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Abstract

We consider in dimension four weakly convergent sequences of approximate biharmonic maps
to a Riemannian manifold with bi-tension fields bounded in L? for p > %. We prove an energy
identity that accounts for the loss of hessian energies by the sum of hessian energies over finitely
many nontrivial biharmonic maps on R%. As a corollary, we obtain an energy identity for the
heat flow of biharmonic maps at time infinity.

1 Introduction

This is a continuation of our previous work [26] on the blow-up analysis of approximate biharmonic
maps in dimension 4. In [26], we obtained in dimension four an energy identity for approximate
biharmonic maps into sphere with bounded LP bi-tension field for p > 1, and an energy identity of
the heat flow of biharmonic map into sphere at time infinity. The aim of this paper is to extend the
main theorems of [26] to any compact Riemannian manifold without boundary, under the additional
assumption that the bi-tension fields are bounded in L? for p > %. The main results of this paper
was announced in [26].

Let Q C R* be a bounded smooth domain, and (N, h) be a compact n-dimensional Riemannian
manifold without boundary, embedded into K-dimensional Euclidean space R, Recall the Sobolev
space WHP(Q, N), 1 <1 < +oo and 1 < p < 400, is defined by

WhP(Q,N) = {v e WPQRE): v(z) e N ae .z e Q}

In this paper we will discuss the limiting behavior of weakly convergent sequences of approximate
(extrinsic) biharmonic maps {u} € W*2(Q, N) in dimension n = 4, especially an energy identity
during the process of convergence. First we recall the notion of approximate (extrinsic) biharmonic
maps.

Definition 1.1 A map u € W?2(Q, N) is called an approzimate biharmonic map if there exists a
bi-tension field h € L (Q,RY) such that

loc
A%y = AB(u)(Vu, Vu)) 4 2V - (Au, V(P(u))) — (A(P(u)), Au) 4+ h (1.1)

in the distribution sense, where P(y) : RE — TyN is the orthogonal projection from RX to the
tangent space of N at y € N, and B(y)(X,Y) = —VxP(y)(Y), VX,Y € T,N, is the second
fundamental form of N C RX. In particular, if h = 0 then u is called a biharmonic map to N.
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Note that biharmonic maps to a Riemannian manifold N are critical points of the hessian energy
functional

By (u) :/ V202 dz
Q

over W22(Q, N). Biharmonic maps are higher order extensions of harmonic maps. The study of
regularity of biharmonic maps has generated considerable interests after the initial work by Chang-
Wang-Yang [3], the readers can refer to Wang [22, 23, 24], Strzelecki [19], Lamm-Riviere [12], Struwe
[21], Scheven [17, 18] (see also Ku [10] and Gong-Lamm-Wang [6] for the boundary regularity). In
particular, the interior regularity theorem asserts that the smoothness of W?2?2-biharmonic maps
holds in dimension n = 4, and the partial regularity of stationary W ?2?2-biharmonic maps holds in
dimensions n > 5.

It is an important observation that biharmonic maps are invariant under dilations in R” for n =
4. Such a property leads to non-compactness of biharmonic maps in dimension 4, which prompts
recent studies by Wang [22] and Hornung-Moser [8] concerning the failure of strong convergence
for weakly convergent biharmonic maps. Roughly speaking, the results in [22] and [8] assert that
the failure of strong convergence occurs at finitely many concentration points of hessian energy,
where finitely many bubbles (i.e. nontrivial biharmonic maps on R*) are generated, and the total
hessian energies from these bubbles account for the total loss of hessian energies during the process
of convergence.

Our first result is to extend the results from [22] and [8] to the context of suitable approximate
biharmonic maps to a compact Riemannian manifold N. More precisely, we have

Theorem 1.2 For n = 4, suppose {ur} C W2%(Q, N) is a sequence of approzimate biharmonic
maps, which are bounded in W>2%(Q, N) and have their bi-tension fields hy, bounded in LP for p > %,
1.e.

M = sup (urllwez + wllzr ) < +oc. (1.2)

Assume up, — u in W22 and hy, — h in LP. Then

(i) w is an approzimate biharmonic map to N with h as its bi-tension field.

(ii) there exist a nonnegative integer L depending on M and L points {x1,--- ,xr} C Q such that
up — u strongly in VVlif N (Q\{x1,--- 21}, N).

(iii) For 1 < i < L, there exist a positive integer L; depending on M and L; nontrivial smooth
biharmonic map w;; from R* to N with finite hessian energy, 1 < j < L;, such that

L;
lim V2|2 :/ |V2u|? + / 1V2wi;]?, (1.3)
k—o0 Bri (xz) Bri (-rz) J; R4 1]
and .
lim Vgt = / IVl + / Vs[4, (1.4)
k—o0 Bri (z3) Bri (5) ]2 R4 1)
1 . .
where 1; = 5 lgjrgngl#iﬂxi — xj|, dist(z;,09Q)}.

As an application of Theorem 1.2, we study asymptotic behavior at time infinity for the heat
flow of biharmonic maps in dimension 4.

Let’s review the studies on the heat flow of biharmonic maps undertaken by Lamm [11], Gastel
[5], Wang [25], and Moser [16]. The equation of heat flow of (extrinsic) biharmonic maps into N is



to seek u : Q x [0,400) — N that solves:

up + A% = AB(u)(Vu, Vu)) + 2V - (Au, V(P(u))) — (A(P(u)), Au), Q x (0,400) (1.5)
u = wup, 2x{0}
(u %) = (uo %) 082 x (0, +00) (1.7)
% T ov ’ ’ '
where ug € W22(Q, N) is a given map. Note that any time independent solution u : Q — N of
(1.5) is a biharmonic map to N.

In dimension n = 4, Lamm [11] established the existence of global smooth solutions to (1.5)-(1.7)
for ug € W22(2, N) with small W22-norm, and Gastel [5] and Wang [25] independently showed that
there exists a unique global weak solution to (1.5))-(1.7) for any initial data ug € W22(, N) that
has at most finitely many singular times. Moreover, such a solution enjoys the energy inequality:

T
2/ /|ut|2—|—/ |Aul?(T) S/ |Augl?, V0 < T < +o0. (1.8)
0 Q Q Q

Recently, Moser [16] showed the existence of a global weak solution to (1.5)-(1.7) for any target
manifold N in dimensions n < 8.

It follows from (1.8) that there exists a sequence t; 1 oo such that uy == u(-,t;) € W*2(Q, N)
satisfies
(i) T2(ug) := u(ty) satisfies || 72(uk)||r2 — 0; and
(ii) uy satisfies in the distribution sense

—AZUk + A(B(uk)(Vuk, Vuk)) +2V. <Auk, V(]P’(uk)» - <A(}P’(uk)), Auk> = TQ(Uk). (19)

By Definition 1.1 {ug} is a sequence of approximate biharmonic maps to N, which are bounded in
W?22 and have their bi-tension fields bounded in L?. Hence, as an immediate corollary, we obtain

Theorem 1.3 For n = 4 and ug € W*2(Q, N), let u : Q x Ry — N, with u € L™®(R;, W2(Q))
and uy € L2(Ry, L?(2)), be a global weak solution of (1.5)-(1.7) that satisfies the energy inequality
(1.8). Then there exist ty, T +00, a biharmonic map us € C®° NW22(Q, N) with us = ug on 09,
and a nonnegative integer L and L points {z1,--- ,x} C Q such that

(i) ug = u(-, tg) = Uso in WH2(Q, N).

(ii) up, — oo in CO NWEHQ\ {z1, -z}, N).

(iii) for 1 < i < L, there exist a positive integer L; and L; nontrivial biharmonic maps {wij}fil on
R* with finite hessian energies such that

L;
lim \V2uk|2_/ V2| + / Vw352, (1.10)
k—o0 Bri(xi) Bri x; * ; R4 "
and
L;
lim |Vuk|4:/ Voo + / Vi |*, (1.11)
k=0 JB, (2) Bo(w) ; Ra
h L min {Jws— g, dist(z, 09))
ri = - min i — T 1 ; .
wnere r; 21§j§L, j;éi Xy :L'j, ST(Z4,

The main ideas to prove Theorem 1.2 can be outlined as follows. First, we adapt the arguments
from [23, 24| to establish an gg—regularity theorem for any approximate biharmonic map u with



bi-tension field h € LP for p > 1, which asserts that v € C“ for any a € (0, min{1,4(1 — %)}) and

V4u € LP. Second, we prove that for p > % there is no concentration of angular hessian energy in
the neck region by comparing the approximate biharmonic maps with radial biharmonic functions
over annulus. This is a well known technique in harmonic maps in dimension two (see [4]). For
biharmonic maps in dimension 4, it was derived by Hornung-Moser [8]. Third, we use a Pohozaev
type argument to control the radial hessian energy by the angular hessian energy and LP-norm of
bi-tension fields in the neck region. The assumption p > % seems to be necessary to validate the
Pohozaev type argument, since we need A%uy, - (x - Vug) € L' and hy - (z - Vuy) € L' Tt remains
to be an open question whether Theorem 1.2 holds for 1 < p < %.

The paper is organized as follows. In §2, we establish the Holder continuity and W4P-regularity
for any approximate biharmonic map with its bi-tension field in L? for p > 1. In §3, we show the
strong convergence under the smallness condition of hessian energy and set up the bubbling process.
In §4, we prove Theorem 1.2 by establishing (i) there is no concentration of angular hessian energy
in the neck region; and (ii) control the radial hessian energy in the neck region by angular hessian
energy and LP-norm of bi-tension field through a Pohozaev type argument.
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is visiting the University of Kentucky, he would like to thank Department of Mathematics for its
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Added Note. After we completed this paper, we noticed from a closely related preprint posted in
arxiv.org at December 23, 2011 by Laurain and Riviere (arXiv:1112.5393v1), in which they claimed
Theorem 1.2 holds for all p > 1. Since the main ideas of our proof are different from theirs, we
believe that our work here shall have its own interest.

2 A priori estimates of approximate biharmonic maps

In this section, we will establish both Holder continuity and W*P-regularity for any approximate
biharmonic map with bi-tension field h € L? for p > 1, under the smallness condition of hessian
energy. The proof of Holder continuity is based on suitable modifications and extensions of that
by Wang [23] Theorem A on the regularity of biharmonic maps to the context of approximate
biharmonic maps in dimension 4. The proof of a bootstrap type argument, which may have its
own interest. It is needed for the p-compactness lemma and Pohozaev argument for approximate
biharmonic maps.
Denote by B,.(x) C R?* the ball with center 2 and radius r, and B, = B,(0). First, we have

Lemma 2.1 For any « € (O,min{1,4(1 — %)}), there exist €9 > 0 such that if u € W?2(Bg, N) is
an approximate biharmonic map with its bi-tension field h € LP(By) for p > 1, and satisfies

/ (\Vzu\Q + \W]‘*) < (2.1)
B>

then u € C’O‘(B%,N) and
< + . .
M CQ(B%) = C<50 HhHLP(Bl)) (2.2)



Proof. We follow [23] §2, §3 and §4 closely and only sketch the main steps of proof here. First,
by choosing ¢ sufficiently small, Proposition 3.2 and Theorem 3.3 of [23] imply that there exists
an adopted frame {ey}"; (m = dimN) along with «*T'N on B such that its connection form
A = ((Deq, eg)) satisfies:

d*A=0in By; x-A=0o0n 0B
1Al sco) + IV Allz2(s,) < CIVula s, 23)
||VA||L271(B%) + ”AHL“J(B%) < C(IV2ull 2y + VUl Lags))-
Here L™ denotes Lorentz spaces for 1 < r < +00,1 < s < o0, see [23] §2 or [7] for its definition
and basic properties.
Utilizing {eq} 1, we can rewrite (1.1) into the following form (see [23] Lemma 4.1): for 1 <

a < m,
AV - (Vu,e,) = G(u,eq) + (h,eq), (2.4)

where

A(Vu,Veq) + V- (Au, Vey)
Glu, ea) = 4 + 35 (V- (A, e5)(Tea,es)) = (Au)T, e5) (Vea, ) (2.5)
~ (. g {B(u) ea, Vu), e5) + ( V(B(w)(Vu, Vu), Vea ).
As in [23] Lemma 4.3, we let @ € W2’2(R4,RK), {€a}"_,, A and h be the extensions of u, {e,}"_,, A
and h from B% to R* such that [&,| < 1, A% = (Vé,, &5), and
IV L2 (ray < Ol VPull 2 By Vilzags < CliVullzas,);

[V 1,00 ey < OVl oo (s By): V20| 2,00 (Re) < CHVZUHmm(B%);

(2.6)
1A za1 gy + VAl 21 ey < CUIVullgagsy) + V2ull2s));
[AllLawey < CllbllLasy), Y1 <q<p.
Let T'(x — y) = c4In |z — y| be the fundamental solution of A% in R%. Set
Wow) = [ =G+ | T )b ey
= JMx)+J$(x) z€ R (2.7)
Then we have .
AW, = G(@i,éq) + (h,&4), in R (2.8)
For J3', observe that
VIS (z) = s ViD(z — y)(h, €a) (y) dy.
Hence by Calderon-Zygmund’s W*P-theorey, we have J$ € W4P(R*) and
v < ¢l c||a| (2.9)
Lr(R%) Lr R4) LP(Bl)

By Sobolev embedding theorem, we have that V2J® € LP(B;), with p = 22—_7’]) forl<p<2orpis
any finite number for p > 2, and

v

<l

(2.10)

Lﬁ(Bl Lpr B1



By Hélder inequality, (2.9) and (2.10) imply that for any 6 € (0, 3), it holds

Hw;‘ < gt

58]y <0
) L2:°°(By)

v%g’

d

(2.11)

L4 (B LP(Bg) LP(By)

For J{, we follow exactly [23] Lemma 4.4, Lemma 4.5, and Lemma 4.6 to obtain that V2J® €
L%*°(R*) and

Hv%ff‘ < C&()(HVU‘ + Hv%‘ ) (2.12)
L2,oo(R4) L47°°(B%) L2,oo(B%)

By Sobolev embedding theorem in Lorentz spaces, (2.12) yields

HVJ{“‘ <C ‘v%}f . (2.13)
L4*°°(]R4) L2’°°(R4)
Combining (2.12) with (2.13) yields
v + w2 < Czof [ v + |72 ). (2.14)
L4,oo(R4) L2,<>o(]R4) L4*°O(B%) L2‘OO(B%)

Now, as in [23] Lemma 4.6, we consider the Hodge decomposition of the 1-form (du,é,). It is
well-known [9] that there exist F, € W14(R*) and H, € W14(R*, A2R*) such that

(dii,é) = dFy +d*H,, dHy,=0 in R* (2.15)
HVFQ + HVHQ‘ < OHV&‘ < chu‘ . (2.16)
LA(R4) L4(R4) LA(R4) L4(B%)
It is easy to see that H,, satisfies
AH, =dinde, in RY (2.17)
and
A%F, = AV - (Vu,e) = A*W, in B;. (2.18)

By Calderon-Zygmund’s L™*-theory and Sobolev embedding theorem, we have that V2H, €
L**(R*) and

fon.

By (2.18), we have that F, — W, is a biharmonic function on Bi. By the standard estimate of
2

(2.19)

+ HV2Ha

< C’Hdﬂ/\ de,,
)

< Ca()HVu‘

L4 (R4) L2:00 (R4 L2:50(R4) L4o(By)

[N

biharmonic functions, we have (see [23] Lemma 4.7) that for any ¢ € (0, 3), it holds

foce. -

oo

LA4,00 L2’°°(B9)

< C@(HV(Fa W) (2.20)

. HVZ(Fa — W)

L4oo (B, LZoo(Bl))’

Putting (2.11), (2.14), (2.19), and (2.20) together, we can argue, similar to [23] page 84, to reach
that for any 6 € (0, %), it holds

v

< Cle+9) (HW)

+ HVQu‘

L4°°(By) + H 2”‘ L2°(By) L4o°(By) LQaOO(Bl))

. (2.21)

[ L




It is readily seen that for any « € (0, min{1, 4(1— )}) we can choose both 6 € (0,1) and g9 € (0,1)
sufficiently small so that

Hv] (2.22)

+ HVQU‘

gea(

Vel

L4 (By) L2:%°(By) L4>(By) H 2“‘ L2:(By) * Hh‘ Lp(Bg)'

In fact, by iterating (2.22) finitely many times on Bi(z) for x € Bi, we would have that for
2 2
O<r< %,

HVU‘ + H 2u‘ < Cro‘<HVu‘ + HVQu’ + Hh’ ) (2.23)
L42°(By(z)) L2 (Br(z)) L42°(By) L22°(By) Lp(By)
Since LY(B,(x)) C L**°(B,(x)) for any 1 < g < s, (2.23) implies that for any 1 < ¢ < 2,
2
r2q—4/ (V2 + [V2ul?) < CTQO‘(H ‘ + HV2UH + H ) ). (2.24)
B (z) L4(B1) L2(B1) Lr(B1)
This, with the help of Morrey’s decay lemma, immediately implies that v € C*(B1) and (2.2)
2

holds. This completes the proof of Lemma 2.1. O

In order to show eg-compactness and Pohozaev argument for approximate biharmonic maps,
we will establish the higher order Sobolev type regularity for approximate biharmonic maps.

The proof utilizes Adams’ Reisz potential estimate between Morry spaces, we briefly recall
Morrey spaces and Adams’ estimates (see [1] and [24] for more details). For an open set U C R%,
1 <p< +o0, 0 < A< 4, the Morrey space MPA(U) is defined by

M) = {1 € W) 11y = sup P [ 1717 < 400}, (2.25)

T

The weak Morrey space MY ’)‘(U ) is the set of functions f € LP*°(U) satisfying
1715y = 30 40 "1 e f < (2.26)

For 0 < 8 < 4, let I3(f) be the Riesz potential of order defined by

Is(f)(x) = /W ‘xf(j‘l_ﬁ dy, xeR" (2.27)

Recall Adams’ estimate [1] in dimension 4:

Lemma 2. 2 (1) For any 8> 0,0 <A<4,1<p<3, iffe€ MPARY), then I5(f) € MPARY),

where p = w. Moreover,
() arsr@ay < Cllflager mey- (2.28)

RSN
(2) For 0 < B < X <4, if f e MMAR?Y), then I5(f) € M 7" (R*). Moreover,

||Iﬁ(f)||Mﬁ,A(R4) < Cllfllaraway- (2.29)

*

Now we are ready to prove



Lemma 2.3 There exists eg > 0 such that if u € W22(By, N) is an approzimate biharmonic map
with its bi-tension field h € LP(By) for p > 1, and satisfies

/B |Vu|* 4+ |[V2u? < &2 (2.30)
1

Then u € W4’p(Bé,N) and

v

< C(Hw‘ (2.31)

u w0l )
L2(By) Lr(By)

724
LP(B LA(By)

1
8
Proof. By (2.2) of Lemma 2.1, we have that for any « € (0, min{1,4(1 — %)}),

oscp, (z)u € Cr%, VB, (z) C B%. (2.32)

We now divide the proof into three steps.

Stepl. There exists ag € (0, a] such that Vu € M*172%0(B,), V2y € M*172%(B,), and

SIS

1
2

v 9] <c(v

M2,4—2a0 (Bl ) -
2

+ HVQU‘

(2.33)

] )
M4,4—2a0(3%) L4(Br) L2(B1) Lr(By)

Observe that (2.33) is a refined version of (2.23) and (2.24). It is obtained by the hole filling
argument as follows. For any B,(x) C B%, let ¢ € C3°(By(x)) such that 0 < ¢ <1, ¢ =1 on

Br(z). Multiplying (1.1) by ¢(u — uq,r), where ug, is the average of u on By(z), and integrating
over B(z), we would have

[ 1a- w)P
By (x)

s/ AL = 6)(u— ) A — 1)) +C [ [VuPIAB(u — usy))]
By (x) Br(x)

4 c/ \VzuHVuHV(qﬁ(u—Ux,r)\+C</ B2 + [h s, oy (2.34)
By (x) By(x)

’V‘(x

It is not hard to see that by Holder inequality, Sobolev’s inequality and (2.32), (2.34) implies

J

where 0 = CLH < 1. Now we can iterate (2.35) finitely many times and achieve that there exists
ap € (0, a) such that

(|Vul* + |VZu|?) < 9/ (|Vu|* 4+ |V?ul?) + Cr?, (2.35)

(z) By (x)

T
2

—2aq 4 212 4 2 112 p
sup r Vul* + |VAul?) < C(||Vu + ||V*u + ||h i 2.36
B,«(z)CB% /Br(x)(’ | | ‘ ) (H ||L4(B1) ” HLQ(Bl) H HLP(B1)> ( )

This yields (2.33).
Step 2. Set p > 2 by

5o b if1<p<?2
any 2 < g < 4oo if p>2.



Then u € WQ’ﬁ(B%) and
Pl 7 = 0y # iy P 7
(B1) Lr(By) L*(B1) L?(B1) Lr(B1)
To show (2.37), let @, h : R* — RE be extensions of u and h on B% such that
||V2ﬂ||M2,4—2a0 (R4) S C||v2uHM2’4_20‘0(B%)7 ||Vﬂ”M4,4—2a0 (R4) S CHVU||M4’4_20‘0 (B%)’ (238)
and B
1Al e ey < Cllbl Le(y)- (2.39)
Define w : R* — RX by
w@) = [ Te-phtdy+ [ A= @@V T)0)d
-2, VyI'(z = y)(Aa, V(P(@))) (y) dy — » Iz —y)(A(P(a)), Au)(y) dy
= wi(z) + wa(z) + w3(z) + wy(z), z € RL (2.40)
Then it is readily seen that
A*(u—w)=0 on By, (2.41)

or u — w is a biharmonic function on B1.
2

Now we estimate w;, 1 < i < 4, as follows. For wy, by Calderon-Zygmund’s W*P-theory we
have that w; € W4P(R?) so that V2w, € Lﬁ(B;) and

HV%H < Olh|lr(By)- (2.42)

1

m

For ws, since |V2@||Va| € M347200(RY), [Vuws| < CL(|V24||Va|) and [Vws| < CL (V2| Va)),
4(2—ag) 2(4—2ap)

0)
Lemma 2.2 implies that Vws € M 2- Bag 47200 (RY), Viwz € M 1= 3ag 47200 (R*), and

o],

4—2aq

+ HV%gH 2(4—2aq)
M

M 2=3ag ’4*2"‘0(]1{4) I=3ay (R%)
< cofivanval ..., <c|v4] i
M3 "‘O(R‘l M2,4—2a0(R4) M4,4—2a0(R4)

< v g

M2,472a0 (B 1 ) M4,472o¢0 (B 1 )

2 2

o I Y B 1 ws

L*(B1) L2(By) LP(By1)

For wy, it is easy to see that |Vwy| < CI3(|VZu)? + |Vau|?) and |VZwy| < CIQ(|V2 1> + |Val*).
42290 4 o,
Since (|V? |2 + |val|t) € Mb472e0(RY)) Lemma 2.2 implies that |Vawy| € M1 220 (]R4) and
(20 4_
|V2wy| € M1 @0’ (]R4) and

wvtu] g

Vw 4-2aq
H 4 17230 4—2a9
M, (R4)

< (|5l <7

(R%)

(2.44)

L2(B1) + H ‘ Lp(Bl))'



For s, since |[Vws| < CL(|Val?), |Va|? € M?47220(R%), Lemma 2.2 implies that |Vws| €
M1 a0 4 20‘O(}R‘l) and

R T

M?24—2cg (R4)

< C’(HVu’ (2.45)

v

L4(By) L2(By) + Hh‘ Lp(31)>'

It is not hard to see from (2.41) and the standard estimate on biharmonic function, and the
estimates (2.42), (2.43), (2.44), and (2.45) that there exist 1 < ¢ < min{ 4—300  2-g0 } and

4-3p’ 4(1—)’ 2—30
0 < a1 < min {ao, %} such that Vu € M4q’4_2"‘1(B%) and V2u € M?e4- 2‘”(33), and
(2.46)

sl <c(][v

+ HV2U‘

v ol )
MAa:A=200 (By ) M?2a:4=2a1(By) L4(B1) L2(By) L?(By)
8

With (2.46), we can repeat the same argument to bootstrap the integrablity of V?u and finally get
that V2u € LP(B1) and (2.37) holds.
4

Step 3. Viu ¢ Lp(Bé) and
&t <0<Hvu‘ + |[72l | ) (2.47)
Lr(By) L4(By) L%(By) LP(By)
To prove (2.47), first observe that the equation (1.1) can be written as
A%y = div(E(u)) + G(u) + h, in By, (2.48)
where E(u) = V(B(u)(Vu, Vu)) + 2(Au, V(P(u))) and G(u) = —(A(P(u)), Au) so that
|E(uw)] < C(IVul® +[V2ul[Val), |G(u)] < C(IV?ul* +[Vul).
By (2.37) and Sobolev’s inequality, we have Vu € L‘éigp(Bi) so that G(u) € L2%P(Bi) and
E(u) € LBE%P(B%). Note that we can write u = uj + ug + us + ugq in Bi’ where
A%u; = G(u) in By; (u1,Vuy) = (0,0) on 9B, (2.49)
A?uy = h in Bi; (ug, Vug) = (0,0) on GBi, (2.50)
A%uz = div(E(u)) Bi; (u3, Vuz) = (0,0) on 0B1, (2.51)
and
A2uy =0 Bi; (us, Vus) = (u, Vu) on 635 (2.52)
By Calderon-Zygmund’s L?-theory, we have
[l gy + 2y < CUNT gy #9259
W2-p (B%) W4’p(3i) L4 (B1) LQ(Bl) LP(By1)
and
< ul i 2.54
[l sy [y < Oy + 15y () 259

1
5

e
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4
In particular, we can conclude that u € Wg’ﬁ(B 1 ) and
2
[ I el{{ A + |72l L) (2.55)
WHEP (By) L4(Br) L?(B1) Lp(By)
By Hélder inequality, (2.55) then implies
div(E(u))| < C(IV3u||Vu| + [V2ul]? + [Vul® + |Vu|!) € Lﬁ(B%).
Hence applying W#9-estimate of (2.51) yields that uz € W4’2%P(Bé) and
byt < Iyl 250
WEmr (B1) L4(B1) L2(Br) LP(Br)
Since 5%, > p, by combining (2.56) with (2.53) and (2.54), we finally obtain that u € W4’p(B%)
and (2.47) holds. This completes the proof of Lemma 2.3. O

3 Blow up analysis and energy inequality

This section is devoted to eg-compactness lemma and preliminary steps on the blow up analysis of
approximate biharmonic maps with bi-tension fields bounded in L? for p > 1.
First we have

Lemma 3.1 For n = 4, there exists an eg > 0 such that if {uy} C W?%(By, N) is a sequence of
approzimate bitharmonic maps satisfying

2
Sllip (Hvuk”i‘l(Bl) + Hv2ukHL2(Bl)> S €0, (31)

and uy, — u in W2%(By) and hy — h in LP(By) for some p > 1. Then u € CONW4P(Q, N) is an
approzimate biharmonic map with bi-tension field h, and

lim Huk — uH
k—o00

=0. 3.2
W2,2(B%) ( )

Proof. The first assertion follows easily from (1.1) and (3.2). To show (3.2), it suffices to show

that {ug} is a Cauchy sequence in W22(B1). By (3.1) and Lemma 2.1, there exist a € (0,1) and
2

q > 2 such that

sup | ||u + HV2U H } <C.
kp |:H k‘ CO‘(B%) K Lq(BQ)
Hence we may assume that
lim Huk—ulH =0.
k,l—o00 LOO(B%)

For n € C§°(Bs) be a cut-off function of B%, multiplying the equations of uj, and wu; by (ug — u;)¢?

3
1
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and integrating over Bj, we obtain
/ |Auy, — )| ¢
B1

/B 1A (g — u)] 21V (o — ) [V + [, — ]| A2 +/ o — T, — 1]

By

IN

13 / (8w + [Aug) g — ulg?
By

1 / V2] [ Ve ||V (e — ) 62)|
B1

14 / V2] [ V][ (g — ) 2)|
By
= J+IT+T1IT+1V+V.

It is easy to see
| < C([|V (ur, — Ul)HL?(B%) + [Jug — UlHLOO(B%)) -0,

[[I| < Cllhy — thLl(B%)Huk - ulHLOO(B%) — 0,
(11| < C(|V?uk|72(p,) + ||V2U1H%2(B%))”uk - UlHLOO(B%) — 0.

3
4

For IV, observe that for 1 < r < 4 with % + % + % =1, we have

V] < C(IVukl ey IVul o, ok =l zy)
1

3
1
IV o a2y | Vi a2y |V 2tk = 0) 72y ) = 0.
since ||V (ug — )| zr(B,) — 0. Similarly, we can show
4

V| — 0.

Hence {uy} is a Cauchy sequence in W22(B1). This completes the proof.
2

a

Lemma 3.2 Under the same assumptions as Theorem 1.2, there exists a finite subset 3 C € such
that up, — u in VV%’?HC&C(Q\Z, N). Moreover, u € W*PNC%(Q, N) is an approzimate biharmonic

map with bi-tension field h.

Proof. Let ¢y > 0 be given by Lemma 2.1, and define

Y= m{azeﬂ:ligninf/
—00 B

(V22 + [Vur|) > €3}
r>0 r(2)

Then by a simple covering argument we have that X is a finite set and
1
H'(®) < 2sup/(]V2uk\2 + | Vug|!) < 4o0.
€ k JO
For any xg € Q\ 3, there exists 79 > 0 such that

1iminf/ (|V?ug|? + |Vug|*) < €.
By (z0)

k—o0

12
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Hence Lemma 2.1 and Lemma 3.1 imply that there exists o € (0, 1) such that

o

so that uy, — u in C°N W2’2(B%o(mo)). This proves that uy — u in W22 N C (Q\ %). It is clear

loc loc

<,

C“(B%o(wo))

that v € W22(Q) is an approximate biharmonic map with bi-tension field h € LP(£2). Applying
Lemma 2.1 and Lemma 2.3 again, we conclude that u € C°(2, N) N W4P(Q, N). O

Proof of Theorem 1.2:

The proof of (1.10) with “=” replaced by “>" is similar to [22] Lemma 3.3. Here we sketch it.
For any zg € X, there exist rg > 0, xx — x¢ and r | 0 such that

62
mae { [ (TPl v} =F = [ (Tl v
2€Bry(x0) L JB,, (2) 2 By, (zk)

Define vy, (z) = u(vg + r32) 77" (BTO (o) \ {xk}) — N. Then vy is an approximate biharmonic

map, with bi-tension field hy(z) = rih(zy + rpx), that satisfies

2 2
/ (V202 + [Vo|) < L vz e r,;l(B,nO(:co) \ {xk}>, and / (IV20 ]2 + [V = 2,
Bi(z) 2 B1(0) 2

and
4(1-1)
) < T P — 0.

s -

gz

Lr (T;Zl(Bro (zo)\{zx}

Thus Lemma 2.3 and Lemma 3.1 imply that, after taking possible subsequences, there exists a
nontrivial biharmonic map w : R* — N with

2

€
i g/ (1V20[2 + |Vel?) < +oo
2 R4

such that vy — w in foZ ﬂCﬂ)C(R‘l). Performing such a blow-up argument at all ; € ¥, 1 <i < L,
we can find all possible nontrivial biharmonic maps {w;;} € W?2[R?*) for 1 < j < L;, with
L; < CMey 2. Moreover, by the lower semicontinuity, we have that the part “>” of (1.10) holds.

The other half, “<”, of (1.10) will be proved in the next section.

4 No hessian energy concentration in the neck region

In order to show the part “<” of (1.10), we need to show that there is no concentration of hessian
energy in the neck region. This will be done in two steps. The first step is to show that there is no
angular hessian energy concentration in the neck region by comparing with radial biharmonic func-
tions over dydaic annulus. The second step is to use the type of almost hessian energy monotonicity
inequality, which is obtained by the Pohozaev type argument, to control the radial component of
hessian energy by the angular component of hessian energy. We require p > % in both steps.

Suppose that {u,} € W22(By, N) is a sequence of approximate biharmonic maps satisfying for
some p > %,

/ (V2ul? + Vgt + [helP) < C, Wk > 1. (41)
By

13



Without loss of generality, we assume that up — w in W22, h, — h in LP, and u; — u in
W22(B;\{0}, N) but not in W22(By, N). Furthermore, as in Ding-Tian [4], we may assume that

loc

the total number of bubbles generated at 0 is L = 1. Then for any € > 0 there exist r, | 0, R > 1
P
sufficiently large, and 0 < § < £4»-1 so that for k sufficiently large, the following property holds

1
/ (|V?ur)? + |Vup|*) < €2, V¥V —Rr, < p < 166. (4.2)
BZp\BP 16

Step 1. Angular hessian energy estimate in the neck region:

Since p > %, it follows from (4.2), Lemma 2.1, Lemma 2.3, and Sobolev embedding theorem
that for any « € (0,4(1 — %)), up € C*NW4HP(By, \ B,), Vug € C%(Bsy, \ B,), and

{u} Co(Bay\B,) + HvukHLoo(sz\Bp) < 0(5 + /’4(1_%)> <Ce V éRTk < p < 86. (4.3)

It follows from Lemma 2.3 that

1
vauk‘ < Ce V gRrk < p < 80. (4.4)

L3 (B2)\By) ~

To handle the contributions of various boundary terms during the argument, by Fubini’s theorem
we assume that R > 0 and § > 0 are chosen so that for k sufficiently large, the following property

r/ (V] + [V2usl? + [Vougl ) §8sup/ (Vuel* + [V + [VPu3) < 022, (4.5)
OB, k

zr\B%

holds for r = %Rrk,Rrk,é, 20,40. For simplicity, we assume (4.5) holds for all £ > 1. Here we
indicate (4.5) for r = Rry: set up = ug(rpz) : Bérk—l — N. Then by Fatou’s lemma we have

2R
/ limkinf/ (]Vﬁk\4+\v2ﬂk12+lv3ﬁk\§)gliniinf/ (Varl* + V2] + V33).
1 By B

SR 2R B%R

By Fubini’s theorem and scalings, this easily imply (4.5) for » ~ Rry (for simplicity, we can assume
r = Rry).
Let Nj, € N be such that 2V = [R%]' Set

A2 = B2i+1RT.k \BQiRrk and BIZC = B2i+2R7.k \BQi—erk7 1 S 7 § Nk — 1. (46)
Now we define a radial biharmonic function v; on the annulus Bys\Bgy, as follows. For simplicity,
Nep—1
we may assume R% is a positive integer so that Bgs\Br,, = U A};. For 0 < i < N, — 1,
i=0
vg(x) = vi(|x|) satisfies
A21)k =0 in Ai?
— / — Oup  sp . 9itl
vp(r) = J%B2i+1mk ug,  vp(r) = f??Bzi+1R,«k r if r=2""" Rry, (4.7)
) . ;
ve(r) = fop. Uk v (1) =fop.  GE, if r = 2'Rry.
2'Rry, 2'Rry,



Here { denotes the average integral. By the standard estimate of biharmonic functions (see, e.g.,
[8] Lemma 5.1) and (4.3), we have that vy € W4P(A%) for 0 < i < N — 1 and

gy <O # 7] ) <

i
In particular, we have
sup  osc 4 (up — vg) < Ce. (4.8)
0<i<N,—1 k
We now perform the estimate, similar to the arguments by [20] or [4] on harmonic maps and
[8] on biharmonic maps. First, since uj, — vy, € W4P(AL), we can apply the Green’s identity to get
that for 0 <1¢ < Np — 1,

O(A(up —v
A (g — o) (ug —vg) = / |A(uy, — vg,)|? +/ . <(5k))(uk — )
Al i DAL v
O(ug —v
- / | (%k)A(uk ~ o). (4.9)
DAL v
Summing over 0 < ¢ < N — 1, we obtain
Ng—1
]A(uk — Uk)’2 = uk — vk)(uk — Uk)
/B2é\BRrk Z

/ / uk — Uk)A(Uk — vg)

0Bss 8BR
(ug — v

/ / k A A —vi)) (up — vg)

0Bss OBR, L
Nyp—1 , / / Uk B Uk)
= Z A ug(up — vg) ———— Ay
8326 BBR’I‘
8A

/ =) ). (4.10)

0B 8BR
- — A
Here we haved use that A%y, = 0 in A%, and / MAW = / OQuy (u, — vg) = 0 for
dB, ov OB ov

p = 26 and Rry, due to the radial form of v and the choices of boundary conditions of vy.
We can check that the last two terms in the right hand side of (4.10) converge to zero as k — co.
In fact, by (4.5), Holder inequality, and (4.2) we have that

u —
)/ O~ 1) 5y g/ wknAum(f wkn/ A
0Bas v 9Bys 9Bys 0Bss

1 1
< c(a/ |Vuk]4)4(5/ V) <osh ()
0Bas 0Bss
Similarly,
O(ug —v
y =00 | < [ vulsud+(f 1Vl [ s
BBRrk v aBRrk aBRrk 6BRrk
1 1
< C(Rrk/ \Vuk]4>4(Rrk/ ]Vuk]2>2 < Ces. (4.12)
8BRTk aBRrk

15



For the last term, by Fubini’s theorem and (4.8) we have

UL — U < Clé V2url3 | max|ugp — v
‘/8325 al/(k k)‘ ( 8Bw| k|> [up — vg|
N
< Ce(/ \V?’uk|§) < Ce. (4.13)
Bys\Bs

and, similarly,

OA 3
‘/ Tuk(uk—vk)‘ < C’(Rrk/ \V3uk]%)4 max |uy — v|
8BR'rk v 8BR'rk 8BR7'k

3
< C’e(/ ]V3uk|%>4 < Ce. (4.14)
B2RTk\B%Rrk

Therefore we conclude that the last two terms in the right hand side of (4.10) converge to zero as
k — oo.

For the first term in the right hand side of (4.10), we proceed as follows. First, we can rewrite
the equation for uy as

Azuk =div(E(ug)) + G(ug) + hg, (4.15)
where
[E(uw)] < C(IV2url V| + [Vurl?), G ()] < €IVl + [ Tunf?). (4.16)
Hence
_ A2uk(uk — ’Uk) = / _ dlv(E(uk))(uk - Uk) + _ G(uk)(uk — ’Uk) + / ' hk(uk — ’Uk>
A Av ‘ Al ke
= I+ I +IIIL. (4.17)
By (4.8) we have
[IT}| < C(/ |V2u|? + |Vuk]4)oscAi ug < CE/ |V2up | 4 [Vug|* (4.18)
Al r Al
and
[I11}] < Cosc 4 uk/ |hi| < C’a/ [P (4.19)
g A

For I]i, by integration by parts we obtain
Ii= [ E(u) V(uk—ve)+ [ Eu)(up — vg) - v, (4.20)
Al DAL
so that after summing over 0 < i < N — 1 we have

Np—1 Np—1
Soat= X [ s e ([ f )
=0 Al 0Bss OBRy,

Nk 1
< X [, (9 wlvul 419 9o - )

+ C / +/ |V2uk||Vuk:|+\Vuk|3)|uk—vk!
0Bss 8BRTk

< IV + Vg (4.21)

16



y (4.5) and Hoélder inequality, we see that

(4.22)

Vk < Ce.
For IV}, we proceed the estimate as follows. By Nirenberg’s interpolation inequality and (4.8), we
have
1 1 2 (1
Vuk’ 1
vul')" < el o (L0707 + i)
([ mu)" = 0l (L 070+ )
1 Vug|* V1
< o( [ v T
- c /Bz(| uk’ + (21RT]€)2)

k

Since vy, is a biharmonic function on A%, we also have

. 1
([ wo-wi) < o [ vur)’
" k
1 Vu ’2 1
< 2 2 2 |7k 4
= C[u’“]BMo(Bi)( [Vl Rrk)2>
. Va2 \
< Cf?(/-<|V2“k’2+M>)4~
i k
Therefore we have
Nip—1
M = Y [ 9Pl V)
i=0 AL
I % % ;
<oy (/ V2 ?) (/ V) (/ 9k = vi)|*)
i=0 AL g A
Nkfl 1
Vg |?
< 2 2012 + [V
= Ce( ; /Ak Uk’ Z / IVoul” + (2 Rry)? )

> 12\2 2,12 [Vug|*\ 2
§C’5</ |Vuk|)</ V22 D)
B2s\Brr, Bas\B1 gy, ]

Applying Lemma 5.2 in [8], we have the following Hardy inequality:

B45\B%Rrk ‘$| B45\B%R 8B45 631

By (4.5) and Holder inequality, we have that

1 1 1
L v < c(a/ V) < c(/ Var')? < Ce,
4 9dBys OBy Bgs\Bas

and, similarly,

1
Rr
k aB%Rrk

vul) <o [

Brry, \B% Ry,

V| < C’(Rrk/

1
3 Rry

17
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V| )2 < Ce.
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(4.26)

(4.27)



Substituting (4.25), (4.26) and (4.27) into (4.24), we obtain

IV, < CE(/B

Using the same argument to estimate the second term of IV}, we have

[V2ui?) + Ce. (4.28)

B
45\ %Rrk

IV, < C’e(/ ]VQuk\Q) + Ce. (4.29)
Bas\Brr,
Combining the estimates together yields
/ |A(ug, —vp))? < Ca(/ IV2ug)? + |Vaug|* + |hk\) + Ce. (4.30)
BQ(S\BRrk B45\B%Rrk

This, combined with Calderon-Zygmund’s W?? estimate, yields
/ V2 (g, — o) < Ce(/ V2l + [Vl + |hl) + G (4.3)
Bs\BaRrr, Bas\B1p,
2 k
Step 2. Control of radial component of hessian energy in the neck region:

Since vy, is radial, it is easy to see that (4.31) yields

[ vk <o f Vs [Vl + ] ) + Ce
Bs\Barr, Bis\B1 p,.,

< Ce. (4.32)

0

Here VTVUk = VQUk; - a(

Next, we want to apply the Pohozaev type argument to W*P-approximate biharmonic maps
0uy, |2

ug with LP bi-tension field h for p > % to control / Zk‘ by / |V Vu|? and

Bs\Bapr, or Bs\Bary),

Vuy) denotes the tangential component of Vuy.

|hkllr(Byy)- This type of argument is well-known in the blow up analysis of harmonic or ap-
proximate harmonic maps on Riemann surfaces (see [20], [14], [15], and [13]). In the context of
biharmonic maps, it was first derived by Hornung-Moser [8].

By (4.2) and Lemma 2.3, we see that uj, € W4P(Bys \ B%Rrk)‘ While in B%Rrk’ since ug(x) =
ug(rpx) : B — N is an approximate biharmonic map that converges to the bubble wy, we conclude
that |[ug|lywar(p,) < +0o0 and hence uy € W4’p(B%Rrk) by scaling. From this, we then see uy €
W4P(Bys). Since z - Vuy, € L*(Bgs) and p > %, we see that A%uy - (v - Vuy) € LY(Bys) and
hi - (x - Vug) € L'(Bas). Since the equation (1.1) implies that (A%u, — hg)(z) L T, )N ace.
x € Bys. Note also that @ - Vug(z) € Ty, ()N for a.e. z € Bas. Multiplying the equation (1.1) by
x - Vug and integrating over B, for any 0 < r < 24, we have

A%uy - (x - Vuyg) = / hi - (z - Vug). (4.33)
B, r
Applying Green’s identity, we have

APuy - (- Vug)
By

2
= AupA(z - Vug) + 7 Q(Auk)— — Aup(—— + . (4.34)
B, oB, Or :

18



Direct calculations yield

A 2
AupA(x - Vug) = /xV(| i )+2\Auk|2

B, 2
_ Auw? N / | Auy|?
= /BT le( 5 x) =7 s 2 (4.35)
Putting (4.35), (4.34), and (4.33) together yields
or or a2 ) = (- .4
T/BBT 2 7 0B, aT(Au ) or OB, AT, or o ) B, i+ (- Vug) (4.36)

Applying integration by parts multi-times to (4.36) in the same way as [3] or Angelsberg [2], we
can obtain that for a.e. 0 < r < 24,

ko + Uk 0] |z - Vug|?
/ |Au? = 4/ < - i) 2 A )
B, OB

L o4 (_ TUppukap | o2 Vil _2!VUk2)
dr r r3 r
1
n T/ he - (@ - Vg, (4.37)

Recall that in the spherical coordinate, we have
3 1
Aug = ugpr + —ug, + 5 Agsug,
T r

where Ags denotes the Laplace operator on the standard three sphere S3. Hence we have

9 6
P N (R
B B

T

1 3 2
+ /aBT |:r74|ASJUk’2 + (Uk,r'r + ;uk,r) . (T—zAssuk)] . (438)
On the other hand, we have

4/ (’Uk,a+$5uk,a6\2 +2‘”Vuk!2)
OB

r2 rd

12
_ / [ lunnl o+ Al + (4.39)
B, T
Substituting (4.38) and (4.39) into (4.37) and integrating over r € [Rry, d], we obtain
3 2
/ |:3|uk7rr|2 + *2|uk,r|2 + 7uk,ruk,7"r:|
Bé\BRrk r r
< [ [GlAeul + g+ ) (G Asu)] / [ il
Bé\BRrk T.
o X 2 2
+ 2(/ _/ )(iﬂ Uk, Uk T Vgukl +2|Vuk| )
dBs 833% r r r
— L+ Il + I, (4.40)
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By Holder inequality, (4.32), (4.25), (4.26), and (4.27), we have

1 1
I < / |V Vug|? + (/ vaUkP)Q (/ \vTvuk\2)2 + Ce < Ce.
Bs\Bry Bs\Bry, Bs\Bry,

k

For I1;, we have

(L] < Ollhll o (o) [ Vurll < C6||Vug| pacy) < C9,

p
p=T(Bs)

where we have used the fact p > % so that 1% < 4.
We use (4.5) to estimate 111 as follows. First we have

‘/ (xauk,ﬁuk,aﬁ _2!$'Vuk\2+2!vuk!2)}
0B; r 73 r

< c[/aB wkuv?ukHal/aB Vo ]
5 5

< o(a/aB |Vuk|4)i(5/83 \V2uk|2>é+0<5/83 |vu,§|4)é
5 5 S5

<

C[HvukHL‘l(ng\B%)||v2uk||L2(BQ(;\B%) + \|Vuk\|%4(325\35)] < Ce.
2

Similarly, by (4.5) we have

‘ (xauk,guk,ag . |z - Vug|? n 2|Vuk|2>‘
OB r r3 r
Rry,

< o[ vulVul+ (Rt [ v
Io] Rry, aBRrk
1 1 1
< C’(Rrk/ |Vuk|4)4(Rrk/ |v2uky2)2 +C(Rrk/ |Vuk]4>2
aBRrk 8BR7“k aBR?"k
<

2 2
C[HvukHL‘l(BgRrk\B%Rrk)Hv UkHL?(BZRTk\B%RTk) + !|VU/<:\|L4(BQR%\B%R%)} < Ce.

Therefore, by putting these estimates together, we have
2, 3 2 2

[3|ukﬂ| + S luprl? + Zup g ]| < Cle+6). (4.41)
Bé\BR’l‘k r r

Competition of Proof of Theorem 1.2:

%), (4.41) implies

2 !
Since ;Uk,ruk,rr > —(|U]€,7»7~‘2 + ﬁ|uk,r

/ ’uk,rr‘|2 < C(e+9),
Bé\BRrk
this, combined with (4.32), implies

/ IV2u|? < C(e +9).
Bs\Bry,,
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Thus there is no concentration of hessian energy in the neck region. It is well known that this
yields the energy identity (1.10). To show (1.11), observe that Nirenberg’s interpolation inequality
and (1.10) imply

HvukH%‘l(Bg\BRTk) < C||Vuk||Loo(BQ5)(HVUICHH(B%)+|’V2uk||L2(325\B%RTk)>
< Cle+6+0(1)

where we have used that ||Vug||r2(p,5) = VullL2(p,5) +0(1) = o(1). Thus (1.11) also holds. O

Proof of Corollary 1.3:
It follows from the energy inequality (1.8) that there exists tj T +o00 such that ug(-) = u(-, tx)

is an approximate biharmonic map into N with bi-tension field hj, = u;(-, %) € L?(Q) satisfying

I

— 0.
L2(Q)

-t

2(Q)

Moreover,

< .
HUkHW22(Q) - CHUOHI/VQQ(Q)

Therefore we may assume that after taking another subsequence, u, — us in W22(Q, N). It is
easy to see that us is a biharmonic map so that us, € C*°(€2, N) (see [23]). All other conclusions
follow directly from Theorem 1.2. O
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