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Boundary regularity for polyharmonic maps

in the critical dimension

Tobias Lamm and Changyou Wang

Communicated by F. Duzaar

Abstract. We consider the Dirichlet problem for intrinsic and extrinsic k-polyharmonic maps

from a bounded, smooth domain � � R
2k to a compact, smooth Riemannian manifold N �

R
l without boundary. For any smooth boundary data, we show that any k-polyharmonic map

u 2 W k;2.�; N / is smooth near the boundary @�.
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1 Introduction

For k 2 N let � � R
2k be a bounded, smooth domain. Let .N n; h/ be a compact,

smooth Riemannian manifold without boundary, which is assumed to be isometrically

embedded into some euclidean space R
l . In this paper we are interested in the regu-

larity of k-polyharmonic maps, which are critical points

u 2 W k;2.�; N / WD
°

v 2 W k;2.�; R
l/ W v.x/ 2 N a.e. x 2 �

±

of the k-th order polyenergy functional:

Ek.u/ D

Z

�

jrkuj2dx: (1.1)

Note that the functional E1 is the Dirichlet energy for maps in W 1;2.�; N / whose

critical points are harmonic maps, and E2 is the (extrinsic) Hessian energy for maps

in W 2;2.�; N / whose critical points are extrinsically biharmonic maps. Regularity

issues for harmonic maps have been relatively well studied. In dimension two, the cel-

ebrated theorem by Hélein [4] asserts the interior smoothness of harmonic maps, and

Qing [8] proved the boundary smoothness of harmonic maps for any smooth Dirich-

let boundary data. For k D 2 the equation of biharmonic maps is a fourth order

elliptic system with borderline nonlinearities, which presents challenging problems to

study their regularities. The interior regularity of extrinsic biharmonic maps to spheres
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2 T. Lamm and C. Wang

N D S l�1 � R
l has been obtained by Chang, Wang & Yang [2]; and for general tar-

get manifolds N � R
l , the second author [9] has proved the interior regularity for both

extrinsic and intrinsic biharmonic maps (see Lamm & Rivière [6] for a new proof).

Besides the k-th order polyenergy functional Ek , one can also consider the k-th

order (intrinsic) polyenergy functional Fk on W k;2.�; N / which is defined by

Fk.u/ D

Z

�

jDk�1ruj2; (1.2)

where D denotes the covariant derivative of the pull-back bundle u?TN . A critical

point u 2 W k;2.�; N / of Fk is called an intrinsic k-polyharmonic map. It is well

known that F2.u/ D
R

� j�.u/j2 is the L2-integral of the tension field of u. Hence any

harmonic map u 2 W 2;2.�; N / satisfies F2.u/ D 0 and is a global minimum of F2.

Very recently, there have been works on the interior regularity of both extrinsic and

intrinsic k-polyharmonic maps in the critical dimension by Gastel & Scheven [3] for

k � 3. See also Angelsberg & Pumberger [1] for further results on k-polyharmonic

maps.

In this paper we consider the Dirichlet boundary value problem for both extrinsic

and intrinsic k-polyharmonic maps u 2 W k;2.�; N /. To state the boundary condition

precisely, denote � D � [ @� and for ı > 0, define

�ı D
®

x 2 � W dist.x; @�/ � ı
¯

:

Assume that for a small ı > 0, ˆ 2 C 1.�ı ; N / is a given map. Then we say

u 2 W k;2.�; N / has ˆ as its Dirichlet boundary value, if

r˛u D r˛ˆ on @�; (1.3)

holds in the sense of traces for all 2k-dimensional multi-indices ˛ with j˛j � k � 1.

We would like to point out that a general boundary condition such as

@mu

@�m
D ˆm on @�; 0 � m � k � 1

can be reduced to (1.3).

We now state our main theorem.

Theorem 1.1. For k 2 N let � � R
2k be a smooth, bounded domain and .N n; h/ �

R
l be a compact, smooth Riemannian manifold without boundary. Moreover let ˆ 2

C 1.�ı ; N / be given for some small ı > 0. Suppose that u 2 W k;2.�; N / is an

extrinsic (or intrinsic) k-polyharmonic map that satisfies the boundary condition (1.3).

Then u 2 C 1.�ı ; N /.

We remark that for k D 2 and N D S l�1 � R
l , the above boundary regularity has

been proved by Ku [5].
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Boundary regularity 3

The first step to prove Theorem 1.1 is the boundary Hölder regularity, which is

based on the interior regularity estimates (see [4] for k D 1, [2, 9] for k D 2, [3]

for k � 3), and a boundary maximum principle for k-polyharmonic maps with small

k-polyenergies. An immediate consequence of the maximum principle is an L1-

estimate of u � ˆ, which yields that u is continuous up to the boundary. By choosing

u � ˆ as a test function to (2.4) and utilizing the growth condition (2.5), we then show

that u is Hölder continuous near the boundary. Once we have Hölder continuity of

u, we can modify the induction argument of Gastel & Scheven [3] to obtain Hölder

continuity of rku near the boundary. Finally, the smoothness of u near the boundary

follows from the classical Schauder theory for linear uniformly elliptic equations.

The rest of the paper is written as follows. In §2, we present some preliminary

results that are needed later on. In §3, we show the boundary maximum principle

under the small energy condition. In §4, we prove the boundary Hölder continuity. In

§5, we sketch the higher order regularity near the boundary.

2 Preliminaries

In this section, we first recall the Euler–Langrange equation for k-polyharmonic maps

derived in [3], the interior regularity for k-polyharmonic maps due to [4, 9, 3], and

then prove a Courant–Lebesgue type lemma for W k;2-maps.

If ….y/ W R
l ! TyN denotes the orthogonal projection map for y 2 N , then a

direct calculation implies that any extrinsic k-polyharmonic map u 2 W k;2.�; N /

satisfies

�ku ? TuN (2.1)

in the weak sense, or equivalently,

Z

�

hrku; rk .….u/.V //i D 0; 8V 2 C 1
0 .�; R

l/: (2.2)

As in §4 of [3], we can apply the product rule inductively to show that (2.2) is equiva-

lent to

Z

�

hrku; rkV i D

k�2
X

mD0

 

k � 1

m

!

Z

�

hrk�1�m.….u//rmC1u; rkV i

�

k�1
X

mD0

 

k

m

!

Z

�

hrku; rk�m.….u//rmV i: (2.3)

The Euler–Lagrange equation for intrinsic k-polyharmonic maps, similar to (2.3), has

also been derived by [3], §8. It is not hard to see that (2.3) yields the following lemma.
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4 T. Lamm and C. Wang

Lemma 2.1. Let u 2 W k;2.�; N / be an extrinsic (or intrinsic) k-polyharmonic map.

Then u satisfies, in the sense of distribution,

�ku D

k�1
X

iD0

divi gi ; (2.4)

where the term .g0; : : : ; gk�1/ satisfies the growth condition:

jgi j � C

k
X

lD1

jrluj
2k�i

l ; i D 0; : : : ; k � 1; (2.5)

for some C D C.k; N / > 0, where divi denotes the i -th divergence operator that is

inductively defined by div1 D div and divi D div.divi�1/ for i � 2.

We now introduce some further notations. For x 2 �, define

BR.x/ D ¹y 2 R
2k W jy � xj � Rº; �R.x/ D � \ BR.x/;

and

BC
R D

®

y D .y0; y2k/ 2 BR.0/ j y2k � 0
¯

; TR D @BC
R \

°

y 2 R
2k j y2k D 0

±

;

E.u; G/ D

k
X

iD1

 

Z

G

ˇ

ˇ

ˇ
riu

ˇ

ˇ

ˇ

2k
i

!
i
k

; G � �: (2.6)

Now we recall the interior regularity for k-polyharmonic maps in R
2k .

Theorem 2.2. For k 2 N and � � R
2k , there exist "0 > 0 and ˛0 2 .0; 1/ such that

if u 2 W k;2.�; N / is an extrinsic (or intrinsic) k-polyharmonic map satisfying, for

some x0 2 � and 0 < r0 < 1
2

dist.x0; @�/,

E.u; B2r0
.x0// � "2

0; (2.7)

then u 2 C ˛0.Br0
.x0/; N / and

oscB� .x0/ u � C

�

�

r0

�˛0 �

E.u; B2r0
.x0//

�
1
2
; 0 < � � r0: (2.8)

Furthermore u 2 C 1.�; N /.

Proof. The reader can refer to [4] for k D 1, [2, 9, 6] for k D 2, and [3] for k � 3.

Note that by the absolute continuity, the condition (2.7) holds at any x 2 � provided

r0 > 0 is chosen to be sufficiently small.
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Boundary regularity 5

The next lemma is a version of the Courant–Lebesgue lemma.

Lemma 2.3. Let k 2 N, x0 2 � and r0 D dist.x0; @�/ > 0. For any map u 2

W k;2.�2r0
.x0/; N / there exists r1 2 .r0; 2r0/ such that

osc@Br1
.x0/\� u � CE.u; �2r0

.x0//
1
2 :

Proof. For x 2 B2r0
.x0/, set r D jx � x0j 2 Œ0; 2r0�. By Fubini’s theorem, we have

Z

�2r0
.x0/

jruj2k �

Z 2r0

r0

�

r

Z

@Br .x0/\�

jrT uj2kdH 2k�1

�

1

r
dr

� inf
r0�r�2r0

�

r

Z

@Br .x0/\�

jrT uj2kdH 2k�1

�

�

 

Z 2r0

r0

dr

r

!

� ln 2 inf
r0�r�2r0

�

r

Z

@Br .x0/\�

jrT uj2kdH 2k�1

�

;

where rT denotes the gradient operator on @Br.x0/ and dH 2k�1 is the area element

on @Br.x0/. Therefore there exists r1 2 .r0; 2r0/ such that

r1

Z

@Br1
.x0/\�

jrT uj2kdH 2k�1 �
1

ln 2

Z

�2r0
.x0/

jruj2k :

Hence u.r1; �/ 2 W 1;2k.@Br1
.x0/\�; N / and the Sobolev embedding theorem implies

that u.r1; �/ 2 C
1

2k .@Br1
.x0/ \ �; N /, and

osc@Br1
.x0/\� u � C

 

r1

Z

@Br1
.x0/\�

jrT uj2kdH 2k�1

!
1

2k

� CE.u; �2r0
.x0//

1
2 :

This completes the proof of the lemma.

We will also need the following version of the Sobolev–Poincaré inequality.

Lemma 2.4. For k 2 N, let u 2 W k;2.BC
2 ; R

l/ with r˛u D 0 on T2 for all 2k-

dimensional multiindices ˛ satisfying j˛j � k � 1. Then for all 0 < r � 1 and all

0 � i � k � 1, it holds

Z

B
C
2r nB

C
r

jriuj2 � C r2.k�i/

Z

B
C
2r nB

C
r

jrkuj2; (2.9)

E.u; BC
r / � C

Z

B
C
r

jrkuj2: (2.10)
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6 T. Lamm and C. Wang

Proof. We argue by contradiction. Suppose (2.9) were false for some 0 � i0 � k � 1.

Then there exist ¹umº2 W k;2.BC
2 ; R

l / such that

Z

B
C
2r nB

C
r

jri0umj2 � mr2.k�i0/

Z

B
C
2r nB

C
r

jrkumj2

and r˛um D 0 on T2 for all j˛j � k � 1. By a scaling argument we may assume that

r D 1 and
Z

B
C
2 nB

C
1

jri0umj2 D 1:

Therefore ¹umº2 W k;2.BC
2 n BC

1 / is bounded and we may assume that um ! u1

weakly in W k;2.BC
2 n BC

1 / and strongly in W i0;2.BC
2 n BC

1 /. By the lower semicon-

tinuity, we have that rku1 D 0 a.e. BC
2 n BC

1 . This, combined with r˛u1 D 0 on

T2 n T1 for j˛j � k � 1, implies u1 D 0 on BC
2 n BC

1 . On the other hand, we have

Z

B
C
2 nB

C
1

jri0u1j2 D 1:

We get a desired contradiction. (2.10) is a consequence of (2.9) and the Sobolev em-

bedding.

3 Maximum principle

In this section, we derive a boundary maximum principle for k-polyharmonic maps

under a smallness condition on E. A similar result for harmonic maps in dimension

two was obtained by Qing [8] (see [7] for n-harmonic maps in dimension n).

Theorem 3.1. For k 2 N and ˆ 2 C 1.�ı ; N / for some ı > 0, there exists "0 > 0

such that if u 2 W k;2.�; N / is an extrinsic (or intrinsic) k-polyharmonic map which

satisfies the boundary condition (1.3) and for some x 2 � and some R > 0,

E.u; �R.x// � "2
0 (3.1)

then for any q 2 R
l it holds

max
�R.x/

ju � qj � C

�

max
@�R.x/

ju � qj C E.u; �R.x//
1
2

�

: (3.2)

Proof. Let q 2 R
l be fixed, denote M D max�R.x/ ju � qj. We may assume that

M � E.u; �R.x//
1
2 :

Choose x0 2 �R.x/ such that

ju.x0/ � qj �
3

4
M: (3.3)
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Boundary regularity 7

Denote r0 D dist.x0; @�R.x//.> 0/. By choosing sufficiently small "0 > 0, Theorem

2.2 implies that there is ˛0 2 .0; 1/ such that

oscBr .x0/ u � C
� r

r0

�˛0

E.u; �R.x//
1
2 � CM

� r

r0

�˛0

; 0 < r �
r0

2
:

Hence for r1 D r0

.4C /
1

˛0

, we have

oscBr1
.x0/ u �

1

4
M: (3.4)

This, combined with (3.3), yields

inf
Br1

.x0/
ju � qj �

1

2
M: (3.5)

By Lemma 2.3, there is r2 2 .r0; 2r0/ such that

osc@Br2
.x0/\�R.x/ u � CE.u; �R.x//

1
2 : (3.6)

Note that @Br2
.x0/ \ @�R.x/ 6D ;. Let .r; �/ be the polar coordinates centered at x0.

Then we can estimate

inf
.r1;�/2¹r1º�S2k�1\�R.x/

.r2;�/2¹r2º�S2k�1\�R.x/

ju.r1; �/ � u.r2; �/j

� C

Z

S2k�1

Z r2

r1

jur j �.Œr1;r2��S2k�1/\�R.x/.r; �/drd�

�
C

r2k�1
1

Z

B2r0
\�R.x/

jur j dx

� C
r2k�1

0

r2k�1
1

�Z

�R.x/

jruj2k

�
1

2k

� CE.u; �R.x//
1
2 : (3.7)

Using (3.4), (3.5), (3.6), (3.7) and choosing x? 2 @Br2
.x0/ \ @�R.x/, we have

1

2
M � inf

Br1
.x0/

ju � qj

� inf
S2k�1

ju.r1; �/ � u.r2; �/j

C sup
.r2;�/2@Br2

.x0/\�R.x/

ˇ

ˇu.r2; �/ � u.x?/
ˇ

ˇC
ˇ

ˇu.x?/ � q
ˇ

ˇ

� inf
S2k�1

ju.r1; �/ � u.r2; �/j C osc@Br2
.x0/\�R.x/ u C sup

@�R.x/

ju � qj

� CE.u; �R.x//
1
2 C sup

@�R.x/

ju � qj :

This clearly implies (3.2). The proof is complete.
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8 T. Lamm and C. Wang

4 Hölder continuity near the boundary

In this section, we will establish the Hölder continuity of k-polyharmonic maps near

@�.

In a first step we consider the case where 0 2 @� and where �1.0/ D BC
1 . At the

end of this section we will then discuss the changes which are necessary for handling

the general case. For 0 < r � 1
2
, let � 2 C 1.BC

1 / be such that 0 � � � 1 and

� � 1 on BC
r ; � � 0 on BC

1 nBC
2r and kri�kL1 �

C

r i
; 1 � i � 2k: (4.1)

We need a modified version of the estimate (2.10).

Lemma 4.1. For k 2 N, ˆ 2 C 1.BC
1 ; N /, if u 2 W k;2.BC

1 ; N / satisfies r˛u D

r˛ˆ on T1 for all 2k-dimensional multi-indices ˛ with j˛j � k � 1, then for all

1 � m � k � 1, we have
Z

B
C
1

�2k jrmuj
2k
m � C1

�

E.u; BC
1 /
�

k�m
m

Z

B
C
1

�2k
ˇ

ˇ

ˇ
rku

ˇ

ˇ

ˇ

2

C C2

��Z

B
C
2r nB

C
r

ˇ

ˇ

ˇ
rku

ˇ

ˇ

ˇ

2
�

k
m

C kˆk
2k
m

C k.B
C
1 /

r2k

�

(4.2)

for some C1; C2 > 0 depending only only k, where � is given by (4.1).

Proof. Applying (2.9) with u � ˆ and the Hölder inequality, we get

 

Z

B
C
1

�2k jrm.u � ˆ/j
2k
m

!
m
k

� C

k�m
X

iD0

Z

B
C
1

ˇ

ˇ

ˇ
ri .�m/

ˇ

ˇ

ˇ

2 ˇ
ˇ

ˇ
rk�i .u � ˆ/

ˇ

ˇ

ˇ

2

� C

Z

B
C
1

�2mjrkuj2 C C

 

Z

B
C
2r nB

C
r

jrkuj2 C r2kjjˆjj2
C k.B

C
1 /

!

� C

 

Z

B
C
2r

ˇ

ˇ

ˇ
rku

ˇ

ˇ

ˇ

2

!
k�m

k
 

Z

B
C
1

�2k
ˇ

ˇ

ˇ
rku

ˇ

ˇ

ˇ

2

!
m
k

C C

 

Z

B
C
2r nB

C
r

jrkuj2 C kˆk2

C k.B
C
1 /

r2k

!

:

It is easy to see that (4.2) follows from this inequality.

Now we prove the energy decay estimate at the boundary, under a smallness condi-

tion on E.
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Boundary regularity 9

Lemma 4.2. For k 2 N and ˆ 2 C 1.BC
1 ; N /, there exist "0 > 0, 0 < r0 � 1,

�0 2 .0; 1/, and C0 > 0 such that if u 2 W k;2.BC
1 ; N / is a k-polyharmonic map

satisfying (1.3) on T1 and if

E.u; BC
1 / � "2

0 (4.3)

then

E.u; BC
r / � �0E.u; BC

2r/ C C0r2; 80 < r �
r0

2
: (4.4)

Proof. Let "0 > 0 be the minimum of the constants given by (2.7) and (3.1). By the

Courant–Lebesgue Lemma we get r0 2 ."0; 2"0/ such that

osc@Br0
\R

2k
C

u � CE.u; BC
1 /

1
2 � C�0:

Then we have

sup

@B
C
r0

ju � ˆ.0/j � C.krˆk
C 0.B

C
1 /

r0 C "0/ � C "0:

Therefore Theorem 3.1 implies that

sup

B
C
r0

ju � ˆ.0/j � C "0:

In particular we have

ku � ˆk
L1.B

C
r0

/
� C "0: (4.5)

To show that u is Hölder continuous we employ a hole filling argument similar to [3].

More precisely, for any r < r0

2
, let � 2 C 1.BC

1 / be given by (4.1). Multiplying (2.4)

by �2k.u � ˆ/ and integrating over BC
1 , we have

Z

B
C
1

�2kjrkuj2 �

Z

B
C
1

�2khrku; rkˆi

C C

k
X

pD1

Z

B
C
1

jrp.�2k/jjrkujjrk�p.u � ˆ/j

C

Z

B
C
1

�2kjg0jju � ˆj C

k�1
X

mD1

Z

B
C
1

jgmj
ˇ

ˇ

ˇ
rm.�2k.u � ˆ//

ˇ

ˇ

ˇ

D I C � � � C IV:

We estimate I; : : : ; IV separately. For any ı > 0, Young’s inequality implies

jIj � ı

Z

B
C
1

�2kjrkuj2 C Cıkˆk2

C k.B
C
1 /

r2k : (4.6)
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10 T. Lamm and C. Wang

Applying Young’s inequality and (2.9) to u � ˆ we have

jIIj � ı

Z

B
C
1

�2kjrkuj2 C Cı

k
X

pD1

r�2p

Z

B
C
2r nB

C
r

ˇ

ˇ

ˇ
rk�p.u � ˆ/

ˇ

ˇ

ˇ

2

� ı

Z

B
C
1

�2kjrkuj2 C Cı

Z

B
C
2r nB

C
r

jrkuj2 C C.kˆk
C k.B

C
1 /

; ı/r2k : (4.7)

For III we use (2.5), (4.5) and Lemma 4.1 to get

jIIIj � C "0

k
X

pD1

Z

B
C
1

�2k jrpuj
2k
p

� C

 

"0

Z

B
C
1

�2kjrkuj2 C "
2

k�1

0

Z

B
C
2r nB

C
r

jrkuj2 C r2k

!

: (4.8)

Applying Young’s inequality with p D 2k
2k�m

and q D 2k
m

for 1 � m � k �1, we have

jIVj �

k�1
X

mD1

 

ı

Z

B
C
1

�2kjgmj
2k

2k�m C Cı

Z

B
C
1

jrm.�m.u � ˆ//j
2k
m

!

:

By Lemma 4.1, (2.5), Young’s inequality, the Sobolev embedding W k;2 � W m; 2k
m

(1 � m � k � 1), and (2.9), we get

jIVj �

k�1
X

mD1

 

ı

Z

B
C
1

�2kjgmj
2k

2k�m C Cı

Z

B
C
1

jrm.�m.u � ˆ//j
2k
m

!

� Cı

k
X

mD1

Z

B
C
1

�2kjrmuj
2k
m C Cı

k�1
X

mD1

 

Z

B
C
1

ˇ

ˇ

ˇ
rk.�m.u � ˆ//

ˇ

ˇ

ˇ

2

!
k
m

� C

 

ı

Z

B
C
1

�2kjrkuj2 C "
2

k�1

0

Z

B
C
2r nB

C
r

jrkuj2 C r2k

!

C Cı

k�1
X

mD1

 

Z

B
C
2r nB

C
r

jrk.u � ˆ/j2 C

Z

B
C
1

�2mjrk.u � ˆ/j2

!
k
m

: (4.9)

Putting together (4.6)–(4.9), we get

Z

B
C
1

�2kjrkuj2 � C0.ı C "0/

Z

B
C
1

�2kjrkuj2 C C

�Z

B
C
2r nB

C
r

jrkuj2 C r2k

�

:

Author's Copy

A
ut

ho
r's

 C
op

y

Author's Copy

A
ut

ho
r's

 C
op

y



Boundary regularity 11

By choosing ı and "0 small enough, we obtain

Z

B
C
r

jrkuj2 � C

�Z

B
C
2r nB

C
r

jrkuj2 C r2k

�

; 0 < r �
r0

2
:

Applying (2.10) to u � ˆ and adding C
R

B
C
r

jrkuj2 to both sides of this inequality,

we obtain

E.u; BC
r / � �0E.u; BC

2r / C C r2; (4.10)

where �0 D C
C C1

. This completes the proof of (4.4).

With the help of Lemma 4.2, we can now prove that an extrinsic (or intrinsic) k-

polyharmonic map u 2 W k;2.BC
1 ; N /, satisfying (1.3), is Hölder continuous. In fact,

by the absolute continuity and the scaling invariance of E in R
2k , we have that for any

"0 > 0 there is r? > 0 such that

sup
x2T1

E.u; Br?
.x// � "2

0: (4.11)

Hence Lemma 4.2 implies that for any x 2 T1,

E.u; Br.x// � �E.u; B2r .x// C C r2; r <
r0

2
:

By a standard iteration argument, this implies that there exists 0 < ˛0 < 1 such that

E.u; Br.x// � C r2˛0 ; 8x 2 T1 and 0 < r �
r0

2
: (4.12)

Hence by Morrey’s decay lemma and the interior regularity Theorem 2.2, we conclude

that u 2 C
˛0

loc.BC
1 ; N /.

Now we discuss the case of general curved boundaries. We let x0 2 @�. Since �

is assumed to be smooth, there exists r0 > 0 and a C 2k-diffeomorphism ˆ W BC
1 !

�r0
.x0/ such that ˆ.0/ D x0 and ˆ.T1/ D @� \ Br0

.x0/. We let ‰ D ˆ�1 and

we define the map v W BC
1 ! N by v.y/ D u.ˆ.y// or written differently u.x/ D

v.‰.x//. Now a standard calculation yields that

Ek.u; �r0
.x0// D

Z

B
C
1

j.rg/kvj2gdvg ;

where g D ˆ?g0 is the pull-back metric of the euclidean metric g0, rg is the covariant

derivative with respect to the metric g and dvg is the volume element of g. Performing

a similar calculation for the polyharmonic map equation satisfied by u we see that the

map v solves the polyharmonic map equation for a general Riemannian metric g in

the domain. Since ˆ is a diffeomorphism one can check that the resulting equation for

v is of the type (2.4) but with coefficients which come from the diffeomorphism and
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12 T. Lamm and C. Wang

with additional, harmless lower order terms. Also, by the way we set up our boundary

condition, we get that v satisfies a similar boundary condition on T1 with boundary

data which are suitable smooth transformations of the original ones. Finally we want

to mention that by an application of the transformation formula and Hölder’s inequality

we get the existence of a constant c0 D c0.ˆ/ � 1 such that

1

c0

E.v; BC
1 / � E.u; �r0

.x0// � c0E.v; BC
1 /:

Combining all these facts it follows that the interior regularity Theorem 2.2 and Lem-

ma 4.3 extend to the new equation. Hence we get from the above arguments that v is

˛0 Hölder continuous and this directly gives that u is ˛0 Hölder continuous.

5 Higher order regularity near the boundary

In this section, we outline the proof of higher order regularity for k-polyharmonic

maps u 2 W k;2.�; N / that satisfy the boundary condition (1.3). The idea is to show

that riu is Hölder continuous near @� for all 1 � i � k. The argument here is

a suitable modification of [3], §7. Again we restrict our attention to the case where

0 2 @� and where �1.0/ D BC
1 since the general case can be reduced to this one by

arguing as above.

First we need a standard estimate for k-polyharmonic functions satisfying homoge-

neous Dirichlet boundary conditions in T1 the proof of which is standard.

Lemma 5.1. For k 2 N, let v 2 C 1.BC
1 ; R

l/ solve

�kv D 0 in BC
1 ; r˛v D 0 on T1 8j˛j � k � 1:

Then for all 1 � m � k, r < 1, and all 0 < � � r
2
, we have

Z

B
C
�

jrmvj2 � C
��

r

�2k
Z

B
C
r

jrmvj2; (5.1)

Z

B
C
�

ˇ

ˇ

ˇ
rkv � .rkv/�

ˇ

ˇ

ˇ

2

� C
��

r

�2kC2
Z

B
C
r

ˇ

ˇ

ˇ
rkv � .rkv/r

ˇ

ˇ

ˇ

2

; (5.2)

where .rkv/r D 1

jB
C
r j

R

B
C
r

rkv.

Now we want to show that there exists an "0 > 0 such that if

E.u; BC
1 / � "2

0; (5.3)

then for any noninteger  D Œ� C ˇ 2 .0; k/, u 2 C Œ�;ˇ .BC
1
2

; N / and

Z

B
C
r

jrkuj2 � cr2 ; 80 < r �
r0

2
: (5.4)
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Boundary regularity 13

From (4.12), we know that this claim is true for  2 .0; 1/. Now we want to show

that whenever this claim is true for some number  2 .0; k/ then it is also true for

1 D min.k; 2kC1
2k

/ D Œ1�Cˇ1 2 .0; k/. First note that by (2.10) (applied to u�ˆ),

(5.4) implies that for any Œ� < m � k,

Z

B
C
r

jrmuj
2k
m � C r

2k
m ; 0 < r �

r0

2
:

This shows that for any 0 � m � k � 1 and r � r0

4
,

Z

B
C
r

jgmj
2k

2k�m � C

k
X

iD1

Z

B
C
r

jriuj
2k
i � C

�

r2k C

k
X

iDŒ�C1

r
2k

i

�

;

since kriukL1 � C for 1 � i � Œ�. Therefore we have

�Z

B
C
r

jgmj
2k

2k�m

�
2k�m

2k

� C
�

rkC1 C r
kC1

k

�

: (5.5)

Let v be a k-polyharmonic function on BC
r such that r˛v D r˛.u � ˆ/ on @BC

r for

all 2k-dimensional multi-indices ˛ with j˛j � k � 1. Define w D u � ˆ � v. Then

we have w 2 W
k;2

0 .BC
r ; N /, and

Z

B
C
r

hrkv; rkwi D 0:

Note also that
Z

B
C
r

rkw D 0:

Moreover by the mean value theorem we know that for any x D .x0; x2k/ 2 BC
r with

x2k > 0 there exist 0 � x2k
Œ�

� � � � � x2k
1 � x2k such that

w.x/ D r2kw.x0; x2k
1 /x2k D � � � D .r2k/Œ�w.x0; x2k

Œ�/x
2k � x2k

1 � : : : � x2k
Œ��1:

Hence we get

jjwjj
L1.B

C
r /

� cr Œ�jjrŒ�.u � ˆ � v/jj
L1.B

C
r /

� cr .jjujj
C Œ�;ˇ.B

C
r /

C jjˆjj
C Œ�;ˇ.B

C
r /

C jjvjj
C Œ�;ˇ.B

C
r /

/

� C r : (5.6)
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14 T. Lamm and C. Wang

Therefore, multiplying (2.4) by w, using Lemma 2.1, Young’s inequality, Poincaré’s

inequality and the estimates (5.5), (5.6), we have
Z

B
C
r

jrkwj2 D

Z

B
C
r

hrku; rkwi �

Z

B
C
r

hrkˆ � .rkˆ/r ; rkwi

�
1

2

Z

B
C
r

jrkwj2 C C jjwjj
L1.B

C
r /

Z

B
C
r

jg0j

C C

k�1
X

mD1

�Z

B
C
r

jgmj
2k

2k�m

�
2k�m

k

C C

Z

B
C
r

ˇ

ˇ

ˇ
rkˆ � .rkˆ/r

ˇ

ˇ

ˇ

2

�
1

2

Z

B
C
r

jrkwj2 C C r .rkC1 C r
kC1

k
 / C C.rkC1 C r

kC1
k

 /2

�
1

2

Z

B
C
r

jrkwj2 C C r21 :

Hence we obtain
Z

B
C
r

jrkwj2 � C r21 ; 0 < r �
r0

4
: (5.7)

Since r˛w D 0 on Tr for all ˛ with j˛j � k � 1, (2.9) implies that for all 1 � m � k
Z

B
C
r

jrmwj2 � C r2.1Ck�m/; 0 < r �
r0

4
: (5.8)

This, combined with (5.1), yields that for any 0 < r � 1
2
, � � r

2
, and 1 � m � k

Z

B
C
�

jrm.u � ˆ/j2 � 2

Z

B
C
�

jrmwj2 C 2

Z

B
C
�

jrmvj2

� C r2.1Ck�m/ C 2

Z

B
C
�

jrmvj2

� C r2.1Ck�m/ C C
��

r

�2k
Z

B
C
r

jrmvj2

� C
��

r

�2k
Z

B
C
r

jrm.u � ˆ/j2 C C r2.1Ck�m/: (5.9)

Note that this inequality is trivially true for r
2

� � � r . By a standard iteration

argument, this implies that for m > 1 and any 0 < � � 1
4

Z

B
C
�

jrmuj2 � C�2.1Ck�m/: (5.10)

This, together with the interior estimate of [3], implies that u 2 C Œ1�;ˇ1.BC
r ; N / and

satisfies (5.4).
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Boundary regularity 15

Next we let ? D k C ˇ, 0 < ˇ < 1
2
. Then (5.4) holds for  D 2k

2kC1
?. Hence

(5.5) remains true for this value of  . Suppose that v and w are defined as above. Then

we can repeat the above argument to improve the estimate (5.7) so that

Z

B
C
r

jrkwj2 � C r2? ; 0 < r �
1

2
: (5.11)

Combining (5.11) with (5.2), we obtain for any 0 < r � 1
2

and 0 < � � r
2
,

Z

B
C
�

ˇ

ˇ

ˇ
rk.u � ˆ/ � .rk.u � ˆ//�

ˇ

ˇ

ˇ

2

� C

Z

B
C
�

ˇ

ˇ

ˇ
rkv � .rkv/�

ˇ

ˇ

ˇ

2

C C r2?

� C
��

r

�2kC2
Z

B
C
r

ˇ

ˇ

ˇ
rkv � .rkv/r

ˇ

ˇ

ˇ

2

C C r2?

� C.
�

r
/2kC2

Z

B
C
r

ˇ

ˇ

ˇ
rku � .rku/r

ˇ

ˇ

ˇ

2

C C r2? :

This implies

Z

B
C
�

ˇ

ˇ

ˇ
rku � .rku/�

ˇ

ˇ

ˇ

2

� C
��

r

�2kC2
Z

B
C
r

ˇ

ˇ

ˇ
rku � .rku/r

ˇ

ˇ

ˇ

2

C C r2? : (5.12)

It is well known that (5.12) yields

Z

B
C
�

jrku � .rku/�j2 � C�2? ; 0 < � �
1

4
: (5.13)

Therefore we have that u 2 C k;ˇ .BC
r ; N /. Finally the higher order regularity follows

from the classical Schauder theory applied to the equation (2.4).
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