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Abstract

In this note, we provide an alternative proof of C1,α-regularity of continuous weak

solutions to the system of harmonic map or heat flow of harmonic maps by Riesz

potential estimates between Morrey spaces.

1 Introduction

It is well-known that the higher order regularity theory asserts any continuous weak solution

to both the system of harmonic maps and heat flow of harmonic maps is smooth (see [9]

[10]). The classical technique in the literature ([9] [10]) is the hole filling argument, which

enables to establish (i) C0-regularity implies Cα-regularity for all α ∈ (0, 1), and (ii) Cα-

regularity implies C1,β-regularity for some β ∈ (0, 1). See Schoen [12] for another proof.

In this note, we will give an alternative proof of (ii) by the application of Riesz potential

estimates between Morrey spaces. Such an estimate was due to Adams [1] in Rn with the

Euclidean metric. Here we extend such an estimate to Rn with the parabolic metric, in

order to handle the equation of harmonic map heat flows.

Now we recall the notions of Riesz potential and Morrey space on Rn. Let d(x, y) :

Rn × Rn → R+ be a distance function on Rn. Let n̂ denote the Hausdorff dimension of Rn

with respect to the distance d. On (Rn, d), we define

Definition 1.1 For any f ∈ Lp(Rn), 1 ≤ p < +∞, and 0 < β ≤ n̂, the Riesz potential of f

of order β is defined by

Iβ(f)(x) ≡
∫

Rn

|f(y)|
d(x, y)n̂−β

dy, x ∈ Rn. (1.1)

For x ∈ Rn and r > 0, let Bdr (x) = {y ∈ Rn : d(y, x) ≤ r} be the ball with center x and

radius r with respect to the distance d.
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Definition 1.2 For Ω ⊂ Rn, 1 ≤ p < +∞, and 0 ≤ λ ≤ n̂, the Morrey space Mp,λ(Ω) is

defined to be the collection of functions f ∈ Lp(Ω) satisfying

‖f‖Mp,λ(Ω) ≡ sup
r>0,x∈Ω

(
rλ−n̂

∫
Ω∩Bdr (x)

|f(y)|pdy

) 1
p

<∞. (1.2)

For the purpose of this note, we also need to recall the weak Morrey space.

Definition 1.3 For Ω ⊂ Rn and 1 ≤ p < +∞, the weak Lp space Lp,∗(Ω), is defined to be

the collection of measurable functions f on Ω such that

‖f‖pLp,∗(Ω) ≡ sup
t>0

tp |{x ∈ Ω| |f(x)| > t}| < +∞. (1.3)

For 0 ≤ λ ≤ n̂, the weak Morrey space Mp,λ
∗ (Ω) is defined to be the set of functions

f ∈ Lp,∗(Ω) satisfying

‖f‖p
Mp,λ
∗ (Ω)

≡ sup
x∈Ω,r>0

{
rλ−n̂‖f‖p

Lp,∗(Ω∩Bdr (x))

}
< +∞. (1.4)

For the Euclidean distance d(x, y) = |x − y| on Rn, we have n̂ = n and simply denote

Br(x) as Bdr (x).

In this note, we consider the higher order regularity issues to the following two systems:

(i) A map u ∈ H1(Ω,Rm) (for some m ≥ 1) solves

−4u = Q(u)(∇u,∇u) in Ω, (1.5)

where Q ∈ C∞(Rm × (Rnm)2,Rm) has the quadratic growth in the last two variables:

|Q(p)(v, w)| ≤ C(R)|v||w|, ∀p ∈ Rm with |p| ≤ R, and v, w ∈ Rnm (1.6)

for some positive constant C = C(R) for any R > 0. It is readily seen that (1.5) includes

the equation of harmonic maps from Ω to a Riemannian manifold (N,h) ⊂ Rm.

(ii) A map u ∈ H1(Ω× [0, T ],Rm) (T > 0) solves

ut −4u = Q(u)(∇u,∇u) in Ω× (0, T ), (1.7)

where Q enjoys the property (1.6). It is also readily seen that (1.7) includes the heat flow

of harmonic maps from Ω to a Riemannian manifold (N,h) ⊂ Rm.

In this note, we provide an alternative approach, based on the Riesz potential estimate

between Morrey spaces, to the following two Theorems. Both Theorems are classical results

in the literature (see [9] [10] [11]).
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Theorem 1.4 There exists ε0 > 0 such that if u(x) ∈ H1(Ω,Rm) is a weak solution of

(1.5)-(1.6), and satisfies, for x0 ∈ Ω and 0 < r0 < dist(x0, ∂Ω),

oscBr0 (x0) u ≤ ε0, (1.8)

then u ∈ C∞(B r0
2

(x0),Rm).

Theorem 1.5 There exists ε0 > 0 such that if u(x) ∈ H1(Ω× [0, T ],Rm) is a weak solution

of (1.7) -(1.6) and satisfies, for (x0, t0) ∈ Ω× (0, T ) and 0 < r0 < min{dist(x0, ∂Ω),
√
t0},

oscBr0 (x0)×[t0−r20 ,t0+r20 ] u ≤ ε0, (1.9)

then u ∈ C∞(B r0
2

(x0)× [t0 − r20
4 , t0 + r20

4 ],Rm).

For both minimizing harmonic maps and stationary harmonic maps (or stationary heat

flow of harmonic maps), the small oscillation condition (1.8) (or (1.9) can be deduced by

the small renormalized energy condition (see [8] [13] [4] [2] [7] [3] [6]). In general, for weak

harmonic maps (or weak heat flow of harmonic maps), (1.8) (or (1.9)) can only be guaranteed

if KN ≤ 0 or u(Br0(x0)) is contained in a geodesic convex ball (see [5] [10] [11]).

2 Proof of Theorem 1.4

In this section, we will apply the Riesz potential estimate between Morrey spaces to prove

Theorem 1.4. This can also serve as a guideline to prove Theorem 1.5. The proof of the

following Lemma can be found in Adams [1].

Lemma 2.1 Let d(x, y) = |x− y| be the Euclidean distance on Rn.

(i) For any β > 0, 0 < λ ≤ n, 1 < p < λ
β , if f ∈ Lp(Rn) ∩ Mp,λ(Rn), then Iβ(f) ∈

Lp̃(Rn) ∩M p̃,λ(Rn), where p̃ = λp
λ−pβ . Moreover,

‖Iβ(f)‖Lp̃(Rn) ≤ C ‖f‖
βp
λ

Mp,λ(Rn)
‖f‖1−

βp
λ

Lp(Rn) (2.1)

‖Iβ(f)‖M p̃,λ(Rn) ≤ C ‖f‖Mp,λ(Rn) . (2.2)

(ii) For 0 < β < λ ≤ n, if f ∈ L1(Rn)∩M1,λ(Rn), then Iβ(f) ∈ L
λ

λ−α ,∗(Rn)∩M
λ

λ−α ,λ
∗ (Rn).

Moreover,

‖Iβf‖
L

λ
λ−β ,∗(Rn)

≤ C ‖f‖
β
λ

M1,λ(Rn)
‖f‖1−

β
λ

L1(Rn) (2.3)

‖Iβ(f)‖
M

λ
λ−β ,λ
∗ (Rn)

≤ C ‖f‖M1,λ(Rn) . (2.4)
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Proof of Theorem 1.4:

Claim 1. ∇u ∈M2,2−2α(B r0
2

(x0)) for any α ∈ (0, 1).

To see it, let Br(x) ⊂ Br0(x0) be any ball. Let v : Br(x)→ Rm solve

∆v = 0 in Br(x), v = u on ∂Br(x). (2.5)

Multiplying both (1.5) and (2.5) by u− v, integrating over Br(x), we get∫
Br(x)

|∇(u− v)|2 ≤ C
∫
Br(x)

|∇u|2|u− v| ≤ Cε0
∫
Br(x)

|∇u|2,

where the last inequality follows from the maximum principle of v:

sup
Br(x)

|u− v| ≤ oscBr(x)u ≤ ε0.

Hence, for any θ ∈ (0, 1),

(θr)2−n
∫
Bθr(x)

|∇u|2 ≤ (θr)2−n
∫
Bθr(x)

|∇v|2 + θ2−nr2−n
∫
Br(x)

|∇(u− v)|2

≤ C(θ2 + ε0θ
2−n)r2−n

∫
Br(x)

|∇u|2,

where we have used the following inequality for v:

(θr)2−n
∫
Bθr(x)

|∇v|2 ≤ Cθ2r2−n
∫
Br(x)

|∇v|2.

For any α ∈ (0, 1), first choose θ = θ0(α) ∈ (0, 1) such that Cθ2
0 ≤ 1

2θ
2α
0 and then choose ε0

such that Cθ2−n
0 ε0 ≤ 1

2θ
2α
0 . We obtain

(θ0r)2−n
∫
Bθ0r(x)

|∇u|2 ≤ θ2α
0 r2−n

∫
Br(x)

|∇u|2.

Iterating this inequality finitely many times yields

r2−n
∫
Br(x)

|∇u|2 ≤ Cr2αr2−n
0

∫
Br0 (x0)

|∇u|2, ∀Br(x) ⊂ B r0
2

(x0).

This implies Claim 1.

Claim 2. ∇u ∈ Lq(B r0
2

(x0)) for any 1 < q < +∞.

For simplicity, assume x0 = 0 and r0 = 4. Let η ∈ C∞0 (B4(0)) be such that 0 ≤ η(x) ≤ 1,

η(x) ≡ 1 on B2(0), and |∇η|+ |∇2η| ≤ 8. Set v = ηu. Then v satisfies

−4v(x) = H(x), H(x) = Q(u)(∇u,∇u)η − (u− u2)4η − 2∇u∇η, (2.6)

where u2 = 1
|B2(0)|

∫
B2(0)

u is the average of u over B2. Let G(x) be the fundamental solution

of ∆ on Rn. Then we have

v(x) =
∫

Rn
G(x− y)H(y) dy
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so that

|∇v(x)| = |
∫

Rn
∇G(x− y)H(y) dy|

≤ C(n)
∫

Rn

|H(y)|
|x− y|n−1

dy

= C(n)I1(|H|)(x)

for some positive constant C(n).

Since H = 0 outside B4(0), it is not difficult to see that H ∈M1,2−2α(Rn) and

‖H‖M1,2−2α(Rn) ≤ C ‖H‖M1,2−2α(B4(0))

≤ C sup
Br(x)⊂B4(0)

{
r2−2α−n

∫
Br(x)

|H(y)| dy

}
≤ C[oscB4(0)u+ ‖∇u‖M2,2−2α(B4(0))] ≤ C.

Hence Lemma 2.1 implies that for any 0 < α < 1
2 , |∇v| ∈ L

2−α
1−2α ,∗(Rn). Thus ∇u ∈

L
2−α
1−2α ,∗(B2(0). Since L

2−α
1−2α ,∗(B2(0) ⊂ Lq(B2(0)) for any q < 2−2α

1−2α , we have ∇u ∈ Lq(B2(0)

for any q < 2−2α
1−2α . Since

lim
α↑ 1

2

2− 2α
1− 2α

= +∞,

∇u ∈ Lq(B2(0)) for any 1 ≤ q < ∞. Applying the W 2,q-estimate of the equation (1.5), we

conclude that u ∈ W 2,q(B2(0)) for any q ∈ (1,+∞). In particular, the Sobolev embedding

theorem implies ∇u ∈ Cδ(B2(0)) for any δ ∈ (0, 1). Now, we can apply the Schauder theory

to show that u ∈ C∞(B2(0)). 2

3 Proof of Theorem 1.5

In this section, we will extend Adams’ Riesz potential estimate to Rn+1, equipped with the

parabolic distance δ, and then apply it to prove Theorem 1.5.

First, let’s recall the notion of parabolic distance δ on Rn+1.

δ((x, t), (y, s)) = max
{
|x− y|,

√
|t− s|

}
, ∀(x, t), (y, s) ∈ Rn+1.

Denote Pr(x, t) = Bδr (x, t), the ball center at (x, t) with radius r with respect to the distance

δ. Notice that Pr(x, t) = Br(x)× [t− r2, t+ r2]. For short, write Pr = Pr(0, 0).

Notice that the Hausdorff dimension of Rn+1 with respect to the parabolic distance δ is

n+ 2. Hence the Riesz potential of order β ∈ [0, n+ 2] on Rn+1 is given by

Ĩβ(f) =
∫∫

Rn+1

|f(y, s)|
δ((x, t), (y, s))n+2−β dy ds, f ∈ L

p(Rn+1),
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and the Morrey space M̃p,λ(ΩT ) (or the weak Morrey space M̃p,λ
∗ (ΩT ) respectively) on

ΩT = Ω× (0, T ) ⊂ Rn+1, for 1 ≤ p < +∞ and 0 ≤ λ ≤ n+ 2, is the collection of functions

f on ΩT such that

‖f‖p
M̃p,λ(ΩT )

≡ sup
r>0,z∈ΩT

rλ−(n+2)‖f‖pLp(ΩT∩Pr(z) <∞

(
or ‖f‖p

M̃p,λ
∗ (ΩT )

≡ sup
r>0,z∈ΩT

rλ−(n+2)‖f‖pLp,∗(ΩT∩Pr(z) <∞ respectively
)
.

Now we are ready to prove the Riesz potential estimate on (Rn+1, δ), namely,

Theorem 3.1 (i) For any β > 0, 0 < λ ≤ n+2, 1 < p < λ
β , if f ∈ Lp(Rn+1)∩M̃p,λ(Rn+1),

then Ĩβ(f) ∈ Lp̃(Rn+1) ∩ M̃ p̃,λ(Rn+1), where p̃ = pλ
λ−pβ . Moreover,∥∥∥Ĩβ(f)

∥∥∥
Lp̃(Rn+1)

≤ C ‖f‖
βp
λ

M̃p,λ(Rn+1)
‖f‖1−

βp
λ

Lp(Rn+1) (3.1)∥∥∥Ĩβ(f)
∥∥∥
M̃ p̃,λ(Rn+1)

≤ C ‖f‖
M̃p,λ(Rn+1)

. (3.2)

(ii) For 0 < β < λ ≤ n + 2, if f ∈ L1(Rn+1) ∩ M̃1,λ(Rn+1), then Ĩβ(f) ∈ L
λ

λ−β ,∗(Rn+1) ∩

M̃
λ

λ−β ,λ
∗ (Rn+1). Moreover,

‖Ĩβ(f)‖
L

λ
λ−β ,∗(Rn+1)

≤ C ‖f‖
β
λ

M̃1,λ(Rn+1)
‖f‖1−

β
λ

L1(Rn+1) (3.3)∥∥∥Ĩβ(f)
∥∥∥
M̃

λ
λ−β ,λ
∗ (Rn+1)

≤ C ‖f‖
M̃1,λ(Rn+1)

. (3.4)

Proof. Assume f 6≡ 0. Then

Ĩβ(f)(x, t) =
∫∫

Pε(x,t)

f +
∫∫

Rn+1\Pε(x,t)
f := I1 + I2,

where ε > 0 is to be determined later. For k ∈ Z, let

Ak = {(y, s)|(y, s) ∈ P2k+1ε(x, t) \ P2kε(x, t), } .

Since β ≤ n+ 2 and β < λ
p , we have

|I2| ≤
∞∑
k=1

∫∫
Ak

δ((x, t), (y, s))β−(n+2)|f(y, s)| dy ds

≤
∞∑
k=1

(2kε)β−(n+2)(2k+1ε)n+2−λpMλ
p
f(x, t)

≤ Cεβ−
λ
pMλ

p
f(x, t),

where

Mγg(x, t) = sup
r>0

rγ−(n+2)

∫∫
Pr(x,t)

|g(y, s)| dy ds
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for 0 ≤ γ ≤ n+ 2. Notice thatM0g is the parabolic Hardy-Littlewood maximal function of

g. Similarly, we have

|I1| ≤
∞∑
k=1

∫∫
A−k

δ((x, t), (y, s))β−(n+2)|f(y, s)| dy ds

≤
∞∑
k=1

(2−kε)β−(n+2)(2−k+1ε)n+2M0(f)(x, t)

≤ CεβM0(f)(x, t).

Since

Mλ
p

(f)(x, t) ≤ C [Mλ(|f |p)(x, t)]
1
p ≤ C‖f‖

M̃p,λ(Rn+1)
,

we conclude, by choosing ε = ε(x, t) =
(‖f‖

M̃p,λ(Rn+1)

M0(f)(x,t)

) p
λ

, that

|Ĩβf(x, t)| ≤ C[‖f‖
M̃p,λ(Rn+1)

]
βp
λ [M0f(x, t)]1−

βp
λ .

When p > 1, both estimates (3.1) and (3.2) follow by the well-known Lp estimate forM0(f)

(see [14]).

When p = 1, for any l > 0, we have∣∣∣{(x, t) ∈ Rn+1 : |Ĩβf(x, t)| > Cl}
∣∣∣

≤

∣∣∣∣∣∣∣{(x, t) ∈ Rn+1 :M0(f)(x, t) >
l
λ

λ−β

‖f‖
β

λ−β

M̃1,λ(Rn+1)

}

∣∣∣∣∣∣∣
≤ C

‖f‖
β

λ−β

M̃1,λ(Rn+1)

l
λ

λ−β
‖f‖L1(Rn+1),

where we have used the weak L1-estimate of M0 ([14] page 5, Theorem 1). This implies

both (3.3) and (3.4). 2

In order to prove Theorem 1.5, we need the following simple estimate on the heat kernel

G.

Lemma 3.1 Let

G(x, t) =
1

(4πt)
n
2

exp(−|x|
2

4t
) for t > 0,

= 0 for t ≤ 0

be the fundamental solution of the heat equation on Rn. Then

|∇G(x, t)| ≤ C

δ((x, t), (0, 0))n+1
, ∀(x, t) ∈ Rn+1. (3.5)
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Proof. It suffices to show (3.1) for t > 0. Direct calculations give

∇G(x, t) = − x
2t

1
(4πt)

n
2

exp(−|x|
2

4t
).

Set y = |x|√
|t|

, we have

|∇G(x, t)|(|x|+
√
|t|)n+1 ≤ |x|

2(
√
|t|)n+2

exp(−|x|
2

4t
)(|x|+

√
|t|)n+1

≤ y(1 + y)n+1exp(−|y|
2

4
).

Since

lim
y→∞

y(1 + y)n+1exp(−|y|
2

4
) < +∞

and

δ((x, t), (0, 0)) ≤ |x|+
√
|t| ≤ 2δ((x, t), (0, 0)),

the conclusion follows. 2

Proof of Theorem 1.5.

Similar to the proof of Theorem 1.4, we divide it into two claims.

Claim 3. ∇u ∈M2,2−2α(P r0
2

(x0)) for any α ∈ (0, 1).

To see it, let Pr(x1, t1) ⊂ Pr0(x0, t0) and v : Pr(x1, t1)→ Rm solve

vt −∆v = 0 in Pr(x1, t1), v = u on ∂pPr(x1, t1), (3.6)

where ∂Pr(x1, t1) = (Br(x1)×{t1− r2})∪ (∂Br(x1)× [t1− r2, t1 + r2] denotes the parabolic

boundary of Pr(x1, t1).

Multiplying both (1.7) and (3.6) by u− v, integrating over Pr(x1, t1), we get∫
Pr(x1,t1)

|∇(u− v)|2 ≤ C
∫
Pr(x1,t1)

|∇u|2|u− v| ≤ Cε0
∫
Pr(x1,t1)

|∇u|2,

where the last inequality follows from the maximum principle of v:

sup
Pr(x1,t1)

|u− v| ≤ oscPr(x1,t1)u ≤ ε0.

Hence, for any θ ∈ (0, 1),

(θr)n
∫
Pθr(x1,t1)

|∇u|2 ≤ (θr)−n
∫
Pθr(x1,t1)

|∇v|2 + θ−nr−n
∫
Pr(x1,t1)

|∇(u− v)|2

≤ C(θ2 + ε0θ
−n)r−n

∫
Pr(x1,t1)

|∇u|2,

where we have used the following inequality for v:

(θr)−n
∫
Pθr(x1,t1)

|∇v|2 ≤ Cθ2r−n
∫
Pθr(x1,t1)

|∇v|2.
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For any α ∈ (0, 1), first choose θ = θ0(α) ∈ (0, 1) such that Cθ2
0 ≤ 1

2θ
2α
0 and then choose ε0

such that Cθ−n0 ε0 ≤ 1
2θ

2α
0 . We obtain

(θ0r)−n
∫
Pθ0r(x1,t1)

|∇u|2 ≤ θ2α
0 r−n

∫
Pr(x1,t1)

|∇u|2.

Iterating this inequality finitely many times yields

r−n
∫
Pr(x1,t1)

|∇u|2 ≤ Cr2αr−n0

∫
Pr0 (x0,t0)

|∇u|2, ∀Pr(x1, t1) ⊂ Pr0(x0, t0).

This implies Claim 3.

Claim 4. ∇u ∈ Lq(P r0
2

(x0, t0)) for any 1 < q < +∞.

For simplicity, assume (x0, t0) = (0, 0) and r0 = 4. Let η ∈ C∞0 (P4) be such that 0 ≤ η(x) ≤

1, η(x) ≡ 1 on P2, and |ηt|+ |∇η|+ |∇2η| ≤ 32. Set z = (x, t) and v(z) = u(z)η(z). Then v

satisfies in Rn+1:

vt −4v = F, F ≡ ηQ(u)(∇u,∇u)− (u− u4)(ηt −4η)− 2∇u∇η,

where u4 = 1
|P4|

∫
P4
u is the average of u over P4. Then we have

v(z) =
∫∫

Rn+1
G(z − w)F (w) dw

so that by Lemma 3.1 we have

|∇v(z)| = |
∫∫

Rn+1
∇G(z − w)F (w) dw| ≤ CI1(|F |)(z).

Since F ≡ 0 outside P4, we have F ∈M1,2−2α(Rn+1) and

‖F‖M1,2−2α(Rn+1) ≤ C ‖F‖M1,2−2α(P4)

≤ C sup
Pr(z)∈P4

{
r−2α−n

∫
Pr(z)

|F (w)| dw

}
≤ C[oscP4u+ ‖∇u‖M2,2−2α(P4)] ≤ C.

Hence Theorem 3.1 implies that ∇v ∈ L
2−2α
1−2α ,∗(Rn+1). Since limα↑ 1

2

2−2α
1−2α = +∞, we con-

clude that ∇u ∈ Lq(P2) for any q ∈ (1,+∞). Now, by W 2,1
q -estimate for the heat equation,

we conclude that u ∈ W 2,1
q (P1) for any q ∈ (1,+∞). This, combined with the Sobolev’s

embedding theorem implies that ∇u ∈ Cα(P1) for any α ∈ (0, 1). Now the Schauder’s

theory implies that u ∈ C∞(P1). The proof is now complete. 2
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