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Abstract

For a n-dimensional spin manifold M with a fixed spin structure and a
spinor bundle ΣM , we prove an ε-regularity theorem for weak solutions to the
nonlinear Dirac equation of cubic nonlinearity. This, in particular, answers a
regularity question raised by Chen-Jost-Wang [5] when n = 2.

1 Introduction

Linear Dirac type equations, including the Cauchy-Riemann equation in dimension
two, are the most fundamental first order system of elliptic equations. During the
course to study Dirac-harmonic maps with curvature term from a Riemann surface
into a Riemannian manifold, Chen-Jost-Wang [4, 5] introduced the nonlinear Dirac
equation with cubic nonlinearity:

∂/ψi =
N∑

j,k,l=1

H i
jkl〈ψj , ψk〉ψl, 1 ≤ i ≤ N. (1)

In dimension two, an interesting feature of this nonlinear Dirac equation is that it is
conformally invariant and has critical nonlinearity, where the classical methods fail
to apply. Thus it is an interesting question to study the regularity of weak solutions
of (2). The aim of this short note is to provide an elementary proof of a general
regularity criterion for (1).

In order to describe the results, we briefly review some background materials
on spin manifolds. The interested readers can consult with Lawson-Michelsohn
[6], Chen-Jost-Li-Wang [2, 3] for more details. For n ≥ 2, let (M, g) be a spin
manifold with a given spin structure and an associated spinor bundle Σ. Let 〈·, ·〉
be a Hermitian metric on Σ and ∇ be the Levi-Civita connection on Σ compatible
with both 〈·, ·〉 and g. The Dirac operator on M is defined by ∂/ = eα ◦ ∇eα , where
{eα}nα=1 is a local orthonormal frame on M , and ◦ : TM ⊗C Σ → Σ is the Clifford
multiplication.
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Now let’s write (2) into the form

∂/ψ = Hjkl〈ψj , ψk〉ψl, (2)

where ψ = (ψ1, · · · , ψN ) ∈ (ΓΣ)N , N ≥ 1, Hjkl =
(
H1
jkl, · · · , HN

jkl

)
∈ C∞(M,RN ).

We refer the readers to [5] §1, where the authors discussed two interesting ex-
amples in which (2) arises naturally. The first example is the Dirac-harmonic map
(φ, ψ) associated with the Dirac-harmonic energy functional with curvature term,
a nonlinear σ-model in the superstring theory, in which the nonlinear Dirac equa-
tion for ψ reduces to (2) when φ is a constant map. The second example is the
Weierstrass representation formula for minimal surfaces X immersed in R3 by holo-
morphic 1-forms and meromorphic functions, in which an equation of the form (2)
appears naturally.

It turns out that the underlying function space for the equation (2) is L4(M).
As pointed out by [5] that any weak solution ψ of (2) is smooth provide ψ ∈ Lp(M)
for some p > 4. In [5], the authors proved three interesting analytic properties of (2)
for n = 2: (i) the gradient estimate for smooth solutions ψ of (2) under the smallness
condition of L4-norm of ψ, (ii) the isolated singularity removable theorem, and (iii)
the energy identity theorem for sequentially weak convergent smooth solutions of
(2). At the end of §1 in [5], the authors asked

Conjecture 1.1 For n = 2, any weak solution ψ ∈ L4(M) of (2) is smooth.

In this short note, we answer Conjecture 1.1 affirmatively. In fact, we prove a
general regularity theorem for weak solutions of (2) in any dimensions. The ideas is
based on an application of the estimate of Reisz potentials between Morrey spaces,
due to Adams [1]. Similar techniques have been employed in the proof of higher
order regularity of Dirac-harmonic maps by Wang-Xu [7]. The proof turns out to
be very elementary, and may be applicable to other similar problems.

Before stating our results, let’s first recall the definition of weak solutions of (2).

Definition 1.2 A section ψ ∈ L4((ΓΣ)N ) is a weak solution of (2) if∫
M
〈ψ, ∂/η〉 =

∫
M
Hjkl

〈
ψj , ψk

〉〈
ψl, η

〉
(3)

holds for any smooth section η ∈ C∞
(
(ΓΣ)N

)
.

Denote by iM > 0 the injectivity radius of M . For 0 < r < iM and x ∈ M ,
denote by Br(x) the geodesic ball in M with center x and radius r. Now we state
our theorems.

Theorem 1.3 For any n ≥ 2, there exists ε0 > 0 depending on n such that if
ψ ∈ L4((ΓΣ)N ) is a weak solution of the Dirac equation (2) and satisfies, for some
x0 ∈M and 0 < r0 ≤ 1

2 iM ,

sup
x∈Br0 (x0), 0<r≤r0

{
1

rn−2

∫
Br(x)

|ψ|4
}
≤ ε40, (4)

then ψ ∈ C∞(B r0
2

(x0)).
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Note that by Hölder inequality, we have for n ≥ 2,

1
rn−2

∫
Br(x)

|ψ|4 ≤

(∫
Br(x)

|ψ|2n
) 2

n

.

Thus, as an immediate consequence of Theorem 1.3, we obtain

Corollary 1.4 For n ≥ 2, if ψ ∈ L2n((ΓΣ)N ) is a weak solution of the Dirac
equation (2), then ψ ∈ C∞((ΓΣ)N ).

It is clear that when n = 2, Corollary 1.4 implies Conjecture 1.1.

2 Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. Since the regularity is a local
property, we assume, for simplicity of presentation, that for x0 ∈ M , the geodesic
ball BiM (x0) ⊂ M with the metric g is identified by (B2, g0). Here B2 ⊂ Rn is the
ball with center 0 and radius 2, and g0 is the Euclidean metric on Rn. We also
assume that Σ

∣∣
B2

= B2 × CL, with L = rankCΣ.
Let’s also recall the definition of Morrey spaces.

Definition 2.1 For 1 ≤ p ≤ n, 0 < λ ≤ n, and a domain U ⊆ Rn, the Morrey space
Mp,λ(U) is defined by

Mp,λ(U) :=
{
f ∈ Lploc(U) : ‖f‖Mp,λ(U) < +∞

}
,

where

‖f‖p
Mp,λ(U)

= sup
{
rλ−n

∫
Br

|f |p : Br ⊆ U
}
.

It is easy to see that for 1 ≤ p ≤ n, Mp,λ(U) ⊂ Lp(U), Mp,n(U) = Lp(U) and
Mp,p(U) behaves like Ln(U) from the view of scalings.

It is clear that the condition (4) in Theorem 1.3 is equivalent to

‖ψ‖M4,2(Br0 (x0)) ≤ ε0.

Thus Theorem 1.3 follows from the following Lemma.

Lemma 2.2 For any 4 < p < +∞ and n ≥ 2, there exists ε0 > 0 depending only
on p and n such that if ψ ∈M4,2(B1) is a weak solution of (2) and

‖ψ‖M4,2(B1) ≤ ε0,

then ψ ∈ Lp(B 1
16
,CNL). Furthermore, ψ ∈ C∞(B 1

16
,CNL) and the estimate∥∥∥∇lψ∥∥∥

C0(B 1
16

)
≤ C(ε0, l), ∀l ≥ 1 (5)

holds
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Proof. Applying ∂/ to (2), we have, for 1 ≤ i ≤ N ,

∂/ 2ψi = ∂/
(
H i
jkl〈ψj , ψk〉ψl

)
(6)

in the sense of distributions. By Lichnerowitz’s formula (cf. [6]), we have

−∆ψi = ∂/ 2ψi.

Hence we have
−∆ψi = ∂/

(
Hjkl〈ψj , ψk〉ψl

)
(7)

in the sense of distributions.
For m = 1, 2, let ηm ∈ C∞0 (B1) be such that 0 ≤ ηm ≤ 1, ηm ≡ 1 on B21−2m . For

1 ≤ i ≤ N , define f im : Rn → CL by letting

f im(x) =
∫

Rn

∂G(x, y)
∂yα

∂

∂yα
◦
(
η3
mHjkl〈ψj , ψk〉ψl

)
(y) dy, (8)

where G(x, y) is the fundamental solution of ∆ on Rn. For 1 ≤ i ≤ N , define
gim : B1 → C by letting

ψi = f im + gim. (9)

Direct calculations imply that for m = 1, 2 and 1 ≤ i ≤ N ,

−∆f im = ∂/
(
η3
mHjkl〈ψj , ψk〉ψl

)
= ∂/

(
Hjkl〈ψj , ψk〉ψl

)
in B21−2m . (10)

This and (7) imply
∆gim = 0 in B21−2m . (11)

It follows from (8) that for m = 1, 2 and 1 ≤ i ≤ N ,∣∣f im∣∣ (x) ≤ C
∫

Rn
|x− y|1−n (ηm(y)|ψ(y)|)3 dy = CI1(η3

m|ψ|3)(x), (12)

where
I1(f)(x) =

∫
Rn
|x− y|1−n |f(y)| dy, f : Rn → R,

is the Riesz potential of order one. Let’s recall Adams’ inequality on Morrey spaces
(cf. [1]):

‖I1(f)‖
M

λq
λ−q ,λ(Rn)

≤ C‖f‖Mq,λ(Rn), ∀1 ≤ q < λ ≤ n. (13)

Step 1 (m = 1). Since (η1|ψ|)3 ∈M
4
3
,2(Rn), (13) implies that for 1 ≤ i ≤ N ,

‖f i1‖M4,2(Rn) ≤ C‖η3
1|ψ|3‖M 4

3 ,2(Rn)
= C‖η1|ψ|‖3M4,2(Rn)

≤ C‖ψ‖3M4,2(B1) ≤ Cε
2
0‖ψ‖M4,2(B1). (14)

4



On the other hand, by the standard estimate for harmonic functions, we have that
for any θ ∈ (0, 1

4) and x0 ∈ B 1
4

‖gi1‖M4,2(Bθ(x0)) ≤ Cθ
1
2 ‖gi1‖M4,2(B 1

2
), ∀1 ≤ i ≤ N. (15)

Putting (14) and (15) into (9) yields that for 1 ≤ i ≤ N ,

‖ψi‖M4,2(Bθ(x0)) ≤ Cθ
1
2 ‖gi1‖M4,2(B 1

2
) + Cε20‖ψ‖M4,2(B1)

≤ Cθ
1
2

[
‖ψi‖M4,2(B 1

2
) + ‖f i1‖M4,2(B 1

2
)

]
+ Cε20‖ψ‖M4,2(B1)

≤ C
(
ε20 + θ

1
2

)
‖ψ‖M4,2(B1). (16)

This clearly implies that for any θ ∈ (0, 1
4) and x0 ∈ B 1

4
,

‖ψ‖M4,2(Bθ(x0)) ≤ C
(
ε20 + θ

1
2

)
‖ψ‖M4,2(B1). (17)

For any α ∈ (0, 1
3), first choose θ ∈ (0, 1

4) be such that Cθ
1
2 ≤ θ

α
2 and then choose

ε0 > 0 be such that Cε20 ≤ θ
α
2 . Then we have

‖ψ‖M4,2(Bθ(x0)) ≤ θ
α
2 ‖ψ‖M4,2(B1), ∀x0 ∈ B 1

4
. (18)

Iteration of (18) yields

‖ψ‖M4,2(Br(x0)) ≤ Cr
α
2 ‖ψ‖M4,2(B1), ∀x0 ∈ B 1

4
and 0 ≤ r < 1

4
. (19)

In particular, we have for any 0 < α < 1
3 ,

r2(1−α)−n
∫
Br(x0)

|ψ|4 ≤ C
∫
B1

|ψ|4, ∀x0 ∈ B 1
4

and 0 < r <
1
4
. (20)

Thus ψ ∈M4,2(1−α)(B 1
4
) for any α ∈ (0, 1).

Step 2 (m = 2). We want to repeat the above argument to show that ψ ∈
M

4−4α
1−3α

,2(1−α)(B 1
16

). In fact, since (η2|ψ|)3 ∈ M
4
3
,2(1−α)(Rn), (13) implies that

f i2 ∈M
4(1−α)
1−3α

,2(1−α)(Rn), and∥∥f i2∥∥
M

4(1−α)
1−3α ,2(1−α)

(B 1
8
)
≤

∥∥f i2∥∥
M

4(1−α)
1−3α ,2(1−α)

(Rn)

≤ C
∥∥η3

2|ψ|3
∥∥
M

4
3 ,2(1−α)(Rn)

≤ C ‖ψ‖M4,2(1−α)(B 1
4
) . (21)
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On the other hand, since gi2 is a harmonic function on B 1
8
, we have, by (21),∥∥gi2∥∥

M
4(1−α)
1−3α ,2(1−α)

(B 1
16

)

≤ C
∥∥gi2∥∥

M
4(1−α)
1−3α ,2(1−α)

(B 1
8
)

≤ C

[∥∥f i2∥∥
M

4(1−α)
1−3α ,2(1−α)

(B 1
8
)

+
∥∥ψi∥∥

M
4(1−α)
1−3α ,2(1−α)

(B 1
8
)

]
≤ C ‖ψ‖

M
4(1−α)
1−3α ,2(1−α)

(B 1
8
)
. (22)

Putting (21) and (22) into (9) yields that ψ ∈M
4(1−α)
1−3α

,2(1−α)(B 1
16

) and

‖ψ‖
M

4(1−α)
1−3α ,2(1−α)

(B 1
16

)
≤ C ‖ψ‖M4,2(1−α)(B 1

4
) ≤ C ‖ψ‖M4,2(B1) . (23)

Since
lim
α↑ 1

3

4(1− α)
1− 3α

= +∞ and M
4(1−α)
1−3α

,2(1−α)(B 1
16

) ⊆ L
4(1−α)
1−3α (B 1

16
),

it follows from that ψ ∈ Lp(B 1
16

) for any p > 4, and

‖ψ‖Lp(B 1
16

) ≤ C(n, p)‖ψ‖M4,2(B1). (24)

Since |∂/ ψ| ≤ C|ψ|3, W 1,p-estimate implies that ψ ∈ W 1,p
loc (B 1

16
,CNL) for any

p > 4. Hence, by the Sobolev embedding theorem, ψ ∈ Cµ(B 1
16
,CNL) for any

µ ∈ (0, 1). By the Schauder estimate, this yields ψ ∈ C1,µ(B 1
16
,CNL). Hence, by

the bootstrap argument, we conclude ψ ∈ C∞(B 1
16
,CNL) and the estimate (5) holds.
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