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For any n-dimensional compact spin Riemannian manifold M with a given spin struc-

ture and a spinor bundle �M, and any compact Riemannian manifold N, we show an

ε-regularity theorem for weakly Dirac-harmonic maps (φ, ψ ) : M ⊗ �M → N ⊗ φ∗T N. As a

consequence, any weakly Dirac-harmonic map is proven to be smooth when n = 2. A weak

convergence theorem for approximate Dirac-harmonic maps is established when n = 2.

For n ≥ 3, we introduce the notation of stationary Dirac-harmonic maps and obtain a

Liouville theorem for stationary Dirac-harmonic maps in R
n. If, in addition, ψ ∈ W1,p

for some p > 2n
3 , then we obtain an energy monotonicity formula and prove a partial

regularity theorem for any such a stationary Dirac-harmonic map.

1 Introduction

The notation of Dirac-harmonic maps is inspired by the supersymmetric nonlinear sigma

model from the quantum field theory [8], and is a very natural and interesting extension

of harmonic maps. In a series of papers [4, 5], Chen–Jost–Li–Wang recently introduced the

subject of Dirac-harmonic maps and studied some analytic aspects of Dirac-harmonic

maps from a spin Riemann surface into another Riemannian manifold. In order to review
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some of the main theorems of [4, 5] and to motivate the aim of this paper, let us briefly

describe the mathematical framework given by [4, 5].

For n ≥ 2, let (M, g) be a compact n-dimensional spin Riemannian manifold with

a given spin structure and an associated spinor bundle �(= �M), and (N, h) be a compact

k-dimensional Riemannian manifold without boundary. By Nash’s theorem, we may

assume that (N, h) is isometrically embedded into an Euclidean space R
K for a sufficiently

large K. Let ∇M and ∇N be the Levi-Civita connection on M and N, respectively. Let 〈·, ·〉
be a Hermitian metric on � (a complex vector bundle of complex dimension n), and ∇�

be the Levi-Civita connection on � compatible with the metrics 〈·, ·〉 and g. For a map

φ : M → N, let φ∗T N denote the pullback bundle of T N by φ that is equipped with the

pullback metric φ∗h and the connection ∇φ∗T N . On the twist bundle � ⊗ φ∗T N, there is a

metric, still denoted as 〈·, ·〉, induced from the 〈·, ·〉 and φ∗h. There is also a Levi-Civita

connection ∇ on � ⊗ φ∗T N induced from ∇� and ∇φ∗T N . The Dirac operator D along φ is

defined as follows. For any section ψ ∈ �(� ⊗ φ∗T N),

Dψ = fα ◦ ∇ fαψ , (1)

where { fα}n
α=1 is a local orthonormal frame on M, and ◦ : T M ⊗C � → � is the Clifford

multiplication. More precisely, if we write ψ in the local coordinate as ψ = ψ i ⊗ ∂
∂yi

(φ),

where ψ i ∈ �� is a section of � for 1 ≤ i ≤ k and { ∂
∂yi

}k
i=1 is a local coordinate frame on

N, then

Dψ = ∂ψ i ⊗ ∂

∂yi
(φ) + (

fα ◦ ψ i)⊗ ∇φ∗T N
fα

(
∂

∂yi
(φ)
)

, (2)

where ∂ = fα ◦ ∇�
fα is the standard Dirac operator on the spin bundle �.

The Dirac-harmonic energy functional was first introduced by Chen–Jost–Li–

Wang in [4, 5]:

L(φ, ψ ) =
∫

M
[|dφ|2 + 〈ψ , Dψ〉]dvg =

∫
M

[
gαβhij(φ)

∂φi

∂xα

∂φ j

∂xβ

+ 〈ψ , Dψ〉
]√

g dx. (3)

Critical points of L(φ, ψ ) are called Dirac-harmonic maps, which are natural

extensions of harmonic maps and harmonic spinors. In fact, when ψ = 0, L(φ, 0) =∫
M |dφ|2 dvg is the Dirichlet energy functional of φ : M → N, and its critical points

are harmonic maps that have been extensively studied (see Lin–Wang [20] for rele-

vant references). On the other hand, when φ = constant : M → N is a constant map,

L(constant, ψ ) = ∫
M〈ψ , Dψ〉 dvg is the Dirac functional of ψ ∈ (��)k, and its critical points

are harmonic spinors ∂ψ = 0 that have also been well studied (see Lawson–Michelsohn

[19]).
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Studying the regularity of weakly Dirac-harmonic maps is one of our main inter-

ests. For this purpose, we introduce the natural Sobolev space in which the functional

L(·, ·) is well defined. Recall the Sobolev space H1(M, N) is defined by H1(M, N) = {u ∈
H1(M, RK ) : u(x) ∈ N a.e. x ∈ M}.

Definition 1.1. For φ ∈ H1(M, N), the set of sections ψ ∈ �(� ⊗ φ∗T N) is defined to be all

ψ = (ψ1, . . . , ψK ) ∈ (��)K such that

K∑
i=1

νiψ
i(x) = 0 a.e. x ∈ M, ∀ν = (ν1, . . . , νK ) ∈ (Tφ(x) N)⊥.

We say that ψ = (ψ1, . . . , ψK ) ∈ S1, 4
3 (�(� ⊗ φ∗T N)) if dψ i ∈ L

4
3 (M) and ψ i ∈ L4(M) for all

1 ≤ i ≤ K.

Definition 1.2. A pair of maps (φ, ψ ) ∈ H1(M, N) × S1, 4
3 (�(� ⊗ φ∗T N)) is called a weakly

Dirac-harmonic map, if it is a critical point of L(·, ·) over the Sobolev space H1(M, N) ×
S1, 4

3 (�(� ⊗ φ∗T N)).

Remark 1.3. First, the Hölder inequality implies that if (φ, ψ ) ∈ H1(M, N) × S1, 4
3 (�(� ⊗

φ∗T N)), then∣∣∣∣∫
M

〈ψ , Dψ〉 dvg

∣∣∣∣ ≤ C‖ψ‖L4(M)

[
‖dψ‖

L
4
3 (M)

+ ‖dφ‖L2(M)‖ψ‖L4(M)

]
< +∞.

Hence, L(φ, ψ ) is well defined for any (φ, ψ ) ∈ H1(M, N) × S1, 4
3 (�(� ⊗ φ∗T N)). Second, it is

useful to note that ∫
M

〈ψ , Dψ〉 dvg =
∫

M
Re〈ψ , Dψ〉 dvg, (4)

where Re(z) denotes the real part for z ∈ C. In fact, since D is self-adjoint, i.e.∫
M

〈ψ , Dξ 〉 dvg =
∫

M
〈Dψ , ξ 〉 dvg, ∀ ψ , ξ ∈ S1, 4

3 (�(� ⊗ φ∗T N)),

we have ∫
M

〈ψ , Dψ〉 dvg =
∫

M
〈Dψ , ψ〉 dvg =

∫
M

〈ψ , Dψ〉 dvg.

This yields (4).
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The Euler–Lagrange equation of a Dirac-harmonic map (φ, ψ ) ∈ H1(M, N) ×
S1, 4

3 (�(� ⊗ φ∗T N)) is (see [4])

τ (φ) = RN (φ, ψ ), (5)

Dψ = 0, (6)

where τ (φ) is the tension field of φ given by

τ (φ) = tr(∇M⊗φ∗T Ndφ) =
(

φi + gαβ�i
jl (φ)

∂φ j

∂xα

∂φl

∂xβ

)
∂

∂yi
(φ),

and RN (φ, ψ ) ∈ �(φ∗T N) is defined by

RN (φ, ψ ) = 1

2

∑
Rm

lij(φ)〈ψ i, ∇φl ◦ ψ j〉 ∂

∂ym
(φ).

Here �i
jl (φ) is the Christoffel symbol of the Levi-Civita connection of N, ∇φl ◦ ψ j de-

notes the Clifford multiplication of the vector field ∇φl with the spinor ψ j, and Rm
lij is a

component of the Riemannian curvature tensor of (N, h).

Among other things, Chen–Jost–Li–Wang proved in their Theorems 2.2 and 2.3 in

[5] that if (M2, g) is a spin Riemann surface and N = SK−1 ⊂ R
K is the standard sphere,

then any weakly Dirac-harmonic map (φ, ψ ) is in C ∞(M2, SK−1) × C ∞(�(� × φ∗(T SK−1))),

which was extended to any compact hypersurface in R
K by Zhu [27]. The crucial obser-

vation in [5] is that the nonlinearity in (5) is of Jacobian determinant structure. This

theorem is an extension of that on harmonic maps by Hélein [14]. Our motivation in this

paper is (1) to extend the above theorem to all Riemannian manifold N ⊂ R
K , and (2) to

study the regularity problem of stationary Dirac-harmonic maps in higher dimensions

n ≥ 3.

Denote by iM > 0 the injectivity radius of M. For 0 < r < iM and x ∈ M, denote by

Br(x) the geodesic ball in M with center x and radius r. Our first result is an ε-regularity

theorem.

Theorem 1.4. For n ≥ 2, there exists ε0 > 0 depending only on (M, g) and (N, h) such that

if (φ, ψ ) ∈ H1(M, N) × S1, 4
3 (�(� ⊗ φ∗T N)) is a weakly Dirac-harmonic map satisfying, for

some x0 ∈ M and 0 < r0 ≤ 1
2 iM,

sup
x∈Br0 (x0),0<r≤r0

{
1

rn−2

∫
Br (x)

(|dφ|2 + |ψ |4)dvg

}
< ε2

0, (7)

then (φ, ψ ) is smooth in Br0 (x0).
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Since
∫

M(|dφ|2 + |ψ |4) is conformally invariant when n(= dim M) = 2 (see [4],

Lemma 3.1), it is not hard to see that there exists 0 < r0 = r0(M, φ, ψ ) ≤ iM such that

sup
x∈M

∫
Br0 (x)

(|dφ|2 + |ψ |4) ≤ ε2
0 ,

where ε0 > 0 is the same constant as in Theorem 1.4. Hence, the following theorem is an

immediate consequence of Theorem 1.4.

Theorem 1.5. For n = 2, assume (φ, ψ ) ∈ H1(M, N) × S1, 4
3 (�(� ⊗ φ∗T N)) is a weakly Dirac-

harmonic map. Then (φ, ψ ) ∈ C ∞(M, N) × C ∞(�(� ⊗ φ∗T N)).

We would remark that Theorem 1.5 was proved by Chen–Jost–Li–Wang [5] for

N = SK−1 ⊂ R
K and by Zhu [27] for hypersurfaces N ⊂ R

K . While we circulated this

preprint, we learnt from Chen that in a forthcoming article [7], Chen–Jost–Wang–Zhu

also independently obtain Theorem 1.5 through a different method.

For n ≥ 3, it is well known in the context of harmonic maps that in order for a

harmonic map to enjoy partial regularity, we need to pose the stationarity condition (see,

e.g. Evans [9], Bethuel [2], and Rivieré [21]). For the same purpose, we also introduce the

notion of stationary Dirac-harmonic maps.

Definition 1.6. We call a weakly Dirac-harmonic map

(φ, ψ ) ∈ H1(M, N) × S1, 4
3 (�(� ⊗ φ∗T N))

to be a stationary Dirac-harmonic map, if, in addition, it is a critical point of L(φ, ψ ) with

respect to the domain variations, i.e. for any family of diffeomorphisms Ft (x) := F (t , x) ∈
C 1((−1, 1) × M, M) with F0(x) = x for x ∈ M, and Ft (x) = x for any x ∈ ∂M and t ∈ (−1, 1)

when ∂M �= ∅, then we have

d

dt

∣∣∣∣
t=0

[∫
M

(|dφt |2 + 〈ψt , Dψt 〉
)
dvg

]
= 0, (8)

where φt (x) = φ(Ft (x)) and ψt = ψ (Ft (x)).

Motivated by [4], we define stress-energy tensor S for a stationary Dirac-harmonic

map (φ, ψ ) by

Sαβ =
〈

∂φ

∂xα

,
∂φ

∂xβ

〉
− 1

2
|dφ|2δαβ + 1

2
Re
〈
ψ ,

∂

∂xα

◦ ∇ ∂
∂xβ

ψ

〉
, 1 ≤ α, β ≤ n, (9)

where { ∂
∂xα

} is a local coordinate frame on M.
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It turns out that the stationarity property is equivalent to that the stress-energy

tensor S is divergence free (see Lemma 4.2):∑
α,β

∂

∂xα

(√
ggαβSβγ

) = 0, 1 ≤ γ ≤ n, (10)

in the sense of distributions.

An immediate consequence of (10), which we prove in Section 4, is the following

Liouville property of stationary Dirac-harmonic maps.

Theorem 1.7. For n ≥ 3, let (M, g) = (Rn, g0) be the n-dimensional Euclidean space asso-

ciated with the spinor bundle �. If (φ, ψ ) ∈ H1(Rn, N) × S1, 4
3 (�(� ⊗ φ∗T N)) is a stationary

Dirac-harmonic map, then φ ≡ constant and ψ ≡ 0.

In dimensions n ≥ 3, the stationarity property is a necessary condition for

smoothness of weakly Dirac-harmonic maps. In fact, Chen–Jost–Li–Wang [4] proved

that any smooth Dirac-harmonic map (φ, ψ ) ∈ C ∞(M, N) × C ∞(�(� × φ∗T N)) has its stress-

energy tensor divergence free and hence is a stationary Dirac-harmonic map. Hence, The-

orem 4.3 extends a corresponding Liouville theorem on smooth Dirac-harmonic maps by

Chen–Jost–Wang [6].

An important implication of (10) is the following monotonicity inequality (see

Section 4): there exist 0 < r0 < iM and C0 > 0 depending only on (M, g) such that if

(φ, ψ ) ∈ H1(M, N) × S1, 4
3 (�(� ⊗ φ∗T N)) is a stationary Dirac-harmonic map, then for any

x0 ∈ M and 0 < r ≤ r0, it holds

d

dr

(
eC0rr2−n

∫
Br (x)

|dφ|2dvg

)
≥ eC0rr2−n

∫
∂ Br (x)

2

∣∣∣∣∂φ

∂r

∣∣∣∣2 d Hn−1

+ eC0rr2−n
∫

∂ Br (x0)
Re
〈
ψ ,

∂

∂r
◦ ∇ ∂

∂r
ψ

〉
d Hn−1. (11)

However, we point out that (11) does not yield that the renormalized energy

eC0rr2−n
∫

Br (x) |dφ|2dvg is monotone increasing with respect to r, since the second term of

the right-hand side of (11)

eC0rr2−n
∫

∂ Br (x)
Re
〈
ψ ,

∂

∂r
◦ ∇ ∂

∂r
ψ

〉
d Hn−1

may change signs. In order to utilize (11) to control r2−n
∫

Br (x)(|dφ|2 + |ψ |4) dvg, we need

to assume dψ ∈ L p for some p > 2n
3 . In fact, we have the following theorem.
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Theorem 1.8. For n ≥ 3, let (φ, ψ ) ∈ H1(M, N) × S1, 4
3 (�(� ⊗ φ∗T N)) be a stationary Dirac-

harmonic map. If, in addition, dψ ∈ L p(M) for some p > 2n
3 , then there exists a closed

subset S(φ) ⊂ M, with Hn−2(S(φ)) = 0, such that (φ, ψ ) ∈ C ∞(M \ S(φ)).

Now let us outline the main ingredients to prove Theorem 1.4 as follows.

(1) We observe that the Dirac-harmonic property is invariant under totally

geodesic, isometric embedding. More precisely, let � : (N, h) → (Ñ, h̃) be a

totally geodesic, isometric embedding map. If, for φ : M → N and ψ ∈ �(� ⊗
φ∗T N), (φ, ψ ) is a weakly Dirac-harmonic map, then for φ̃ = �(φ) : M → Ñ

and ψ̃ = �∗(ψ ) = ψ i ⊗ ∂
∂zi

(φ̃) ∈ �(� ⊗ φ̃∗T Ñ), (φ̃, ψ̃ ) is a weakly Dirac-harmonic

map.

(2) By employing the enlargement argument of Hélein [15, 16] in the context of

harmonic maps, we can assume that T N
∣∣
φ(M) is trivial so that there exists an

orthonormal tangent frame {ei}k
i=1 on φ∗T N.

(3) We use this moving frame to rewrite the Dirac-harmonic map equation (5)

into the form

d∗(〈dφ, ei〉) =
∑

j

�i j〈dφ, ej〉, (12)

where � = (�i j) ∈ L2(Br0 (x0), so(n) ⊗ ∧1(Rn)) satisfies |�| ≤ C (|dφ| + |ψ |2).

(4) The smallness condition (7) guarantees that we can apply the Coulomb gauge

construction, due to Revieré [22] (n = 2) and Rivieré–Struwe [23] (n ≥ 3), to

further rewrite (12) into an equation in which the nonlinearity has the Jaco-

bian determinant structure similar to that of harmonic maps.

(5) We utilize the duality between the Hardy space and Bounded Mean Oscil-

lation (BMO) space to obtain a decay estimate in the Morrey space, which

yields the Hölder continuity of φ.

(6) By adapting the hole-filling technique developed by Giaquinta–Hildebrandt

[13] in the context of harmonic maps, we establish the higher order regularity

of (φ, ψ ). We point out that in dimension two, a different proof of higher

order regularity of Dirac-harmonic maps has been provided by Chen–Jost–

Li–Wang [5].

As a byproduct of the rewriting of Dirac-harmonic maps under the above Coulomb

gauge frame, we also obtain a convergence theorem of weakly convergent sequences of

approximate Dirac-harmonic maps in dimension two, which extends a corresponding

convergence of approximate harmonic maps from surfaces due to Bethuel [3] (see also
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Freire–Müller–Struwe [11], Wang [24], and Rivieré [22]). More precisely, we have the fol-

lowing theorem.

Theorem 1.9. For n = 2, let (φp, ψp) ∈ H1(M, N) × S1, 4
3 (�(� ⊗ φ∗T N)) be a sequence of

weak solutions to the approximate Dirac-harmonic map equation

τ (φp) = RN (φp, ψp) + up, (13)

Dψp = vp. (14)

Assume that up → 0 strongly in H−1(M) and vp ⇀ 0 weakly in L
4
3 (M). If φp ⇀ φ in

H1(M, N) and ψp ⇀ ψ in S1, 4
3 , then (φ, ψ ) ∈ H1(M, N) × S1, 4

3 (�(� ⊗ φ∗T N)) is a weakly

Dirac-harmonic map.

The paper is organized as follows. In Section 2, we rewrite the equation of Dirac-

harmonic maps via moving frames. In Section 3, we use the Coulomb gauge construc-

tion, duality between Hardy space and BMO space, and a decay estimate in Morrey

space to first prove the Hölder continuity part of Theorem 1.4 and then adopt the hole-

filling technique by Giaquinta–Hildebrandt [13] to prove the higher order regularity

part of Theorem 1.4. In Section 4, we discuss various properties of stationary Dirac-

harmonic maps and prove Theorems 4.3 and 1.8. In Section 5, we prove the convergence

Theorem 1.9.

2 Dirac-Harmonic Maps via Moving Frames

In this section, we first show that a Dirac harmonic map (φ, ψ ) is invariant under a

totally geodesic, isometric embedding so that Hélein’s enlargement argument (see [15, 16])

guarantees that we can assume there is an orthonormal frame {ei}k
i=1 of φ∗T N. Then

employing this orthonormal frame, we write the equation of Dirac-harmonic maps into

the form (12).

We begin with the following proposition.

Proposition 2.1. Let (Ñ, h̃) be another compact Riemannian manifold without boundary

and f : (N, h) → (Ñ, h̃) be a totally geodesic, isometric embedding. Let (φ, ψ ) ∈ H1(M, N) ×
S1, 4

3 (�(�M ⊗ φ∗T N)) be a weakly Dirac-harmonic map. Define ũ = f (u) ∈ H1(M, Ñ) and

ψ̃ = f∗(ψ ) = ψ i ⊗ ∂
∂zi

(φ̃) ∈ S1, 4
3 (�(� ⊗ (φ̃)∗T Ñ)). Then (φ̃, ψ̃ ) is also a weakly Dirac-harmonic

map.
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Proof. By the chain rule formula of tension fields (see Jost [18]), we have

τ (φ̃) = tr
[∇ f∗T Ñd f (dφ, dφ)

]+ f∗(τ (φ)) = f∗(τ (φ)) = f∗(RN (φ, ψ )),

where we have used the fact that f is totally geodesic, i.e. ∇ f∗T Ñd f = 0, and the Dirac-

harmonic map equation (5).

Set N̂ = f (N). Then (N̂, h̃) is a totally geodesic, submanifold of (Ñ, h̃). Moreover,

if y = (y1, . . . , yk) is a local coordinate system on N, then z = (z1, . . . , zk) = f (y) is a local

coordinate system on N̂ and ∂
∂zi

= f∗( ∂
∂yi

), 1 ≤ i ≤ k is a local coordinate frame on N̂. Since

f : (N, h) → (N̂, h̃) is an isometry, we have

f∗(RN (φ, ψ )) = f∗

(
1

2
(RN )mlij(φ)〈ψ i, ∇φl ◦ ψ j〉 ∂

∂ym
(φ)
)

= 1

2
(RN̂ )mlij(φ̃)〈ψ i, ∇φ̃l ◦ ψ j〉 ∂

∂zm
(φ̃)

= RN̂ (φ̃, ψ̃ ) = RÑ (φ̃, ψ̃ ),

where we have used the fact that (RN̂ )mlij(φ̃) = (RÑ )mlij(φ̃) in the last two steps, which follows

from the Gauss–Codazzi equation since N̂ ⊆ Ñ is a totally geodesic submanifold.

To see that ψ̃ satisfies (6), denote D̃ as the Dirac operator along the map φ̃. Then

it follows from (2.6) in [4] that

D̃ψ̃ = f∗(Dψ ) + (∇φi ◦ ψ j) ⊗ ∇ f∗T Ñd f
(

∂

∂yi
,

∂

∂yj

)
= 0,

where we have used the fact that both Dψ = 0 and ∇ f∗T Ñd f = 0. �

With the help of Proposition 2.1, we can now adapt the same enlargement argu-

ment as that by Hélein [15, 16] and assume that (N, h) is parallelized. Hence, there exists

a global orthonormal frame {êi}k
i=1 on (N, h). Set ei(x) = êi(φ(x)), 1 ≤ i ≤ k. Then {ei} is an

orthonormal frame along φ∗T N. Using this frame, we can write the spinor field ψ along

map φ as

ψ =
k∑

i=1

ψ i ⊗ ei, ψ i ∈ �(�), 1 ≤ i ≤ k.

Let { ∂
∂xα

}n
α=1 be a local coordinate frame on M. Recall the tension field of φ is

defined by (see Jost [18])

τ (φ) = gαβ∇φ∗T N
∂

∂xα

(
∂φ

∂xβ

)
.
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Denote the components of τ (φ) and Dψ with respect to the frame {ei} by

τ i(φ) = 〈τ (φ), ei〉φ∗h, 1 ≤ i ≤ k,

(Dψ )i = 〈Dψ , ei〉φ∗h, 1 ≤ i ≤ k.

Under these notations, we have the following lemma.

Lemma 2.2. If (φ, ψ ) ∈ H1(M, N) × S1, 4
3 (�(� ⊗ φ∗T N)) is a weakly Dirac-harmonic map,

then it holds, for 1 ≤ i ≤ n,

(Dψ )i = 0, (15)

τ i(φ) = RN (φ)(ei, ej, el , em)〈φ∗(ξα), ej〉φ∗h〈ψm, ξα ◦ ψ l〉, (16)

where {ξα}n
α=1 is a local orthonormal frame on M.

Proof. It suffices to prove (16). To do this, let {φt } be a variation of φ such that ∂φt

∂t |t=0 =
η = ηiei for (η1, . . . , ηk) ∈ C ∞

0 (M, Rk). Then we have ψt = ψ i ⊗ ei(φt ). Then we have

∂

∂t
Dψt = ∂ψ i ⊗ ∇ ∂

∂t
ei(φt ) + (ξα ◦ ψ i) ⊗ ∇ ∂

∂t
∇ξα

ei(φt )

= ∂ψ i ⊗ ∇ ∂
∂t

ei(φt ) + (ξα ◦ ψ i) ⊗ ∇ξα
∇ ∂

∂t
ei(φt ) + (ξα ◦ ψ i) ⊗ Rφ∗

t T N (φt )
(

∂

∂t
, ξα

)
ei(φt )

= D
(
ψ i ⊗ ∇ ∂

∂t
ei(φt )

)
+ (ξα ◦ ψ i) ⊗ Rφ∗

t T N (φt )
(

∂

∂t
, ξα

)
ei(φt ).

This, combined with the fact that Dψ = 0 and D is self-adjoint, implies

d

dt
|t=0

∫
M

〈ψt , Dψt 〉 dvg =
∫

M

〈
∂

∂t

∣∣
t=0ψt , Dψ

〉
+
∫

M

〈
ψ ,

∂

∂t

∣∣
t=0 Dψt

〉
=
∫

M

〈
ψ i, ξα ◦ ψ j 〉 〈ei, Rφ∗T N (φ)(η, φ∗(ξα))ej

〉
dvg

=
∫

M
ηl〈φ∗(ξα), em〉〈ψ i, ξα ◦ ψ j〉〈ei, RN (el , em)ej〉 dvg,

On the other hand, it is well known that

d

dt

∣∣
t=0

∫
M

|dφt |2 dvg = 2
∫

M
〈τ (φ), el〉ηl dvg = 2

∫
M

τ l (φ)ηl dvg.

Hence, combining these formulae together, we obtain (16). �
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3 The ε-Decay Estimate and Regularity Theorem

In this section, we utilize the skew symmetry of the nonlinearity in the right-hand side

of the Dirac-harmonic map equation (16) and adapt the Coulomb gauge construction

technique developed by Rivieré [22] (n = 2) and Rivieré–Struwe [23] (n ≥ 3) to establish

an energy decay estimate for Dirac-harmonic maps in Morrey spaces under the smallness

condition. As a consequence, we prove the Hölder continuity part of Theorems 1.4 and 1.5.

Since the regularity issue is a local result, we assume, for simplicity, that for

x0 ∈ M, the geodesic ball BiM (x0) ⊂ M with the metric g is identified by (B2, g0). Here B2

is the ball centered at 0 and radius 2 in R
n, and g0 is the Euclidean metric on R

n. We

also assume that the spin bundle � restricted in B2 is given by �|B2 ≡ B2 × C
L , with

L = rankC�.

Let (φ, ψ ) ∈ H1(B2, N) × S1, 4
3 (B2, C

L ⊗ φ∗T N) be a weakly Dirac-harmonic map and

{ei}k
i=1 be an orthonormal frame of φ∗T N as given in Section 2. Write ψ = ψ i ⊗ ei for some

ψ i ∈ C
L , 1 ≤ i ≤ k.

Now we define �, the k × k matrix whose entries are 1-forms, by

�i j =
n∑

α=1

[
k∑

l,m=1

RN (φ)(ei, ej, el , em)
〈
ψm,

∂

∂xα

◦ ψ l

〉]
dxα, for 1 ≤ i, j ≤ k. (17)

Then we have the following simple fact.

Proposition 3.1. Let � be given by (17). Then �i j is real valued for any 1 ≤ i, j ≤ k, and

� is skew symmetric, i.e.

�i j = −� ji, 1 ≤ i, j ≤ k.

Proof. First observe that the skew symmetry of Clifford multiplication ◦ and the prop-

erties of Hermitian metric 〈·, ·〉 give〈
ψm,

∂

∂xα

◦ ψ l

〉
=
〈

∂

∂xα

◦ ψ l , ψm

〉
= −

〈
ψ l ,

∂

∂xα

◦ ψm

〉
.

On the other hand, the curvature operator RN (φ)(·, ·, ·, ·) is skew symmetric in its last two

components:

RN (φ)(·, ·, el , em) = −RN (φ)(·, ·, em, el ).

Thus, we conclude that

�i j = �i j,
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so that � is real valued. Here �i j = −� ji follows from skew symmetry of RN (φ)(·, ·, ·, ·)
with respect to its first two components. �

In terms of �, the Dirac-harmonic map equation (16) can be written as

τ i(φ) =
k∑

j=1

�i j · 〈dφ, ej〉, 1 ≤ i ≤ k, (18)

where · denotes the inner product of 1-forms, and 〈dφ, ej〉 = ∑n
α=1〈 ∂φ

∂xα
, ej〉 dxα.

Denote by d∗ the conjugate operator of d. Then we have, for 1 ≤ i ≤ k,

d∗(〈dφ, ei〉) = 〈τ (φ), ei〉 + 〈dφ, dei〉 = τ i(φ) + 〈dei, ej〉 · 〈dφ, ej〉.

Hence, we have

d∗(〈dφ, ei〉) =
k∑

l=1

�il · 〈dφ, el〉; �i j ≡ �i j + 〈dei, ej〉, ∀1 ≤ i, j ≤ k. (19)

Before proving Theorem 1.4, we recall the definition of Morrey spaces.

Definition 3.2. For 1 ≤ p ≤ n, 0 < λ ≤ n, and a domain U ⊆ R
n, the Morrey space Mp,λ(U )

is defined by

Mp,λ(U ) :=
{

f ∈ L p

loc(U ) : ‖ f‖Mp,λ(U ) < +∞
}

,

where

‖ f‖p
Mp,λ(U ) = sup

{
rλ−n

∫
Br

| f |p : Br ⊆ U
}

.

It is easy to see that for 1 ≤ p ≤ n, Mp,n(U ) = L p(U ) and Mp,p(U ) behaves like Ln(U ) from

the view of scalings.

Now we recall the Coulomb gauge construction theorem in Morrey spaces with

small Morrey norms, due to Rivieré [22] for n = 2 and Rivieré–Struwe [23] for n ≥ 3,

which plays a critical role in our proof here.

Lemma 3.3. There exist ε(n) > 0 and C (n) > 0 such that if R ∈ L2(B1, so(k) ⊗ ∧1
R

n) sat-

isfies

‖R‖M2,2(B1) ≤ ε(n), (20)
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then there exist P ∈ H1(B1, SO(k)) and ξ ∈ H1(B1, so(k) ⊗ ∧2
R

n) such that

P −1 RP + P −1d P = d∗ξ in B1, (21)

dξ = 0 in B1, ξ = 0 on ∂ B1. (22)

Moreover, ∇ P and ∇ξ belong to M2,2(B1) with

‖∇ P‖M2,2(B1) + ‖∇ξ‖M2,2(B1) ≤ C (n)‖R‖M2,2(B1) ≤ C (n)ε(n). (23)

Here so(k) denotes a Lie algebra of SO(k).

The crucial step to prove Theorem 1.4 is the following lemma.

Lemma 3.4. There exist ε0 > 0 such that if (φ, ψ ) ∈ H1(B2, N) × S1, 4
3 (B2, C

L ⊗ φ∗T N) is a

weakly Dirac-harmonic map satisfying

‖∇φ‖2
M2,2(B2) + ‖ψ‖4

M4,2(B2) ≤ ε2
0 , (24)

then for any α ∈ (0, 1), φ ∈ C α(B1, N). Moreover,

[φ]C α (B1) ≤ C‖∇φ‖M2,2(B2). (25)

Proof. By Proposition 3.1 and (19), we have � = (�i j) = (�i j − 〈ei, dej〉) ∈ L2(B1, so(k) ⊗
∧1

R
n). Moreover, (20) implies

‖�‖M2,2(B1) ≤ C (N)
[‖|ψ |2‖M2,2(B1) + ‖∇φ‖M2,2(B1)

] ≤ C (N)ε0 ≤ ε(n),

provided ε0 > 0 is chosen to be sufficiently small, where ε(n) > 0 is the same constant

as in Lemma 3.3. Hence, applying Lemma 3.3 with R replaced by −�, we conclude that

there are P ∈ H1(B1, SO(k)) and ξ ∈ H1(B1, so(k) ⊗ ∧1
R

n) such that

P −1d P − P −1�P = d∗ξ , dξ = 0 in B1, ξ = 0 on ∂ B1, (26)

and

‖∇ P‖M2,2(B1) + ‖∇ξ‖M2,2(B1) ≤ C (n)‖�‖M2,2(B1) ≤ C (n)ε0. (27)
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Write P = (Pij), P −1 = (Pji), and ξ = (ξi j). Since P −1 P = Ik, we have d P −1 = −P −1d P P −1.

Multiplying P −1 to (19) and applying (26), we obtain

d∗

⎡⎢⎢⎣P −1

⎛⎜⎜⎝
〈dφ, e1〉

...

〈dφ, ek〉

⎞⎟⎟⎠
⎤⎥⎥⎦ = [d P −1 P + P −1�P ] · P −1

⎛⎜⎜⎝
〈dφ, e1〉

...

〈dφ, ek〉

⎞⎟⎟⎠

= −d∗ξ · P −1

⎛⎜⎜⎝
〈dφ, e1〉

...

〈dφ, ek〉

⎞⎟⎟⎠ . (28)

The components of (28) can be written as

− d∗(Pji〈dφ, ej〉) = d∗ξil · (Pml〈dφ, em〉) , 1 ≤ i ≤ k, in B1. (29)

To proceed, recall the definition of BMO spaces. For any domain U ⊆ R
n, BMO(U )

is defined to be the set of functions f ∈ L1
loc(U ) such that

[ f ]BMO(U ) ≡ sup
{

1

|Br|
∫

Br

| f − f̄r| dx : Br ⊆ U
}

< +∞,

where f̄r = 1
|Br |
∫

Br
f is the average of f over Br. By Poincaré inequality, it follows that

[ f ]BMO(U ) ≤ C‖∇ f‖Mp,p(U ), ∀1 ≤ p ≤ n. (30)

For any 0 < R ≤ 1
2 , let BR ⊂ B1 be an arbitrary ball of radius R and η ∈ C ∞

0 (B1) be

such that 0 ≤ η ≤ 1, η ≡ 1 in BR, η ≡ 0 outside B2R, and |∇η| ≤ 4
R. For 1 ≤ i ≤ k, let

k∑
j=1

Pji〈d((φ − φ̄r)η), ej〉 = d fi + d∗gi in R
n (31)

be Hodge decomposition of
∑k

j=1 Pji〈d((φ − φ̄r)η), ej〉 on R
n, where fi ∈ H1(Rn), gi ∈

H1(Rn, ∧2
R

n) is a closed 2-form, i.e. dgi = 0 in R
n (see Iwaniec–Martin [17] for more

details). Moreover, we have the estimate

‖∇ fi‖L2(Rn + ‖∇gi‖L2(Rn) ≤ C‖dφ‖L2(B2R). (32)

Taking d∗ of both sides of (31) and applying (29), we have that for 1 ≤ i ≤ k,

− fi = d∗ξil · (Pml〈dφ, em〉) in BR, (33)

gi = d Pji ∧ 〈dφ, ej〉 + Pjidφ ∧ dej in BR. (34)
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Now we define two auxiliaries f2
i ∈ H1(BR) and g2

i ∈ H1(BR, ∧2
R

n) on BR by

 f2
i = 0 in BR, f2

i = fi on ∂ BR, (35)

g2
i = 0 in BR, g2

i = gi on ∂ BR. (36)

Set f1
i = fi − f2

i and g1
i = gi − g2

i . Then f1
i and g1

i belong to H1
0 (BR). For 1 < p < n

n−1 , let

p′ = p
p−1 be its Hölder conjugate. Recall the duality characterization of ‖∇u‖L p(BR) for

u ∈ W1,p
0 (BR):

‖∇u‖L p(BR) ≤ C sup
{∫

BR

∇u · ∇v dx : v ∈ W1,p′
0 (BR), ‖∇v‖L p′ (BR) ≤ 1

}
. (37)

Since p′ > n, the Sobolev embedding theorem implies that W1,p′
0 (BR) ↪→ C 1− n

p′ (BR) and for

v ∈ W1,p′
0 (BR), with ‖∇v‖L p′ (BR) ≤ 1, there holds

‖v‖L∞(BR) ≤ C R1− n
p′ , ‖∇v‖L2(BR) ≤ C R

n
2 − n

p′ . (38)

For any such v, we can employ (33), upon integration by parts, use the duality be-

tween the Hardy space H1 and the BMO space to estimate f1
i , similar to Bethuel [2] and

Rivieré–Struwe [23], as follows:∫
BR

∇ f1
i · ∇v = −

∫
BR

 fi · v =
∫

BR

d∗ξil · (Pml〈dφ, em〉) v

= −
∫

BR

d∗ξil · d(Plmemv)(φ − φ̄R)

≤ C‖d∗ξil · d(Plmemv)‖H1(Rn) [φ]BMO(BR)

≤ C‖∇ξ‖L2(BR)
(‖∇ P‖L2(BR) + ‖∇φ‖L2(BR)

) ‖v‖L∞(BR) [φ]BMO(BR)

+ C‖∇ξ‖L2(BR)‖∇v‖L2(BR) [φ]BMO(BR)

≤ C ε0 R
n−2

2

[
R

n−2
2 ‖v‖L∞(BR) + ‖∇v‖L2(BR)

]
[φ]BMO(BR)

≤ C ε0 R
n−2

2

[
R1− n

p′ + n−2
2 + R

n
2 − n

p′
]

[φ]BMO(BR)

≤ C ε0 R
n
p−1 [φ]BMO(BR) ,

where we have used that ‖∇em‖L2(BR) ≤ C‖∇φ‖L2(BR), (47), (27), and (38) in the derivation of

these inequalities. Taking supremum over all such v’s and using (37), we obtain

(
Rp−n

∫
BR

∣∣∇ f1
i

∣∣p) 1
p

≤ C ε0 [φ]BMO(BR) . (39)
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The estimation of g1
i can be achieved in a way similar to that of f1

i . In fact, for

any v ∈ W1,p′
0 (BR) satisfying (38), we have∫
BR

∇g1
i · ∇v = −

∫
BR

g1
i · v = −

∫
BR

gi · v

= −
∫

BR

[
d Pji ∧ 〈dφ, ej〉 + Pjidφ ∧ dej

]
v

=
∫

BR

[d Pji ∧ d(vej) + d(Pjiv) ∧ dej](φ − φ̄R)

≤ C [‖d Pji ∧ d(vej)‖H1(Rn) + ‖d(Pjiv) ∧ dej‖H1(Rn)] [φ]BMO(BR)

≤ C‖∇ P‖L2(BR)
(‖∇v‖L2(BR) + ‖∇φ‖L2(BR)‖v‖L∞(BR)

)
[φ]BMO(BR)

+ C‖∇φ‖L2(BR)
(‖∇v‖L2(BR) + ‖∇ P‖L2(BR)‖v‖L∞(BR)

)
[φ]BMO(BR)

≤ C ε0 R
n
p−1 [φ]BMO(BR) .

Taking supremum over all such v’s and using (37) yield(
Rp−n

∫
BR

∣∣∇g1
i

∣∣p) 1
p

≤ C ε0 [φ]BMO(BR). (40)

Now we want to estimate f2
i and g2

i . Since both f2
i and g2

i are harmonic, by the

classical Campanato estimates for harmonic functions (see, e.g. Giaquinta [12]), (39), and

(40), we have that for any 0 ≤ r ≤ R, it holds

r p−n
∫

Br

[ ∣∣∇ f2
i

∣∣p + ∣∣∇g2
i

∣∣p ] ≤ C
( r

R

)p
{

Rp−n
∫

BR

[ ∣∣∇ f2
i

∣∣p + ∣∣∇g2
i

∣∣p ]}
≤ C

( r

R

)p
{

Rp−n
∫

BR

[(|∇ fi|p + |∇gi|p)+ (|∇ f1
i |p + |∇g1

i |p)]}
≤ C

( r

R

)p
{

Rp−n
∫

BR

|∇φ|p + ε
p
0 [φ]p

BMO(BR)

}
. (41)

Therefore, using (31), (39)–(41), and

|dφ| ≤ k
max

i=1

∣∣∣∣∣∣
k∑

j=1

Pji〈dφ, ej〉
∣∣∣∣∣∣ ,

we have

r p−n
∫

Br

|∇φ|p ≤ Cr p−n
∫

Br

[∣∣∇ f2
i

∣∣p + ∣∣∇g2
i

∣∣p]+ Cr p−n
∫

Br

[|∇ f1
i |p + |∇g2

i |p]
≤ C

( r

R

)p
{

Rp−n
∫

BR

|∇φ|p + ε
p
0 [φ]

p
BMO(BR)

}
+ Cr p−n

∫
BR

[|∇ f1
i |p + |∇g2

i |p]
≤ C

( r

R

)p
{

Rp−n
∫

BR

|∇φ|p +
[
1 +

( r

R

)−n
ε

p
0

]
[φ]

p
BMO(BR)

}
. (42)
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As in [23], we set for x0 ∈ B1 and 0 < r ≤ 1,

�(x0, r) = r p−n
∫

Br (x0)
|∇φ|p ,

and for 0 < R ≤ 1,

�(R) = sup {�(x0, r) : x0 ∈ B1, 0 < r ≤ R} .

Then we have

sup
x0∈B1

[φ]
p
BMO(BR(x0)) ≤ C�(R).

Thus, (42) yields that there is a universal constant C > 0 such that for any x0 ∈ B1 and

0 < r < R ≤ 1, it holds

�(x0, r) ≤ C
( r

R

)p
[
1 +

( r

R

)−n
ε

p
0

]
�(R). (43)

Now for any given α ∈ (0, 1), choose λ ∈ (0, 1) such that 2C ≤ λp(α−1), and choose ε0 > 0

such that ε
p
0 = λn. Then we have that

�(x0, λR) ≤ 2Cλp�(R) ≤ λpα�(R) ≤ λpα�(R0) (44)

holds for any x0 ∈ B1, 0 < R0 < 1, and 0 < R ≤ R. Taking supremum with respect to x0

and R < R0 gives

�(λR0) ≤ λpα�(R0), ∀0 < R0 < 1. (45)

The iteration of (45) yields

�(r) ≤
(

r

R0

)pα

�(R0), ∀0 < r ≤ R0 < 1. (46)

This, combined with Morrey’s decay lemma (see Giaquinta [12]), implies that for any

α ∈ (0, 1), φ ∈ C α(B1) with [φ]C α (B1) ≤ C‖∇φ‖M2,2(B2). �

Next we present a proof on the higher order regularity of (φ, ψ ). The ideas are

suitable modifications of the hole-filling-type argument by Giaquinta–Hildebrandt [13]

in the context of harmonic maps. More precisely, we have the following C 1,α-regularity

lemma.

Lemma 3.5. There exist ε0 > 0 such that if (φ, ψ ) ∈ H1(B2, N) × S1, 4
3 (B2, C

L ⊗ φ∗T N) is a

weakly Dirac-harmonic map satisfying

‖∇φ‖2
M2,2(B2) + ‖ψ‖4

M4,2(B2) ≤ ε2
0 , (47)
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then there exists μ ∈ (0, 1) such that (φ, ψ ) ∈ C 1,μ(B1, N) × C 1,μ(B1, C
L ⊗ φ∗T N).

Proof. The proof is divided into several steps.

Step 1. For any β ∈ (0, 1), there exists C > 0 depending only on ε0 such that

r2−n
∫

Br (x0)
|ψ |4 ≤ Cr2β , ∀ x0 ∈ B1, and r ≤ 1

2
. (48)

To see this, first observe that the equation Dψ = 0 can be written as

∂ψ i = −�i
jl (φ)

∂φ j

∂xα

(
∂

∂xα

◦ ψ l

)
, ∀1 ≤ i ≤ k, (49)

where �i
jl (φ) is the Christoffel symbol of (N, h) at φ. Note that the Lichnerowitz’s formula

(see [19]) gives

∂2ψ i = −ψ i + 1

2
Rψ i = −ψ i,

since the scalar curvature R = 0 on �. Therefore, taking ∂ of (49) gives

ψ i = ∂

[
�i

jl (φ)
∂φ j

∂xα

(
∂

∂xα

◦ ψ l

)]
. (50)

Let η ∈ C ∞
0 (Rn) be such that 0 ≤ η ≤ 1, η = 1 in B r

2
(x0), and η = 0 outside Br(x0). Define

ψ i
2(x) = −

∫
Rn

∂G(x, y)

∂yβ

∂

∂yβ

◦
[
�i

jl (φ)
∂φ j

∂xα

(
∂

∂xα

◦ ψ l

)
η2

]
(y) dy, (51)

where G(x, y) = cn|x − y|2−n is the fundamental solution of  on R
n. Then it is easy to see∣∣ψ i

2

∣∣(x) ≤ C
∫

Rn

(|η∇φ||ηψ |)(y)

|x − y|n−1
dy = C I1(|η∇φ||ηψ |)(x), (52)

where I1 is the Riesz potential operator of order 1, that is the operator whose convolution

kernel is |x|1−n, x ∈ R
n. Since ∇φ ∈ M2,2(B2) and ψ ∈ M4,2(B2), by the Hölder inequality we

have |∇φ||ψ | ∈ M
4
3 ,2(B2). Hence, |η∇φ||ηψ | ∈ M

4
3 ,2(Rn) and

‖|η∇φ||ηψ |‖
M

4
3 ,2(Rn)

≤ C ‖∇φ||ψ |‖
M

4
3 ,2(Br (x0))

≤ C‖∇φ‖M2,2(Br (x0))‖ψ‖M4,2(Br (x0)).

By Adams’ inequality on Morrey spaces (see Adams [1]) I1 : M
4
3 ,2(Rn) → M

4
2 (Rn), we have∥∥ψ i

2

∥∥
M4,2(Rn) ≤ C ‖|η∇φ||ηψ |‖

M
4
3 ,2(Rn)

≤ C‖∇φ‖M2,2(Br (x0))‖ψ‖M4,2(Br (x0)). (53)

By the definition of ψ i
2, we have

ψ i
2 = ∂

[
�i

jl (φ)
∂φ j

∂xα

(
∂

∂xα

◦ ψ l

)
η2

]
= ∂

[
�i

jl (φ)
∂φ j

∂xα

(
∂

∂xα

◦ ψ l

)]
on B r

2
(x0)
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so that (ψ i − ψ i
2) = 0 on B r

2
(x0). Hence, by the standard estimate on harmonic functions

and (53), we have that for any θ ∈ (0, 1
2 ),∥∥ψ i − ψ i

2

∥∥
M4,2(Bθr (x0)) ≤ C θ

1
2
∥∥ψ i − ψ i

2

∥∥
M4,2(Br (x0)) ≤ C θ

1
2 ‖ψ‖M4,2(Br (x0)). (54)

Putting (53) and (54) together gives

‖ψ‖M4,2(Bθr (x0)) ≤ C
(
θ

1
2 + ε0

)‖ψ‖M4,2(Br (x0)). (55)

For any β ∈ (0, 1), choose θ = θ (β) ∈ (0, 1
2 ) such that 2C ≤ θ

β−1
2 and then choose ε0 such that

2C ε0 ≤ θ
β

2 , we would have

‖ψ‖M4,2(Bθr (x0)) ≤ θ
β

2 ‖ψ‖M4,2(Br (x0)). (56)

By iteration, this clearly yields (48).

Step 2. For any β ∈ (0, 1), x0 ∈ B1, and 0 < r ≤ 1
2 , it holds

r2−n
∫

Br (x0)
|∇φ|2 ≤ C (ε0)r2β. (57)

To do it, let v ∈ H1(Br(x0), R
K ) be such that

v = 0 in Br(x0); v = φ on ∂ Br(x0).

Then the maximum principle and (25) of Lemma 3.4 imply that for any β ∈ (0, 1)

‖v − φ‖L∞(Br (x0)) ≤ oscBr (x0)φ ≤ Crβ. (58)

Multiplying (5) by φ − v, integrating over Br(x0), and using (58) and (48), we have∫
Br (x0)

|∇(φ − v)|2 ≤ C
[∫

Br (x0)
|∇φ|2 |φ − v| +

∫
Br (x0)

|∇φ| |ψ |2 |φ − v|
]

≤ Crβ

[∫
Br (x0)

|∇φ|2 +
∫

Br (x0)
|ψ |4

]
≤ Crβ

∫
Br (x0)

|∇φ|2 + Crn−2+3β. (59)

Hence, by the standard estimate on harmonic functions, we have

(θr)2−n
∫

Bθr (x0)
|∇φ|2 ≤ 2

[
(θr)2−n

∫
Bθr (x0)

|∇v|2 + (θr)2−n
∫

Bθr (x0)
|∇(φ − v)|2

]
≤ C θ2r2−n

∫
Br (x0)

|∇φ|2 + 2(θr)2−n
∫

Br (x0)
|∇(φ − v)|2

≤ C
[(

θ2 + θ2−nrβ
)
r2−n

∫
Br (x0)

|∇φ|2 + θ2−nr3β

]
. (60)
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It is not hard to see that we can choose small r0 > 0 and θ = θ (r0, β, n) ∈ (0, 1
2 ) such that

for any 0 < r ≤ r0

(θr)2−n
∫

Bθr (x0)
|∇φ|2 ≤ θ2βr2−n

∫
Br (x0)

|∇φ|2 + r2β. (61)

This, combined with the iteration scheme as in Giaquinta [12], implies that for any

β ∈ (0, 1) and x0 ∈ B1, it holds

r2−n
∫

Br (x0)
|∇φ|2 ≤ Cr2β , ∀0 < r ≤ r0.

This yields (57).

Step 3. There exists μ ∈ (0, 1) such that (φ, ψ ) ∈ C 1,μ(B1). As in Step 2, let v ∈ H1(Br(x0), R
K )

be a harmonic function with v = φ on ∂ Br(x0). Then, as in (59), by using the estimates

from Steps 1 and 2, we would have that for any β ∈ ( 2
3 , 1),∫

Br (x0)
|∇(φ − v)|2 ≤ C

[∫
Br (x0)

|∇φ|2 |φ − v| +
∫

Br (x0)
|∇φ| |ψ |2 |φ − v|

]
≤ Crβ

[∫
Br (x0)

|∇φ|2 +
∫

Br (x0)
|ψ |4

]
≤ Crn−2+3β.

Hence, using the Campanato estimate for harmonic functions, we have

(θr)−n
∫

Bθr (x0)
|∇φ − ∇φx0,θr|2 ≤ 2

[
(θr)−n

∫
Bθr (x0)

|∇v − ∇vx0,r|2 + (θr)−n
∫

Bθr (x0)
|∇(φ − v)|2

]
≤ C

[
θ2r−n

∫
Br (x0)

|∇φ − ∇φx0,r|2 + θ−nr3β−2

]
≤ 1

2
r−n

∫
Br (x0)

|∇φ − ∇φx0,r|2 + Cr2μ (62)

provided that we first choose θ ∈ (0, 1
2 ) sufficiently small, and then choose r0 so small that

C θ−nr3β−2 ≤ r2μ for 0 < r ≤ r0, where

∇φx0,r = 1

|Br(x0)|
∫

Br (x0)
∇φ

is the average of ∇φ over Br(x0). It follows from the same iteration scheme as in [12] that

r−n
∫

Br (x0)
|∇φ − ∇φx0,r|2 ≤ Cr2μ, ∀x0 ∈ B1, 0 < r ≤ r0.

This, combined with the characterization of C μ by the Campanato space, implies ∇φ ∈
C μ(B1). Substituting ∇φ ∈ C μ(B1) into (49), one can easily conclude that ψ ∈ C 1,μ(B1). �

Thus, we complete the proof of Theorem 1.4.
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Completion of Proof of Theorem 1.4. Combining Lemmas 3.4 and 3.5, we know that

(φ, ψ ) ∈ C 1,μ(Br0
2

(x0)). The higher order regularity then follows from the standard bootstrap

argument for both (5) and (6). We omit the details. �

4 Stationary Dirac-Harmonic Maps

In this section, we introduce the notion of stationary Dirac-harmonic maps, which is a

natural extension of stationary harmonic maps. Any smooth Dirac-harmonic map is a

stationary Dirac-harmonic map (see [4]). We prove several interesting properties, includ-

ing a partial regularity theorem, for stationary Dirac-harmonic maps. To simplify the

presentation, we assume throughout this section that (M, g) = (�, g0), where � ⊆ R
n is a

bounded smooth domain and g0 is the Euclidean metric on R
n. Thus, the spinor bundle

� associated with M can also be identified by � = � × C
L , L = rankC�. We remark that

one can modify the proofs of Lemmas 4.2 and 4.4 and Proposition 4.5 without difficulties

so that (10) and (11) in Section 1 hold for any general Riemannian manifold (M, g), we

leave the details to the interested readers.

Definition 4.1. A weakly Dirac-harmonic map (φ, ψ ) ∈ H1(�, N) × S1, 4
3 (�, C

L ⊗ φ∗T N)) is

called to be a stationary Dirac-harmonic map, if it is also a critical point of L(φ, ψ ) with

respect to the domain variations, i.e. for any Y ∈ C ∞
0 (�, R

n), it holds

d

dt

∣∣
t=0

[∫
�

(|∇φt |2 + 〈ψt , Dψt 〉
)] = 0, (63)

where φt (x) = φ(x + tY(x)) and ψt (x) = ψ (x + tY(x)).

We now derive the stationarity identity for stationary Dirac-harmonic maps

defined above.

Lemma 4.2. Let (φ, ψ ) ∈ H1(�, N) × S1, 4
3 (�, C

L ⊗ φ∗T N)) be a weakly Dirac-harmonic

map. Then (φ, ψ ) is a stationary Dirac-harmonic map iff for any Y ∈ C ∞
0 (�, R

n), it holds∫
�

[〈
∂φ

∂xα

,
∂φ

∂xβ

〉
− 1

2
|∇φ|2δαβ + 1

2
Re
〈
ψ ,

∂

∂xα

◦ ∇ ∂
∂xβ

ψ

〉]
∂Yα

∂xβ

= 0. (64)
�

Proof. For t ∈ R with small |t |, denote y = Ft (x) = x + tY(x) : � → � and x = F −1
t (y). It is

a standard calculation (see, e.g. [20]) that

d

dt

∣∣
t=0

∫
�

|dφt |2 dx =
∫

�

[
2
〈

∂φ

∂xα

,
∂φ

∂xβ

〉
∂Yα

∂xβ

− |∇φ|2div(Y)
]

. (65)
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Now we compute d
dt |t=0

∫
�
〈ψt , Dψt 〉. First, by Remark 1.3, we have∫

�

〈ψt , Dψt 〉 =
∫

�

Re 〈ψt , Dψt 〉 .

Before taking d
dt , we perform a change of variable as follows. For y = Ft (x), since

∂

∂xα

= ∂yβ

∂xα

∂

∂yβ

,

we have

Dψt = ∂

∂xα

(Ft (x)) ◦ ∇ ∂
∂xα

(Ft (x))ψ = ∂yβ

∂xα

∂

∂xα

(y) ◦ ∇ ∂
∂yβ

ψ.

Thus ∫
�

Re 〈ψt , Dψt 〉 =
∫

�

∑
α,β

∂yβ

∂xα

Re
〈
ψ ,

∂

∂xα

(y) ◦ ∇ ∂
∂yβ

ψ

〉
JacF −1

t dy.

Since

d

dt

∣∣
t=0JacF −1

t = −div(Y) and
d

dt

∣∣
t=0

∂yβ

∂xα

= ∂Yβ

∂xα

,

we have

d

dt

∣∣
t=0

∫
�

Re 〈ψt , Dψt 〉 =
∫

�

Re 〈ψ , Dψ〉
[

d

dt
|t=0Jac

(
F −1

t

)]+
∫

�

∑
α,β

Re
〈
ψ ,

∂

∂xα

◦ ∇ ∂
∂xβ

ψ

〉
∂Yβ

∂xα

= −
∫

�

Re 〈ψ , Dψ〉 div(Y) +
∫

�

∑
α,β

Re
〈
ψ ,

∂

∂xα

◦ ∇ ∂
∂xβ

ψ

〉
∂Yβ

∂xα

=
∫

�

Re
〈
ψ ,

∂

∂xα

◦ ∇ ∂
∂xβ

ψ

〉
∂Yβ

∂xα

, (66)

where we have used Dψ = 0 in the last step. It is clear that (64) follows from (65) and

(66). �

It is well known that any stationary harmonic map u : R
n → N with finite Dirich-

let energy is a constant map. Here we prove that the same conclusion holds for stationary

Dirac-harmonic maps.

Theorem 4.3. For n ≥ 3, assume that (φ, ψ ) ∈ H1
loc(Rn, N) × S1, 4

3

loc(�(� × φ∗T N)) is a sta-

tionary Dirac-harmonic map satisfying∫
Rn

(|∇φ|2 + |∇ψ | 4
3 + |ψ |4) < +∞. (67)

Then φ ≡ constant and ψ ≡ 0.
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Proof. For any large R > 0, let η ∈ C ∞
0 (R) be such that η ≡ 1 for |t | ≤ R, η ≡ 0 for |t | ≥ 2R,

and |η′(t )| ≤ 4
R. Let Y(x) = xη(|x|) ∈ C ∞

0 (Rn, R
n). Note that

∂Yβ

∂xα

= η(|x|)δαβ + xαxβ

|x| η′(|x|).

Substituting Y into the stationarity identity (64) yields

(n

2
− 1

) ∫
Rn

|∇φ(x)|2η(|x|) − 1

2

∫
Rn

Re
〈
ψ ,

∂

∂xα

◦ ∇ ∂
∂xα

ψ

〉
η(|x|)

=
∫

Rn

[〈
∂φ

∂xα

,
∂φ

∂xβ

〉
− 1

2
|∇φ|2δαβ + 1

2
Re
〈
ψ ,

∂

∂xα

◦ ∇ ∂
∂xβ

ψ

〉]
η′(|x|) xαxβ

|x|

=
∫

Rn

[(∣∣∣∣∂φ

∂r

∣∣∣∣2 − 1

2
|∇φ|2

)
+ 1

2
Re
〈
ψ ,

∂

∂r
◦ ∇ ∂

∂r
ψ

〉]
|x|η′(|x|).

Since Dψ = 0, we have

1

2

∫
Rn

Re
〈
ψ ,

∂

∂xα

◦ ∇ ∂
∂xα

ψ

〉
η(|x|) = 1

2

∫
Rn

Re 〈ψ , Dψ〉 η(|x|) = 0.

The right-hand side can be estimated by∣∣∣∣∣
∫

Rn

[(∣∣∣∣∂φ

∂r

∣∣∣∣2 − 1

2
|∇φ|2

)
+ 1

2
Re
〈
ψ ,

∂

∂r
◦ ∇ ∂

∂r
ψ

〉]
|x|η′(|x|)

∣∣∣∣∣ ≤ C
∫

B2R\BR

[|∇φ|2 + |ψ ||∇ψ |]
≤ C

∫
B2R\BR

[|∇φ|2 + |ψ |4 + |∇ψ | 4
3
]
.

(68)

On the other hand, the left-hand side is bounded below by(n

2
− 1

) ∫
Rn

|∇φ(x)|2η(|x|) ≥
(n

2
− 1

) ∫
BR

|∇φ|2. (69)

Since n ≥ 3, (68) and (69) imply∫
BR

|∇φ|2 ≤ C
∫

B2R\BR

[|∇φ|2 + |ψ |4 + |∇ψ | 4
3
]
, (70)

this and (67) imply, after sending R to ∞,∫
Rn

|∇φ|2 = 0,

i.e. φ ≡ constant. Substituting this φ into the equation of ψ , we have ∂ψ = 0 in R
n. Since

ψ ∈ L4(Rn), it follows easily that ψ ≡ 0. �



24 C. Wang and D. XU

Now we derive an identity for stationary Dirac-harmonic maps, which is similar

to the monotonicity identity for stationary harmonic maps.

Lemma 4.4. Assume that (φ, ψ ) ∈ H1(�, N) × S1, 4
3 (�, C

L ⊗ φ∗T N) is a stationary Dirac-

harmonic map. Then for any x0 ∈ � and 0 < R1 ≤ R2 < dist(x0, ∂�), it holds

R2−n
2

∫
BR2 (x0)

|∇φ|2 dx − R2−n
1

∫
BR1 (x0)

|∇φ|2 dx

=
∫ R2

R1

r2−n

(∫
∂ Br (x0)

[
2

∣∣∣∣∂φ

∂r

∣∣∣∣2 + Re
〈
ψ ,

∂

∂r
◦ ∇ ∂

∂r
ψ

〉]
d Hn−1

)
dr, (71)

where ∂
∂r = ∂

∂|x−x0| .

Proof. For simplicity, assume x0 = 0 ∈ �. The argument is similar to that of Theorem

4.3. For completeness, we outline it again. For ε > 0 and 0 < r < dist(0, ∂�), let ηε (x) =
ηε (|x|) ∈ C ∞

0 (Br) be such that 0 ≤ ηε ≤ 1, ηε = 1 for |x| ≤ r(1 − ε). Choose Y(x) = xηε(|x|). Note

∂Yβ

∂xα

= δαβηε (|x|) + xαxβ

|x| η′
ε (|x|).

Substituting Y into (64), we have

(2 − n)

∫
Br

|∇φ(x)|2ηε (|x|) +
∫

Br

Re
〈
ψ ,

∂

∂xα

◦ ∇ ∂
∂xα

ψ

〉
ηε (|x|)

= −
∫

Br

[
2
〈

∂φ

∂xα

,
∂φ

∂xβ

〉
− |∇φ|2δαβ + Re

〈
ψ ,

∂

∂xα

◦ ∇ ∂
∂xβ

ψ

〉]
η′

ε (|x|) xαxβ

|x|

= −
∫

Br

[(
2

∣∣∣∣∂φ

∂r

∣∣∣∣2 − |∇φ|2
)

+ Re
〈
ψ ,

∂

∂r
◦ ∇ ∂

∂r
ψ

〉]
|x|η′

ε (|x|).

Using the equation Dψ = ∂
∂xα

◦ ∇ ∂
∂xα

ψ = 0 and sending ε to 0 yield

(2 − n)

∫
Br

|∇φ|2 dx + r
∫

∂ Br

|∇φ|2 d Hn−1

= 2r
∫

∂ Br

∣∣∣∣∂φ

∂r

∣∣∣∣2 d Hn−1 + r
∫

∂ Br

Re
〈
ψ ,

∂

∂r
◦ ∇ ∂

∂r
ψ

〉
d Hn−1, (72)

or equivalently,

d

dr

(
r2−n

∫
Br

|∇φ|2 dx
)

= r2−n
∫

∂ Br

[
2

∣∣∣∣∂φ

∂r

∣∣∣∣2 + Re
〈
ψ ,

∂

∂r
◦ ∇ ∂

∂r
ψ

〉]
d Hn−1.

Integrating r from R1 to R2 yields (4.4). �
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In contrast with stationary harmonic maps, (71) does not imply that the renor-

malized energy

R2−n
∫

BR(x0)
|∇φ|2

is monotone increasing with respect to R yet. In order to have such a monotonicity

property, we need to assume that ∇ψ has higher integrability. More precisely, we have

the following proposition.

Proposition 4.5. Assume that (φ, ψ ) ∈ H1(�, N) × S1, 4
3 (�, C

L ⊗ φ∗T N) is a stationary

Dirac-harmonic map. If, in addition, ∇ψ ∈ L p(�) for some 2n
3 < p ≤ n, then there ex-

ists C0 > 0 depending only on ‖∇ψ‖L p(�) such that for any x0 ∈ � and 0 < R1 < R2 <

dist(x0, ∂�), it holds

R2−n
1

∫
BR1 (x0)

|∇φ|2 ≤ R2−n
2

∫
BR2 (x0)

|∇φ|2 + C0 R
3− 2n

p

2 . (73)

Proof. For simplicity, assume x0 = 0. For x ∈ �, denote

f (x) =
∣∣∣∣Re

〈
ψ ,

∂

∂r
◦ ∇ ∂

∂r
ψ

〉
(x)

∣∣∣∣ .
Since ∇ψ ∈ L p(�), by the Sobolev embedding theorem we have ψ ∈ L

np
n−p (�). Since f (x) ≤

C |ψ ||∇ψ |, the Hölder inequality implies that f ∈ Lq(�) with q = np
2n−p. Since p > 2n

3 , it is

easy to see that q > n
2 . It then follows that for any R < R0 = dist(0, ∂�),

∫ R

0
r1−n

∫
Br

f (x) dx ≤
(∫ R

0
r1− n

q dr
)

‖ f‖Lq (BR0 )

=
(

q

2q − n

)
R2− n

q ‖ f‖Lq (BR0 ) < +∞, (74)

and

R2−n
∫

BR

f ≤ R2− n
q ‖ f‖Lq (BR0 ). (75)

For any 0 < R1 ≤ r ≤ R2 < R0, set

g(r) =
∫

∂ Br

f (x) d Hn−1.
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Then, by integration by parts, we have∫ R2

R1

r2−n
∫

∂ Br

∣∣∣∣Re
〈
ψ ,

∂

∂r
◦ ∇ ∂

∂r
ψ

〉∣∣∣∣ d Hn−1

=
∫ R2

R1

r2−ng(r) dr =
∫ R2

R1

r2−n d
(∫

Br

f (x) dx
)

= R2−n
2

∫
BR2

f (x) dx − R2−n
1

∫
BR1

f (x) dx + (n − 2)
∫ R2

R1

r1−n

(∫
Br

f (x) dx
)

.

This, combined with (71), implies

R2−n
2

∫
BR2

|∇φ|2 + R2−n
2

∫
BR2

f + (n − 2)
∫ R2

0
r1−n

∫
Br

f

≥ R2−n
1

∫
BR1

|∇φ|2 + R2−n
1

∫
BR1

f + (n − 2)
∫ R1

0
r1−n

∫
Br

f +
∫ R2

R1

r2−n
∫

∂ Br

∣∣∣∣∂φ

∂r

∣∣∣∣2 d Hn−1.

It is easy to see that this inequality, (74), and (75) imply (73). �

With the help of Proposition 4.5 and Theorem 1.4, we can prove Theorem 1.8.

Proof of Theorem 1.8. For simplicity, assume M = � ⊆ R
n and g = g0 is the Euclidean

metric on R
n. Since ∇ψ ∈ L p(�) for some p > 2n

3 , we have by Sobolev’s embedding theorem

that ψ ∈ Lq(�) for q = np
n−p > 2n. Hence, for any ball BR(x) ⊆ �, by the Hölder inequality

we have

R2−n
∫

BR(x)
|ψ |4 ≤

(∫
BR(x)

|ψ |q
) 4

q

R2− 4n
q ≤ ‖∇ψ‖4

L p(�) R
2− 4n

q . (76)

Let ε0 > 0 be the constant given by Theorem 1.4. For a large constant C (n) > 0 to

be chosen later, define

S(φ) =
⋂
R>0

{
x ∈ � : R2−n

∫
BR(x)

|∇φ|2 >
ε2

0

C (n)

}
.

It is well known (see Evans–Gariepy [10]) that Hn−2(S(φ)) = 0. For any x0 ∈ � \ S(φ), there

exists r0 > 0 such that

(2r0)2−n
∫

B2r0 (x0)
|∇φ|2 ≤ ε2

0

C (n)
.

Hence

sup
x∈Br0 (x0)

{
r2−n

0

∫
Br0 (x)

|∇φ|2
}

≤ 2n−2ε2
0

C (n)
.
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Applying the monotonicity inequality (73) implies

sup
x∈Br0 (x0),0<r≤r0

{
r2−n

∫
Br (x)

|∇φ|2
}

≤ 2n−2ε2
0

C (n)
+ C0r

3− 2n
p

0 ≤ ε2
0

4
, (77)

provided that we choose C (n) > 2n+1 and r0 ≤ ( ε2
0

8C0
)

p
3p−2n . On the other hand, by (76) we have

sup
x∈Br0 (x0),0<r≤r0

{
r2−n

∫
Br (x)

|ψ |4
}

≤ ‖∇ψ‖4
L p(�)r

6p−4n
p

0 ≤ ε2
0

4
, (78)

provided that we choose r0 < ( ε2
0

4‖∇ψ‖4
L p

)
p

6p−4n . Combining (77) with (78), we have that there

exists r0 > 0 sufficiently small such that

sup
x∈Br0 (x0),0<r≤r0

{
r2−n

∫
Br (x)

|∇φ|2 + r2−n
∫

Br (x)
|ψ |4

}
≤ ε2

0

2
. (79)

Thus, Theorem 1.4 implies that (φ, ψ ) ∈ C ∞(Br0
2

(x0), N) × C ∞(Br0
2

(x0), C
L ⊗ φ∗T N). Note that

this also yields � \ S(φ), which is an open set. The proof of Theorem 1.8 is now

complete. �

5 Convergence of Approximate Dirac-Harmonic Maps

In dimension two, the weak convergence theorem of approximated harmonic maps or

Palais–Smale sequences of Dirichlet energy functional for maps into Riemannian man-

ifolds was first proved by Bethuel [3]. Subsequently, alternative proofs were given by

Freire–Müller–Struwe [11], and Wang [25] by employing the moving frame and various

techniques including the concentration compactness method. Very recently, Rivieré [21]

gave another proof using the conservation laws.

In this section, we extend such a convergence theorem to sequences of approxi-

mate Dirac-harmonic maps from a spin Riemann surface. The key ingredient is first to

use the moving frame to rewrite the equation of approximate harmonic maps into the

form similar to (12), and then to use Rivieré’s Coulomba gauge construction technique to

rewrite it into the form (28), in which the concentration compactness method is similar

to that of [11], to pass to the limit.

Since
∫ |dφ|2 + |ψ |4 is conformally invariant in dimension two, it follows from a

scaling argument and a covering argument that Theorem 1.9 follows from Lemma 5.1.
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For simplicity, we assume that (M, g) = (�, g0) for some bounded smooth domain � ⊆ R
2

with the Euclidean metric g0. Denote by Br ⊆ R
2 the ball center at 0 with radius r.

Lemma 5.1. There exists ε1 > 0 such that if (φp, ψp) ∈ H1(B1, N) × S1, 4
3 (B1, C

2 ⊗ φ∗
mT N)

is a sequence of approximate Dirac-harmonic maps, i.e.

τ (φp) = RN (φp, ψp) + up; Dψp = vp on B1,

up → 0 strongly in H−1(B1) and vp ⇀ 0 in L
4
3 (B1),

and ∫
B1

(|∇φp|2 + |ψp|4
) ≤ ε2

1 . (80)

If (φp, ψp) ⇀ (φ, ψ ) in H1(B1, N) × S1, 4
3 (B1, C

2 ⊗ R
K ), then (φ, ψ ) ∈ H1(B1, N) × S1, 4

3 (B1, C
2 ⊗

φ∗T N) is a weakly Dirac-harmonic map.

Proof. First observe that the argument of Proposition 2.1 can be easily modified

to show that if (Ñ, h̃) is another Riemannian manifold and f : (N, h) → (Ñ, h̃) is a

totally geodesic, isometric embedding, and if we set φ̃ = f (φ) and ψ̃ = f∗(ψ ), then

(φ̃, ψ̃ ) ∈ H1(B1, Ñ) × S1, 4
3 (B1, C

2 ⊗ (φ̃)∗T Ñ) is a sequence of approximate harmonic maps

with (up, vp) replaced by (ũp, ṽp), where ũp = f∗(up) and ṽp = f∗(vp). Moreover, it is easy to

check that

ũp → 0 strongly in H−1(B1) and ṽp ⇀ 0 in L
4
3 (B1),

φ̃p ⇀ φ̃ = f (φ) in H1(B1), ψ̃p ⇀ ψ̃ = f∗(ψ ) in S1, 4
3 (B1),

and ∫
B1

|∇φ̃p|2 + |ψ̃p|2 ≤ ε2
0 .

With this reduction, we may assume that there exists a global orthonormal frame {êi}k
i=1

on (N, h). For any p, let ep
i = êi(φp), 1 ≤ i ≤ k, be the orthonormal frame along with φp.

Then, similar to Lemma 2.2, Proposition 3.1, and (19), we have

d∗ (〈dφp, ep
i

〉) =
k∑

j=1

�
p
ij

〈
dφp, ep

j

〉+ ui
p, (81)

where

�
p
ij = �

p
ij + 〈

dep
i , ep

j

〉
, 1 ≤ i, j ≤ k; ui

p = 〈
up, ep

i

〉
, 1 ≤ i ≤ k, (82)
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and

�
p
ij =

n∑
α=1

[
k∑

l,m=1

RN (φp)
(
ep

i , ep
j , ep

l , ep
m

) 〈
ψm

p ,
∂

∂xα

◦ ψ l
p

〉]
dxα, 1 ≤ i, j ≤ k. (83)

Since �p = (�p
ij) satisfies∫

B1

∣∣�p
∣∣2 ≤ C

∫
B1

(|∇φp|2 + |ψp|4) ≤ C ε2
1 ≤ ε2

0 ,

provided ε1 ≤ ε0√
C

, where ε0 is the same constant as in Lemma 3.3. Hence, Lemma 3.3

implies that there exist Qp ∈ H1(B1, SO(k)) and ξ p ∈ H1(B1, so(k) ⊗ ∧2
R

2) such that

(Qp)−1d Qp − (Qp)−1�pQp = d∗ξ p in B1, (84)

dξ p = 0 in B1, ξ p = 0 on ∂ B1, (85)

and

‖∇Qp‖L2(B1) + ‖∇ξ p‖L2(B1) ≤ C‖�p‖L2(B1) ≤ C ε0. (86)

Multiplying (81) by (Qp)−1 (see also (28)), we obtain

d∗

⎡⎢⎢⎣(Qp)−1

⎛⎜⎜⎝
〈
dφp, ep

1

〉
...〈

dφp, ep
k

〉
⎞⎟⎟⎠
⎤⎥⎥⎦ = −d∗ξ p · (Qp)−1

⎛⎜⎜⎝
〈
dφp, ep

1

〉
...〈

dφp, ep
k

〉
⎞⎟⎟⎠+ (Qp)−1

⎛⎜⎜⎝
u1

p
...

uk
p

⎞⎟⎟⎠ . (87)

Since ep
i = êi(φp), it is easy to see that for 1 ≤ i ≤ k, ep

i ⇀ ei = êi(φ) in H1(B1) and hence {ei}
is an orthonormal frame along the map φ.

After passing to possible subsequences, we may now assume that

Qp → Q weakly in H1(B1, SO(k)), strongly in L2(B1, SO(k)), and a.e. in B1,

ξ p → ξ weakly in H1(B1, so(k)), strongly in L2(B1, so(k)), and a.e. in B1.

It is not hard to see that 〈
dep

i , ep
j

〉 → 〈dei, ej〉 weakly in L2(B1).

Since (�p
ij) is bounded in L2(B1) and

�
p
ij → �i j ≡

n∑
α=1

[
k∑

l,m=1

RN (φ)(ei, ej, el , em)
〈
ψm,

∂

∂xα

◦ ψ l

〉]
dxα, a.e. in B1,
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�
p
ij → �i j weakly in L2(B1). Hence, �p

ij → �i j ≡ �i j + 〈dei, ej〉 weakly in L2(B1). Thus, send-

ing p → ∞, (84), and (85) yields that Q, ξ , � satisfy

Q−1d Q − Q−1�Q = d∗ξ in B1, (88)

dξ = 0 in B1, ξ = 0 on ∂ B1. (89)

Since up → 0 in H−1(B1), we have

(Qp)−1

⎛⎜⎜⎝
u1

p
...

uk
p

⎞⎟⎟⎠ → 0 (90)

in the sense of distribution on B1. It is also easy to see

d∗

⎡⎢⎢⎣(Qp)−1

⎛⎜⎜⎝
〈
dφp, ep

1

〉
...〈

dφp, ep
k

〉
⎞⎟⎟⎠
⎤⎥⎥⎦ → d∗

⎡⎢⎢⎣Q−1

⎛⎜⎜⎝
〈dφ, e1〉

...

〈dφ, ek〉

⎞⎟⎟⎠
⎤⎥⎥⎦ (91)

in the sense of distribution on B1.

Now we want to discuss the convergence of

Ap := d∗ξ p · (Qp)−1

⎛⎜⎜⎝
〈
dφp, ep

1

〉
...〈

dφp, ep
k

〉
⎞⎟⎟⎠ .

Note that the ith component of Ap, Ai
p, is given by

Ai
p = d∗ξ p

il · (Qp
ml

〈
dφp, ep

m

〉) = 〈
d∗ξ p

il · dφp,
(
Qp

mle
p
m

)〉
.

For this, we recall a compensated compactness lemma; see Freire–Müller–Struwe

[11] and Lemma 3.4 of Wang [24] for a proof.

Lemma 5.2. For n = 2, suppose that fp → f weakly in H1(B1), gp → g weakly in

H1(B1, ∧2
R

2), and hp → h weakly in H1(B1). Then, after passing to possible subsequences,

we have

d fp · d∗gp · hp → d f · d∗g · h + ν (92)

in the sense of distributions on B1, where nu is a signed Radon measure given by

ν =
∑
j∈J

a jδxj ,

where J is at most countable, aj ∈ R, xj ∈ B1, and
∑

j∈J |aj| < +∞.
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Applying Lemma 5.2, we conclude that for 1 ≤ i ≤ k,

Ai
p → Ai := d∗ξil · (Qml〈dφ, em〉) + νi in B1 (93)

where

νi =
∞∑
j=1

ai
jδxi

j
,

∞∑
j=1

∣∣ai
j

∣∣ < +∞.

Putting (91), (93), and (90) into (87), we obtain

d∗

⎡⎢⎢⎣Q−1

⎛⎜⎜⎝
〈dφ, e1〉

...

〈dφ, ek〉

⎞⎟⎟⎠
⎤⎥⎥⎦ = −d∗ξ · Q−1

⎛⎜⎜⎝
〈dφ, e1〉

...

〈dφ, ek〉

⎞⎟⎟⎠+

⎛⎜⎜⎝
ν1

...

νk

⎞⎟⎟⎠ . (94)

Note that (94) implies ⎛⎜⎜⎝
ν1

...

νk

⎞⎟⎟⎠ ∈ H−1(B1) + L1(B1),

so that νi = 0 for all 1 ≤ i ≤ k. Therefore, we have

d∗

⎡⎢⎢⎣Q−1

⎛⎜⎜⎝
〈dφ, e1〉

...

〈dφ, ek〉

⎞⎟⎟⎠
⎤⎥⎥⎦ = −d∗ξ · Q−1

⎛⎜⎜⎝
〈dφ, e1〉

...

〈dφ, ek〉

⎞⎟⎟⎠ . (95)

This and (88) imply that

d∗(〈dφ, ei〉) =
k∑

j=1

�i j · 〈dφ, ej〉.

Note that this equation is equivalent to the Dirac-harmonic map equation τ (φ) = RN (φ, ψ ).

Now we want to show Dψ = 0. To see this, observe that if we write ψp = ψ i
p ⊗ ep

i

and vp = vi
p ⊗ ep

i , then Dψp = vp becomes

∂ψ i
p = −�i

jl (φp)
〈
∂φp

∂xα

, ep
j

〉
∂

∂xα

◦ ψ l
p + vi

p. (96)

It is easy to see that, after taking p to ∞, (96) yields

∂ψ i = �i
jl (φ)

〈
∂φ

∂xα

, ej

〉
∂

∂xα

◦ ψ l ,

which is equivalent to Dψ = 0. Thus, the proof is complete. �
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Proof of Theorem 1.9. Define the possible concentration set

C =
⋂
R>0

{
x ∈ M : lim inf

p→∞

∫
BR(x)

(|∇φp|2 + |ψp|4
)

> ε2
1

}
.

Then, by a simple covering argument, we have that C is at most a finite subset in M. By

the definition, we know that for any x0 ∈ M \ C , there exist r0 > 0 and a subsequence of

(φp, ψp), denoted by itself, such that

lim
p→∞

∫
Br0 (x0)

(|∇φp|2 + |ψp|4
) ≤ ε2

1 .

Applying Lemma 5.1, we conclude that (φ, ψ ) is a weakly Dirac-harmonic map on Br0 (x0).

Since x0 ∈ M \ C is arbitrary, this implies that (φ, ψ ) is a weakly Dirac-harmonic map

on M \ C . Since C is at most finite, one can easily show that (φ, ψ ) is also a weakly

Dirac-harmonic map on M. Hence, Theorem 1.5 also implies that (φ, ψ ) is a smooth

Dirac-harmonic map on M. The proof is now complete. �
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[15] Hélein, F. “Regularite des applications faiblement harmoniques entre une surface et

variete riemannienne.” Comptes Rendus de l’Académie des Sciences 312 (1991): 591–

96.
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