv_g + r \int_{\partial B_r} |\nabla u|_g^2 \, dH_g^{n-1}$$

$$\geq 2r \int_{\partial B_r} |\frac{\partial u}{\partial r}|^2 \, dH_g^{n-1} - Cr \int_{B_r} |\nabla u|_g^2 \, dv_g$$

$$+ 2 \sum_{\alpha,\gamma=1}^n \int_{\partial B_r} x_\gamma h_{\alpha\gamma} \langle \frac{\partial u}{\partial x_\alpha}, \frac{\partial u}{\partial r} \rangle \, dH_g^{n-1}$$

$$\geq 2r \int_{\partial B_r} |\frac{\partial u}{\partial r}|^2 \, dH_g^{n-1} - Cr \int_{B_r} |\nabla u|_g^2 \, dv_g$$

$$- Cr^3 \int_{\partial B_r} |\nabla u|_g^2 \, dH_g^{n-1}$$

where dH_g^{n-1} is the (n-1)-dimensional Hausdorff measure w.r.t. g, and we have used the Hölder inequality in the last step:

$$\begin{split} &2\sum_{\alpha,\gamma=1}^{n}|\int_{\partial B_{r}}x_{\gamma}h^{\alpha\gamma}\langle\frac{\partial u}{\partial\alpha},\frac{\partial u}{\partial r}\rangle\,dH_{g}^{n-1}|\\ &\leq r\int_{\partial B_{r}}|\frac{\partial u}{\partial r}|^{2}\,dH_{g}^{n-1}+r(\sum_{\alpha,\gamma=1}^{n}\max_{B_{r}}|h^{\alpha\gamma}|^{2})\int_{\partial B_{r}}|\nabla u|_{g}^{2}\,dH_{g}^{n-1}\\ &\leq r\int_{\partial B_{r}}|\frac{\partial u}{\partial r}|^{2}\,dH_{g}^{n-1}+Cr^{3}\int_{\partial B_{r}}|\nabla u|_{g}^{2}\,dH_{g}^{n-1}. \end{split}$$

Let $f(r) = \int_{B_r} |\nabla u|_g^2 dv_g$, we have $f'(r) = \int_{\partial B_r} |\nabla u|_g^2 dH^{n-1}$ for a.e. r > 0. Hence (5.13) yields

$$(2-n+Cr)f(r)+r(1+Cr)f'(r) \ge r \int_{\partial B_r} \left|\frac{\partial u}{\partial r}\right|^2 dH_g^{n-1}.$$

In particular, there exists a small $r_0 > 0$ depending on g such that for $0 < r \le r_0$,

(5.14)
$$(2-n+O(r))f(r) + rf'(r) \ge \frac{r}{2} \int_{\partial B_r} \left| \frac{\partial u}{\partial r} \right|^2 dH_g^{n-1}$$

where $C^{-1}r \leq O(r) \leq Cr$. Therefore we have, $0 < r \leq r_0$,

(5.15)
$$\frac{d}{dr}(e^{O(r)}r^{2-n}f(r)) \ge \frac{1}{2}e^{O(r)}r^{2-n}\int_{\partial B_r} |\frac{\partial u}{\partial r}|^2 dH_g^{n-1}.$$

Integrating (5.15) over $0 < r \le R \le r_0$, we have

(5.16)
$$e^{O(R)}R^{2-n}f(R) \ge r^{2-n}f(r) + \frac{1}{2} \int_{B_R \setminus B_r} |x|^{2-n} |\frac{\partial u}{\partial r}|^2 dv_g.$$

This, combined with (1.3), implies (1.5) with $K = e^{O(r_0)}$.

Remark 5.1. The monotonicity inequality (5.15) has been derived by Garofalo-Lin [GL] for second order elliptic equations with divergence structure by a different method.

§6. Final remarks

This section is devoted to some further discussions on theorem A and B. The first remark asserts that for $n \geq 3$, $g \in VMO(\Omega)$ can be weaken. The second remark concerns the optimal Hausdorff dimension estimate on minimizing harmonic map from domains with Dini continuous metrics. The third remark concerns the blow-up analysis of stationary harmonic maps from domians with Lipschitz continuous Riemannian metrics.

Theorem 6.1. For $n \geq 3$, there exists $\delta_0 > 0$ such that if g is a L^{∞} -Riemannian metric on Ω with $[g]_{BMO(\Omega)} \leq \delta_0$ and $u \in W^{1,2}(\Omega, N)$ is a weakly harmonic map satisfying the quasi-monotonicity inequality (1.5), then there are $\alpha \in (0,1)$ and closed subset $\Sigma \subset \Omega$, with $H^{n-2}(\Sigma) = 0$, such that $u \in C^{\alpha}(\Omega \setminus \Sigma, N)$.

Proof. It follows from the same arguments as in theorem B, except that we need to replace Proposition 3.3 by the following proposition, due to Byun-Wang [SW] (see also Caffarelli-Peral [CP]).

Lemma 6.2. For $n \geq 3$ and ball $B \subset \Omega$, assume that $A = (a_{ij}) \in L^{\infty}(B, \mathbf{R}^{n \times n})$ is symmetric, and uniformly elliptic with ellipticity constant $\Lambda > 0$. For any $p \in (1, +\infty)$ and $F \in L^p(B, \mathbf{R}^n)$, there exists $\delta_p > 0$ such that if $[g]_{BMO(B)} \leq \delta_p$, then there exists a unique solution $G \in W_0^{1,p}(B)$ to the Dirichlet problem:

(6.1)
$$\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} (a_{ij} \frac{\partial G}{\partial x_j}) = \sum_{i=1}^{n} \frac{\partial F_i}{\partial x_i}, \quad in \ B$$

(6.2)
$$G = 0,$$
 on ∂B .

Moreover,

(6.3)
$$\|\nabla G\|_{L^p(B)} \le C([A]_{BMO(B)}, n, \Lambda) \|F\|_{L^p(B)}.$$

Theorem 6.2. For $n \geq 3$ and a Dini-continuous Riemannian metric g in $\Omega \subset \mathbf{R}^n$, if $u \in W^{1,2}(\Omega, N)$ is a minimizing harmonic map, then there exist $\alpha \in (0,1)$ and closed subset $\Omega \subset \Omega$, which is discrete for n=3 and has Hausdorff dimension at most (n-3) for $n \geq 4$, such that $u \in C^{\alpha}(\Omega \setminus \Sigma, N)$.

Proof. Note that the Dini-continuity of g implies $g \in VMO(\Omega)$. Since u is a minimizing harmonic map, Proposition 5.1 implies that u satisfies the monotonicity inequality (5.7). Define

(6.2)
$$\Sigma = \{ x \in \Omega \mid \Theta(u, x) \equiv \lim_{r \downarrow 0} r^{2-n} \int_{B_r(x)} |\nabla u|^2 \ge \epsilon_0^2 \}$$

where ϵ_0 is given by Lemma 4.1. Then, by theorem B, we have that $u \in C^{\alpha}(\Omega \setminus \Sigma, N)$ for some $\alpha \in (0,1)$.

To prove the Hausdorff dimension estimate of Σ , define the rescalled map $u_{x_0,r_i}(x) = u(x_0 + r_i x) : B_2 \to N$ for any $x_0 \in \Sigma$ and $r_i \downarrow 0$. It is easy to see that u_{x_0,r_i} is minimizing harmonic map w.r.t. $g_i(x) = g(x_0 + r_i x)$. Since g is Dini-continuous, we know $g_i \to g_0$, the Euclidean metric, uniformly on B_2 .

It follows from Luckhaus' extension Lemma (see [Ls]) and the minimality of u that there exists a minimizing harmonic map $\phi \in W^{1,2}(B_2, N)$ w.r.t. g_0 such that after taking possible subsequences, $u_{x_0,r_i}(x) \equiv u(x_0+r_ix) \to \phi$ strongly in $W^{1,2}(B_2, N)$. Moreover, the monotonicity inequality (5.7) yields $\frac{\partial \phi}{\partial r} = 0$ a.e. in B_2 and $\phi(x) = \phi(\frac{x}{|x|})$ for a.e. $x \in B_2$. Now we can apply Federer's dimension reduction argument (cf. [SU]) to conclude that Σ is discrete for n = 3, and has Hausdorff dimension at most (n - 3) for $n \ge 4$.

Theorem 6.3. For $n \geq 3$ and a Lipschitz continuous metric g on $\Omega \subset \mathbf{R}^n$. Assume that N doesn't support nonconstant harmonic maps from S^2 . If $u \in W^{1,2}(\Omega, N)$ is a stationary harmonic map, then there exist $\alpha \in (0,1)$ and closed subset $\Sigma \subset \Omega$, which is discrete for n = 4, and has Hausdorff dimension at most (n-4) for $n \geq 5$, such that $u \in C^{\alpha}(\Omega \setminus \Sigma, N)$.

Proof. Note that the Lipschitz continuity of g implies $g \in VMO(\Omega)$. It follows from the stationarity and Proposition 5.2 that u satisfies the monotonicity inequality (5.16). Therefore, Theorem B implies $u \in C^{\alpha}(\Omega \setminus \Sigma, N)$ for some $\alpha \in (0, 1)$, with Σ given by (6.2).

For any $x_0 \in \Sigma$ and $r_i \downarrow 0$, $u_{x_0,r_i} \in W^{1,2}(B_2,N)$ are stationary harmonic maps w.r.t. g_i . It follows from (5.16) that there is a harmonic map $\phi \in W^{1,2}(B_2,N)$ w.r.t. g_0 , which is homogeneous of degree zero, such that after passing to subsequences, $u_{x_0,r_i}(x) \equiv u(x_0 + r_i x) \to \phi$ weakly in $W^{1,2}(B_2,N)$. One can check the blow-up analysis by Lin [L] applies to stationary harmonic maps w.r.t. Lipschitz continuous metrics g as long as we have theorem B, (5.16), and N doesn't support harmonic S^2 's. In particular, $u_{x_0,r_i} \to \phi$ strongly in $W^{1,2}(B_2,N)$. With this strong convergence, one can show Σ is discrete for n=4, and has Hausdorff dimension at most (n-4) for $n \geq 5$.

REFERENCES

- [B] F. Bethuel, On the singular set of stationary harmonic maps. Manuscripta Math. 78 (1993), no. 4, 417–443.
- [BW] S. Byun, L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains. Comm. Pure Appl. Math. 57 (2004), no. 10, 1283–1310.
- [CLMS] R. Coifman, P. Lions, Y. Meyer, S. Semmes, Compensated compactness and Hardy spaces. J. Math. Pures Appl. (9) 72 (1993), no. 3, 247–286.
- [CP] L. Caffarelli, I. Peral, On $W^{1,p}$ estimates for elliptic equations in divergence form. Comm. Pure Appl. Math. 51 (1998), no. 1, 1–21.
- [D] G. Di Fazio, L^p estimates for divergence form elliptic equations with discontinuous coefficients. Boll. Un. Mat. Ital. A (7) 10 (1996), no. 2, 409–420.
- [E] L. C. Evans, Partial regularity for stationary harmonic maps into spheres. Arch. Rational Mech. Anal. 116 (1991), no. 2, 101–113.
- [FS] C. Fefferman, E. Stein, H^p spaces of several variables. Acta Math. 129 (1972), no. 3-4, 137–193.
- [G] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems. Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983
- [GG] M. Giaquinta, E. Giusti, The singular set of the minima of certain quadratic functionals. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), no. 1, 45–55.
- [GL] N. Garofalo, F. H. Lin, Monotonicity properties of variational integrals, A_p weights and unique continuation. Indiana Univ. Math. J. 35 (1986), no. 2, 245–268.
- [GT] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, 1984.
- [H1] F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une varit riemannienne. C. R. Acad. Sci. Paris Sr. I Math. 312 (1991), no. 8, 591–596.
- [H2] F. Hélein, Harmonic maps, conservation laws and moving frames. Translated from the 1996 French original. With a foreword by James Eells. Second edition. Cambridge Tracts in Mathematics, 150. Cambridge University Press, Cambridge, 2002.

- [J] J. Jost, Two-dimensional geometric variational problems. Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley & Sons, Ltd., Chichester, 1991.
- [L] F. H. Lin, Gradient estimates and blow-up analysis for stationary harmonic maps. Ann. of Math. (2) 149 (1999), no. 3, 785–829.
- [Ls] S. Luckhaus, Partial Hilder continuity for minima of certain energies among maps into a Riemannian manifold. Indiana Univ. Math. J. 37 (1988), no. 2, 349–367.
- [M] N. Meyers, An L^p e-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa (3) 17 1963 189–206.
- [P] P. Price, A monotonicity formula for Yang-Mills fields. Manuscripta Math. 43 (1983), no. 2-3, 131–166.
- [R] T. Riviére, Everywhere discontinuous harmonic maps into spheres. Acta Math. 175 (1995), no. 2, 197–226.
- [S] R. Schoen, Analytic aspects of the harmonic map problem. Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983), 321–358, Math. Sci. Res. Inst. Publ., 2, Springer, New York, 1984
- [SU] R. Schoen, K. Uhlenbeck, A regularity theory for harmonic maps. J. Differential Geom. 17 (1982), no. 2, 307–335.
- [Sy] Y. G. Shi, A partial regularity result of harmonic maps from manifolds with bounded measurable Riemannian metrics. Comm. Anal. Geom. 4 (1996), no. 1-2, 121–128.