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Abstract

This paper establishes the local (or global, resp.) well-posedness of the heat

flow of bihharmonic maps from Rn to a compact Riemannian manifold without

boundary for initial data with small local BMO (or BMO, resp.) norms.

1 Introduction

For k ≥ 1, let N be a k-dimensional compact Riemannian manifold without bound-

ary, isometrically embedded in some Euclidean space Rl. Let Ω ⊂ Rn, n ≥ 1, be a

smooth domain. There are two second order energy functional for mappings from

Ω to N , namely, the Hessian energy functional and tension field energy functional

given by

F (u) =
∫

Ω
|∆u|2, E(u) =

∫
Ω
|DΠ(u)(∆u)|2, u ∈W 2,2(Ω, N),

where Π : NδN → N is the smooth nearest point projection from NδN = {y ∈ Rl :

dist(y,N) ≤ δN} to N for some small δN > 0, and

W 2,2(Ω, N) = {v ∈W 2,2(Ω,Rl) : v(x) ∈ N for a.e. x ∈ Ω}.

Recall that a map u ∈ W 2,2(Ω, N) is called an (extrinsic) biharmonic map (or

intrinsic biharmonic map, resp.) if u is a critical point of F (·) (or E(·), resp.). Geo-

metrically, a biharmonic map u to N enjoys the property that ∆2u is perpendicular
∗Department of Mathematics, University of Kentucky, Lexington, KY 40506

1



to TuN . The Euler-Lagrange equation for biharmonic maps (see [17]) is:

∆2u = ∆(D2Π(u)(∇u,∇u)) + 2∇ · 〈∆u,∇(DΠ(u))〉 − 〈∆u,∆(DΠ(u))〉. (1.1)

The Euler-Lagrange equation for intrinsic biharmonic maps (see [17]) is:

∆2u = ∆(D2Π(u)(∇u,∇u)) + 2∇ · 〈∆u,∇(DΠ(u))〉 − 〈∆u,∆(DΠ(u))〉

+ DΠ(u)[D2Π(u)(∇u,∇u) ·D3Π(u)(∇u,∇u)]

+ 2D2Π(u)(∇u,∇u) ·D2Π(u)(∇u,∇(DΠ(u))). (1.2)

The study of biharmonic maps was initiated by Chang-Wang-Yang [2] in late 90’s.

It has since drawn considerable research interests. In particular, the smoothness of

biharmonic maps (and intrinsic biharmonic maps) in W 2,2 has been established in

dimension 4 by [2] for N = Sl−1 and by [16] for general manifold N . For n ≥ 5,

the partial regularity of the class of stationary biharmonic maps in W 2,2 has been

shown by by [2] for N = Sl−1 and by [16] for general manifold N . The readers can

refer to Strzelecki [15], Angelesberg [1], Lamm-Riviere [11], Struwe [14], Scheven

[12], Hong-Wang [4], and Wang [18] for further interesting results.

Motivated by the study of heat flow of harmonic maps, which has played a very

important role in the existence of harmonic maps in various topological classes, it

is very natural and interesting to study the corresponding heat flow of biharmonic

maps. For Ω = Rn, the heat flow of harmonic maps for u : Rn × R+ → N is given

by

∂tu+ ∆2u = ∆(D2Π(u)(∇u,∇u)) + 2∇ · 〈∆u,∇(DΠ(u))〉

−〈∇∆u,∆(DΠ(u))〉 in Rn × (0,+∞) (1.3)

u|t=0 = u0 on Rn, (1.4)

where u0 : Rn → N is a given map.

(1.3)-(1.4) was first investigated by Lamm in [8, 9], where for smooth initial data

u0 ∈ C∞(Rn, N) the short time smooth solution was established. Moreover, such

a short time smooth solution is proven to be globally smooth provided that n = 4

and ‖u0‖W 2,2(R4) is sufficiently small. For large initial data u0 ∈ W 2,2(R4), it was
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independently proved by Gastel [3] and Wang [19] that there exists a global weak

solution to (1.3)-(1.4) that is smooth away from finitely many singular times.

It is a very interesting question to seek the largest class of rough initial data

such that (1.3)-(1.4) is well-posed (either local or global) in suitable spaces. There

have been interesting works on this type of question for the Navier-Stokes equation

(see Koch-Tataru [7]), the heat flow of harmonic maps (see Koch-Lamm [6] and

Wang [20]), and the Willmore flow, the Ricci flow, and the Mean curvature flow by

Koch-Lamm [6].

The main goal of this paper is to investigate the well-posedness issue of (1.3)

and (1.4) for initial data u0 with small BMO norm.

To state our main result, we first introduce the BMO spaces.

Definition 1.1 For 0 < R ≤ +∞, the local BMO space, BMOR(Rn), is the space

consisting of locally integrable functions f such that

[f ]BMOR(Rn) := sup
x∈Rn,0<r≤R

{r−n
∫
Br(x)

|f − fx,r|} < +∞,

where Br(x) ⊂ Rn is the ball with center x and radius r, and

fx,r =
1

|Br(x)|

∫
Br(x)

f

is the average of f over Br(x). We say f ∈ VMO(Rn) if

lim
r↓0

[f ]BMOr(Rn) = 0.

For R = +∞, we simply write (BMO(Rn), [·]BMO(Rn)) for (BMO∞(Rn), [·]BMO∞(Rn)).

For 0 < T ≤ +∞, we also introduce the functional space XT as follows.

XT =

{
f : Rn × [0, T ]→ R | ‖f‖XT ≡ sup

0<t≤T
‖f(t)‖L∞(Rn) + [f ]XT < +∞

}
(1.5)

where

[f ]XT = sup
0<t≤T

(
2∑
i=1

t
i
4 ‖∇if(t)‖L∞(Rn)) + sup

x∈Rn,0<R≤T
1
4

(R−n
∫
PR(x,R4)

|∇f |4)
1
4

+ sup
x∈Rn,0<R≤T

1
4

(R−n
∫
PR(x,R4)

|∇2f |2)
1
2 , (1.6)
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where PR(x,R4) = BR(x)× [0, R4] is the parabolic cylinder with center (x,R4) and

radius R. It is clear that (XT , ‖ ·‖XT ) is a Banach space. When T = +∞, we simply

write X for X∞, ‖ · ‖X for ‖ · ‖X∞ , and [·]X for [·]X∞ .

The first theorem states

Theorem 1.2 There exists ε0 > 0 such that for any R > 0 if [u0]BMOR(Rn) ≤ ε0,

then there exists a unique solution u ∈ XR4 to (1.3)-(1.4) with small [u]XT . In

particular, if u0 ∈ VMO(Rn) then there exists T0 > 0 such that (1.3)-(1.4) admits a

unique solution u ∈ XT0 with small [u]XT0
.

As a direct corollary, we have the following global well-posedness result.

Theorem 1.3 There exists ε0 > 0 such that if [u0]BMO(Rn) ≤ ε0, then there exists

a unique solution u ∈ X to (1.3)-(1.4) with small [u]X .

Now we turn to the discussion of the heat flow of intrinsic biharmonic maps.

The equation of the heat flow of intrinsic biharmonic maps on Rn is given by

∂tu+ ∆2u = ∆(D2Π(u)(∇u,∇u)) + 2∇ · 〈∆u,∇(DΠ(u))〉 − 〈∆u,∆(DΠ(u))〉

+ DΠ(u)[D2Π(u)(∇u,∇u) ·D3Π(u)(∇u,∇u)]

+ 2D2Π(u)(∇u,∇u) ·D2Π(u)(∇u,∇(DΠ(u)) in Rn × (0,+∞) (1.7)

u
∣∣
t=0

= u0 : Rn → N. (1.8)

In [10], Lamm studied (1.7)-(1.8). Under the assumption that n ≤ 4 and the sec-

tion curvature of N is nonpositive, the global smooth solution to (1.7)-(1.8) was

established in [10].

Analogous to Theorem 1.2 and 1.3, we obtain the following results on (1.7)-(1.8).

Theorem 1.4 There exists ε0 > 0 such that for any R > 0 if [u0]BMOR(Rn) ≤ ε0,

then there exists a unique solution u ∈ XR4 to (1.7)-(1.8) with small [u]XT . In

particular, if u0 ∈ VMO(Rn) then there exists T0 > 0 such that (1.7)-(1.8) admits a

unique solution u ∈ XT0 with small [u]XT0
.

Theorem 1.5 There exists ε0 > 0 such that if [u0]BMO(Rn) ≤ ε0, then there exists

a unique solution u ∈ X to (1.7)-(1.8) with small [u]X .
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We remark that since W 1,n(Rn) ⊂ VMO(Rn), it follows from Theorem 1.2 (or

Theorem 1.4, resp.) that (1.3)-(1.4) (or 1.7)-(1.8), resp.) is uniquely solvable in XT0

for some T0 > 0 provided u0 ∈W 1,n(Rn, N); and is uniquely solvable in X provided

‖∇u0‖Ln(Rn) is sufficiently small, via Theorem 1.3 (or Theorem 1.5, resp.).

We also remark that the techniques to handle the heat flow of biharmonic maps

illustrated in this paper can be extended to investigate the well-posedness of the

heat flow of polyharmonic maps for BMO initial data in any dimensions. This will

be discussed in a forthcoming paper [5].

The remaining of the paper is written as follows. In section 2, we review some

basic estimates on the biharmonic heat kernel, due to Koch-Lamm [6]. In section

3, we outline some crucial estimates on the biharmonic heat equation. In section 4,

we prove the boundedness of the mapping operator S determined by the Duhamel

formula. In section 5, we prove Theorem 1.2 and 1.3. In section 6, we prove Theorem

1.4 and 1.5.

2 Review of the biharmonic heat kernel

In this section, we review some fundamental properties from Koch and Lamm [6] on

the biharmonic heat kernel.

Consider the fundamental solution of the biharmonic heat equation:

(∂t + ∆2)b(x, t) = 0 in Rn × R+

and it is given by

b(x, t) = t−
n
4 g(

x

t
1
4

),

where

g(ξ) = (2π)−
n
2

∫
Rn
eiξk−|k|

4
dk, ξ ∈ Rn. (2.1)

The following Lemma, due to Koch and Lamm [6] (Lemma 2.4), play a very

important role in this paper.

Lemma 2.1 For x ∈ Rn and t > 0, the following estimates hold:

|b(x, t)| ≤ ct−
n
4 exp(−α |x|

4
3

t
1
3

), α =
32

1
3

16
, (2.2)
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|∇kb(x, t)| ≤ c(t
1
4 + |x|)−n−k, ∀k ≥ 1 (2.3)

‖∇kb(·, t)‖L1(Rn) ≤ ct−
k
4 , ∀k ≥ 1. (2.4)

Moreover, there exist c, c1 > 0 such that for 0 ≤ j ≤ 4,

|∇jb(x, t)| ≤ ce−c1|x|, ∀(x, t) ∈ Rn × (0, 1) \ (B2 × (0,
1
2

)). (2.5)

For the purpose of this paper, we also recall the Carleson’s characterization of

BMO spaces. Let S denote the class of Schwartz functions. Then the following

property is well-known (see, Stein [13]).

Lemma 2.2 Let Φ ∈ S be such that
∫

Rn Φ = 0. For t > 0, let Φt(x) = t−nΦ(xt ), x ∈

Rn. If f ∈ BMO(Rn), then |Φt ∗ f |2(x, t)dxdtt is a Carleson measure on Rn+1
+ , i.e.,

sup
x∈Rn,r>0

r−n
∫ r

0

∫
Br(x)

|Φt ∗ f |2
dxdt

t
≤ C[u0]2BMO(Rn) (2.6)

for some C = C(n) > 0. If f ∈ BMOR(Rn) for some R > 0, then

sup
x∈Rn,0<r≤R

r−n
∫ r

0

∫
Br(x)

|Φt ∗ f |2
dxdt

t
≤ C[u0]2BMOR(Rn) (2.7)

for some C = C(n) > 0.

Recall that the solution to the Dirichlet problem of the inhomogeneous bihar-

monic heat equation

(∂t + ∆2)u = f on Rn × (0,+∞) (2.8)

u = u0 on Rn × {0} (2.9)

is given by the Duhamel formula:

u = Gu0 + Sf (2.10)

where

Gu0(x, t) := (b(·, t) ∗u0)(x) =
∫

Rn
b(x− y, t)u0(y) dy, (x, t) ∈ Rn× (0,+∞), (2.11)

and

Sf(x, t) =
∫ t

0

∫
Rn
b(x− y, t− s)f(y, s) dyds, (x, t) ∈ Rn × (0,+∞). (2.12)
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3 Basic estimates for the biharmonic heat equation

In this section, we provide some crucial estimates for the solution of the biharmonic

heat equation with initial data in BMO spaces, including the estimate of the distance

to the manifold N .

Lemma 3.1 For 0 < R ≤ +∞, if u0 ∈ BMOR(Rn), then û0 ≡ Gu0 satisfies the

following estimates:

sup
x∈Rn,0<r≤R

r−n
∫
Pr(x,r4)

(|∇2û0|2 + r−2|∇û0|2) ≤ C [u0]2BMOR(Rn) , (3.1)

and

sup
0<t≤R4

(
2∑
i=1

t
i
4 ‖∇û0(t)‖L∞(Rn)

)
≤ C [u0]BMOR(Rn) . (3.2)

If, in addition, u0 ∈ L∞(Rn), then

sup
x∈Rn,0<r≤R

r−n
∫
Pr(x,r4)

|∇û0|4 ≤ C‖u0‖2L∞(Rn) · [u0]2BMOR(Rn) . (3.3)

Proof. For simplicity, we present the argument for R = +∞. Let g be given by

(2.1). Let Φi = ∇ig for i = 1, 2. Then it is clear that Φi ∈ S and
∫

Rn Φi = 0 for

i = 1, 2. Hence by Lemma 2.2, |Φi
t ∗ u0|2 dxdtt is a Carleson measure on Rn+1

+ for

i = 1, 2. Direct calculations show, for i = 1, 2,

Φi
t(x) = t−n(∇ig)(

x

t
) = ti∇i

(
t−ng(

x

t
)
)

= ti∇i(gt(x)),

where

gt(x) = t−ng(
x

t
).

Hence we have

(Φi
t ∗ u0)(x) = ti∇i(gt ∗ u0)(x).

Since the biharmonic heat kernel b(x, t) = g
t
1
4
(x), we have

(Φi
t ∗ u0)(x) = ti∇i

(
(b(·, t4) ∗ u0)(x)

)
= ti∇i(Gu0)(x, t4).

Thus we have, for i = 1, 2,

C[u0]2BMO(Rn) ≥ sup
x∈Rn,r>0

r−n
∫ r

0

∫
Br(x)

|Φi
t ∗ u0|2

dxdt

t

= sup
x∈Rn,r>0

r−n
∫ r

0

∫
Br(x)

t2i−1|∇iGu0|2(x, t4) dxdt

=
1
4

sup
x∈Rn,r>0

r−n
∫
Pr(x,r4)

t
2i−4

4 |∇iGu0|2(x, t) dxdt
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This clearly implies (3.1), since for i = 1, 2, t
2i−4

4 ≥ r2i−4 when 0 ≤ t ≤ r4.

Since û0 solves the biharmonic heat equation (∂t + ∆2)û0 = 0 on Rn × (0,+∞),

the standard gradient estimate implies that for any x ∈ Rn and r > 0,

r2|∇û0|2(x, r4) + r4|∇2û0|2(x, r4) ≤ Cr−n
∫
Pr(x,r4)

(r−2|∇û0|2 + |∇2û0|2).

Taking supremum over x ∈ Rn and setting t = r4 > 0 yields (3.2).

For (3.3), observe that u0 ∈ L∞(Rn) implies Φ1
t ∗ u0 ∈ L∞(Rn) and

‖Φ1
t ∗ u0‖L∞(Rn) ≤ ‖Φ1‖L1(Rn)‖u0‖L∞(Rn) ≤ ‖∇g‖L1(Rn)‖u0‖L∞(Rn) ≤ C‖u0‖L∞(Rn).

Hence

sup
x∈Rn,r>0

∫
Pr(x,r4)

|∇Gu0|4 dxdt

= sup
x∈Rn,r>0

∫ r

0

∫
Br(x)

|Φ1
t ∗ u0|4

dxdt

t

≤
(

sup
t>0
‖Φ1

t ∗ u0‖L∞(Rn)

)
· sup
x∈Rn,r>0

∫ r

0

∫
Br(x)

|Φ1
t ∗ u0|2

dxdt

t

≤ C‖u0‖2L∞(Rn) · [u0]2BMO(Rn) .

This implies (3.3). 2

Now we prove an important estimate on the distance of û0 to the manifold N in

terms of the BMO norm of u0. More precisely,

Lemma 3.2 For any δ > 0, there exists K = K(δ,N) > 0 such that for R > 0 if

u0 ∈ BMOR(Rn) then

dist(û0(x, t), N) ≤ K [u0]BMOR(Rn) + δ, ∀x ∈ Rn, 0 ≤ t ≤ R4

K4
. (3.4)

In particular, if u0 ∈ BMO(Rn) then

dist(û0(x, t), N) ≤ K [u0]BMO(Rn) + δ, ∀x ∈ Rn, t ∈ R+. (3.5)

Proof. Since (3.5) follows directly from (3.4), it suffices to prove (3.4). For any

x ∈ Rn, t > 0, and K > 0, denote

cKx,t =
1

|BK(0)|

∫
BK(0)

u0(x− t
1
4 z) dz.
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Let g be given by (2.1). Then, by a change of variables, we have

û0(x, t) =
∫

Rn
g(y)u0(x− t

1
4 y) dy.

Applying Lemma 2.1, we have

∣∣û0(x, t)− cKx,t
∣∣ ≤ ∫

Rn
g(y)|u0(x− t

1
4 y)− cKx,t| dy

≤

{∫
BK(0)

+
∫

Rn\BK(0)

}
g(y)|u0(x− t

1
4 y)− cKx,t| dy

≤
∫
BK(0)

ce−α|y|
4
3 |u0(x− t

1
4 y)− cKx,t| dy

+2‖u0‖L∞(Rn)

∫
Rn\BK(0)

ce−α|y|
4
3 dy

≤ Kn [u0]BMO
Kt

1
4

(Rn) + CN

∫ ∞
K

e−αr
4
3 rn−1 dr

≤ δ +Kn [u0]BMO
Kt

1
4

(Rn) (3.6)

provide we choose a sufficiently large K = K(δ,N) > 0 so that

CN

∫ ∞
K

e−αr
4
3 rn−1 dr ≤ δ.

On the other hand, since u0(Rn) ⊂ N , we have

dist(cKx,t, N) ≤
∣∣∣cKx,t − u0(x− t

1
4 y)
∣∣∣ , ∀y ∈ BK(0)

and hence

dist(cKx,t, N) ≤ 1
|BK(0)|

∫
BK(0)

|cKx,t − u0(x− t
1
4 y)| dy ≤ [u0]BMO

Kt
1
4

(Rn) . (3.7)

Putting (3.6) and (3.7) together yields (3.4) holds for t ≤ R4

K4 . This completes the

proof. 2

4 Boundedness of the operator S

In this section, we introduce two more functional spaces and establish the bounded-

ness of the operator S between these spaces.

For 0 < T ≤ +∞, besides the space XT introduced in the section 1, we need to

introduce the spaces Y 1
T , Y

2
T .
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The space Y 1
T is the space consisting of functions f : Rn × [0, T ]→ R such that

‖f‖Y 1
T
≡ sup

0<t≤T
t‖f(t)‖L∞(Rn) + sup

x∈Rn,0<r≤T
1
4

r−n
∫
Pr(x,r4)

|f | < +∞, (4.1)

and the space Y 2
T is the space consisting of functions f : Rn × [0, T ]→ R such that

‖f‖Y 2
T
≡ sup

0<t≤T
t

3
4 ‖f(t)‖L∞(Rn) + sup

x∈Rn,0<r≤T
1
4

(r−n
∫
Pr(x,r4)

|f |
4
3 )

3
4 < +∞. (4.2)

It is easy to see (Y i
T , ‖ · ‖Y iT ) is a Banach space for i = 1, 2. When T = +∞, we

simply denote (Y i, ‖ · ‖Y i) for (Y i
∞, ‖ · ‖Y i∞) for i = 1, 2.

Let the operator S be defined by (2.12). Then we have

Lemma 4.1 For any 0 < T ≤ +∞, if f ∈ Y 1
T , then Sf ∈ XT and

‖Sf‖XT ≤ C‖f‖Y 1
T

(4.3)

for some C = C(n) > 0.

Proof. We need to show the pointwise estimate

2∑
i=0

Ri|∇i(Sf)|(x,R4) ≤ C‖f‖Y 1
T
, ∀x ∈ Rn, 0 < R ≤ T

1
4 , (4.4)

and the integral estimate for 0 < R ≤ T
1
4 :

R−
n
4 ‖∇(Sf)‖L4(PR(x,R4)) +R−

n
2 ‖∇2(Sf)‖L2(PR(x,R4)) ≤ C‖f‖Y 1

T
. (4.5)

By suitable scalings, we may assume T ≥ 1. Since both estimates are translation

and scale invariant, it suffices to show that both (4.4) and (4.5) hold for x = 0 and

R = 1.

For i = 0, 1, 2, we have

∣∣∇iSf(0, 1)
∣∣ =

∣∣∣∣∫ 1

0

∫
Rn
∇ib(y, 1− s)f(y, s) dyds

∣∣∣∣
≤

{∫ 1

1
2

∫
Rn

+
∫ 1

2

0

∫
B2

+
∫ 1

2

0

∫
Rn\B2

}
|∇ib(y, 1− s)||f(y, s)| dyds

= I1 + I2 + I3.
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Applying Lemma 2.1, we can estimate I1, I2, I3 as follows.

|I1| ≤

(
sup

1
2
≤s≤1

‖f(s)‖L∞(Rn)

)(∫ 1

1
2

‖∇ib(·, 1− s)‖L1(Rn) ds

)

≤ C‖f‖Y 1
1

∫ 1
2

0
s−

i
4 ds

≤ C‖f‖Y 1
1
.

|I2| ≤ ( sup
0≤s≤ 1

2

‖∇ib(·, 1− s)‖L∞(Rn))(
∫
B2×[0, 1

2
]
|f(y, s)| dyds)

≤ C

∫
B2×[0, 1

2
]
|f(y, s)| dyds ≤ C‖f‖Y 1

1
,

and

|I3| ≤
∫ 1

2

0

∫
Rn\B2

|∇ib(y, 1− s)||f(y, s)| dyds

≤ C

∫ 1
2

0

∫
Rn\B2

e−c1|y||f(y, s)| dyds

≤ C

( ∞∑
k=2

kn−1e−c1k

)
·

(
sup
y∈Rn

∫
P1(y,1)

|f(y, s)| dyds

)
≤ C‖f‖Y 1

1
.

Now we want to show (4.5) by the energy method. Denote w = Sf . Then w

solves

(∂t + ∆2)w = f in Rn × (0,+∞); w|t=0 = 0. (4.6)

Let η ∈ C∞0 (B2) be a cut-off function ofB1. Multiplying (4.6) by η4w and integrating

over Rn × [0, 1], we obtain∫
Rn×{1}

|w|2η4 + 2
∫

Rn×[0,1]
∆w ·∆(wη4) =

∫
Rn×[0,1]

f · wη4.
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This easily implies∫
P1(0,1)

|∇2w|2

≤
∫

Rn×[0,1]
|∇2(η2w)|2

≤ C

∫
Rn×[0,1]

[
|∇η|2|∇w|2 + (|∆η|+ |∇η|2)|w|2

]
+ C

∫
Rn×[0,1]

|f ||w|η2

≤ C[
∫

(B2\B1)×[0,1]
|∇w|2 + |w|2 + ‖f‖L1(B2×[0,1])‖w‖L∞(B2×[0,1])]

≤ C

[
(
∫ 1

0
t

1
2 dt) · ( sup

0<t≤1
t

1
2 ‖∇w(t)‖2L∞(Rn)) + ‖w‖2L∞(B2×[0,1]) + ‖f‖2L1(B2×[0,1])

]
≤ C

[
sup

0<t≤1
(‖w(t)‖2L∞(Rn) + t

1
2 ‖∇w(t)‖2L∞(Rn)) + ‖f‖2Y 1

1

]
≤ C‖f‖2Y 1

1
, (4.7)

where we have used (4.4) in the last step.

For the L4 norm of ∇w on P1(0, 1), recall the Nirenberg inequality implies

‖∇(η2w(t))‖4L4(Rn) ≤ C‖η
2w(t)‖2L∞(Rn)‖∇

2(η2w(t))‖2L2(Rn).

Integrating with respect to t ∈ [0, 1] clearly implies(∫
P1(0,1)

|∇w|4
) 1

4

≤ C sup
0≤t≤1

‖w(t)‖
1
2

L∞(Rn)‖∇
2(η2w)‖

1
2

L2(Rn×[0,1])
≤ C‖f‖Y 1

1
,

where we have used both (4.4) and (4.7) in the last step. This completes the proof.

2

To handle the nonlinearities of the heat flow of biharmonic maps (1.3), we also

need

Lemma 4.2 For 0 < T ≤ +∞, if f ∈ Y 2
T , then for any 1 ≤ α ≤ n, S( ∂f

∂xα
) ∈ XT

and ∥∥∥∥S(
∂f

∂xα
)
∥∥∥∥
XT

≤ C ‖f‖Y 2
T

(4.8)

for some C = C(n) > 0.

Proof. The proof of (4.8) is similar to that of Lemma 4.1. We will prove that for

any x ∈ Rn and 0 < R ≤ T
1
4 , both the pointwise estimate:

2∑
i=0

Ri
∣∣∣∣∇i(S(

∂f

∂xα
))
∣∣∣∣ (x,R4) ≤ C‖f‖Y 2

T
, (4.9)
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and the integral estimate:

R−
n
4

∥∥∥∥∇(S(
∂f

∂xα
))
∥∥∥∥
L4(PR(x,R4))

+R−
n
2

∥∥∥∥∇2(S(
∂f

∂xα
))
∥∥∥∥
L2(PR(x,R4))

≤ C‖f‖Y 2
T
. (4.10)

By suitable scalings, we assume T ≥ 1. Since both estimates are translation and

scale invariant, it suffices to show that both (4.9) and (4.10) hold for x = 0 and

R = 1. For 1 ≤ α ≤ n, write Wα = S( ∂f
∂xα

). For i = 0, 1, 2, we have

∇iWα(0, 1) =
∫

Rn×[0,1]
∇ib(−y, 1− s) ∂f

∂yα
(y, s) dyds

=
∫

Rn×[0,1]
(∇i ∂

∂yα
b)(−y, 1− s)f(y, s) dyds,

which implies∣∣∇iWα(0, 1)
∣∣ ≤ ∫ 1

0

∫
Rn
|∇i+1b(y, 1− s)||f(y, s)| dyds

=

{∫ 1

1
2

∫
Rn

+
∫ 1

2

0

∫
B2

+
∫ 1

2

0

∫
Rn\B2

}
|∇i+1b(y, 1− s)||f(y, s)| dyds

= I4 + I5 + I6.

Applying Lemma 2.1, we can estimate I4, I5, I6 as follows.

|I4| ≤

(
sup

1
2
≤s≤1

‖f(s)‖L∞(Rn)

)(∫ 1

1
2

‖∇i+1b(·, 1− s)‖L1(Rn) ds

)

≤ C‖f‖Y 2
1

∫ 1
2

0
s−

i+1
4 ds

≤ C‖f‖Y 2
1
,

where we have used the fact
∫ 1

2
0 s−

i+1
4 ds < +∞ for i ≤ 2.

|I5| ≤ ( sup
0≤s≤ 1

2

‖∇i+1b(·, 1− s)‖L∞(Rn))(
∫
B2×[0, 1

2
]
|f(y, s)| dyds)

≤ C

∫
B2×[0, 1

2
]
|f(y, s)| dyds ≤ C‖f‖Y 2

1
,

and since i+ 1 ≤ 3, we have

|I6| ≤
∫ 1

2

0

∫
Rn\B2

|∇i+1b(y, 1− s)||f(y, s)| dyds

≤ C

∫ 1
2

0

∫
Rn\B2

e−c1|y||f(y, s)| dyds

≤ C

( ∞∑
k=2

kn−1e−c1k

)
·

(
sup
y∈Rn

∫
P1(y,1)

|f(y, s)| dyds

)
≤ C‖f‖Y 2

1
.
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Putting together these estimates, we prove (4.9). (4.10) can be done by the energy

method as well. In fact, Wα solves

(∂t + ∆2)Wα =
∂f

∂xα
in Rn × (0,+∞); Wα|t=0 = 0. (4.11)

Let η ∈ C∞0 (B2) be a cut-off function of B1. Multiplying (4.11) by η4Wα and

integrating over Rn × [0, 1], we obtain∫
Rn×{1}

|Wα|2η4 + 2
∫

Rn×[0,1]
∆Wα ·∆(Wαη

4) = −
∫

Rn×[0,1]
f · ∂

∂xα
(Wαη

4).

This implies ∫
P1(0,1)

|∇2Wα|2

≤
∫

Rn×[0,1]
|∇2(η2Wα)|2

≤ C

∫
Rn×[0,1]

[
|∇η|2|∇Wα|2 + (|∆η|+ |∇η|2)|Wα|2

]
+ C

∫
Rn×[0,1]

|f |(|∇(η2Wα)|+ |Wα||∇η|)

≤ C[
∫

(B2\B1)×[0,1]
(|∇Wα|2 + |Wα|2) + ‖f‖L1(B2×[0,1])‖Wα‖L∞(Rn)]

+ C‖f‖
L

4
3 (B2×[0,1])

‖∇(η2Wα)‖L4(Rn×[0,1])

= I7 + I8. (4.12)

It is easy to see that

|I7|

≤ C

[
(
∫ 1

0
t

1
2 dt) · ( sup

0<t≤1
t

1
2 ‖∇Wα(t)‖2L∞(Rn)) + ‖Wα‖2L∞(B2×[0,1]) + ‖f‖2L1(B2×[0,1])

]
≤ C‖f‖2Y 2

1

where we have used the point wise estimate (4.9) in the last step. In order to

estimate I8, we first need to employ the Nirenberg inequality:

‖∇(η2Wα(t))‖4L4(Rn) ≤ C‖η
2Wα(t)‖2L∞(Rn)‖∇

2(η2Wα(t))‖2L2(Rn),

which, after integrating with respect to t ∈ [0, 1], implies

‖∇(η2Wα)‖L4(Rn×[0,1]) ≤ C sup
0≤t≤1

‖Wα(t)‖
1
2

L∞(Rn)‖∇
2(η2Wα)‖

1
2

L2(Rn×[0,1])
. (4.13)
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Therefore, I8 can be estimated by

|I8| ≤ C‖f‖
L

4
3 (B2×[0,1])

sup
0≤t≤1

‖Wα(t)‖
1
2

L∞(Rn)‖∇
2(η2Wα)‖

1
2

L2(Rn×[0,1])

≤ 1
2

∫
Rn×[0,1]

|∇2(η2Wα)|2 + C‖f‖
4
3

L
4
3 (B2×[0,1])

sup
0≤t≤1

‖Wα(t)‖
2
3

L∞(Rn)

≤ 1
2

∫
Rn×[0,1]

|∇2(η2Wα)|2 + C‖f‖
4
3

L
4
3 (B2×[0,1])

sup
0≤t≤1

‖Wα(t)‖
2
3

L∞(Rn)

≤ 1
2

∫
Rn×[0,1]

|∇2(η2Wα)|2 + C‖f‖2Y 2
1
,

where we have used (4.9) in the last step. Now we substitute the estimates of I7

and I8 into (4.12) and obtain∫
P1(0,1)

|∇2Wα|2 ≤ C
∫

Rn×[0,1]
|∇2(η2Wα)|2 ≤ C‖f‖2Y 2

1
.

This, combined with (4.13), also implies∫
P1(0,1)

|∇Wα|4 ≤ C‖f‖4Y 2
1
.

The proof of (4.10) is now completed. 2

5 Proof of Theorem 1.2 and 1.3

In this section, we will prove both Theorem 1.2 and 1.3. The idea is based on the

fixed point theorem in a small ball inside XT for the mapping operator determined

by the Duhamel formula associate with (1.3)-(1.4).

First we need to extend Π to Rl. Let Π̃ ∈ C∞(Rl,Rl) be any smooth extension

of Π such that Π̃ ≡ Π on NδN .

Let

F [u] = ∆(D2Π̃(u)(∇u,∇u))− 〈∆u,∆(DΠ̃(u))〉+ 2∇ · 〈∆u,∇(DΠ̃(u)))〉

be the right hand side nonlinearity of (1.3). Then it is easy to see that

F [u] = −〈∆u,∆(DΠ̃(u))〉+∇ ·
(

2〈∆u,∇(DΠ̃(u))〉+∇(D2Π̃(u)(∇u,∇u))
)

= F1[u] +∇ · (F2[u]), (5.1)
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where

F1[u] = −〈∆u,∆(DΠ̃(u))〉, F2[u] = 2〈∆u,∇(DΠ̃(u))〉+∇(D2Π̃(u)(∇u,∇u)).

(5.2)

It is easy to see

|F1[u]| ≤ C(|∇2u|2 + |∇u|4), |F2[u]| ≤ C(|∇2u||∇u|+ |∇u|3), (5.3)

where C > 0 is a constant depending on ‖u‖L∞(Rn). With the notations as above,

(1.3)-(1.4) can be written as

(∂t + ∆2)u = F1[u] +∇ · (F2[u]) in Rn × (0,+∞); u|t=0 = u0. (5.4)

The first observation is

Lemma 5.1 For 0 < T ≤ +∞, if u ∈ XT , then F1[u] ∈ Y 1
T ,F2[u] ∈ Y 2

T . Moreover,

‖F1[u]‖Y 1
T
≤ C

(
[u]2XT + [u]4XT

)
, (5.5)

and

‖F2[u]‖Y 2
T
≤ C

(
[u]2XT + [u]3XT

)
. (5.6)

Proof. It follows directly from the Hölder inequality. 2

By the Duhamel formula (2.10), the solution u to (1.3)-(1.4) is given by

u = Gu0 + S(F1[u]) + S(∇ · (F2[u])). (5.7)

Throughout this section, we denote

û0 = Gu0.

Now we define the mapping operator T on XR4 by letting

Tu(x, t) = û0(x, t) + S(F1[u])(x, t) + S(∇ · (F2[u]))(x, t), u ∈ XR4 . (5.8)

The following property follows directly from Lemma 3.1.

Lemma 5.2 For any R > 0 and any initial map u0 : Rn → N , û0 ∈ XR4 and

‖û0‖L∞(Rn+1
+ ) ≤ C‖u0‖L∞(Rn), [û0]XR4

≤ C [u0]BMOR(Rn) . (5.9)
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For ε > 0, we define

Bε(û0) :=
{
u ∈ XR4 : ‖u− û0‖XR4 ≤ ε

}
to be the ball in XR4 with center û0 and radius ε. By the triangle inequality, we

have

‖u‖L∞(Rn+1
+ ) ≤ ε+ C‖u0‖L∞(Rn), [u]XR4

≤ ε+ [u0]BMOR(Rn) , ∀u ∈ Bε(û0).(5.10)

In particular, we have

Lemma 5.3 For 0 < R ≤ +∞, if u0 : Rn → N has [u0]BMOR(Rn) ≤ ε, then

‖u‖L∞(Rn+1
+ ) ≤ C + ε, [u]XR4 ≤ Cε, ∀u ∈ Bε(û0) (5.11)

for some C = C(n,N) > 0.

The proof of Theorem 1.2 is based on the following two lemmas.

Lemma 5.4 There exists ε1 > 0 such that for any 0 < R ≤ +∞ if u0 : Rn → N

has

[u0]BMOR(Rn) ≤ ε1,

then T maps Bε1(û0) to Bε1(û0).

Proof. By (5.8), we have

T(u)− û0 = S(F1[u]) + S(∇ · (F2[u])), u ∈ Bε1(û0).

Hence Lemma 4.1, Lemma 4.2, Lemma 5.1, and Lemma 5.2 imply that for any

u ∈ Bε1(û0),

‖T(u)− û0‖XR4

. ‖S(F1[u])‖XR4 + ‖S(∇ · (F2[u]))‖XR4

. ‖F1[u]‖Y 1
R4

+ ‖F2[u]‖Y 2
R4

. [u]2XR4
≤ Cε21 ≤ ε1,

provided ε1 > 0 is chosen to be sufficiently small. Hence Tu ∈ Bε1(û0). This

completes the proof. 2
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Lemma 5.5 There exist 0 < ε2 ≤ ε1 and θ0 ∈ (0, 1) such that for 0 < R ≤ +∞ if

u0 : Rn → N satisfies

[u0]BMOR(Rn) ≤ ε2

then T : Bε2(û0)→ Bε2(û0) is a θ0-contraction map, i.e.

‖T(u)− T(v)‖XR4 ≤ θ0‖u− v‖XR4 , ∀u, v ∈ Bε2(û0).

Proof. For u, v ∈ Bε2(û0), we have

‖Tu− Tv‖XR4
≤ ‖S(F1[u]−F1[v])‖XR4

+ ‖S(∇ · (F2[u]−F2[v]))‖XR4

. ‖F1[u]−F1[v]‖Y 1
R4

+ ‖F2[u]−F2[v]‖Y 2
R4
. (5.12)

Since

F1[u]−F1[v] = −〈∆u,∆(DΠ̃(u))〉+ 〈∆v,∆(DΠ̃(v))〉

= 〈∆(u− v),∆(DΠ̃(u))〉+ 〈∆v,∆(DΠ̃(u)−DΠ̃(v))〉,

we have

|F1[u]−F1[v]| ≤ C[|∆(u− v)|(|∆u|+ |∇u|2 + |∆v|)

+ |∆v|(|∇u|+ |∇v|)|∇(u− v)|)] + C|∆v|(|∇2u|+ |∇2v|)|u− v|.

Hence

‖F1[u]−F1[v]‖Y 1
R4
≤ C[([u]XR4 + [v]XR4 + [u]2XR4

)‖u− v‖XR4

+[v]XR4 ([u]XR4 + [v]XR4 )‖u− v‖XR4 ]

≤ Cε2 ‖u− v‖XR4
, (5.13)

where we have used Lemma 5.3 in the last step.

Since

|F2[u]−F2[v]| ≤ |2(〈∆u,∇(DΠ̃(u))〉 − 〈∆v,∇(DΠ̃(v))〉)|

+ |∇(D2Π̃(u)(∇u,∇u)−D2Π̃(v)(∇v,∇v))|

≤ C[|∇u||∆(u− v)|+ |∆v|(|u− v|+ |∇(u− v))|]

+ C[|∇u|(|∇u|+ |∇v|)|∇(u− v)|+ (|∇2u|+ |∇2v|)|∇(u− v)|]

+ C[(|∇u|+ |∇v|)|∇2(u− v)|+ |∇v|2|∇(u− v)|+ |∇v||∇2v||u− v|],
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we have

‖F2[u]−F2[v]‖Y 2
R4
≤ C([u]XR4 + [v]XR4 + [u]2XR4

+ [v]2XR4
)‖u− v‖XR4

≤ Cε2‖u− v‖XR4 . (5.14)

Putting (5.13) and (5.14) into (5.12), we obtain

‖Tu− Tv‖XR4 ≤ Cε2‖u− v‖XR4 ≤ θ0‖u− v‖XR4

for some θ0 = θ0(ε2) ∈ (0, 1), provided ε2 > 0 is chosen to be sufficiently small. This

completes the proof. 2

Proof of Theorem 1.2. It follows from Lemma 5.4 and Lemma 5.5, and the fixed

point theorem that there exists ε0 > 0 such that for 0 < R ≤ +∞ if [u0]BMOR(Rn) ≤

ε0, then there exists a unique u ∈ XR4 such that

u = û0 + S(F [u]) on Rn × [0, R4),

or equivalently

ut + ∆2u = F [u] on Rn × (0, R4); u
∣∣
t=0

= u0.

Now we need to show u(Rn×[0, R4]) ⊂ N . First, observe that Lemma 2.1 implies

that for any x ∈ Rn and t ≤ R4

K4 ,

dist(u(x, t), N) ≤ dist(û0(x, t), N) + ‖u− û0‖L∞(Rn×[0,R4])

≤ δ +Kn [u0]BMOR(Rn) + ε0

≤ δ + (1 +Kn)ε0 ≤ δN ,

provide δ ≤ δN
2 and ε0 ≤ δN

2(1+Kn) . This yields u(Rn × [0, R
4

K4 ]) ⊂ NδN , the δN -

neighborhood of N . This and the definition of Π̃(·) imply that Π̃(u) ≡ Π(u).

Set Q(y) = y−Π(y) for y ∈ NδN , and ρ(u) = 1
2 |Q(u)|2. Then direct calculations

imply that for any y ∈ NδN ,

DQ(y)(v) = (Id−DΠ(y))(v), ∀v ∈ Rl,
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and

D2Q(y)(v, w) = −D2Π(y)(v, w), ∀v, w ∈ Rl.

Observe that F [u] can be rewritten as

F [u]

= ∆(D2Π(u)(∇u,∇u)) +∇ · (D2Π(u)(∆u,∇u)) +D2Π(u)(∇∆u,∇u).

Direct calculations imply

(∂t + ∆2)Q(u)

= DQ(u)(∂tu+ ∆2u)

−
[
D2Π(u)(∇∆u,∇u) +∇ · (D2Π(u)(∆u,∇u)) + ∆(D2Π(u)(∇u,∇u))

]
= DQ(u)(F [u])−F [u]

= −DΠ(u)(F [u]). (5.15)

Multiplying both sides of (5.15) by Q(u) and integrating over Rn, we obtain

d

dt

∫
Rn
ρ(u) +

1
2

∫
Rn
|∆(Q(u))|2 = −1

2

∫
Rn
〈DΠ(u)(F [u]), Q(u)〉

= 0, (5.16)

where we have used the fact that Q(u) ⊥ TΠ(u)N and DΠ(u)(F [u]) ∈ TΠ(u)N in the

last step.

Since ρ(u)|t=0 = 0, integrating (5.16) from 0 to R4

K4 implies ρ(u) ≡ 0 on Rn ×

[0, R
4

K4 ]. Thus u(Rn × [0, R
4

K4 ]) ⊂ N . Repeating the same argument for t ∈ [R
4

K4 , R
4]

yields u(Rn × [R
4

K4 , R
4]) ⊂ N . This completes the proof of Theorem 1.2. 2

Proof of Theorem 1.3. It follows directly from Theorem 1.2 with R = +∞. 2

6 Proof of Theorem 1.4 and 1.5

This section is devoted to the proof of both Theorem 1.4 and 1.5. Since the argument

is similar to that of Theorem 1.2, we will only sketch it here.
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Let H[u] denote the right hand side of (1.7). Then we have

H[u] = F1[u] +∇ · F2[u] + F3[u],

where F1[u] and F2[u] are given by (5.2), while

F3[u] = DΠ̃(u)[D2Π̃(u)(∇u,∇u) ·D3Π̃(u)(∇u,∇u)]

+2D2Π̃(u)(∇u,∇u) ·D2Π̃(u)(∇u,∇(DΠ̃(u))). (6.1)

It is clear that u ∈ XR4 solves (1.7)-(1.8) iff

u = Gu0 + S(F1[u]) + S(∇ · F2[u]) + S(F3[u]). (6.2)

Since F3[u] satisfies

|F3[u]| ≤ C|∇u|4, (6.3)

for some C > 0 depending on ‖u‖L∞(Rn), it is easy to check

Claim 1. For 0 < R ≤ +∞, if u ∈ XR4, then F3[u] ∈ Y 1
R4 and

‖F3[u]‖Y 1
R4
≤ C [u]4XR4

. (6.4)

This claim and Lemma Lemma 4.1 then imply

Claim 2. For 0 < R ≤ +∞, if u ∈ XR4, then S(F3[u]) ∈ XR4 and

‖S(F3[u])‖XR4 ≤ C [u]4XR4
. (6.5)

Now if define the mapping operator T̃ on XR4 by

T̃[u] := Gu0 + S(F1[u]) + S(∇ · F2[u]) + S(F3[u]), (6.6)

then Claim 1, Claim 2, and Lemma 5.4 imply

Claim 3. There exists ε3 > 0 such that for 0 < R ≤ +∞, if u0 : Rn → N has

[u0]BMOR(Rn) ≤ ε3, then T̃ maps Bε3(û0) to Bε3(û0).

We need to show T̃ : Bε3(û0)→ Bε3(û0) is a contraction map. To see this, observe

that direct calculations imply that for any u, v ∈ Bε3(û0),

|F3[u]−F3[v]| (6.7)

≤ C[|u− v||∇u|4 + |∇(u− v)|(|∇v|3 + |∇v||∇u|2 + |∇v|2|∇u|+ |∇u|3)]
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for some C > 0 depending only max{‖u‖L∞(Rn), ‖v‖L∞(Rn)}. Hence, combined with

the proof of Lemma 5.5, we obtain

Claim 4. There exists ε3 > 0 such that for 0 < R ≤ +∞, if u0 : Rn → N has

[u0]BMOR(Rn) ≤ ε3, then

‖T̃[u]− T̃[v]‖XR4 ≤ Cε3‖u− v‖XR4 , ∀u, v ∈ Bε3(û0). (6.8)

Now we can complete the proof of Theorem 1.4 as follows.

Completion of proof of Theorem 1.4: Similar to Theorem 1.2, it follows from

Claim 3 and Claim 4 and the fixed point theorem that there exists ε0 > 0 such that

for 0 < R ≤ +∞ if [u0]BMOR(Rn) ≤ ε0, then there exists a unique u ∈ XR4 that

solves (1.7)-(1.8):

ut + ∆2u = H[u] on Rn × (0, R4); u
∣∣
t=0

= u0.

The same argument as in Theorem 1.2 implies u(Rn × [0, R
4

K4 ]) ⊂ NδN . Hence

Π̃(u) ≡ Π(u) on Rn × [0, R
4

K4 ]. Moreover, the same calculation as in (5.15) implies

(∂t + ∆2)(u−DΠ(u)) = −DΠ(u)(H[u]), (6.9)

and it follows that for 0 ≤ t ≤ R4

K4 ,

d

dt

∫
Rn
|u−DΠ(u)|2 +

∫
Rn
|∆(u−DΠ(u))|2 = 0. (6.10)

This, combined with |u −DΠ(u)|2
∣∣
t=0

= 0, implies that u(Rn × [0, R
4

K4 ]) ⊂ N . Re-

peating the same argument then implies u(Rn× [0, R4]) ⊂ N . The proof is complete.

2

Proof of Theorem 1.5. It follows directly from Theorem 1.4 with R = +∞. 2
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