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Abstract

We consider the equation modeling the compressible hydrodynamic flow
of liquid crystals in one dimension. As mentioned in [12], the weak solution
was obtained with the initial density having a positive lower bound and H'-
integrable. In this paper, we get a weak solution with initial density nonnegative

and L7-integrable.
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tion.
1 Introduction

In this paper, we consider the one dimensional initial-boundary value problem:

pt + (pu)x = 07
(pu)t + (pu2)$ + P = HUye — )‘(|nx|2)x7 (1‘1)

ng + ung = 0(ngz + |ng|*n),

for (z,t) € (0,1) x (0,+00), with the initial condition:

(p, pu, n)|t:0 = (po, mo, no) in [0, 1], (1.2)
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where ng : [0,1] — S? and the boundary condition:
(u, n2)|y; = (0, 0), t >0, (1.3)

where p > 0 denotes the density function, v denotes the velocity field, n denotes
the optical axis vector of the liquid crystal that is a unit vector (i.e., |n| = 1),
w > 0,X > 0,0 > 0 are viscosity of the fluid, competition between kinetic and
potential energy, and microscopic elastic relaxation time respectively. P = ap?, for
some constants v > 1 and a > 0, is the pressure function.

The hydrodynamic flow of compressible (or incompressible) liquid crystals was
first derived by Ericksen [1] and Leslie [2] in 1960’s. However, its rigorous mathe-
matical analysis was not taken place until 1990’s, when Lin [3] and Lin-Liu [4, 5, 6]
made some very important progress towards the existence of global weak solutions
and partial regularity of the incompressible hydrodynamic flow equation of liquid
crystals.

When the Ossen-Frank energy configuration functional reduces to the Dirichlet
energy functional, the hydrodynamic flow equation of liquid crystals in @ c R can

be written as follows (see Lin [3]):

pt + div(pu) = 0,
(pu)r + div(pu @ u) + VP = pAu — Adiv(Vn © Vn — %Id), (*)

ne +u-Vn = 0(An + |Vn|?n),

where u ® u = (uiuj)lgi’jgd, and Vn © Vn=(ng, - ng; )1<i j<d-

Observe that for d = 1, the system (%) reduces to (1.1). When the density
function p is a positive constant, then (x) becomes the hydrodynamic flow equation
of incompressible liquid crystals (i.e., div u = 0). In a series of papers, Lin [3] and
Lin-Liu [4, 5, 6] addressed the existence and partial regularity theory of suitable
weak solution to the incompressible hydrodynamic flow of liquid crystals of variable
length. More precisely, they considered the approximate equation of incompressible

hydrodynamic flow of liquid crystals: (i.e., p = 1, and |Vn|? in ()3 is replaced

by (L= [

3 ), and proved [4], among many other results, the local existence of

€
classical solutions and the global existence of weak solutions in dimension two and



three. For any fixed € > 0, they also showed the existence and uniqueness of global
classical solution either in dimension two or dimension three when the fluid viscosity
w is sufficiently large; in [6], Lin and Liu extended the classical theorem by Caffarelli-
Kohn-Nirenberg [7] on the Navier-Stokes equation that asserts the one dimensional
parabolic Hausdorff measure of the singular set of any suitable weak solution is zero.
See also [8, 9] for relevant results. For the incompressible case p = 1 and div u = 0, it
remains to be an open problem that for e | 0 whether a sequence of solutions (u., n.)
to the approximate equation converges to a solution of the original equation (x). It is
also a very interesting question to ask whether there exists a global weak solution to
the incompressible hydrodynamic flow equation (%) similar to the Leray-Hopf type
solutions in the context of Naiver-Stokes equation. We answer this question in [10]
for d = 2. Moreover, for p > 0, div u=0, and d = 2 or 3, we also get an unique
local strong solution to (x) in [11]. Particularly, if initial density has a positive lower
bound and d=2, we get an unique global strong solution with small initial data.

When dealing with the compressible hydrodynamic flow equation (%), in [12], we
get the existence and uniqueness of global classical, strong solution and the existence
of weak solution for 0 < ¢y L < po < ¢o and the existence of strong solution for pg > 0
when the dimension d = 1. As mentioned in the Remark 1.1 of [12], the global weak
solution may be obtained with improved initial conditions. We answer this question
in the paper.

We remark that when the optical axis n is a constant unit vector, (1.1) reduces
to the Navier-Stokes equation for compressible isentropic flow. Let’s review some
previous results about the weak solution to the compressible isentropic Navier-Stokes
equation. In 1998, P.L. Lions in [13] got a weak solution with v > % for dimension
d = 3. In 2001, S. Jiang and P. Zhang in [14] obtained a weak solution to the Cauchy
problem with spherically symmetric initial data for any v > 1, and d=2 or 3. For
general initial data, and d=3, E. Feireisl et al in [15] improved the condition of
given by P.L. Lions in [13], i.e. v > 3.

Our ideas mainly come from [15]. While the proof in this paper is simpler, since
we exploit the one-dimensional feature, and use integrals instead of commutators.

Moreover, we only need v > 1.



Since the constant a and p, A\, 6 in (1.1) don’t play any role in the analysis, we

assume henceforth that

u=A=0=a=1.

Notations:

(1) I =(0,1), I = {0,1}, Qp = I x (0,T) for T > 0.

~ ~

Definition 1.1 For any T > 0, we call (p,u,n) a global weak solution of (1.1)-(1.3),
if
(1) p € L®(0,T; LV(I)), pu® € L=(0,T; LY (1)), p>0 a.e. in Qr,
w € L?(0,T; HY(I)), n € L>=(0,T; H'(I)) N L%(0,T; H*(I)),
w € L0, T L(1)), |n| =1 in Qr,
(p, pu)(,0) = (po(x), mo(a)), weakly in LY(I) x L7 (I),
n(z,0) = no(x) in I, (n.(0,t),n:(1,t)) =0 a.e. in (0,T).

(2)  (1.1)1, (1.1)2 are satisfied in 2'(Qr), and (1.1)3 holds a.e. in Q.

u? v 2
B [ PO+ [ 42t Pl
12 y—1 Qr
</(mg+ A +(no)z?), for ae. t€(0,T) (1.4)
S ATy 0)z|") €. L) :

Our main result is as follows

Theorem 1.1 If pg > 0, po € L7(I), \’77% € L*(I), and ng € H'(I,5?), then there
exists a global weak solution (p,u,n) : [0,1] x [0, 4+00) — Ry x Rx S? to (1.1)-(1.3)

such that for any T > 0,
/ p*" < e(Ey,T),
Qr

where

2 g
m 0o 9
E, :——/ 4 +[(n

denotes the total energy of the initial data.



The rest of the paper is organized as follows. In section 2, we present some useful
Lemmas which will be needed. In section 3, we derive some a priori estimates for

the approximate solutions of (1.1)-(1.3), and prove the existence of weak solution.

2 Preliminaries

Lemma 2.1 ([16]). Assume X C E CY are Banach spaces and X —<— E. Then

the following embedding are compact:

(i) {gp:cpeLq(O,T;X),?;: ELl(O,T;Y)} —— L0, T; E), if 1<q<o0;

(17) {cp:goELoo(O,T;X),aafGLT(O,T;Y)}%% C(0, T E), if 1<r<oc.
Lemma 2.2 ([15]). Let p € L*(Q x (0,T)), u € L?(0,T; H} (Q; R?)) solve
pt + div(pu) = 0, in 2'(Q x (0,T)). (2.1)

Then
ob(p) + div[b(p)u] + [V (p)p — b(p)]divu = 0, in 2'(Q x (0,T)), (2.2)

for any b € C1(R) such that V' (2) = 0 for all z € R large enough.
Lemma 2.3 (/20]). Let p € L*(R%), u € H'(R?) Then
I+ div(pu) - div(u(p * 1)l 3ty < Clulrs o 10] 22 ey
for some C > 0 independent of o, p,u. In addition,
Ne * div(pu) — div(u(p * ny)) — 0, in LY(R?) as o — 0.

Lemma 2.4 ([19]). Let Q C R be a bounded Lipschitz domain. Let p € L*(Q x
(0,7)), u € L?(0,T; H} (4 RY)) solve (2.1). Then p,u solve (2.1) in 2'(R%x (0,T))

provided they were extended to be zero outside ).

Lemma 2.5 ([19]). Let O C RM be compact and let X be a separable Banach
space. Assume that v, : O — X*, m € Z, is a sequence of measurable functions
such that

esssup ||vp, (t)||x+ < N, uniformly in m.
teO



Moreover, let the family of functions

(U, ®) : t — (vm(t), @), t € O

be equi-continuous for any ® belonging to a dense subset in X. Then vy, € C(O0; X —
w) for m € Zy, and there exists v € C(O; X — w) such that after taking possible
subsequences,

vm — v in C(0; X —w), as m — oo.

Lemma 2.6 (/19]). Let O C RN be a measurable set and v,, € L'(O;RM) for
m € Z4 such that
U — v weakly in L (O; RM).

Let ® : RM — (—00,00] be a lower semi-continuous convex function such that

®(vy,) € LY(O) for any m, and
®(vy,) — ®(v), weakly in L'(O).

Then

®(v) < P(v), a.e. in O.

3 Existence of weak solution

In this section, we mollify the initial data, give the initial density a positive lower
bound, and get a sequence of classical approximate solutions. Then we derive some
a priori estimates of the approximate solutions, and take limits. The main difficul-
ties come from the convergence of the pressure. We overcome these difficulties by
Lemmas 3.2-3.4.

By Sobolev’s extension theorem in [18], there exists a ng € H!(R) such that

ng = ng in I. We mollify the initial data as follows.

(

pos = 1§ * po + 9,

1 ) <m/0\)
Ups = —(F—Ns *(—/—),
\/pOJN v/ PO
s — N5 * o
%7 ns * nol



Then pos > 6 > 0, pos, Uos, nos € C*T(I) for 0 < a < 1, satisfy as § — 0

(

£0os — PO, mn L’Y(I)a

V PosUOs — ma imn L2 I ’

. 27
postos — Mo, in L+ (1),

nos — no in HY(I).
\
From [12], we get a sequence of global classical solutions (ps, us, ns) such that

(ps)t + (psus)z = 0, ps >0,
(psus)e + (/’6“(2;)1 + (p§)z = (U6)wz — (I(26)z ) (3.1)
(n6)e + us(ns)e = (n§)za + |(n6)e|*ns, |ns| =1,

for (z,t) € [0,1] x (0, +00), with the initial and boundary conditions:

(p57 us, n§ ‘t 0 (p057 Ups Tl()(;) m [07 1]7
(us, Bzns)|yy = (0, 0).

Lemma 3.1 ([12]) For any T >0 and 0 <t < T, it holds

su  py
/(p d // us)al® + 2| (n6)az + |(n6)s] n&\
I 2 v =

PosUps | P
= /1(205H05 £ l(nos)e ). (32)

and
| 1ah? 4+ 0091 < el B0, 7). (3.3)
Qr
From (3.2), we have p] € L>(0,T; L(I)). To take limits of p] as § — 0, we need

more regularity of ps with respect to the space variable. Namely,

Lemma 3.2

/ Pgw < C(E()aT)'

T



Proof. Multiplying (3.1)2 by [ pi —« [; p, integrating the resulting equation over

Qr, and using integration by parts, we get

/p? - /Paucs(/o pa—:c/pg - //m/ pat—x/@g)t]
T
[ Jwsdi - [ [ (fars [ e~ [a
0 I I 0 I
r 2
- [ 1.6~ [
0 I I
= [+ IIT+T1IT+1IV+V VI
I = /Iﬂéué(/ P(s—gc/,%)\o
< ¢ sup /P&|U5|/Pg
0<t<T
< ¢ sup /pau(s/pg ) + ¢ sup (/pa/p})
0<t<T o<t<T J1 JrI

< (EO
where we have used (3.2). To estimate II, we multiply (3.1); by 'ypg_l and get

(p3)t + (pgus)e + (v — 1)p5 (us)z = 0. (3.4)

Therefore, we have from (3.4) that

I = / / psis / prus)s + (v — 1)p (us).]
_ / / spsus / [(pYus)e + (v = 1)} (us).]
_ /QT T2 4 (y —1/ /pgug/ Pl (ts)s
—(y - 1)/ /xpaua/p}(u(s)x

S/ 7+12+C/ /05|U5!/05 Us) e
S/ vH2+C// 3 |(us)z /P5+P5u(2s)
< / 7HQ%—CEO/ /pg Us)a



By Cauchy’s inequality, Holder’s inequality, and (3.2), we have

T
1o [ e [ sl )l
T

< / v+1 2+ / p?%—c(Eg).
T 4 T

—/T/<p5u§><p} —/p3>+/T</p}>2
o [ fo i [
/.,

Pgﬂ 5+ c(Eo,T).

IIIT4+1V =

IN

Vo= /0 ' /I (ug)zp] - /0 ) /I<ua>w //)3
1

T
Y - Y 2
M)l lost ey + 5 s [ /Q (s)of? +1)
1
3 [ A et ),

Qr

IN

IN

Vi = —/T/ung)xr?(pz—/lpz)
< oi%/ ) [
< ¢(Eo, T

Putting these inequalities together, we have
/ pyl = I+IT+IIT+IV+V+VI
Qr

1
< / p3 + c(Eo, T).
2 T

This completes the proof of the lemma. O

It follows from Lemma 3.1-3.2 that there exists a subsequence of (ps, ug, ng), still

denoted by (ps, us, ns), such that as 6 — 0, for any 7" > 0,
ps — p weak* in L>®(0,T;LY(I)), and weakly in L*7(Qr), (3.5)

P} — 17, weakly in L*(Qr), (3.6)



us — u, weakly in L*(0,T; HA(I)), (3.7)

ns — n, weak™ in L*(Qr), (3.8)
(n§)z — na, weak® in L°°(0,T; L?), (3.9)
(n5)e, (n§)az) — (N4, Nge), weakly in L2(Qr). (3.10)

Since ps € L (Qr),us € L*(0,T; H} (1)) C L*(0,T; L>=(I)), we have
2y
psus € L3+1(0,T; L2(I)).

2y .
Therefore, 9;ps = —(psus)z € L3+ (0,T; H-(I)). Since % > 1, ps € L>(0,T; LV(1)),

and L7 << H~!(I), we have from Lemma 2.1 and Lemma 2.5

ps — p, in C([0,T]; L7 — w), (3.11)
ps — pin C([0,T); H1). (3.12)
(3.7) and (3.12) imply
psus — pu, in 2'(Qr). (3.13)
Hence,
pi + (pu)e = 0, in 2'(Qr). (3.14)

Moreover, /psus € L>(0,T; L?) and /ps € L>(0,T; L*) give
2y
psus € L>(0,T; L~+T).

1.2y
From (3.1)2, we get (psus): = —(p5u3)e—(03)at(us)aa—(|(ns)a|?)e € L2(0, T3 W 571).
By (3.13), Lemma 2.1 and Lemma 2.5, we obtain

psus — pu, in C([0,T]; LA — w), (3.15)
psus — pu, in C([0,T); H™Y), (also weak* in LOO(O,T;L%)). (3.16)
We have from (3.7) and (3.16)
psui — pu?, in 2'(Qr), (also weakly in LQ(O,T;L%)). (3.17)
Similar to the above argument, we have from (3.8)-(3.10) and Lemma 2.1
ng — n, in C(Qr), (3.18)

10



ns — n, in L*(0,T;C*([0,1])). (3.19)

This, together with (3.6), (3.7), (3.9), (3.10), (3.13), and (3.17), implies
(pw)t + (pu?)z + (07)a = taz — (Ina|*)z, in Z'(Qr), (3.20)
ng + ung = Ngp + [ne*n, in L*(0,T; L?). (3.21)

It follows from (3.1)7, (3.1)5, (3.11), and (3.15) that
(p. pu)(,0) = (po(), mo(x)), weakly in L(I) x L7 (I).
By (3.1)} and (3.18), and the fact that |ns| = 1, we have
n(x,0) = no(x) in [0,1], and |n| =1 in Q.
(1.3) follows from (3.7) and (3.19). Since ps > 0 in Qp, we have from (3.5)
/ pleim/ psf >0,
Qr 0=0JQr
for any nonnegative f € C§°(Qr). For f is arbitrary, we get
p>0a.e. in Qr.

From (3.17), we have

1 t+e 5 1 t+e )
- uw® = —lim U
o S 0 A

1 t+€7 5
< Z Ii
< e/t 51_%//’5“5(3)’

for t € (0,T) and € > 0. Let ¢ — 0T, and use Lebesgue theorem, we get

/qu(t) < lim/pgug(t), for ae. te Qr.
I 6—0 I

This, together with (3.1), (3.2), and the lower semi-continuity, implies the energy
inequality (1.4). O

We still need to prove p¥ = p?. This requires the following lemmas.

Lemma 3.3 . It holds as 6 — 0
[(ué)x - Pg]st - (uz - ﬁ)/% m -@,(QT)

11



Proof. For any ¢ € C3°((0,T)), ¢ € C§°((0,1)), multiplying (3.1)2 by <p<;3f0‘r 05,

integrating the resulting equation over ()7, and using integration by parts, we have

/ o(1)6(2) (us)e — o105

T

X
= / Péua/ pa+/ Pa%/ pa)ﬂr/ o(t)p(x)p3us
0
B X
+/ w(t)¢ »’C,Oaua/ P5+/ p(t Pg/pcs—/ Us)z /pa
T T 0
+/ |(ns) |/P6+/ |P5
= / ¢ (t)p $05U5/05+/ p(t Ps%/ﬂa+/ P(;//Ls
T T 0
—/ U5/pa+/ ng\/pg—i—/ )22,
Qr

where we have used (3.1);.
2
Since fox ps € L0, T; W), 8t(f§p5) = —psus € LOO(O,T;IﬂTWl), we have

from Lemma 2.1 and (3.5)

/ Ps —>/ p, in C(Qr), as § — 0. (3.22)
0 0

This, combined with (3.5)-(3.7), (3.16), (3.17), and (3.19), gives

lim [ o(t)p()[(us)a — p}lps

0=0JQr

e - e
Qr Qr 0

/ p(t)g muz/ P+/ ot ’nz| / p+/ |n:r|p (3.23)

Qr 0 Qr

To complete the proof, it suffices to show that the right side of (3.23) is equal to
fQT o(t)p(x)(uz — p7)p. The main difficulty is pu ¢ L?>(Qr). To overcome it, take

12



©¢ [ (P)o as a test function of (3.20), where (p)s = 7 * p. Then
| etota) s - @

_ /Q Pt [ @+ /Q (ot | @+

/ Pt + /Q e | @+

/Tso(t)¢() /@a—/Q ()6 () /@,

/ D) / o + / (OB 1027} (3.24)

Since p € L*(Qr),u € L*(0,T; H}(I)), we have from Lemma 2.4
()i + (P0)s =0, in F'(R x (0,T)). (3.25)

Denote 7, = ({(p)ot)z — ((pt)z)o. It follows from Lemma 2.3 that 7, € L'(R x
(0,7)), and
re — 0, in LY(R x (0,T)), as ¢ — 0. (3.26)

Take n,(z — -) as a test function of (3.25), then
((P)o)t + ((P)otl)y = o, a.e.in R x (0,T). (3.27)
Integrating (3.27) over (0, z), for 0 < z < 1, we have
T T
([ @or =@+ [ e

Therefore,

| ettt </ o /Q (D)) P2 (B).

T

- /Tgp(t)¢(x)pu<@gu+/ pU/ To + /T ) pu* ()
-/ plt)otz)on /0 "t

13



where we have used © = u in Q7. This, together with (3.24), implies
| etota) . - @)
T

-/ Wt R /Q eAt(a)on e

[ et [+ [ s [
_/QT so(t)cb'(x)ux/ox@UJr/QT o8z )IWQ/ @,

+ / o(0)6(2) a2 (7). (3.28)
QT

By the regularities of (p,u,n), (3.26), Lebesgue’s Dominated convergence theorem,

we get, after taking o — 0 in (3.28),
/ Tso(t)QS(:v)( e
e v [ e
/QT @(t)¢'(x)u;c/0 p+/T90 !m\?/ p+/ ) |ng|?p. (3.29)

The conclusion follows from (3.23) and (3.29). This completes the proof of the

Lemma. O

Lemma 3.4 . It holds
lim pé(ué)x S/ PUg-
0=0/Qr Qr

Proof. Since p € L*'(Qr),u € L*(0,T;H}), we replace b in (2.2) by bé, where
.l € Zy, by € CHR) and bl(2) = (2 + 7)log(z + 1) for 0 < z < j, and bl(z) =
(G+1+3)log(j+1+1) for z > j+1. Since p € L>(0,T; L7), we have p < +00 a.e.
in Q7. This implies bg(p) — (p+7)log(p+ 1) ae. in Qr, as j — co. Let j — oo

n (2.2), the Lebesgue’s Dominated convergence theorem implies

Do+ %u log(p+ %) — 0, in 7'(Qr).
(3.30)

We obtain from p € L*'(Qr) that (p + 7)log(p + 1) € L*(Qr). Similar to (3.25)-

D log(p+ D)+ o+ ) 108+ 7+ prea —

l l

(3.27), we extend p,u in (3.30) to be zero outside I, mollify (3.30), integrate the

14



resulting equation over Qr, and take limits, we obtain

e = ftns oot 1) = [0+ plosto )+
1 uclogp + ) (3.31)

Since (3.1); is valid in classical sense, a direct calculation gives

Il(ps+ %) log(ps + %)] +1[(ps + %) log(ps + %)u(s]a: +ps(us)e — %(Ua)x log(ps + %) =0.
(3.32)

Integrating (3.32) over Qr, we have

| et = [ oo+ p1ostons + ) [ o5+ ) 10stos + )+

1 1
l/ (us)z log(ps + 7)
QT

IN

[ (ons =+ Pr1ostoms + )= [ o5+ iostos + (T +

1
71 s)zllz2@nlles + 1l 2oy

1 1 1 1
/I(P()& + 7) log(pos + 7) - /I(pzs + 7) log(ps + 7)(T)

1
+70(E07T)7 (333)

IN

where we have used Holder inequality, Lemma 3.1, and Lemma 3.2.
Since ps € L>°(0,T; L"), we have

1 1
(ps + 7) log(ps + 7) € L>(0,T;L7), (3.34)

for some 7 > 1. From (3.32), we get

1

9[(ps + 7) log(ps +

1 2y 1.2
l )] € LA1(0,T; W h3i1), (3.35)

1

(3.34), (3.35), and Lemma 2.5 give

1 1 1 T .
(ps + 7)10g(pa+ 7) — (p+ 7)10g(p+ 7), in C([0,T]; L™ — w),

as 0 — 0. This implies

tim [ o5+ ) loz(ps+ D) = [ (0 Dlog(p+ 1T,

15



Since the function (z + })log(z + }) is convex for z > 0, Lemma 2.6 implies

1 1 1 1 .
(p+ f) log(p + 7) <(p+ f) log(p + 7)7 a.e. in Qr.

Therefore,

. 1 1 1 1

lim [ (ps + —)log(ps + -)(T) = [ (p+ 7)log(p+ -)(T). (3.36)

=0 Jr l l T { l
Take ﬁ in (3.33), and use (3.36), we get
— 1 1 . 1 1 1
G [ pstusle < [(m )loglon+ )~ lim [ (ps-+ ) logos + (D) + elEnT)
=0 Jor I 5—0J1

< [+ Dtogton+ ) = [0+ Ploslo + 1T + el T)

1 1 1
= / puy — / ugzlog(p+ =) + ~c(Eo, T)
T ! Qr l l

IN

1 1
/Q puz + 7lluall2@ryllp + Uz + 76(Bo, T).
T

Since u, € L?(Qr), and p € L?(Q7), sending | — oo yields
i [ o) < / e
The proof of the Lemma is complete. O
Now we return to the proof of p? = p7. Assume ¢, € C§°(0,T), ¢, € C°(0,1),
0 < ©m,dm < 1, and @p, ¢y — 1, as m — oo. For any ¢ € C§°(Qr), denote
v =p— ey for € > 0, then

| @=-v)

T

= [ om0+ [ (1= ondm)@ - 7)o —v)

T T

- / b (FTp — v — v7p+ v7H) / (1= Gmeb) (57 — 0)(p — v)

T T

= /T¢m¢m(/ﬂ—ux)p+/QT(som¢m - 1)pux+/ Pz

T

4 / om0 — vTp + 07 ¢ / (1= o) (@ — 07)(p — v).
QT Qr

Denote A, = fQT (m®m — 1)pug + fQT(l — ©m®m)(pT —v7)(p — v). Together with
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Lemma 3.3-3.4, (3.5), and (3.6), we have

JRGETUIE

T

> lim (Pm¢m[pg - (ué)x]p6 + hm/ pé(US)m +
0=0JQr 0=0JQr
lim 90m<15m(—0g7} —v7ps + U7+1) + Am
6—0 Qr

> Tl [ enbnlo} — @llos+ [ embmps(us)
0=0"JQr Qr

+ / ombm(—plv — v7ps + o7+ — T / P11 = bl ()] + Am
T 6—0 Qr

— T [ nénlo} ~ )5~ )~ T [ pslt = ()] + A
0=0/Qr 0=0./Qr

By the monotonicity of 27, we have

| omtme = o5~ ) 0.
T
Therefore,

[ =60 = ~Tm [ pslt= embmllus] + An
0=0JQr

T

v

Tt~ endnll, 2, o6l s z2(ar) + An

—c(EQ,T)Hl — SOmemHL%(QT) + A, (337)

\Y

where we have used Holder inequality, Lemma 3.1, and Lemma 3.2. By the Lebesgue’s

Dominated Convergence Theorem, we have

Hl_SOmQZ)mHL% — 0,4, — 0 as m — oo.

Q1)

Let m — oo in (3.37), we get

/ 77— vM)(p—v) >0,

T

Since v = p — ey, and € > 0, we have

/Q 77— (p— )] > 0. (3.38)

Sending € | 0 yields
IRGEIET

T

17



This clearly implies

o’ =p7, ae. in Qp.

The proof of Theorem 1.1 is complete. O
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